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Within the language of propositional formulae built on imcption and a finite number of variablés we analyze

the set of formulae which are classical tautologies but miiitionistic (we call such formulae - Peirce’s formulae).
We construct the large family of so called simple Peircefsniadlae, whose sequence of densities for differeig
asymptotically equivalent to the sequer}}%@. We prove that the densities of the sets of remaining Psifoemulae

are asymptotically bounded from above $y for some constant € R. The result justifies the statement that in the
considered language almost all Peirce’s formulae are singte result gives a partial answer to the question stated
in the recent paper by H. Fournier, D. Gardy, A. Genitrini &dhdZaionc - although we have not proved the existence
of the densities for Peirce’s formulae, our result givesdpand upper bound for it (if it exists) and both bounds are
asymptotically equivalent t911_2'
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1 Introduction

Intuitionistic logic was developed in the beginning of th¥-h century, in search for a basis for construc-
tive mathematics. Apart from philosophical origins, ititistic logic emerged independently in many
different fields of mathematics. One of the most interestixgmples is the Curry-Howard isomorphism,
which relates intuitionistic proofs to programs in lambddcalus. The intuitionistic logic is known to
be a proper subset of a classical one. An interesting formhleh witnesses this fact is the Peirce’s law
((p — ¢) — p) — p which cannot be proved constructively (it needs some fortheflaw of excluded
middle in the proof). Since implication turned out to be thestrinteresting connector in the intuitionistic
logic we focus on the language of formulae which does notatither connectors. One of the first results
on the quantitative comparison between implicationalrfragts of both logics was obtained in the paper
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Versailles Saint-Quentin, contract number 7087/R07/R08
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of M. Moczurad, J. Tyszkiewicz and M. Zaionc [MTZ00]. Theyfihed a family ofsimple tautologies
which are intuitionistic tautologies with some specifiaisture. The conjecture stated in [MTZ00], that
almost all classical tautologies are simphas recently proved by H. Fournier, D. Gardy, A. Genitrini
and M. Zaionc in [FGGZO07]. This surprising result can be refolated asalmost all classical tautolo-
gies are intuitionistic In the present paper we extend one of the results from [FGGEQ estimating
the density of formulae which are classical tautologiesimtiintuitionistic (we call them Peirce’s formu-
lae). This work is also a continuation of some studies on Bawolformulas. Most of them are dealing
with and/orformulas [LS97, CFGGO04, Koz08]. All are dealing with the pability and complexity of a
Boolean function. But the last one, moreover describes faildethe inside structure of allmost all for-
mulas computing a given function. In our work we give thedesiletails of a formula too, but the way of
investigation is different.

1.1 Main results

LetV = {1,292, 23,...} be a countable set of variables. LBt be the set of implicational formulae
such that all the variables usedtibelongs to the saf, = {z1,...,zx}. LetCl, C 7, be the set of all
Classical tautologiesind Int;, C 7;, be the set of allntuitionistic tautologies For any setd C 7; by

A(n) we denote the number of elements of the Aeif sizen. We prove that:

.. (Clp \ Inty)(n) . (Cly, \ Inty)(n) 1
it =) koo limsup 70 koo 9pa

Our proof is based on the construction of families of forneulthose union has density— O(1/k3).
These families are easily defined fgmily schemeg¢see e.g. Fig. 2). Similar approach was taken in
[FGGZ07]. However, to estimate the density of Peirce’s folae we need to consider another, more
detailed, partition of the set of all formulae. Also, the signof each presented family must be calculated
more precisely, since we are interested in the order/éf. (The orderl /k is completely consumed by
the simple tautologies.)

2 Basic facts

In a straightforward way we identify implicational formelérom7;, with rooted binary planar trees with
leaves labelled by the variables fram and the inner nodes by:. For a formula (treep € 7y, the goal

of ¢ (denoted byr(y)) is the label of its rightmost leaf. For a set or sequenceedsf we denote by
r(S) the set of all goals of trees fros. The set of premises of a formula of the kipd— 1 is the set

of premises of) enlarged by the element formula which is a leaf has no premises. For all considered
types of trees the size of a tree is the number of its leaves.

2.1 Generating functions

Generating functions and results of singularity analysisafgebraic functions are important tools for our
development. The exhaustive treatment of this subject ediolnd in [FS08]. The generating function
for some set of treesl is denoted byy4(z) (formally it is the generating function for the sequence
(A(n))new).

Easy construction shows th@t(z) = (1 — /1 — 4kz)/2 is the generating function fdf;,. For any
distinguished subset of variabléswith cardinalityd < & the generating function for all the formulae
whose goal is not labelled with a variable frdmis bf (z) = 24 fi.(2).
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2.2 Tree families

Definition 1 A family scheme is a finite planar rooted unary-binary tree>esi
e leaves are labelled by the elements of some countable sg#terhe variables (we use Greek letters),
e edges are labelled by eithét (we call these regular edges) 6r(scheme edges)

We demand additionally that all the edges which go to theflefh some node are labelled with and

all the edges going down from unary nodes are scheme edgeslo\Wet distinguish family schemes
which can be transformed one into another (and back) by atije renaming of the scheme variables. In
the pictures regular edges are represented by solid lingseme edges by dashed lines. We also usually
assign names to the scheme edges (see e.g. Fig. 3).

For a family schemé” let s(T"), d(T') denote respectively the number of scheme edgds amd the
number of different labels assigned to the leave§ ofThe number of repetitionsep(7T') in a family
schemd is the total number of its leaves diminishedd{") (e.g.((p — q) — p) — p has 2 repetitions).
We writes, d, rep instead ofs(T'), d(T), rep(T) if the family scheme is clear from the context. As usual,
the size of a schemiE is the number of its leaves (we denote it|@).

For a family schem& an admissible substitution is any element of the{SE;)*)S(T) x VUT) LetT be
a family schemeg = ((s1,. .., $a), (v1, ... vp)) be an admissible substitution for, let (eq, ..., e,) and
(l1,...,1y) be the lists of scheme edgesioind scheme variables occurringlirboth listed according to
some fixed tree traversal order (lets say DFS). The appicati the substitution to the family scheme
T proceeds as follows:

e each leaf labelled with; is relabelled tay;

e each scheme edggeis locally expanded by the sequenge= (¢1, ..., tx,) as depicted below:
LY .
N | .
A4 B —>s A £1 /\

Fig. 1: scheme edge substitution.

e

The treatment of the substitution with sequences is sttfaighard. If the substituting sequence is empty,
the scheme edge whose parent is a binary node become a redg&r In case when the parent of the
edge is unary, and the substituting sequence is empty teataode of the scheme edge is replaced by
the child node. Obviously, the result of an application ofibgitution is a formula.

Definition 2 The substitution((s1, ..., s4), (v1,...vp)) IS not properif there exists a tree in some se-
quences; whose goat(t) equals some; or there exist different, j < b such that; = v,. Otherwise,
the substitution iproper
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The family of trees defined by the family scheffigdenoted byF;") consists of all the trees which

can be constructed from by the application of somproper substitution. By we denote the set
of formulae which can be constructed frdfhby any substitution (not necessarily proper). If there is a

family schemel” such thatF;! C H;, C F[ we say that the familg{; correspondso the schemé’.
2.3 Densities
For any set of treesl C 7;, we say that4 has density:;(A) € R if

o A0

Itis easy to observe that there are sets whose density dbegiab However, the following limits always
exist

_ .. A(n) . A(n)
py (A) = hnnr_{gf To(n) and ) (A) = h;n_}solip Tun)’

We cite below a technical Lemma which is a consequence of lle®em VI1.8 from [FS08]. Gener-
ating functions of all families of trees we use, have the aliproperty.

Lemma 3 Let f(z), g(z) be generating functions having both a unique dominatingudarity of square

root type inp € R. Then, the limitim,,_ o, % exists and equalsm, _, ,- %

We use this lemma to estimate densities of families of treéiseld by some family schemes.
Lemma 4 For every family scheni® andk € N, the density., (F]) exists and

Ty _ s(T) 1
pe(Fy ) = 92rep(T)+2d(T)—s(T)—1 . Lrep(T) +0 (k7'ep(T)+1 :

Proof: Let us fixk € N. We have one to one correspondence between the propeitstibss admissible
for T and the elements of . Let us define the size of a substituti(a,, . . ., 55(1))> (V1, ... va(7)) @S A
sum of the sizes of all trees from the sequenges. . , s,(1). Itis easy to see that the size of the formula
corresponding to the substitution equals the size of thet&ution increased by the size of the scheme
T. The generating function for the formulae whose goal do¢santain any of the variable occurring
in (v1,...vp) is easily seen to béf,(T) () = %(T)fk(z). Consequently, the generating function for the
sequences of such treeq(is— bZ(T)(z))*l. Since we need(T') of such sequences and the substitution
is proper the generating function &7’ is

—s(T)
(1 _ de(T)fk(z)) R L IT

wherek?™) — k(k—1)...(k—d(T)+1). Fors(T) > 0 andd(T) < k (the remaining cases are trivial)
the function is easily seen to have unique dominating sariiylof the square root type i (in the same
point thatfx(z)). The application of the Lemma 3 yields

R 5(7) - (1 40 R (@) 2o -
o = apm PO

—s(T)—1

k—d(T)
%

ik (F) =
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This estimation together with the fact that| = d(T") + rep(T) gives the estimation claimed in the
Lemma. O

By a similar reasoning we get the following Lemma.
Lemma 5 For every family schemg&, we have:

— 1
i (F) Zﬂk(fg)+o(m)- )

Proof: The number of elements ¢f of sizen is not greater than the number of all substitutions admis-
sible forT of sizen — |T'|. The generating function for these substitutionslis- fk(z))’S(T) -k HD),
hence the generating function for the fam#ly} is coordinatewise not greater than the function

hie(2) = (1 = fu(2)) "D kAT LTI

(i.e. for everyn € N we have[z"]hi(z) > F['(n)). Application of the Lemma 3 gives

+ (7T < jin E(Z) s(T) 1
py, (Fi) < nhfolo (27 fr(z) — 22rep(T)+2d(T)=s(T)~1 . frep(T) +0 Erep(T)+1 |

The last equation together with Lemma 4 gives (1). O

All considered families corresponding to some family schdrave densities. In most cases we omit
the proofs of the existence, which are typical but needs afloalculations.

2.4 Intuitionistic logic

Within this section we present a simple characterizatidgh@propositional intuitionistic logic. The proof
of its equivalence with other definitions and far more gehéeav of the subject can be found in [SU98].
Let 7 be the set of open subsetRfwith respect to Euclidean topology. The functiansV, — 7 are
called valuations in. We can extend every valuatien: V, — 7 to the set of all the formulae by the

following rule:

vlp — 9] := interior( (R \ v(9)) Un() ).

The following theorem belongs to folklore (we treat thisdhem as a definition for the intuitionistic
tautologies):
Theorem 6 A formulay € 7}, is anintuitionistic tautologyif and only if for every valuatiow : Vi, — 7
we havev[p] = R.

It is easy to derive from the statement above that all thetiohistic tautologies are classical. The
converse is not true. To see it, let us analyze the formigla— ¢) — p) — p known as Peirce’s law.

Simple check shows that it is a classical tautology. To shmawit is not intuitionistic one, let us consider
a valuatiorw : V, — 7 such thawv[p] = R \ {0} andv[q] = 0. Then we get

v[((p = @) = p) = pl = R\ {0}.

Such formulae are the main subject of our interest. We ddmot@eirce; the set of formulae fronTy
which are classical but not intuitionistic tautologies, @adl them Peirce’s formulae.
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3 Densities of Peirce’s formulae

To estimate the density of Peirce’s formulae we need to densnore detailed partitions of the sets of all
formulae that the one considered in [FGGZ07]. We need als@ mpi@cise estimations for the densities
of considered families, since the density of Peirce’s fdemus at most of the ordér—2. (According

to the results of [FGGZ07] the ordér! is completely consumed by the simple tautologies). A simple
tautology is a formula in which at least one premise is a lebélled by the same variable that the goal
of the whole formula. Simple tautologies are easily seeretmhuitionistic tautologies (see [FGGZ07]).
Note also that if all the goals of the premises of some forramdabelled by different variables than the
goal of the formula, then the formula cannot be a classicabtagy.

We present several families with estimations of their dési In the end we use a quantitative argument
to show that the set of formulae not belonging to the consitiéamilies has low density (i.e. of the order
k=3). Therefore we need to consider also families which doesoitain any Peirce’s formulae.

We start with the family of classical tautologies which am simple tautologies and which have at
least two premises with the same goal as the whole tree. @higyf was also considered in [FGGZ07].
In the Lemma 7 we give an alternative simple proof that thesfgiof this family isO(1/k3). Then we
analyze the family of non simple tautologies with only onerpiseA such that4 has the same goal as
the whole tree andl has at least two premises. We prove in the Lemma 8 that thetgefishis set is
O(1/k?). Inthe last step we consider trees as above but witlaving exactly one premise. We show how
to split this kind of trees into six disjoint sets with highrdties. Finally, we use a quantitative argument
to prove in Theorem 10 that the density of Peirce’s formwd¢ {2k?) + O(1/k3). One of the considered
set is a family containing only Peirce’s formulae (we ca#rinsimple Peirce’s formulae) and the set of
formulae which have not been considered has density of ther br 3.

Lemma 7 Let Gi be the set of tautologies, but non simple tautologies 7, for which at least two
premises have goals equalt¢t). We have.) (G) = O(1/k?).

Proof: Let H; be the set of formulaé € 7, which are not simple tautologies and which have at least
two premises with goal equal idt). LetT" be the family scheme depicted in Fig. 2. Itis easy to see that

FI' c Hy c FF and that no element of is a tautology (putv = 3 = v = 0 and all the other variables
to 1). From the Lemma 4 we know that (F) = 15 + O(1/k?). We know thaig), C H;, \ F. From
the Lemma 5 we gat; (Hx \ FF') = O(1/k?), which proves the Lemma. O

Let Si; be the family of trees frord;, such that each trelec Sy, satisfies the following conditions:
e tis nota simple tautology, i.e. no premiseta$ a leaf labelled withr(t),
e ¢ has exactly one premise, say such that(A) = r(¢) and A has at least two premises.

Lemma 8 LetG? be the set of tautologies belonging$e. We have:, (GZ) = O(1/k?).

Proof: Family S, can be constructed from the scheme in Fig. 3 by substitutiowsich no tree from the
sequences substituted {8y, .S; has the goal labelled with the variable assigned.to

We show that densities of tautologies fra#tp areO(1/k3), by constructing a large subfamily of non
tautologies. First, we estimate the densitySpf The generating function fa$;, can be easily found and
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S
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Fig. 2: A tree with at least two premises with a geal Fig. 3: The scheme corresponding to the fandly.

it equalsgs, (z) = k*2*(1 — bi.(2)) (1 — fx(2)) 3. Therefore, we get

_5 7 3
e (Sk) = % 2 +O(1/k). (2)

We use the scheme from Fig. 3 to define four disjoint subfamibf non tautologies by imposing
restrictions on the allowed substitutions. For a subsbitu¢(S1, Se, Ss, S4, S5), (o, 5,7)) we consider
the following cases (we abuse the notation using the samesfanthe scheme variables (resp. scheme
edges) and variables (resp. sequences) assigned to théma sytistitution):

@ f=a,v#a,a,v¢r(S)U...Ur(Ss),
(b) B# «, B¢ r(S1)Ur(S2)Ur(Sy), a ¢ r(S)Ur(Sz) (no restrictions fory),

(c) B # «, B occurs exactly once among the goals of trees ffamSs, S4, 8 ¢ r(S3) Ur(S5), a,v ¢
r(S1)U...Ur(Ss),

(d) 8 # «, a occurs exactly once among the goals of trees flam ¢ r(S1) Ur(S2) Ur(Ss) Ur(Ss),
v & r(S1)U...Ur(Ss).

We denote bys¢, Sb, S¢, S¢ the families of trees frorf}, constructed from the scheme from Fig. 3 and
substitutions fulfilling corresponding condition (a), (9), (d). Each of the above sets contains only non
tautologies. To falsify the elements of the familigg, S¢, S¢, valuatea and~y to 0 and all the other
variables to 1. For the familg? it suffices to put3 = o = 0 and all the other variables to 1.

The family S} is easily seen to be defined by some family schéinavith parameters = 5, d = 2
andrep = 2 (substitute3 with « in the scheme from Fig. 3). By the Lemma 4 the densit§pis

5

5 FO/R). (3)

For the familyS? we need more accurate estimation. The generating funaiasffis

1 1

51(2) = Kk = D R T e
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Thus, the density of? is

5 47 3
E*LL—kQJrO(l/k ). (4)
The family 7 is a disjoint union of three families corresponding to theesnes depicted in Fig. 4.
Formally, letT,,, T2, T.3 be the family schemes depicted in Fig. 4, then it is easy tdtsee

(FIr v UF) c i c (f,:;”cl UFl= U f,?c3> .

Each of this family schemes has parametets 7, d = 3, rep = 2. By the Lemma 4 and the Lemma 5
we get that

T4 O(1/k%). (5)

prk(Sg) =3 12

Fig. 4: Scheme for trees in case (c).

The last case — (d) corresponds to the sch&pieom Fig. 5. We havé’-"de cStc ]-"de. The family
scheme has parameters- 7,d = 3, rep = 2, hence, by the Lemma 4 and the Lemma 5, we get

pi(8) = 703 + O(L/K). ©)

If we compare the density &, with the density ofS{ U Sf U S¢ U Si we get

5 7 5 5 47 7 7
_— - — — — 4+ — -3

o0 3y _ 3
%o we ak Tme 3 me e T OWE) = 0a/k).

Since no tautology frons, belongs taS¢ U 8P U S¢ U S¢, we haveu; (G2) = O(1/k?). O

From now on we are going to consider treesith exactly one premisel with »(t) = r(A) and for
which the premised has only one premise. Such a family of trees, denote@;by corresponds to the
schemél’; presented in Fig. 6.
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Fig. 5: Scheme for trees in case (d). Fig. 6: Scheme corresponding to the fanify*.

The generating function faf;!" is g7 (2) = k*2°(1 - bj.(2)) (1 — fu(2)) "', thus its density equals

11 3 o 3
H(T) = = = 525 + O(L/). )
We divide the familyZ,'* into six disjoint subfamilies with large densities. One loése subfamilies,
denoted byP;, will contain only Peirce’s formulae, we call the elemenit$p simple Peirce’s formulae.
The subfamilies, mentioned above, arise by putting sonmtectsns for the substitutions allowed for
the schemd&’;. For a substitutior{(S;, S2, S3), (o, 3)) (again we abuse the notation) we consider the
following four cases:

@ B=a,a¢r(S)Ur(S2)Ur(Ss),
(b) B# a,a, B¢ r(S1) Ur(S2) Ur(Ss),

©) B # «a, B ¢ r(S1) Ur(Sz) Ur(Ss), a occurs exactly once among the goals of trees fi$ym
a ¢ r(S1)Ur(Ss),

d) 8 # a, a ¢ r(S1) Ur(S2) Ur(Ss) ands occurs exactly once among the goals of the trees from
S1, 52, Ss.

We denote byN'T; the set of formulae fron¥;, which can be constructed froffi; by substitutions
fulfilling the condition (a) (the se\/7" is defined analogously).

LetT, be the scheme from Fig. 6 with scheme varigbleplaced byx. We haveN'T§ = ]—‘,f“, hence,
by the Lemma 4, the density &f 77 is

B NTE) = 2+ O(L/I) ®

The formulae from\/'7}; are easily seen not to be tautologies (valuate 0 and all the other variables to
1).

The formulae from/\/ﬂ; are also non tautologies (to falsify them put= 3 = 0 and all the other
variables tol). We need more accurate estimation for the dens,itLQs\/TZ) then the one provided by
the Lemma 4. The generating function 677 is gy (2) = k(k —1)2°(1 = b (2))~°. With simple
computations we get

3 33

Ty = 2 22
mNTY) = 4~ e

+ O(1/k%). 9)
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The family of formulae which can be constructed from the sob&}; by the substitutions fulfilling
the condition (c) is divided into two sets. In every such fatay there is only one treel in S3 such
thatr(A) = «. The first family, Py, (see its corresponding scheme in Fig. 7) is defined by gubetis
for which the subformulal is just a variablex. The second one\V 7T, (see Fig. 7) is defined by the
remaining substitutions fulfilling the condition (c).

0\\51 o 5

S31 R S31 R
~ Y ~ Y
A A
a  e[j a  ex L Y6} a  eq

\‘oa
Fig. 7: Scheme of the familyP;, (left one) and the family\w7 ¢, (right one).

The setPy, turns out to consist of Peirce’s formulae. Indeed, it suffimeconsider only valuations for
the variablex to see that every formula frof;, is a classical tautology. To see that each P is not
an intuitionistic tautology check the following valuationr, letv[a] = R\ {0}, v[8] = 0 andv[z] = R
for all other variables. It gives[t] = R\ {0}. Trees from the second s&f7, are non tautologies (put
« = = 0and all the other variables 19. By the Lemma 4 we have

1

pe(Pe) = 2—]€2+0(1/k3)- (10)

Let 7. be the scheme on the right in Fig. 7. We havg ¢ N'T¢ C F[*, therefore by Lemma 4 and

5 we get
e NT) = g+ O0/K) (11)

For the case (d) we also consider two sets of trees. The fiestZahy, is defined by the substitutions
fulfilling the condition (d) for which the unique tree frosy, S;, S3 with a goal labelled by is a leaf
(see its schemes in Fig. 8). The second ovi&.¢, is defined by the remaining substitutions fulfilling the
condition (d) (see its corresponding schemes in Fig. 9)es'1"ne/\/TZ are not tautologies (put = 5 =
~ = 0 and all the other variables ). On the other hand, each treeZiff . is an intuitionistic tautology.
We prove this fact in the Lemma 9.

The same reasoning as in the previous cases (involvingcapiplh of Lemma 4 and Lemma 5) yields:

1

pe(ZTy) = 3'2—k/,2

+O(1/k%), (12)

i (NTH

3 +O(1/k%). (13)

4k?
Lemma 9 Each tree from the sét7 . is an intuitionistic tautology.

Proof: The setZ7, is a disjoint union of three families defined by the family sgtes depicted in Fig. 8.
LetZT;,Z7%,TT; denote the families corresponding to the consecutive sebérm the picture.
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(\Sll

4

~S12
Y

Fig. 8: Scheme of the famil{Z 7 .

.\ Sll

Ny

\:932 \\\
L Y] a e
N
»f

N

oy

Fig. 9: Scheme of the familWw7¢.

Lett € Z7;. There is a premisel in ¢t whose goal is labelled by the same variable th&t) and
whose only premise is a simple tautology. It means that eatthation inT valuates this premise t&.
But then, for every valuation im, the premised is valuated taw[r(T)]. Let A — B be the subformula
of ¢ corresponding to the parent df. Note that the valuation of implication is increasing widspect
to the second argument (i.e[¢ — ] D v[]). For every valuation in 7 we getv[B] D v[r(T")] and
sincev[A] = v[r(t)] we getv[A — B] = R. This value is then propagated to the root of the tree (by the
increasing property), which means thét] = R.

It is easy to check that for every valuationn = we havevja — (8 — v)] = v[6 — (a — 7)].
Therefore it is enough to show that the elementgdf are not intuitionistic tautologies. Suppose that
t € IT3 and letA — B be the subformula of such thatd is the premise of with (A) = r(t). Then,
for every valuatiorv we havev[B] D interior(R \ v(5) Uv(«a)) andv[A] C interior(R\ v(5) Uv(a)).

It givesv[A] C v[B], but thenv[A — B] = R and (again by the monotonicity of the valuation of
implication) we gew[t] = R. O

Theorem 10 For everyk € N let Peirce;, denote the set of formulae froi which are classical but not
intuitionistic tautologies. Then we have
1

wi (Peirceg) ~i, wy, (Peircey,) = Y +O(1/k3).

Proof: Each formula € Peircey is a tautology. Therefore it must have at least one premitte gaal
equal to the goal of. Moreover, since is not an intuitionistic tautology, it cannot be a simplettdogy,
i.e. it has no premise equal to its goal.
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We have already found a large set of Peirce’s formulae — tmélyfaP;, (see Fig. 7). We know (see
the equation (10)) thatt/(2k?) + O(1/k*) = u(Pk) < py (Peircey). To find the upper bound for the
densityp;” (Peircey,) we show that the density of the sBtircey, \ Py, is relatively small.

Let Peirce;, be the set of all the formulag € Peirce;, which have exactly one premisé with
r(A) = r(t) and letPeirce; denote the set of all € Peirce;, which have at least two premisesand
B such thatr(A) = #(B) = r(t). Obviously,Peirce, = Peirce;, U Peirce; and by the Lemma 7 the
density of Peirce;, is small — we havey| (Peircei) = O(1/k3).

The setPeirce;. can be split further into two subsets. LBtirce;' denote the set of all € Peirce;,
with only one premiset such thai-(4) = r(t) andA has exactly one premise. LBtirce,” = Peirce;,\
Peirce;! (in the elements oPeirce;” the subformulad has at least two premises.) By the Lemma 8 the
density; (Peirce;?) is O(1/k%).

To estimate the density dPeirce;,' we need to consider all the trees 7;. with only one premiset
such that'(A) = r(t), A # r(t) (it cannot be a simple tautology) andhas exactly one premise. Such a
family is denoted byZ;!! (see Fig. 6). As we knovZ,'! can be split into several subsets (see Fig. 7, 8
and 9) andZ;!' = NTEUNTLUNTSUNTEUPLUZT ), U Resty,. No setN'T s, (fori = a, b, ¢, d)
contains a tautology?;, consists of Peirce’s formulae, each formul&if, is an intuitionistic tautology
(see the scheme in Fig. 8 and the Lemma 9) Basl;, denotes the set of remaining trees. Therefore we
can write that

Peirce,i,1 C Pr. U Resty,.

sincepur (Resty) = u(T;) — pnWT3) — p(NT) — p(N'T§) = w(N'TE) — p(Pr) — (I T), using
the equations (7), (8), (9), (10), (11), (12) and (13), we fimat u( Rest) = O(1/k3).
Finally, we can estimate the density of all Peirce’s forneuld/e know that

Peircep, C Pr U Resty U Peirce,lf U Peircei

and the densities oResty, Peirce,? and Peirce; are small, i.e. each density 3(1/k%). It gives
wi (Peircey) = 1/(2k%) + O(1/k3). O

4 Final remarks

Although we did not address directly the problem of the exise of the densities of Peirce’s formulae,
the presented technique can be used to obtain better upphéovaar bounds, by the systematic analysis
of more detailed partitions.

The intuitionistic logic can be also defined as the set of fda® which are true in every finite Kripke
structure. Therefore, a formula is not an intuitionistigttdogy;, if it can be falsified in some finite Kripke
structure. Interestingly, the familf;, we considered, consists of classical tautologies whichbeafal-
sified in the Kripke structure of size 2. It is a minimal size Wehich the difference between classical
and intuitionistic logics can be observed. We know also thatfamily of formulae which needs Kripke
structure of the size 3 to be falsified, has density of the matienostk—3. It is not hard to prove (using
Drmota-Lalley-Woods theorem, see [FS08]) that for eviery: € N the set of formulae fromT;, which
can be falsified in some Kripke structure of the sizéas a density. It is interesting to estimate the density
of Peirce’s formulae which needs a structure of sizto be falsified. It seems also that this approach can
be used to prove the existence of density of all Peirce’s fitaumn
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