
The Combinatorics of Barrier Synchronization?

Olivier Bodini1, Matthieu Dien2, Antoine Genitrini3, and Frédéric Peschanski3

1 Université Paris-Nord � LIPN � CNRS UMR 7030
Olivier.Bodini@lipn.univ-paris13.fr

2 Université de Caen � GREYC � CNRS UMR 6072
Matthieu.Dien@unicaen.fr

3 Sorbonne University � LIP6 � CNRS UMR 7607
{Antoine.Genitrini,Frederic.Peschanski}@lip6.fr

Abstract. In this paper we study the notion of synchronization from
the point of view of combinatorics. As a �rst step, we address the quanti-
tative problem of counting the number of executions of simple processes
interacting with synchronization barriers. We elaborate a systematic de-
composition of processes that produces a symbolic integral formula to
solve the problem. Based on this procedure, we develop a generic al-
gorithm to generate process executions uniformly at random. For some
interesting sub-classes of processes we propose very e�cient counting and
random sampling algorithms. All these algorithms have one important
characteristic in common: they work on the control graph of processes
and thus do not require the explicit construction of the state-space.

Keywords: Barrier synchronization · Combinatorics · Uniform random
generation.

1 Introduction

The objective of our (rather long-term) research project is to study the combi-
natorics of concurrent processes. Because the mathematical toolbox of combi-
natorics imposes strong constraints on what can be modeled, we study process
calculi with a very restricted focus. For example in [5] the processes we study can
only perform atomic actions and fork child processes, and in [4] we enrich this
primitive language with non-determinism. In the present paper, our objective is
to isolate another fundamental �feature� of concurrent processes: synchroniza-
tion. For this, we introduce a simple process calculus whose only non-trivial
concurrency feature is a principle of barrier synchronization. This is here un-
derstood intuitively as the single point of control where multiple processes have
to �meet� before continuing. This is one of the important building blocks for
concurrent and parallel systems [13].

Combinatorics is about �counting things�, and what we propose to count in
our study is the number of executions of processes wrt. their �syntactic size�.

? This research was partially supported by the ANR MetACOnc project ANR-15-
CE40-0014.

2 O. Bodini et al.

This is a symptom of the so-called �combinatorial explosion�, a de�ning char-
acteristic of concurrency. As a �rst step, we show that counting executions of
concurrent processes is a di�cult problem, even in the case of our calculus with
limited expressivity. Thus, one important goal of our study is to investigate in-
teresting sub-classes for which the problem becomes �less di�cult�. To that end,
we elaborate in this paper a systematic decomposition of arbitrary processes,
based on only four rules: (B)ottom, (I)ntermediate, (T)op and (S)plit. Each rule
explains how to �remove� one node from the control graph of a process while tak-
ing into account its contribution in the number of possible executions. Indeed,
one main feature of this BITS-decomposition is that it produces a symbolic inte-
gral formula to solve the counting problem. Based on this procedure, we develop
a generic algorithm to generate process executions uniformly at random. Since
the algorithm is working on the control graph of processes, it provides a way to
statistically analyze processes without constructing their state-space explicitly.
In the worst case, the algorithm cannot of course overcome the hardness of the
problem it solves. However, depending on the rules allowed during the decompo-
sition, and also on the strategy adopted, one can isolate interesting sub-classes
wrt. the counting and random sampling problem. We identify well-known �struc-
tural� sub-classes such as fork-join parallelism [11] and asynchronous processes
with promises [15]. For some of these sub-classes we develop dedicated and e�-
cient counting and random sampling algorithms. A large sub-class that we �nd
particularly interesting is what we call the �BIT-decomposable� processes, i.e.
only allowing the three rules (B), (I) and (T) in the decomposition. The counting
formula we obtain for such processes is of a linear size (in the number of atomic
actions in the processes, or equivalently in the number of vertices in their control
graph). We also discuss informally the typical shape of �BIT-free� processes.

The outline of the paper is as follows. In Section 2 we introduce a minimalist
calculus of barrier synchronization. We show that the control graphs of processes
expressed in this language are isomorphic to arbitrary partially ordered sets
(Posets) of atomic actions. From this we deduce our rather �negative� starting
point: counting executions in this simple language is intractable in the general
case. In Section 3 we de�ne the BITS-decomposition, and we use it in Section 4
to design a generic uniform random sampler. In Section 5 we discuss various
sub-classes of processes related to the proposed decomposition, and for some
of them we explain how the counting and random sampling problem can be
solved e�ciently. In Section 6 we propose an experimental study of the algorithm
toolbox discussed in the paper.

Note that some technical complement and proof details are deferred to an
external �companion� document. Moreover we provide the full source code de-
veloped in the realm of this work, as well as the benchmark scripts. All these
complement informations are available online4.

4 cf. https://gitlab.com/ParComb/combinatorics-barrier-synchro.git

https://gitlab.com/ParComb/combinatorics-barrier-synchro.git

The Combinatorics of Barrier Synchronization 3

Related work

Our study intermixes viewpoints from concurrency theory, order-theory as well
as combinatorics (especially enumerative combinatorics and random sampling).
The heaps combinatorics (studied in e.g. [1]) provides a complementary inter-
pretation of concurrent systems. One major di�erence is that this concerns �true
concurrent� processes based on the trace monoid, while we rely on the alternative
interleaving semantics. A related uniform random sampler for networks of au-
tomata is presented in [3]. Synchronization is interpreted on words using a notion
of �shared letters�. This is very di�erent from the �structural� interpretation as
joins in the control graph of processes. For the generation procedure [1] requires
the construction of a �product automaton�, whose size grows exponentially in the
number of �parallel� automata. By comparison, all the algorithms we develop are
based on the control graph, i.e. the space requirement remains polynomial (un-
like, of course, the time complexity in some cases). Thus, we can interpret this as
a space-time trade-of between the two approaches. A related approach is that of
investigating the combinatorics of lassos, which is connected to the observation
of state spaces through linear temporal properties. A uniform random sampler
for lassos is proposed in [16]. The generation procedure takes place within the
constructed state-space, whereas the techniques we develop do not require this
explicit construction. However lassos represent in�nite runs whereas for now we
only handle �nite (or �nite pre�xes) of executions.

A coupling from the past (CFTP) procedure for the uniform random gener-
ation of linear extensions is described, with relatively sparse details, in [14]. The
approach we propose, based on the continuous embedding of Posets into the hy-
percube, is quite complementary. A similar idea is used in [2] for the enumeration
of Young tableaux using what is there called the density method. The paper [12]
advocates the uniform random generation of executions as an important building
block for statistical model-checking. A similar discussion is proposed in [18] for
random testing. The leitmotiv in both cases is that generating execution paths
without any bias is di�cult. Hence a uniform random sampler is very likely to
produce interesting and complementary tests, if comparing to other test gener-
ation strategies.

Our work can also be seen as a continuation of the algorithm and order
studies [17] orchestrated by Ivan Rival in late 1980's only with powerful new
tools available in the modern combinatorics toolbox.

2 Barrier synchronization processes

The starting point of our study is the small process calculus described below.

De�nition 1 (Syntax of barrier synchronization processes). We consider
countably in�nite sets A of (abstract) atomic actions, and B of barrier names.
The set P of processes is de�ned by the following grammar:

4 O. Bodini et al.

P,Q ::= 0 (termination)
| α.P (atomic action and pre�xing)
| 〈B〉P (synchronization)
| ν(B)P (barrier and scope)
| P ‖ Q (parallel)

The language has very few constructors and is purposely of limited expressivity.
Processes in this language can only perform atomic actions, fork child processes
and interact using a basic principle of synchronization barrier. A very basic
process is the following one:

ν(B) [a1.〈B〉 a2.0 ‖ 〈B〉b1.0 ‖ c1.〈B〉 0]

This process can initially perform the actions a1 and c1 in an arbitrary order.
We then reach the state in which all the processes agrees to synchronize on B:

ν(B) [〈B〉 a2.0 ‖ 〈B〉b1.0 ‖ 〈B〉 0]

The possible next transitions are:
a2−→ b1.0

b1−→ 0, alternatively
b1−→ a2.0

a2−→ 0
In the resulting states, the barrier B has been �consumed�.

The operational semantics below characterize processes transitions of the
form P

α−→ P ′ in which P can perform action α to reach its (direct) derivative
P ′.

De�nition 2 (Operational semantics).

α.P
α−→ P

(act)
P

α−→ P ′

P ‖ Q α−→ P ′ ‖ Q
(lpar)

Q
α−→ Q′

P ‖ Q α−→ P ‖ Q′
(rpar)

syncB(P)=Q waitB(Q) P
α−→ P ′

ν(B)P
α−→ ν(B)P ′

(lift)
syncB(P)=Q ¬waitB(Q) Q

α−→ Q′

ν(B)P
α−→ Q′

(sync)

with:

syncB(0)=0

syncB(α.P)=α.P

syncB(P‖Q)=syncB(P)‖syncB(Q)

syncB(ν(B)P)=ν(B)P

∀C 6=B, syncB(ν(C)P)=ν(C) syncB(P)

syncB(〈B〉P)=P

∀C 6=B, syncB(〈C〉P)=〈C〉P

waitB(0)=false

waitB(α.P)=waitB(P)

waitB(P‖Q)=waitB(P)∨waitB(Q)

waitB(ν(B)P)=false

∀C 6=B, waitB(ν(C)P)=waitB(P)

waitB(〈B〉P)=true

∀C 6=B, waitB(〈C〉P)=waitB(P)

The rule (sync) above explains the synchronization semantics for a given barrier
B. The rule is non-trivial given the broadcast semantics of barrier synchro-
nization. The de�nition is based on two auxiliary functions. First, the function
syncB(P) produces a derivative process Q in which all the possible synchroniza-
tions on barrier B in P have been e�ected. If Q has a sub-process that cannot yet
synchronize on B, then the predicate waitB(Q) is true and the synchronization
on B is said incomplete. In this case the rule (sync) does not apply, however the
transitions within P can still happen through (lift).

The Combinatorics of Barrier Synchronization 5

2.1 The control graph of a process

We now de�ne the notion of a (�nite) execution of a process.

De�nition 3 (execution). An execution σ of P is a �nite sequence 〈α1, . . . , αn〉
such that there exist a set of processes P ′α1

, . . . , P ′αn and a path P
α1−→ P ′α1

. . .
αn−−→

P ′αn with P ′αn 9 (no transition is possible from P ′αn).

We assume that the occurrences of the atomic actions in a process expression
have all distinct labels, α1, . . . , αn. This is allowed since the actions are uninter-
preted in the semantics (cf. De�nition 2). Thus, each action α in an execution σ
can be associated to a unique position, which we denote by σ(α). For example
if σ = 〈α1, . . . , αk, . . . , αn〉, then σ(αk) = k.

The behavior of a process can be abstracted by considering the causal order-
ing relation wrt. its atomic actions.

De�nition 4 (cause, direct cause). Let P be a process. An action α of P is
said a cause of another action β, denoted by α < β, i� for any execution σ of
P we have σ(α) < σ(β). Moreover, α is a direct cause of β, denoted by α ≺ β
i� α < β and there is no γ such that α < γ < β. The relation < obtained from
P is denoted by PO(P).

ν(B)

[
α1.〈B〉 ‖ α2.〈B〉 ‖ . . . ‖ αn.〈B〉
〈B〉.β1 ‖ 〈B〉.β2 ‖ . . . ‖ 〈B〉.βn

]
α1 α2 · · · αn

β1 β2 · · · βn

Fig. 1. A process of size 2n and its control graph
with 2n nodes and n2 edges.

Obviously PO(P) is a par-
tially ordered set (poset) with
covering ≺, capturing the causal
ordering of the actions of P .
The covering of a partial or-
der is by construction an in-
transitive directed acyclic graph
(DAG), hence the description of
PO(P) itself is simply the tran-
sitive closure of the covering,
yielding O(n2) edges over n el-
ements. The worst case (maxi-
mizing the number of edges) is a complete bipartite graph with two sets of 2n
vertices connected by n2 edges (cf. Fig. 1).
For most practical concerns we will only consider the covering, i.e. the intran-
sitive DAG obtained by the transitive reduction of the order. It is possible to
direclty construct this control graph, according to the following de�nition.

De�nition 5 (Construction of control graphs). Let P be a process term.
Its control graph is ctg(P) = 〈V,E〉, constructed inductively as follows: ctg(0) = 〈∅, ∅〉 ctg(ν(B)P) =

⊗
〈B〉 ctg(P)

ctg(α.P) = α ctg(P)
ctg(〈B〉P) = 〈B〉 ctg(P)

ctg(P ‖ Q) = ctg(P) ∪ ctg(Q)
with 〈V1, E1〉 ∪ 〈V2, E2〉 = 〈V1 ∪ V2, E1 ∪ E2〉

with

x 〈V,E〉 = 〈V ∪ {x}, {(x, y) | y ∈ srcs(E) ∨ (E = ∅ ∧ y ∈ V)}〉
srcs(E) = {y | (y, z) ∈ E ∧ @x, (x, y) ∈ E}⊗
〈B〉〈V,E〉 = 〈V \ {〈B〉}, E \ {(x, y) | x 6= y ∧ (x = 〈B〉 ∨ y = 〈B)〉}

∪ {(α, β) | {(α, 〈B〉), (〈B〉, β)} ⊆ E}〉

6 O. Bodini et al.

Given a control graph Γ , the notation x Γ corresponds to pre�xing the graph
by a single atomic action. The set srcs(E) corresponds to the sources of the edges
in E, i.e. the vertices without an incoming edge. And

⊗
〈B〉 Γ removes an explicit

barrier node and connect all the processes ending in B to the processes starting
from it. In e�ect, this realizes the synchronization described by the barrier B.
We illustrate the construction on a simple process below:

ctg(ν(B)ν(C)[〈B〉〈C〉a.0||〈B〉〈C〉b.0])
=

⊗
〈B〉

⊗
〈C〉 (ctg(〈B〉〈C〉a.0) ∪ ctg(〈B〉〈C〉b.0))

=
⊗
〈B〉

⊗
〈C〉 〈{〈B〉, 〈C〉, a}, {(〈B〉, 〈C〉), (〈C〉, a)}〉}
∪〈{〈B〉, 〈C〉, b}, {(〈B〉, 〈C〉), (〈C〉, b)}〉

=
⊗
〈B〉

⊗
〈C〉〈{〈B〉, 〈C〉, a, b}, {(〈B〉, 〈C〉), (〈C〉, a), (〈C〉, b)}〉

=
⊗
〈B〉〈{〈B〉, a, b}, {(〈B〉, a), (〈B〉, b)}〉

= 〈{a, b}, ∅〉
The graph with only two unrelated vertices and no edge is the correct con-

struction. Now, slightly changing the process we see how the construction fails
for deadlocked processes.

ctg(P) =
⊗
〈B〉

⊗
〈C〉 (ctg(〈B〉〈C〉a.0) ∪ ctg(〈C〉〈B〉b.0))

=
⊗
〈B〉

⊗
〈C〉 〈{〈B〉, 〈C〉, a}, {(〈B〉, 〈C〉), (〈C〉, a)}〉}
∪〈{〈C〉, 〈B〉, b}, {(〈C〉, 〈B〉), (〈B〉, b)}〉

=
⊗
〈B〉

⊗
〈C〉〈{〈B〉, 〈C〉, a, b}, {(〈B〉, 〈C〉), (〈C〉, a), (〈C〉, 〈B〉), (〈B〉, b)}〉

=
⊗
〈B〉〈{〈B〉, a, b}, {(〈B〉, 〈B〉), (〈B〉, a), (〈B〉, b)}〉

= 〈{a, b}, {(〈B〉, 〈B〉), (〈B〉, a), (〈B〉, b)}〉
In the �nal step, the barrier 〈B〉 cannot be removed because of the self-loop.

So there are two witnesses of the fact that the construction failed: there is still
a barrier name in the process, and there is a cycle in the resulting graph.

Theorem 1. Let P be a process, then P has a deadlock i� ctg(P) has a cycle.
Moreover, if P is deadlock-free (hence it is a DAG) then (α, β) ∈ ctg(P) i�
α ≺ β (hence the DAG is intransitive).

Proof (idea). The proof is not di�cult but slightly technical. The idea is to
extend the notion of execution to go �past� deadlocks, thus detecting cycles in
the causal relation. The details are given in companion document. ut

In Fig. 2 (left) we describe a system Sys written in the proposed language,
together with the covering of PO(Sys), i.e. its control graph (right). We also
indicate the number of its possible executions, a question we address next.

2.2 The counting problem

One may think that in such a simple setting, any behavioral property, such as
the counting problem that interests us, could be analyzed e�ciently e.g. by a
simple induction on the syntax. However, the devil is well hidden inside the box
because of the following fact.

Theorem 2. Let U be a partially ordered set. Then there exists a barrier syn-
chronization process P such that PO(P) is isomorphic to U .

The Combinatorics of Barrier Synchronization 7

Sys = init.ν(G1, G2, J1).

step1.

ν(IO)

 step2.〈G1〉step3.
〈IO〉step4.〈G2〉〈J1〉end

‖ load.xform.〈IO〉0

‖ gen.yield1.(〈G1〉0 ‖ yield2.〈G2〉0)

‖ fork.ν(J2)

 comp1.〈J2〉0
‖ comp2.1.comp2.2.〈J2〉0
‖ 〈J2〉join〈J1〉0)

init step1

gen

step2 step3 step4 end

yield1 yield2

load xform

fork comp1

comp2.1 comp2.2

join

Fig. 2. An example process with barrier synchronizations (left) and its control graph
(right). The process is of size 16 and it has exactly 1975974 possible executions.

Proof. (sketch). Consider G the (intransitive) covering DAG of a poset U . We
suppose each vertex of G to be uniquely identi�ed by a label ranging over
α1, α2, . . . , αn. The objective is to associate to each such vertex labeled α a
process expression Pα. The construction is done backwards, starting from the
sinks (vertices without outgoing edges) of G and bubbling-up until its sources
(vertices without incoming edges).

There is a single rule to apply, considering a vertex labeled α whose children
have already been processed, i.e. in a situation depicted as follows:

α

. . .Pβ1
Pβk

Pα = 〈Bα〉α. [〈Bβ1
〉0 ‖ . . . ‖ 〈Bβk〉0] .

In the special case α is a sink we simply de�ne Pα = 〈Bα〉α.0. In this con-
struction it is quite obvious that α ≺ βi for each of the βi's, provided the barriers
Bα, Bβ1

, . . . , Bβk are de�ned somewhere in the outer scope.
At the end we have a set of processes Pα1 , . . . , Pαn associated to the vertices

of G and we �nally de�ne P = ν(Bα1) . . . ν(Bαn) [Pα1 ‖ . . . ‖ Pαn].
That PO(P) has the same covering as U is a simple consequence of the

construction. ut

Corollary 1. Let P be a non-deadlocked process. Then 〈α1, . . . , αn〉 is an exe-
cution of P if it is a linear extension of PO(P). Consequently, the number of
executions of P is equal to the number of linear extensions of PO(P).

We now reach our �negative� result that is the starting point of the rest of
the paper: there is no e�cient algorithm to count the number of executions, even
for such simplistic barrier processes.

Corollary 2. Counting the number of executions of a (non-deadlocked) barrier
synchronization process is]P -complete5.

5 A function f is in]P if there is a polynomial-time non-deterministic Turing machine
M such that for any instance x, f(x) is the number of executions of M that accept
x as input. See https://en.wikipedia.org/wiki/%E2%99%AFP-complete

https://en.wikipedia.org/wiki/%E2%99%AFP-complete

8 O. Bodini et al.

This is a direct consequence of [8] since counting executions of processes boils
down to counting linear extensions in (arbitrary) posets.

3 A generic decomposition scheme and its (symbolic)
counting algorithm

We describe in this section a generic (and symbolic) solution to the counting
problem, based on a systematic decomposition of �nite Posets (thus, by Theo-
rem 1, of process expressions) through their covering DAG (i.e. control graphs).

3.1 Decomposition scheme

(B)ottom (I)ntermediate (T)op (S)plit

x

y

x

x

y

z

x

z

y

z

z x y

x y

x y

Ψ ′ =
∫ 1

x
Ψ.dy Ψ ′ =

∫ z

x
Ψ.dy Ψ ′ =

∫ z

0
Ψ.dy Ψ ′ = Ψx≺y + Ψy≺x

Fig. 3. The BITS-decomposition and the construction of the counting formula.

In Fig. 3 we introduce the four decomposition rules that de�ne the BITS-
decomposition. The �rst three rules are somehow straightforward. The (B)-rule
(resp. (T)-rule) allows to consume a node with no outgoing (resp. incoming) edge
and one incoming (resp. outgoing) edge. In a way, these two rules consume the
�pending� parts of the DAG. The (I)-rule allows to consume a node with exactly
one incoming and outgoing edge. The �nal (S)-rule takes two incomparable nodes
x, y and decomposes the DAG in two variants: the one for x ≺ y and the one for
the converse y ≺ x.

We now discuss the main interest of the decomposition: the incremental con-
struction of an integral formula that solves the counting problem. The calcula-
tion is governed by the equations speci�ed below the rules in Fig. 3, in which the
current formula Ψ is updated according to the de�nition of Ψ ′ in the equations.

Theorem 3. The numerical evaluation of the integral formula built by the BITS-
decomposition yields the number of linear extensions of the corresponding Poset.
Moreover, the applications of the BITS-rules are con�uent, in the sense that all
the sequences of (valid) rules reduce the DAG to an empty graph6.

6 At the end of the decomposition, the DAG is in fact reduced to a single node, which
is removed by an integration between 0 and 1.

The Combinatorics of Barrier Synchronization 9

The precise justi�cation of the integral computation and the proof for the
theorem above are postponed to Section 3.2 below. We �rst consider an example.

Example 1. Illustrating the BITS-decomposition scheme.

x1

x2

x3 x4

x5 x6
x7

x8

Tx1

x2

x3 x4

x5 x6
x7

x8

S{x3,x4}

x2

x4

x3

x6x5
x7

x8

for x3 ← x4
Ix7

x2

x4

x3

x6x5

x8

Ix5 . . .

Ψ = 1 Ψ ′ =

∫ x2

0

Ψdx1 Ψ ′′ =
Ψ ′x3≺x4

+ Ψ ′x4≺x3

Ψ ′′′ =

∫ x8

x4

Ψ ′′x4≺x3
dx7

The DAG to decompose (on the left) is of size 8 with nodes x1, . . . , x8. The
decomposition is non-deterministic, multiple rules apply, e.g. we could �consume�
the node x7 with the (I) rule. Also, the (S)plit rule is always enabled. In the
example, we decide to �rst remove the node x1 by an application of the (T) rule.
We then show an application of the (S)plit rule for the incomparable nodes x3
and x4. The decomposition should then be performed on two distinct DAGs: one
for x3 ≺ x4 and the other one for x4 ≺ x3. We illustrate the second choice, and
we further eliminate the nodes x7 then x5 using the (I) rule, etc. Ultimately all
the DAGs are decomposed and we obtain the following integral computation:

Ψ =

∫ 1

x2=0

∫ 1

x4=x2

∫ 1

x3=x4

∫ 1

x6=x3

∫ 1

x8=x6

∫ x8

x5=x3

∫ x8

x7=x4(
1|x4≺x3 ·

∫ x2

x1=0

1 · dx1 + 1|x3≺x4 ·
∫ x2

x1=0

1 · dx1

)
dx7dx5dx8dx6dx3dx4dx2 =

8 + 6

8!
.

The result means that there are exactly 14 distinct linear extensions in the
example Poset.

3.2 Embedding in the hypercube: the order polytope

The justi�cation of our decomposition scheme is based on the continuous em-
bedding of posets into the hypercube, as investigated in [19].

De�nition 6 (order polytope).
Let P = (E,≺) be a poset of size n. Let C be the unit hypercube de-

�ned by C = {(x1, . . . , xn) ∈ Rn | ∀i, 0 ≤ xi ≤ 1}. For each constraint xi ≺
xj ∈ P we de�ne the convex subset Si,j = {(x1, . . . , xn) ∈ Rn | xi ≤ xj},
i.e. one of the half spaces obtained by cutting Rn with the hyperplane
{(x1, . . . , xn) ∈ Rn | xi − xj = 0}. Thus, the order polytope CP of P is:

Cp =
⋂

xi≺xj∈P
Si,j ∩ C

Each linear extension, seen as total orders, can similarly be embedded in the
unit hypercube. Then, the order polytopes of the linear extensions of a poset P
form a partition of the Poset embedding Cp as illustrated in Figure 4.

10 O. Bodini et al.

C(0,1,0)

B(1,1,0)

A(1,0,0)
O(0,0,0)

E(0,0,1)

D(0,1,1)

G(1,1,1)

F(1,0,1)

C
B

A
O

E

D
G

F

C
B

A
O

E

D
G

F

Fig. 4. From left to right: the unit hypercube, the embedding of the total order
1 ≺ 2 ≺ 3 and the embedding of the poset P = ({1, 2, 3}, {1 ≺ 2}) divided in its three
linear extensions.

The number of linear extensions of a poset P , written |LE (P)|, is then
characterized as a volume in the embedding.

Theorem 4. ([19, Corollary 4.2]) Let P be a Poset of size n then its number of
linear extensions |LE (P)| = n! · V ol(CP) where V ol(CP) is the volume, de�ned
by the Lebesgue measure, of the order polytope CP .

The integral formula introduced in the BITS-decomposition corresponds to
the computation of V ol(Cp), hence we may now give the key-ideas of Theorem 3.

Proof (Theorem 3, sketch). We begin with the (S)-rule. Applied on two incom-
parable elements x and y, the rule partitions the polytope in two regions: one
for x ≺ y and the other for y ≺ x. Obviously, the respective volume of the two
disjoint regions must be added.
We focus now on the (I)-rule. In the context of Lebesgue integration, the classic
Fubini's theorem allows to compute the volume V of a polytope P as an iteration
on integrals along each dimension, and this in all possible orders, which gives
the con�uence property. Thus,

V =

∫
[0,1]n

1P (x)dx =

∫
[0,1]

· · ·
∫
[0,1]

1P ((x, y, z, . . .))dxdydz . . . ,

1P being the indicator function of P such that 1P ((x, y, z, . . .)) =
∏

α actions

1Pα(α),

with Pα the projection of P on the dimension associated to α. By convexity of
P , the function 1Py is the indicator function of a segment [x, z]. So the following

identity holds:
∫
P
1Py (y)dy =

∫ z
x
dy. Finally, the two other rules (T) and (B)

are just special cases (taking x = 0, alternatively z = 1). ut

Corollary 3. (Stanley [19]) The order polytope of a linear extension is a simplex
and the simplices of the linear extensions are isometric, thus of the same volume.

4 Uniform random generation of process executions

In this section we describe a generic algorithm for the uniform random generation
of executions of barrier synchronization processes. The algorithm is based on the

The Combinatorics of Barrier Synchronization 11

BITS-decomposition and its embedding in the unit hypercube. It has two essen-
tial properties. First, it is directly working on the control graphs (equivalently on
the corresponding poset), and thus does not require the explicit construction of
the state-space of processes. Second, it generates possible executions of processes
at random according to the uniform distribution. This is a guarantee that the
sampling is not biased and re�ects the actual behavior of the processes.

Algorithm 1 Uniform sampling of a simplex of the order polytope

function SamplePoint
7(I =

∫ b

a
f(yi) dyi)

C ← eval(I) ; U ← Uniform(a, b)
Yi ← the solution t of

∫ t

a
1
C
f(yi) dyi = U

if f is not a symbolic constant then
SamplePoint(f{yi ← Yi})

else return the Yi's

The starting point of Algorithm 1 (cf. previous page) is a Poset over a
set of points {x1, . . . , xn} (or equivalently its covering DAG). The decom-
position scheme of Section 3 produces an integral formula I of the form∫ 1

0
F (yn, . . . , y1) dyn · · · dy1. with F a symbolic integral formula over the points

x1, . . . , xn. The y variables represent a permutation of the poset points giving
the order followed along the decomposition. Thus, the variable yi corresponds to
the i-th removed point during the decomposition. We remind the reader that the
evaluation of the formula I gives the number of linear extensions of the partial
order. Now, starting with the complete formula, the variables y1, y2, . . . will be
eliminated, in turn, in an �outside-in� way. Algorithm 1 takes place at the i-th
step of the process. At this step, the considered formula is of the following form:∫ b

a

(∫
· · ·
∫

1 dyn · · · dyi+1

)
︸ ︷︷ ︸

f(yi)

dyi.

Note that in the subformula f(yi) the variable yi may only occur (possibly
multiple times) as an integral bound.

In the algorithm, the variable C gets the result of the numerical computation
of the integral I at the given step. Next we draw (with Uniform) a real number
U uniformly at random between the integration bounds a and b. Based on these
two intermediate values, we perform a numerical solving of variable t in the
integral formula corresponding to the slice of the polytope along the hyperplan
yi = U . The result, a real number between a and b, is stored in variable Yi. The
justi�cation of this step is further discussed in the proof sketch of Theorem 5
below.
7 The Python/Sage implementation of the random sampler is available at the fol-
lowing location: https://gitlab.com/ParComb/combinatorics-barrier-synchro/
blob/master/code/RandLinExtSage.py

https://gitlab.com/ParComb/combinatorics-barrier-synchro/blob/master/code/RandLinExtSage.py
https://gitlab.com/ParComb/combinatorics-barrier-synchro/blob/master/code/RandLinExtSage.py

12 O. Bodini et al.

If there remains integrals in I, the algorithm is applied recursively by sub-
stituting the variable yi in the integral bounds of I by the numerical value Yi.
If no integral remains, all the computed values Yi's are returned. As illustrated
in Example 2 below, this allows to select a speci�c linear extension in the ini-
tial partial ordering. The justi�cation of the algorithm is given by the following
theorem.

Theorem 5. Algorithm 1 uniformly samples a point of the order polytope with
a O(n) complexity in the number of integrations.

Proof (sketch). The problem is reduced to the uniform random sampling of a
point p in the order polytope. This is a classical problem about marginal densities
that can be solved by slicing the polytope and evaluating incrementally the n
continuous random variables associated to the coordinates of p. More precisely,
during the calculation of the volume of the polytope P , the last integration (of
a monovariate polynomial p(y)) done from 0 to 1 corresponds to integrate the

slices of P according the last variable y. So, the polynomial p(y)/
∫ 1

0
p(y)dy is

nothing but the density function of the random variable Y corresponding to the
value of y. Thus, we can generate Y according to this density and �x it. When
this is done, we can inductively continue with the previous integrations to draw
all the random variables associated to the coordinates of p. The linear complexity
of Algorithm 1 follows from the fact that each partial integration deletes exactly
one variable (which corresponds to one node). Of course at each step a possibly
costly computation of the counting formula is required. ut

We now illustrate the sampling process based on Example 1 (page 9).

Example 2. First we assume that the whole integral formula has already been
computed. To simplify the presentation we only consider (S)plit-free DAGs i.e.
decomposable without the (S) rule. Note that it would be easy to deal with the
(S)plit rule: it is su�cient to uniformly choose one of the DAG processed by the
(S)-rule w.r.t. their number of linear extensions.

Thus we will run the example on the DAG of Example 1 where the DAG
corresponding to �x4 ≺ x3� as been randomly chosen (with probability 8

14) i.e.
the following formula holds:∫ 1

0

(∫ 1

x2

∫ 1

x4

∫ 1

x3

∫ 1

x6

∫ x8

x4

∫ x8

x3

∫ x2

0

dx1dx5dx7dx8dx6dx3dx4

)
dx2 =

8

8!
.

In the equation above, the sub-formula between parentheses would be denoted
by f(x2) in the explanation of the algorithm. Now, let us apply the Algorithm 1
to that formula in order to sample a point of the order polytope. In the �rst
step the normalizing constant C is equal to 8!

8 , we draw U uniformly in [0, 1] and

so we compute a solution of 8!
8

∫ t
0
. . . dx2 = U . That solution corresponds to the

second coordinate of a the point we are sampling. And so on, we obtain values
for each of the coordinates:{

X1 = 0.064 . . . , X2 = 0.081 . . . , X3 = 0.541 . . . , X4 = 0.323 . . . ,
X5 = 0.770 . . . , X6 = 0.625 . . . , X7 = 0.582 . . . , X8 = 0.892 . . .

The Combinatorics of Barrier Synchronization 13

These points belong to a simplex of the order polytope. To �nd the corresponding
linear extension we compute the rank of that vector i.e. the order induced by the
values of the coordinates correspond to a linear extension of the original DAG:

(x1, x2, x4, x3, x7, x6, x5, x8).

This is ultimately the linear extension returned by the algorithm.

5 Classes of processes that are BIT-decomposable
(or not)

Thanks to the BITS decomposition scheme, we can generate a counting formula
for any (deadlock-free) process expressed in the barrier synchronization calculus,
and derive from it a dedicated uniform random sampler. However the (S)plit rule
generates two summands, thus if we cannot �nd common calculations between
the summands the resulting formula can grow exponentially in the size of the
concerned process. If we avoid splits in the decomposition, then the counting for-
mula remains of linear size. This is, we think, a good indicator that the subclass
of so-called �BIT-decomposable� processes is worth investigating for its own sake.
In this Section, we �rst give some illustrations of the expressivity of this sub-
class, and we then study the question of what it is to be not BIT-decomposable.
By lack of space, the discussion in this Section remains rather informal with
very rough proof sketches, and more formal developments are left for a future
work. Also, the �rst two subsections are extended results based on previously
published papers (respectively [6] and [7]).

5.1 From tree Posets to fork-join parallelism

If the control-graph of a process is decomposed with only the B(ottom) rule (or
equivalently the T(op) rule), then it is rather easy to show that its shape is that
of a tree. These are processes that cannot do much beyond forking sub-processes.
For example, based on our language of barrier synchronization it is very easy to
encode e.g. the (rooted) binary trees:

T ::= 0 | α.(T ‖ T) or e.g. T ::= 0 | νB (α.〈B〉0 ‖ 〈B〉T ‖ 〈B〉T)

The good news is that the combinatorics on trees is well-studied. In the paper [4]
we provide a thorough study of such processes, and in particular we describe very
e�cient counting and uniform random generation algorithms. Of course, this is
not a very interesting sub-class in terms of concurrency.

Thankfully, many results on trees generalize rather straightforwardly to fork-
join parallelism, a sub-class we characterize inductively in Table 1. Informally,
this proof system imposes that processes use their synchronization barriers ac-
cording to a stack discipline. When synchronizing, only the last created barrier
is available, which exactly corresponds to the traditional notion of a join in
concurrency. Combinatorially, there is a correspondence between these processes

14 O. Bodini et al.

σ `FJ 0

σ `FJ P
σ `FJ α.P

σ `FJ P σ `FJ Q
σ `FJ P ‖ Q

B::σ `FJ P
σ `FJ ν(B) P

σ `FJ P
B::σ `FJ 〈B〉.P

Table 1. A proof system for fork-join processes.

and the class of series-parallel Posets. In the decomposition both the (B) and
the (I) rule are needed, but following a tree-structured strategy. Most (if not
all) the interesting questions about such partial orders can be answered in (low)
polynomial time.

Theorem 6 (cf. [6]). For a fork join process of size n the counting problem is
of time complexity O(n) and we developed a bit-optimal uniform random sampler
with time complexity O(n

√
n) on average.

5.2 Asynchronism with promises

We now discuss another interesting sub-class of processes that can also be char-
acterized inductively on the syntax of our process calculus, but this time using
the three BIT-decomposition rules (in a controlled manner). The strict stack
discipline of fork-join processes imposes a form of synchronous behavior: all the
forked processes must terminate before a join may be performed. To support a
limited form of asynchronism, a basic principle is to introduce promise processes.

∅ `ctrl 0
π `ctrl P
π `ctrl α.P

π `ctrl P
π ∪ {B} `ctrl 〈B〉.P

B /∈ π π ∪ {B} `ctrl P Q ↑B
π `ctrl ν(B) (P ‖ Q)

with Q ↑B i� Q ≡ α.R and R ↑B or Q ≡ 〈B〉.0

Table 2. A proof system for promises.

In Table 2 we de�ne a simple inductive process structure composed as follows.
A main control thread can perform atomic actions (at any time), and also fork
a sub-process of the form ν(B) (P ‖ Q) but with a strong restriction:

� a single barrier B is created for the sub-processes to interact.
� the left sub-process P must be the continuation of the main control thread,
� the right sub-process Q must be a promise, which can only perform a se-

quence of atomic actions and ultimately synchronize with the control thread.

We are currently investigating this class as a whole, but we already obtained
interesting results for the arch-processes in [7]. An arch-process follows the con-
straint of Table 2 but adds further restrictions. The main control thread can
still spawn an arbitrary number of promises, however there must be two sep-
arate phases for the synchronization. After the �rst promise synchronizes, the

The Combinatorics of Barrier Synchronization 15

main control thread cannot spawn any new promise. In [7] a supplementary
constraint is added (for the sake of algorithmic e�ciency): each promise must
perform exactly one atomic action, and the control thread can only perform ac-
tions when all the promises are running. In this paper, we remove this rather
arti�cial constraint considering a larger, and more useful process sub-class.

•a1a1,1•a1,r1 •a2 •

ak•
ak,1•

ak,rk •
c1 •
c1,1•

c1,t1 •
c2 • •ck

•b1,s1

•b1,1

•b2,s2

•b2,1

•bk,sk

•bk,1

•a1a1,1•a1,r1 •a2 •

ak•
ak,1•

ak,rk •
c1 •
c1,1•

c1,t1 •
c2 • •ck

•b1,1

P

•a1a1,1•a1,r1 •a2 •

ak•
ak,1•

ak,rk •
c1 •
c1,1•

c1,t1 •
c2 • •ck

•b1,1

b1,1•

•b1,1
A

BC

Fig. 5. The structure of an arch-process (left) and the inclusion-exclusion counting
principle (right).

In Fig. 5 (left) is represented the general structure of a generalized arch-
process. The ai's actions are the promise forks, and the synchronization points
are the cj 's. The constraint is thus that all the ai's occur before the cj 's.

Theorem 7. The number of executions of an arch-process can be calculated in
O(n2) arithmetic operations, using a dynamic programming algorithm based on
memoization.

Proof (idea). A complete proof is provided in [7] for �simple� arch-processes, and
the generalization is detailed in the companion document. We only describe the
inclusion-exclusion principle on which our counting algorithm is based. Fig. 5
(right) describes this principles (we omit the representation of the other promises
to obtain a clear picture of our approach). Our objective is to count the number
of execution contributed by a single promise with atomic action b1,1. If we denote
by `P this contribution, we reformulate it as a combination `P = `A − `B + `C
as depicted on the rightmost part of Fig. 5. First, we take the �virtual� promise
A going from the starting point a1 of `P until the end point ck of the main
thread. Of course there are two many possibilities if we only keep A. An over-
approximation of what it is to remove is the promise B going from the start
of the last promise (at point ak) until the end. But this time we removed too
many possibilities, which corresponds to promise C. The latter is thus reinserted
in the count. Each of these three �virtual� promises have a simpler counting
procedure. To guarantee the quadratic worst-time complexity (in the number of
arithmetic operations), we have to memoize the intermediate results. We refer
to the companion document for further details. ut

16 O. Bodini et al.

From this counting procedure we developed a uniform random sampler fol-
lowing the principles of the recursive method, as described in [10].

Theorem 8. Let P be a promise-process of size n with k ≥ n promises. A ran-
dom sampler of O(n4) time-complexity (in the number of arithmetic operations)
builds uniform executions.

The algorithm and the complete proof are detailed in the companion doc-
ument. One notable aspect is that in order to get rid of the forbidden case of
executions associated to the �virtual� promise B we cannot only do rejection
(because the induced complexity would be exponential). In the generalization of
arch-processes, we proceed by case analysis: for each possibility for the insertion
of b1,1 in the main control thread we compute the relative probability for the
associated process P. This explains the increase of complexity (from O(n2) to
O(n4)) if compared to [7].

5.3 BIT-free processes

The class of BIT-decomposable processes is rather large, and we in fact only
uncovered two interesting sub-classes that can be easily captured inductively on
the process syntax. The relatively non-trivial process Sys of Fig. 2 is also inter-
estingly BIT-decomposable. We now adopt the complementary view of trying to
understand the combinatorial structure of a so called �BIT-free� process, which
is not decomposable using only the (B), (I) and (T) rules.

a1 a2 a3

b1 b2 b3

a1 a2 a3

b1 b2 b3

a1 a2 a3

b1 b2 b3

a1 a2 a3

b1 b2 b3

a1 a2 a3

b1 b2 b3

a1 a2 a3

b1 b2 b3

a1 a2 a3

b1 b2 b3

No �equivalent�

Fig. 6. Typical BIT-free substructures, and their BIT �equivalent� (when possible).

The BIT-free condition implies the occurrence of structures similar to the
ones depicted on Fig. 6. These structures are composed of a set of �bottom�
processes (the bi's) waiting for �top� processes (the aj ') according to some
synchronization pattern. We represent the whole possibilities of size 3 (up-to
order-isomorphism) in the upper-part of the �gure. The upper-left process is a
complete (directed) bipartite graph, which can in fact be �translated� to a BIT-
decomposable process as seen on the lower-part of the �gure. This requires the
introduction of a single �synchronization point� between the two process groups.

The Combinatorics of Barrier Synchronization 17

This transformation preserves the number of executions and is Poset-wise equiva-
lent. At each step �to the right� of Fig. 6, we remove a directed edge. In the second
and third processes (in the middle), we also have an equivalent with respectively
two and three synchronization points. In these cases, the number of linear exten-
sions is not preserved but the �nature� of the order is respected: the interleavings
of the initial atomic actions are the same. The only non-transformable structure,
let's say the one �truly� BIT-free is the rightmost process. Even if we introduce
synchronization points (we need at least three of them), the structure would not
become BIT-decomposable. In terms of order theory such a structure is called a
Crown poset. In [9] it is shown that the counting problem is already]-P com-
plete for partial orders of height 2, hence directed bipartite digraphs similar to
the structures of Fig. 6. One might wonder if this is still the case when these
structures cannot occur, especially in the case of BIT-decomposable processes.
This is for us a very interesting (and open) problem.

6 Experimental study

Algorithm Class Count. Unif. Rand. Gen. Reference

FJ Fork-join O(n) O(n ·
√
n) on average [6]

Arch Arch-processes O(n2) O(n4) worst case [7]/Theorem 8
bit BIT-decomposable ? ? Theorem 3

cftp
8 All processes � O(n3 · log n) expected [14]

Table 3. Summary of counting and uniform random sampling algorithms (time com-
plexity �gures with n: number of atomic actions).

In this section, we put into use the various algorihms for counting and gen-
erating process executions uniformly at random. Table 3 summarizes these al-
gorithms and the associated worst-case time complexity bounds (when known).
We implemented all the algorithms in Python 3, and we did not optimize for e�-
ciency, hence the numbers we obtain only give a rough idea of their performances.
For the sake of reproducibility, the whole experimental setting is available in the
companion repository, with explanations about the required dependencies and
usage. The computer we used to perform the benchmark is a standard laptop
PC with an I7-8550U CPU, 8Gb RAM running Manjaro Linux. As an initial
experiment, the example of Fig. 2 is BIT-decomposable, so we can apply the bit
and cftp algorithms. The counting (of its 1975974 possible executions) takes
about 0.3s and it takes about 9 millisecond to uniformly generate an execution
with the bit sampler, and about 0.2s with cftp. For �small� state spaces, we
observe that bit is always faster than cftp.

8 The cftp algorithm is the only one we did not design, but only implement. Its
complexity is O(n3 · log n) (randomized) expected time.

18 O. Bodini et al.

FJ size]LE FJ gen (count) bit gen (count) cftp gen

10 19 0.00001 s (0.0002 s) 0.0006 s (0.03 s) 0.04 s
30 109 0.00002 s (0.0002 s) 0.02 s (0.03 s) 1.8 s
40 6 · 106 0.00004 s (0.0003 s) 3.5 s (5.2 s) 5.6 s
63 4 · 1029 0.0005 s (0.03 s) Mem. crash (Crash) 55 s

217028 2 · 10292431 8.11 s (3.34 s) Mem. crash (Crash) Timeout

Arch size]LE Arch gen (count) bit gen (count) cftp gen

10:2 43 0.00002 s (0.00004 s) 0.002 s (0.000006 s) 0.04 s
30:2 9.8 · 108 0.003 s (0.0009 s) 0.000007 s (0.0004 s) 1.5 s
30:4 6.9 · 1010 0.001 s (0.005 s) 0.000007 s (0.004 s) 2.5 s
100:2 1.3 · 1032 0.75 s (0.16 s) Mem. crash (Crash) 6 5.6 s
100:32 1 · 1053 2.7 s (0.17 s) Mem. crash (Crash) 6 5.9 s
200:66 10130 54 s (31 s) Mem. crash (Crash) Timeout

Table 4. Benchmark results for BIT-decomposable classes: FJ and Arch.

For a more thorough comparison of the various algorithms, we generated
random processes (uniformly at random among all processes of the same size) in
the classes of fork-join (FJ) and arch-processes as discussed in Section 5, using
our own Arbogen tool9 or an ad hoc algorithm for arch-processes (presented in
the companion repository). For the fork-join structures, the size is simply the
number of atomic actions in the process. It is not a surprise that the dedicated
algorithms we developed in [6] outperforms the other algorithms by a large mar-
gin. In a few second it can handle extremely large state spaces, which is due to
the large �branching factor� of the process �forks�. The arch-processes represent
a more complex structure, thus the numbers are less �impressive� than in the FJ
case. To generate the arch-processes (uniformly at random), we used the number
of atomic actions as well as the number of spawned promises as main parame-
ters. Hence an arch of size `n:k' has n atomic actions and k spawned promises.
Our dedicated algorithm for arch-process is also rather e�ective, considering the
state-space sizes it can handle. In less than a minute it can generate an execution
path uniformly at random for a process of size 200 with 66 spawned promises,
the state-space is in the order of 10130. Also, we observe that in all our tests
the observable �complexity� is well below O(n4). The reason is that we perform
the pre-computations (corresponding to the worst case) in a just-in-time (JIT)
manner, and in practice we only actually need a small fractions of the computed
values. However the random sampler is much more e�cient with the separate
precomputation. As an illustration, for arch-processes of size 100 with 32 arches,
the sampler becomes about 500 times faster. However the memory requirement

8 For arch-processes of size 100 with 2 arches or 32, the cftp algorithm timeouts (30s)
for almost all of the input graphs.

9 Arbogen is uniform random generation for context-free grammar structures:
cf. https://github.com/fredokun/arbogen.

https://github.com/fredokun/arbogen

The Combinatorics of Barrier Synchronization 19

for the precomputation grows very quickly, so that the JIT variant is clearly
preferable.

In both the FJ and arch-process cases the current implementation of the
bit algorithms is not entirely satisfying. One reason is that the strategy we
employ for the BIT-decomposition is quite �oblivious� to the actual structure of
the DAG. As an example, this strategy handles fork-joins far better than arch-
processes. In comparison, the cftp algorithm is less sensitive to the structure,
it performs quite uniformly on the whole benchmark. We are still con�dent that
by handling the integral computation natively, the bit algorithms could handle
much larger state-spaces. For now, they are only usable up-to a size of about 40
nodes (already corresponding to a rather large state space).

7 Conclusion and future work

The process calculus presented in this paper is quite limited in terms of expres-
sivity. In fact, as the paper makes clear it can only be used to describe (intran-
sitive) directed acyclic graphs! However we still believe it is an interesting �core
synchronization calculus�, providing the minimum set of features so that pro-
cesses are isomorphic to the whole combinatorial class of partially ordered sets.
Of course, to become of any practical use, the barrier synchronization calculus
should be complemented with e.g. non-deterministic choice (as we investigate
in [4]). Moreover, the extension of our approach to iterative processes remains
full of largely open questions.

Another interest of the proposed language is that it can be used to de�ne
process (hence poset) sub-classes in an inductive way. We give two illustrations
in the paper with the fork-join processes and promises. This is complementary to
de�nitions wrt. some combinatorial properties, such as the �BIT-decomposable�
vs. �BIT-free� sub-classes. The class of arch-processes (that we study in [7] and
generalize in the present paper) is also interesting: it is a combinatorially-de�ned
sub-class of the inductively-de�ned asynchronous processes with promises. We
see as quite enlightening the meeting of these two distinct points of view.

Even for the �simple� barrier synchronizations, our study is far from being
�nished because we are, in a way, also looking for �negative� results. The counting
problem is hard, which is of course tightly related to the infamous �combinatorial
explosion� phenomenon in concurrency. We in fact believe that the problem
remains intractable for the class of BIT-decomposable processes, but this is still
an open question that we intend to investigate furthermore. By delimiting more
precisely the �hardness� frontier, we hope to �nd more interesting sub-classes for
which we can develop e�cient counting and random sampling algorithms.

Acknowledgment We thank the anonymous reviewers as well as our �shepard�
for helping us making the paper better and hopefully with less errors.

20 O. Bodini et al.

References

1. Abbes, S., Mairesse, J.: Uniform generation in trace monoids. In: MFCS 2015.
LNCS, vol. 9234, pp. 63�75. Springer (2015)

2. Banderier, C., Marchal, P., Wallner, M.: Rectangular Young tableaux with local
decreases and the density method for uniform random generation (short version).
In: GASCom 2018. Athens, Greece (Jun 2018)

3. Basset, N., Mairesse, J., Soria, M.: Uniform sampling for networks of automata.
In: Concur 2017. LIPIcs, vol. 85, pp. 36:1�36:16. Schloss Dagstuhl (2017)

4. Bodini, O., Genitrini, A., Peschanski, F.: The combinatorics of non-determinism.
In: FSTTCS'13. LIPIcs, vol. 24, pp. 425�436. Schloss Dagstuhl (2013)

5. Bodini, O., Genitrini, A., Peschanski, F.: A Quantitative Study of Pure Parallel
Processes. Electronic Journal of Combinatorics 23(1), P1.11, 39 pages (2016)

6. Bodini, O., Dien, M., Genitrini, A., Peschanski, F.: Entropic uniform sampling of
linear extensions in series-parallel posets. In: CSR 2017. LNCS, vol. 10304, pp.
71�84. Springer (2017)

7. Bodini, O., Dien, M., Genitrini, A., Viola, A.: Beyond series-parallel concurrent
systems: The case of arch processes. In: Analysis of Algorithms, AofA 2018. LIPIcs,
vol. 110, pp. 14:1�14:14 (2018)

8. Brightwell, G., Winkler, P.: Counting linear extensions is #P-complete. In: STOC.
pp. 175�181 (1991)

9. Dittmer, S., Pak, I.: Counting linear extensions of restricted posets. arXiv e-prints
arXiv:1802.06312 (Feb 2018)

10. Flajolet, P., Zimmermann, P., Cutsem, B.V.: A calculus for the random generation
of labelled combinatorial structures. Theor. Comput. Sci. 132(2), 1�35 (1994)

11. Gerbessiotis, A.V., Valiant, L.G.: Direct bulk-synchronous parallel algorithms. J.
Parallel Distrib. Comput. 22(2), 251�267 (1994)

12. Grosu, R., Smolka, S.A.: Monte carlo model checking. In: TACAS'05. LNCS,
vol. 3440, pp. 271�286. Springer (2005)

13. Hensgen, D., Finkel, R.A., Manber, U.: Two algorithms for barrier synchronization.
International Journal of Parallel Programming 17(1), 1�17 (1988)

14. Huber, M.: Fast perfect sampling from linear extensions. Discrete Mathematics
306(4), 420�428 (2006)

15. Liskov, B., Shrira, L.: Promises: Linguistic support for e�cient asynchronous pro-
cedure calls in distributed systems. In: PLDI'88. pp. 260�267. ACM (1988)

16. Oudinet, J., Denise, A., Gaudel, M., Lassaigne, R., Peyronnet, S.: Uniform monte-
carlo model checking. In: FASE 2011. LNCS, vol. 6603. Springer (2011)

17. Rival, I. (ed.): Algorithms and Order. NATO Science Series, Springer (1988)
18. Sen, K.: E�ective random testing of concurrent programs. In: Automated Software

Engineering ASE'07. pp. 323�332. ACM (2007)
19. Stanley, R.P.: Two poset polytopes. Discrete & Computational Geometry 1, 9�23

(1986)

	The Combinatorics of Barrier Synchronization

