
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Inferring Sufficient Conditions with Backward

Polyhedral Under-Approximations

Antoine Miné1,2

CNRS & École Normale Supérieure
45, rue d’Ulm, 75005 Paris

France

Abstract

In this article, we discuss the automatic inference of sufficient pre-conditions by abstract inter-
pretation and sketch the construction of an under-approximating backward analysis. We focus on
numeric domains and propose transfer functions, including a lower widening, for polyhedra, without
resorting to disjunctive completion nor complementation, while soundly handling non-determinism.
Applications include the derivation of sufficient conditions for a program to never step outside an
envelope of safe states, or dually to force it to eventually fail. Our construction is preliminary and
essentially untried, but we hope to convince that this avenue of research is worth considering.

Keywords: abstract interpretation, static analysis, polyhedra, backward analysis.

1 Introduction

A major problem studied in program verification is the automatic inference of
invariants and necessary conditions for programs to be correct. In this article,
we consider a related problem: the inference of sufficient conditions.

Consider the simple loop in Fig. 1, where j is incremented by a random
value in [0; 1] at each iteration. A forward invariant analysis would find that,
at the end of the loop, j ∈ [0; 110] and the assertion can be violated. A back-
ward analysis of necessary conditions would not infer any new condition on
the initial value of j because any value in [0; 10] has an execution satisfying
the assertion. However, a backward sufficient condition analysis would infer

1 This work is supported by the INRIA project “Abstraction” common to CNRS and ENS
in France.
2 Email: mine@di.ens.fr

c©2012 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:mine@di.ens.fr

Miné

j = [0;10]; i = 0;

while (i < 100) { i++; j = j + [0;1]; }
assert (j <= 105);

Fig. 1. Simple loop example.

that, for the assertion to always hold, it is sufficient to start with j ∈ [0; 5].
Applications of sufficient conditions include: counter-example generation [3],
contract inference [6], verification driven by temporal properties [12], optimiz-
ing compilation by hoisting safety checks, etc.

Abstract interpretation [4] has been applied with some success [1] to the
automatic generation of (over-approximated) invariants, thanks notably to the
design of effective abstract domains, in particular numeric domains [7], allow-
ing efficient symbolic computations in domains of infinite size and height. Yet,
it has barely been applied to the automatic inference of sufficient conditions
(although [4] discusses under-approximations) and then generally using finite
domains or bounded control-flow paths [3], while logic-based weakest pre-
condition methods [8] have thrived. We attribute this lack to the perceived
difficulty in designing theoretically optimal [17] as well as practical under-
approximations, and the fact that sufficient and necessary conditions differ in
the presence of non-determinism. Existing solutions are restricted to determin-
istic programs, exact abstract domains (e.g., disjunctive completions, which
do not scale well), or set-complements of over-approximating domains (e.g.,
disjunctions of linear inequalities, that cannot express invariants as simple as
j ∈ [0; 5]). We present here a preliminary work that hints towards the oppo-
site: it seems possible to define reasonably practical (although non-optimal)
polyhedral abstract under-approximations for non-deterministic programs.

Section 2 introduces sufficient conditions at the level of transition systems.
Section 3 presents some algebraic properties of backward functions, which
are exploited in Sec. 4 to design under-approximated operators for polyhedra.
Section 5 discusses related work and Sec. 6 concludes.

2 Transition Systems

2.1 Invariants and sufficient conditions

To stay general, we consider, following [4], a small-step operational semantics
and model programs as transition systems (Σ, τ); Σ is a set of states and
τ ⊆ Σ × Σ is a transition relation. An execution trace is a finite or infinite
countable sequence of states (σ1, . . . , σi, . . .) ∈ Σ∞ such that ∀i : (σi, σi+1) ∈ τ .

Invariants. The invariant inference problem consists in, given a set I ⊆ Σ of
initial states, inferring the set inv(I) of states encountered in all executions

2

Miné

starting in I. This set can be expressed as a fixpoint following Cousot [4]: 3

inv(I) = lfpI λX.X ∪ post(X) (1)

where lfpx f is the least fixpoint of f greater than or equal to x and

post(X)
def
= {σ ∈ Σ | ∃σ′ ∈ X : (σ′, σ) ∈ τ }.

Sufficient conditions. In this article, we consider the reverse problem: suffi-
cient condition inference, which consists in, given an invariant set T to obey,
inferring the set of initial states cond(T) that guarantee that all executions
stay in T . It is also given in fixpoint form following Bourdoncle [2]: 4

cond(T) = gfpT λX.X ∩ p̃re(X) (2)

where gfpx f is the greatest fixpoint of f smaller than or equal to x and

p̃re(X)
def
= {σ ∈ Σ | ∀σ′ ∈ Σ : (σ, σ′) ∈ τ =⇒ σ′ ∈ X }. cond(T) is indeed a

sufficient condition and, in fact, the most general sufficient condition:

Theorem 2.1 ∀T,X : inv(cond(T)) ⊆ T and inv(X) ⊆ T =⇒ X ⊆ cond(T).

Non-determinism. The function p̃re we use differs from the function pre used
in most backward analyses [2,4,16] and defined as pre(X)

def
= {σ ∈ Σ | ∃σ′ ∈

X : (σ, σ′) ∈ τ }. Indeed, p̃re(X) 6= pre(X) when the transition system
is non-deterministic, i.e., some states have several successors or none. Non-
determinism is useful to model unspecified parts of programs, such as the
interaction with unanalyzed libraries or with the environment (as in Fig. 1),
and permits further abstractions (Sec. 4.6). Using p̃re ensures that the target
invariant T holds for all the (possibly infinite) sequences of choices made at
each execution step, while pre would infer conditions for the invariant to hold
for at least one sequence of choices, but not necessarily all (a laxer condition).

Blocking states. Any state σ without a successor satisfies ∀X : σ ∈ p̃re(X),
and so, σ ∈ T =⇒ σ ∈ cond(T). Such states correspond to a normal or
abnormal program termination — e.g., the statement y = 1/x generates a
transition only from states where x 6= 0. In the following, we assume the
absence of blocking states by adding transitions to self-looping states: error
states transition to a self-loop ω /∈ T , and normal termination states transition
to a self-loop α ∈ T , so that no erroneous execution can stem from cond(T).

Approximation. Transition systems can become large or infinite, so that inv(I)
and cond(T) cannot be computed efficiently or at all. We settle for sound
approximations. Invariant sets are over-approximated in order to be certain

3 In [4], Cousot notes it sp(τ∗) and defines it rather as lfpλX.I ∪ post(X). Both formula-
tions are equivalent: both equal ∪n≥0 postn(I) because post is a complete ∪−morphism in
the complete lattice (P(Σ),⊆,∪,∩).
4 In [2], Bourdoncle calls this set always(T) and defines it equivalently as
gfpλX.T ∩ p̃re(X), but only considers the case where ∀σ : |post({σ})| = 1, i.e., p̃re = pre.

3

Miné

to include all program behaviors. Sufficient condition sets are dually under-
approximated as any subset I ′ ⊆ cond(T) still satisfies inv(I ′) ⊆ T .

2.2 Applications of sufficient conditions

This section presents a few applications of computing an under-approximation
of cond(T). The rest of the paper focuses on how to compute it effectively.

Given a set of initial states I, the subset of initial states that never lead to
a run-time error nor assertion violation can be expressed as Iω

def
= I∩cond(Σ\

{ω}). An analyzer computing an under-approximation of Iω infers sufficient
initial conditions so that all executions are correct (i.e., never reach ω). Ap-
plied to a single function, it infers sufficient conditions on its parameters and
global entry state ensuring its correct behavior. An application to software
engineering is the automatic inference of method contracts. An application to
optimizing compilation is run-time check hoisting: a fast version of the func-
tion without any check is called instead of the regular one if, at the function
entry, sufficient conditions making these checks useless hold.

As last application, we consider the automatic inference of counter-
examples. Given a set T of target states (e.g., erroneous states), we seek
initial conditions such that all the executions eventually reach a state in T .
In that case, Thm. 2.1 cannot be directly applied as it focuses on invariance
properties while we are now interested in an inevitability property. We now
show that this problem can nevertheless be reduced to an invariance one, of
the form cond(T ′) for some T ′. We use an idea proposed by Cousot et al.
[5] for the analysis of termination (another inevitability property): we enrich
the transition system with a counter variable l counting execution steps from
some positive value down to 0 when reaching T . Given (Σ, τ) and T ⊆ Σ, we
construct (Σ′, τ ′) and T ′ as:

Σ′
def
= Σ× N, T ′

def
= { (σ, l) ∈ Σ′ | l > 0 ∨ σ ∈ T }

((σ, l), (σ′, l′)) ∈ τ ′ def⇐⇒ ((σ /∈ T ∧ (σ, σ′) ∈ τ) ∨ σ = σ′ ∈ T) ∧ l = l′ + 1

This transformation is always sound and sometimes complete:

Theorem 2.2 If (σ, l) ∈ cond(T ′), then all the traces starting in σ eventually
enter a state in T . If the non-determinism in τ is finite, 5 the converse holds.

The restriction to finite non-determinism may hinder the analysis of fair sys-
tems, as an infinite number of countable choices must be performed, e.g.:

while ([0; 1]) {n = [0; +∞]; while (n > 0) {n = n− 1 } } . 6

5 I.e., ∀σ : post({σ}) is finite, which is weaker than requiring a bounded non-determinism.
6 Note that, if the number of infinite choices is bounded, they can be embedded as fresh
non-initialized variables to obtain a program with finite non-determinism.

4

Miné

3 Backward Functions

Program semantics are not generally defined as monolithic transition systems,
but rather as compositions of small reusable blocks. To each atomic language
instruction i corresponds a forward transfer function posti, and we will con-
struct backward transfer functions directly from these posti. Formally, given

a function f : P(X)→ P(Y), we define its backward version
←−
f as:

←−
f : P(Y)→ P(X) s.t.

←−
f (B)

def
= { a ∈ X | f({a}) ⊆ B } . (3)

We note immediately that
←−−
post = p̃re. Moreover, ←−· enjoys useful properties.

We list a few ones to give a gist of the underlying algebraic structure:

Theorem 3.1

(i)
←−
f is a monotonic, complete ∩−morphism.

(ii)
←−
f is a sup-∪−morphism: ∪i∈I

←−
f (Bi) ⊆

←−
f (∪i∈IBi)

(in general it is not a ∪−morphism, nor is it strict, even when f is).

(iii) If f is a strict complete ∪−morphism, then A ⊆
←−
f (B) ⇐⇒ f(A) ⊆ B,

that is, we have a Galois connection: P(X) −−−→←−−−
f

←−
f
P(Y).

(iv)
←−−−
f ∪ g =

←−
f ∩←−g (note that ∪, ∩, ⊆ are extended point-wise to functions).

(v)
←−−−
f ∩ g ⊇

←−
f ∪←−g (in general, the equality does not hold).

(vi) If f is monotonic, then
←−−
f ◦ g ⊆ ←−g ◦

←−
f .

(vii) If f is a strict complete ∪−morphism, then
←−−
f ◦ g =←−g ◦

←−
f .

(viii) f ⊆ g =⇒←−g ⊆
←−
f .

(ix) If f and g are strict complete ∪−morphisms, then f ⊆ g ⇐⇒ ←−g ⊆
←−
f .

(x) If f is a strict complete ∪−morphism, then
←−−−−−−−−−−−−−−
λx.lfpx (λz.z ∪ f(z)) =

λy.gfpy(λz.z ∩
←−
f (z)).

Property iv is useful to handle semantics expressed as systems of flow

equations ∀i : Xi = ∪j Fi,j(Xj); we get: ∀j : Xj = ∩j
←−
Fi,j(Xi). Compositional

semantics make use of ◦, ∪, and nested least fixpoints (vii, iv, x). Properties
iii and x generalize Thm. 2.1 and Eq. 2. Finally, viii–ix, turn forward over-
approximations into backward under-approximations. All these properties will
also be useful to design abstract operators for atomic statements, in Sec. 4.

4 Under-Approximated Polyhedral Operators

We use the results of the previous section to design practical backward op-
erators sufficient to implement an analysis. We focus on numeric properties

5

Miné

(a)
←−τ

y ≤ 0
(b)

←−τ

y ≤ 0

(c)
←−τ

y ≤ 0
(d)

←−τ

y ≤ 0

Fig. 2. Modeling the test y ≤ 0 backwards in the concrete (a) and with polyhedra (b)–(d).

that we abstract using convex closed polyhedra (although the ideas we present
can be used in other linear inequality domains, such as intervals or octagons).
Familiarity with the over-approximating polyhedron domain [7] is assumed.

We assume a set V of variables with value in Q. Environments ρ ∈
E def

= V → Q map each variable to its value in Q. A polyhedron P can
be encoded as a set C = { c1, . . . , cn } of affine constraints ci = (ai · x ≥ bi),

which represents γc(C)
def
= { ρ ∈ E | ∀(a · x ≥ b) ∈ C : a · ρ(x) ≥ b }, but

also as a set of vertices and rays (V,R), so called generators, which represents

γg(V,R)
def
= {

∑
v∈V αvv +

∑
r∈R βrr | αv, βr ≥ 0,

∑
v∈V αv = 1 }. Here, a de-

notes a vector, · is the dot product, and ρ(x) is the vector of variable values in
environment ρ. Given a statement s, we denote by τ{| s |} its forward concrete

transfer function, and by ←−τ {| s |} its backward version ←−τ {| s |} def
=
←−−−
τ{| s |}.

Note that ∅ can always be used to under-approximate any←−τ {| s |}, the same
way over-approximating analyzers soundly bail-out with E in case of a time-
out or unimplemented operation. Because backward operators are generally

not strict (i.e.,
←−
f (∅) 6= ∅, as the tests in Sec. 4.1), returning ∅ at some point

does not prevent finding a non-empty sufficient condition at the entry point;
it only means that the analysis forces some program branch to be dead.

4.1 Tests

We first consider simple affine tests a · x ≥ b. We have:

τ {|a · x ≥ b? |}R def
= { ρ ∈ R | a · ρ(x) ≥ b }

and so ←−τ {|a · x ≥ b? |}R = R ∪ { ρ ∈ E | a · ρ(x) < b }

On polyhedra, forward affine tests are handled exactly by simply adding the
constraint. However, the result of a backward affine test on a closed convex
set is generally not closed nor convex (see Fig. 2.a), so, we need an actual
under-approximation. One solution is to remove a ·x ≥ b from the set C, as:

Theorem 4.1 γc(C \ {a · x ≥ b}) ⊆ ←−τ {|a · x ≥ b? |} γc(C).

Sometimes, this results in the identity (Fig. 2.b) which is indeed a (trivial)
under-approximation. More precise (i.e., larger) under-approximations can be
computed by removing the constraints that are redundant in C ∪ {a ·x ≥ b}.

6

Miné

Intuitively, these are constraints that restrict γc(C) in the half-space a ·x < b,
while the test result is not restricted in this half-space (Fig. 2.c). In practice,
we first add a·x ≥ b, then remove redundant constraints, then remove a·x ≥ b.

Consider now the degenerate case where γc(C) |= a · x = b (Fig. 2.d).
Constraint representations are not unique, and different choices may result in
different outcomes. To guide us, we exploit the fact that tests come in pairs,
one for each program branch: while a forward semantics computes, at a branch
split, (Y, Z) = (τ {|a · x ≥ b? |} X, τ {|a · x < b? |} X), the backward compu-
tation merges both branches as X =←−τ {|a · x ≥ b? |} Y ∩←−τ {|a · x < b? |} Z.
Assuming that Y = γg(VY , RY) is degenerate, we construct a non-degenerate
polyhedron before computing ←−τ {|a · x ≥ b? |} by adding the rays r from Z
such that τ {|a · x ≥ b? |} γg(VY , RY ∪ {r}) = τ {|a · x ≥ b? |} γg(VY , RY). The
effect is to create common rays in ←−τ {|a · x ≥ b? |} Y and ←−τ {|a · x < b? |} Z
to make the subsequent intersection as large as possible. This simple heuristic
is sufficient to analyze Fig. 1 (where the degeneracy comes from the invariant
i = 100 at loop exit) but it is nevertheless fragile and begs to be improved.

To handle strict tests, we note that τ{|a · x ≥ b? |} over-approximates
τ{|a · x > b? |}, and so, by Thm. 3.1.viii, ←−τ {|a · x > b? |} can be under-
approximated by ←−τ {|a · x ≥ b? |}. Similarly for non-deterministic tests,
τ{|a · x ≥ [b; c]? |} = τ{|a · x ≥ b? |}, and so, ←−τ {|a · x ≥ [b; c]? |} is modeled as
←−τ {|a · x ≥ b? |}. We will see in Sec. 4.6 that non-linear tests can be abstracted
into such non-deterministic affine ones. Finally, boolean combinations of tests
are handled as follows, using Thm. 3.1.iv,vii: 7

τ{| t1 ∨ t2 |} = τ {| t1 |} ∪ τ{| t2 |} and so ←−τ {| t1 ∨ t2 |} =←−τ {| t1 |} ∩ ←−τ {| t2 |}

τ{| t1 ∧ t2 |} = τ {| t2 |} ◦ τ{| t1 |} and so ←−τ {| t1 ∧ t2 |} =←−τ {| t1 |} ◦ ←−τ {| t2 |}

For instance, ←−τ {|a · x = [b; c]? |} =←−τ {|a · x ≥ b? |} ◦←−τ {| (−a) · x ≥ −c? |}.

4.2 Projection

Given a variable V , projecting it forgets its value:

τ {|V := ? |}R def
= { ρ[V 7→ v] | ρ ∈ R, v ∈ Q }

and so ←−τ {|V := ? |}R = { ρ ∈ E | ∀v ∈ Q : ρ[V 7→ v] ∈ R }

We have the following property:

Theorem 4.2 If R is convex closed, then ←−τ {|V := ? |}R is either R or ∅.

The projection can be efficiently and exactly implemented for polyhedra as:
if τ {|V := ? |} P = P then ←−τ {|V := ? |} P = P , otherwise ←−τ {|V := ? |} P = ∅.
Adding and removing an uninitialized variable can then be derived as follows:

7 We avoid the use of ∩ for ∧ as it does not behave well with respect to←−· , see Thm. 3.1.v.

7

Miné

←−τ {| del V |} = τ{| add V |}
←−τ {| add V |} = τ {| del V |} ◦←−τ {|V := ? |}

4.3 Assignments

By Thm. 3.1.viii, and given that the forward projection over-approximates any
assignment, the backward projection can be used to under-approximate any
assignment, but this is rather coarse. More interestingly, general assignments
can be reduced to tests by introducing a temporary variable V ′. We note
[V ′/V] the renaming of V as V ′. We have:

τ{|V := e |} = [V/V ′] ◦ τ {| del V |} ◦ τ {|V ′ = e? |} ◦ τ{| add V ′ |}

and so ←−τ {|V := e |} =←−τ {| add V ′ |} ◦←−τ {|V ′ = e? |} ◦←−τ {| del V |} ◦ [V ′/V]

In case of degeneracy on a test argument, Sec. 4.1 relied on rays provided by
another polyhedron to guide the operation. We do not have another polyhe-
dron here, but we know that the test is followed by a projection (as part of
←−τ {| add V ′ |}), hence, the heuristic is modified to use the rays V ′ and −V ′.
Intuitively, we try to maximize the set of environments ρ such that the result
of the test contains { ρ[V ′ 7→ v] | v ∈ Q }, and so, will be kept by←−τ {|V ′ := ? |}.

Moreover, some restricted yet useful classes of assignments enjoy more
direct abstractions, based solely on forward operators, such as:

Theorem 4.3

(i) ←−τ {|V := [a; b] |} = τ {|V := ? |} ◦ (τ {|V := V − a |} ∩ τ{|V := V − b |}) ◦
τ{|V ≥ a? ∧ V ≤ b? |}).

(ii) ←−τ {|V := V + [a; b] |} = τ {|V := V − a |} ∩ τ{|V := V − b |}.
(iii) ←−τ {|V := W |} = τ {|V := ? |} ◦ τ{|V = W? |} (when V 6= W).

(iv) If V := e is invertible, i.e., there exists an expression e−1 such that
τ {|V := e−1 |} ◦ τ{|V := e |} = τ {|V := e |} ◦ τ{|V := e−1 |} = λR.R, then
←−τ {|V := e |} = τ{|V := e−1 |} — e.g., V :=

∑
W αWW with αV 6= 0.

4.4 Lower widening

Invariance semantics by abstract interpretation feature least fixpoints, e.g.,
to handle loops and solve equation systems. Traditionally, they are solved
by iteration with an upper convergence acceleration operator, the widening O
[4]. To compute sufficient conditions, we under-approximate greatest fixpoints
instead (Eq. 2 and Thm. 3.1.x). We thus define a lower widening O obeying:

(i) γ(A OB) ⊆ γ(A) ∩ γ(B).

(ii) For any sequence (Xn)n∈N, the sequence Y0 = X0, Yn+1 = Yn O Xn+1

8

Miné

stabilizes: ∃i : Yi+1 = Yi.

As a consequence, for any under-approximation F] of a concrete operator F ,
and any X0, the sequence Xi+1 = XiOF](Xi) stabilizes in finite time to some
Xδ; moreover, this Xδ satisfies γ(Xδ) ⊆ gfpγ(X0) F [4].

On polyhedra, by analogy with the widening O [7] that keeps only stable
constraints, we define a lower widening O that keeps only stable generators.
Let VP and RP denote the vertices and rays of a polyhedron P = γg(VP , RP).
We define O formally as:

VAOB
def
= { v ∈ VA | v ∈ B }

RAOB
def
= { r ∈ RA | B ⊕ R+r = B }

(4)

where ⊕ denotes the Minkowski sum (A⊕B def
= { a+ b | a ∈ A, b ∈ B }) and

R+r denotes the set {λr | λ ≥ 0 }). We have:

Theorem 4.4 O is a lower widening.

Generator representations are not unique, and the output of O depends on
the choice of representation. The same issue occurs for the standard widening.
We can use a similar fix: we add to A O B any generator from B that is
redundant with a generator in A. Our lower widening can also be refined in a
classic way by permitting thresholds: given a finite set of vertices (resp. rays),
each vertex v (resp. ray r) included in both polyhedra A and B (v ∈ A∧v ∈ B,
resp. A⊕R+r = A∧B⊕R+r = B) is added to AOB. As for any extrapolation
operator, the effectiveness of O will need, in future work, to be assessed in
practice. There is ample room for improvement and adaptation.

Lower widenings are introduced in [4] but, up to our knowledge, and unlike
(upper) widenings, no practical instance on infinite domains has ever been
designed. Lower widenings are designed to “jump below” fixpoints (hence
performing an induction) and should not be confused with narrowing operators
that “stay above” fixpoints (performing a refinement).

4.5 Joins

In invariance analyses, unions of environment sets are computed at every con-
trol flow join. Naturally, a large effort in abstract analysis design is spent
designing precise and efficient over-approximations of unions. By the duality
of Thm. 3.1.iv, such joins do not occur in sufficient condition analyses; they
are replaced with intersections ∩ at control-flow splits, and these are easier to
abstract in most domain (e.g., polyhedra). Hence, we avoid the issue of de-
signing under-approximations of arbitrary unions. We do under-approximate
unions as part of test operators (Sec. 4.1), but these have a very specific form
which helped us design the approximation.

9

Miné

4.6 Expression approximation

We focused previously on affine tests and assignments because they match
the expressive power of polyhedra, but programs feature more complex expres-
sions. In [13], we proposed to solve this problem for over-approximating trans-
fer functions using an expression abstraction mechanism. We noted e vD f
the fact that f approximates e on D, i.e., ∀ρ ∈ D : J e Kρ ⊆ J f Kρ, where
J · K : E → P(Q) evaluates an expression in an environment. Then:

if R ⊆ D then τ {|V := e |}R ⊆ τ {|V := f |}R and τ {| e? |}R ⊆ τ {| f? |}R
so, in the abstract, e can be replaced with f if the argumentA] satisfies e vγ(A])

f . We now show that this method also works for under-approximations:

Theorem 4.5 If e vD f , we have:

(i) ←−τ {|V := e |}R ⊇ (←−τ {|V := f |}R) ∩D.

(ii) ←−τ {| e? |}R ⊇ (←−τ {| f? |}R) ∩D.

We study the case of abstract assignments (tests are similar): ←−τ {|V := e |}]A]
can be replaced with←−τ {|V := f |}]A]∩]D] if e vγ(D]) f . One way to construct
f is to use the “linearization” from [13]: it converts an arbitrary expression into
an expression of the form

∑
V αV V + [a; b] by performing interval arithmetics

on non-linear parts, using variable bounds from D]. The theorem does not
make any hypothesis on the choice ofD (unlike the case of forward analysis). A
smaller D improves the precision of f by making [a; b] tighter, but, as we want
to maximize the result of the backward assignment, we should avoid discarding
states in←−τ {|V := f |}R but not in←−τ {|V := f |}R∩D. In practice, we use forD
the result γ(D]) of a prior invariance analysis as we know that, in the concrete,
←−τ {|V := e |} R ⊆ γ(D]). For instance, the assignment ←−τ {|X ← Y × Z |}] R]

will be replaced with ←−τ {|X ← Y × [0; 1] |}] R] ∩] D] if the invariant γ(D])
before the assignment implies that Z ∈ [0; 1].

It may seem counter-intuitive that over-approximating expressions results
in under-approximating backward transfer functions. Observe that over-
approximations enlarge the non-determinism of expressions, and so, make it
less likely to find sufficient conditions holding for all cases.

4.7 Implementation

We have implemented a proof-of-concept analyzer [14] that infers sufficient
pre-conditions for programs written in a toy language to never violate any
user-specified assertion. It first performs a classic forward over-approximating
analysis, followed with a backward under-approximating one. All the abstract
operators are implemented with polyhedra, on top of the Apron library [10].
It is able to find the sufficient condition j ∈ [0; 5] in the example of Fig. 1. We
also analyzed the BubbleSort example that introduced polyhedral analysis [7].

10

Miné

5 Related Work

Since their introduction by Dijkstra [8], weakest (liberal) preconditions have
been much studied, using a variety of inference and checking methods, includ-
ing interactive theorem proving [9] and automatic finite-state computations.
These methods are exact (possibly with respect to an abstract model over-
approximating the concrete system, so that sufficient conditions on the model
do not always give sufficient conditions for the original system). Fully auto-
matic methods based on under-approximations are less common.

Bourdoncle introduces [2] sufficient conditions, denoted always(T), but
only focuses on deterministic systems (i.e., p̃re = pre). He also mentions
that classic domains, such as intervals, are inadequate to express under-
approximations as they are not closed under complementation, but he does
not propose an alternative. Moy [15] solves this issue by allowing disjunc-
tions of abstract states (they correspond to path enumerations and can grow
arbitrarily large). Lev-Ami et al. [11] derive under-approximations from over-
approximations by assuming, similarly, that abstract domains are closed by
complementation (or negation, when seen as formulas). Brauer et al. [3] em-
ploy boolean formulas on a bit-vector (finite) domain. These domains are
more costly than classic convex ones, and our method is not limited to them.

Schmidt [17] defines Galois Connections (and so best operators) for all
four backward/forward over-/under-approximation cases using a higher-order
powerset construction. Massé [12] proposes an analysis parametrized by arbi-
trary temporal properties, including p̃re operators, based on abstract domains
for lower closure operators. We shy away from higher-order constructions. We
may lose optimality and generality, but achieve a more straightforward and,
we believe, practical framework. In particular, we do not change the seman-
tics of abstract elements, but only add new transfer functions, and achieve the
same algorithmic complexity as forward analyses.

Cousot et al. [6] propose a backward precondition analysis for contracts.
It differs from the weakest precondition approach we follow in its treatment
of non-determinism: it keeps states that, for some sequence of choices (but
not necessarily all), give rise to a non-erroneous execution. Our handling of
inevitability is directly inspired from Cousot et al. [5].

6 Conclusion

In this article, we have discussed the inference of sufficient conditions by
abstract interpretation. We have presented general properties of backward
under-approximated semantics, and proposed example transfer functions in
the polyhedra domain. Much work remains to be done, including designing
new under-approximated operators (tests and lower widenings, in particular),

11

Miné

considering new domains, experimenting on realistic programs. Our construc-
tion and results are very preliminary and remain mostly untried; our hope is
only to convince the reader that this constitutes a fruitful avenue of research.

References

[1] J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival.
Static analysis and verification of aerospace software by abstract interpretation. In AIAA
Infotech@Aerospace, number 2010-3385, pages 1–38. AIAA, Apr. 2010.

[2] F. Bourdoncle. Abstract debugging of higher-order imperative languages. In Proc. of the ACM
Conf. on Prog. Lang. Design and Implementation (PLDI’93), pages 46–55. ACM, Jun. 1993.

[3] J. Brauer and A. Simon. Inferring definite counterexamples through under-approximation. In
NASA Formal Methods, volume 7226 of LNCS, Apr. 2012.

[4] P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs

monotones sur un treillis, analyse sémantique de programmes (in French). Thèse d’État ès
sciences mathématiques, Université scientifique et médicale de Grenoble, Grenoble, France, 21
Mar. 1978.

[5] P. Cousot and R. Cousot. An abstract interpretation framework for termination. In Conference
Record of the 39th Annual ACM SIGPLAN-SIGACT Symp. on Principles of Programming
Languages, pages 245–258, Philadelphia, PA, January 25-27 2012. ACM Press, New York.

[6] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference from intermittent assertions and
application to contracts on collections. In Proc. of the 12th Int. Conf. on Verification, Model
Checking and Abstract Interpretation (VMCAI;11), volume 6538 of LNCS, pages 150–168.
Springer, Jan. 2011.

[7] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
program. In Proc. of the 5th ACM SIGPLAN-SIGACT Symp. on Principles of Programming
Languages (POPL’78), pages 84–97. ACM Press, 1978.

[8] E. W. Dijkstra. Guarded commands, non-determinacy and formal derivation of programs.
Comm. ACM, 18(8):453–457, 1975.

[9] C. Flanagan, R. Leino, M. Lillibridge, G. Nelson, J. Saxe, and R. Stata. Extended static
checking for Java. In Proc. of the SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI’02), pages 234–245. ACM, June 2002.

[10] B. Jeannet and A. Miné. Apron: A library of numerical abstract domains for static analysis. In
Proc. of the 21th Int. Conf. on Computer Aided Verification (CAV’09), volume 5643 of LNCS,
pages 661–667. Springer, June 2009.

[11] T. Lev-Ami, M. Sagiv, T. Reps, and S. Gulwani. Backward analysis for inferring quantified
pre-conditions. Technical Report TR-2007-12-01, Tel Aviv University, Dec. 2007.

[12] D. Massé. Temporal Property-driven Verification by Abstract Interpretation. PhD thesis, École
Polytechnique, Palaiseau, France, Dec. 2002.

[13] A. Miné. Symbolic methods to enhance the precision of numerical abstract domains. In Proc.
of the 7th Int. Conf. on Verification, Model Checking, and Abstract Interpretation (VMCAI’06),
volume 3855 of LNCS, pages 348–363. Springer, Jan. 2006.

[14] A. Miné. The Banal static analyzer prototype, 2012. http://www.di.ens.fr/~mine/banal.

[15] Y. Moy. Sufficient preconditions for modular assertion checking. In Proc. of the 9th Int. Conf.
on Verification, Model Checking, and Abstract Interpretation (VMCAI’08), volume 4905 of
LNCS, pages 188–202. Springer, Jan 2008.

[16] X. Rival. Understanding the origin of alarms in Astrée. In Proc. of the 12th Int. Symp. on
Static Analysis (SAS’05), volume 3672 of LNCS, pages 303–319. Springer, Sep. 2005.

[17] D. A. Schmidt. Closed and logical relations for over- and under-approximation of powersets. In
Proc. of the 11th Int. Symp. on Static Analysis (SAS’04), volume 3148, pages 22–37. Springer,
Aug. 2004.

12

http://www.di.ens.fr/~mine/banal

Miné

A Example Analyses

The analysis method described in the paper has been implemented in a proof-
of-concept prototype analyzer. It analyzes a small toy language with a C-
inspired syntax and numeric data-types. We present some results obtained
with this analyzer on toy examples. The source code of the analyzer, more
examples, as well as the ability to run custom analyses on our server are
available through a web-based analysis interface at http://www.di.ens.fr/

~mine/banal.

A.1 Simple loop

We start with the simple loop example from Fig. 1. In our language syntax,
the example is written as:

integer j = [0;10], i = 0;

void main() {
(6) while (7) (i < 100) {

(8) i = i + 1;

(9) j = j + [0;1];

(10)

}
(12) assert (j <= 105);

(14)

}

where each (i) denotes a program point.

We first perform a standard forward over-approximating analysis with
polyhedra, and iterate the loop body until a fixpoint is reached. To ensure
an efficient analysis, we use a widening at point 7, just before performing the
loop test when entering the loop for the first time or after a loop iteration.
To improve the precision, we use two known technique: we replace the first
widening applications with a plain join (known as widening “with delay”), and
apply one decreasing iteration after the increasing iteration with widening has
stabilized (a simple form of narrowing). We show below the loop iterates
(7–10) and the analysis after the loop (12, 14):

up iter 1 up iter 2 (∪) up iter 3 (∪) up iter 4 (O)

(7) i = 0∧−j ≥ −10∧
j ≥ 0

−i ≥ −1 ∧ j ≥ 0 ∧
i− j ≥ −10∧ i ≥ 0

−i ≥ −2 ∧ j ≥ 0 ∧
i− j ≥ −10∧ i ≥ 0

j ≥ 0∧i−j ≥ −10∧
i ≥ 0

(8) i = 0∧−j ≥ −10∧
j ≥ 0

−i ≥ −1 ∧ j ≥ 0 ∧
i− j ≥ −10∧ i ≥ 0

−i ≥ −99∧ j ≥ 0∧
i− j ≥ −10∧ i ≥ 0

−i ≥ −99∧ j ≥ 0∧
i− j ≥ −10∧ i ≥ 0

(9) i = 1∧−j ≥ −10∧
j ≥ 0

−i ≥ −2 ∧ j ≥ 0 ∧
i− j ≥ −9 ∧ i ≥ 1

−i ≥ −100 ∧ j ≥
0∧i−j ≥ −9∧i ≥ 1

−i ≥ −100 ∧ j ≥
0∧i−j ≥ −9∧i ≥ 1

(10) i = 1∧−j ≥ −11∧
j ≥ 0

−i ≥ −2 ∧ j ≥ 0 ∧
i− j ≥ −10∧ i ≥ 1

−i ≥ −100∧j ≥ 0∧
i− j ≥ −10∧ i ≥ 1

−i ≥ −100∧j ≥ 0∧
i− j ≥ −10∧ i ≥ 1

13

http://www.di.ens.fr/~mine/banal
http://www.di.ens.fr/~mine/banal

Miné

down iter 1

(7) −i ≥ −100∧j ≥ 0∧i−j ≥ −10∧i ≥ 0

(8) −i ≥ −99∧j ≥ 0∧i−j ≥ −10∧i ≥ 0

(9) −i ≥ −100∧j ≥ 0∧i−j ≥ −9∧i ≥ 1

(10) −i ≥ −100∧j ≥ 0∧i−j ≥ −10∧i ≥ 1

(12) i = 100 ∧ −j ≥ −110 ∧ j ≥ 0

(14) i = 100 ∧ −j ≥ −105 ∧ j ≥ 0

We now present the backward under-approximating analysis. We also use
a narrowing “with delay” by replacing the first lower widening at 7 with a
plain meet.

down iter 1 (∩) down iter 2 (O)

(14) i = 100 ∧ −j ≥ −105 ∧ j ≥ 0

(12) i = 100 ∧ −j ≥ −105 ∧ j ≥ 0

(10) −i ≥ −100∧j ≥ 0∧i−j ≥ −10∧i ≥ 1 −i ≥ −100∧j ≥ 0∧i−j ≥ −5∧i ≥ 1

(9) −i ≥ −100∧j ≥ 0∧i−j ≥ −9∧i ≥ 1 −i ≥ −100∧j ≥ 0∧i−j ≥ −4∧i ≥ 1

(8) −i ≥ −99∧j ≥ 0∧i−j ≥ −10∧i ≥ 0 −i ≥ −99∧ j ≥ 0∧ i− j ≥ −5∧ i ≥ 0

(7) −i ≥ −100∧j ≥ 0∧i−j ≥ −5∧i ≥ 0 −i ≥ −100∧j ≥ 0∧i−j ≥ −5∧i ≥ 0

(6) i = 0 ∧ −j ≥ −5 ∧ j ≥ 0

The most interesting part is the backward analysis of the loop test i <

100. A necessary loop condition at 7 is synthesized from the two conditions
at 8 and 12, by applying respectively ←−τ {| i ≤ 99 |} and ←−τ {| i ≥ 100 |}. This is
illustrated graphically below:

(8) (12) (7)

14

Miné

A.2 Bubble sort

We now consider the Bubble sort example that illustrated the seminal work
of Cousot and Halbwachs on polyhedral analysis [7]. Adapted to our toy
language, this gives:

integer N, B, J, T;

void main() {
(10) B = N;

(11) while (12) (B >= 1) {
(13) J = 1;

(14) T = 0;

(15) while (16) (J <= B - 1) {
(17) assert (J >= 1 && J <= N && J + 1 >= 1 && J + 1 <= N);

(18) if ([0;1] == 1) { (19) T = J; (20) } else { (21) };
(22) J = J + 1;

(23) }
(25) if (T == 0) { (26) return; (27) } else { (28) };
(29) B = T;

(30) }
(33) }

Note that the array accesses at indices J and J+1 at 17 have been replaced
with array bound check assertions, and the comparison of two array elements
at 18 has been replaced with a non-deterministic test [0;1]==1.

We first analyze the correct version above. All our analyses unroll both
loops twice, delay the widening and the lower widening twice, and use two
decreasing iterations to refine the forward analysis. The forward analysis
infers that, at the end of the program, B ≤ N. The backward analysis infers no
relation at the beginning of the program (>), i.e., the program never performs
any array bound error, which is the expected result.

We then analyze an incorrect version, where B is initialized to N+1 instead
of N at 10:

(10) B = N + 1;

The forward analysis infers no bound on N at the end of the program. However,
the backward analysis finds that N ≤ 0 is a sufficient condition at the beginning
of the program for the program to never performs a bound check error. The
result is expected: obviously, the condition is sufficient to prevent the program
to enter the inner loop (however, the program can enter the outer loop as, for
N = 0, B = N + 1 = 1); while, when N ≥ 1, the program necessarily enters the
inner loop and performs a bound check error when J reaches B− 1 = N.

Finally, we analyze the same incorrect version where the assertion is
changed to force an array bound check error:

(17) assert (!(J >= 1 && J <= N && J + 1 >= 1 && J + 1 <= N));

15

Miné

In this case, our analysis infers that N = 1 is a sufficient initial condition so
that, every time program point 17 is reached, an array bound check failure oc-
curs. In fact, this provides a counter-example which ensures that the program
necessarily fails (however, our analysis does not currently infers that program
point 17 is necessarily reached).

B Proofs

B.1 Proof of Thm. 2.1

Proof. We prove: (1) ∀T,X : inv(cond(T)) ⊆ T and (2) inv(X) ⊆ T =⇒
X ⊆ cond(T).

This is actually a special case and a consequence of the properties
from Thm. 3.1, that are proved below. Indeed, by definition, inv(I) =

lfpI λX.X ∪ post(X). By Thm. 3.1.x,
←−
inv(T) = gfpT λX.X ∩

←−−
post(X).

We will also prove with Thm. 3.1 that
←−−
post = p̃re, so that

←−
inv(T) =

gfpT λX.X ∩ p̃re(X) = cond(T). We will also prove as a side-effect of
Thm. 3.1.x that inv is a strict complete ∪−morphism. By Thm. 3.1.iii,
(inv, cond) then forms a Galois connection and we have inv(X) ⊆ T ⇐⇒
X ⊆ cond(T). This implies immediately (2). By setting X = cond(T), this
also implies (1). 2

B.2 Proof of Thm. 2.2

Proof.

(i) We prove: If (σ0, l) ∈ cond(T ′), then all the traces starting in σ0 eventu-
ally enter a state in T .
Let us note S ′

def
= cond(T ′) in the transition system (Σ′, τ ′). Consider a

state (σ0, l) ∈ S ′ and a maximal trace t = σ0, . . . , σi, . . . for (Σ, τ) starting
in state σ0. As we assumed that (Σ, τ) has no blocking state, the maximal

trace t is infinite. We note m
def
= min(l,max { i | ∀j < i : σj /∈ T }).

As m ≤ l, m is finite. We construct the trace t′ in (Σ′, τ ′) as follows:

t′
def
= (σ0, l), (σ1, l − 1), . . . , (σm, l −m). Then t′ obeys τ ′. As moreover,

(σ0, l) ∈ S ′ = cond(T ′), we have ∀i : (σi, li) ∈ T ′. If m = l, this
gives l − m = 0, and so σm ∈ T by definition of T ′. If m < l, then
m = max { i | ∀j < i : σj /∈ T }), which implies σm ∈ T . We note that all
the traces starting in state σ0 reach a state in T in l steps or less.

(ii) We prove: If the non-determinism in τ is finite, and all the traces starting
in σ eventually enter state T , then ∃l : (σ, l) ∈ cond(T ′).
Consider a state σ ∈ Σ such that all the traces in (Σ, τ) from σ eventually
reach a state in T . For each maximal such trace, we consider its finite
prefix until it reaches T , i.e., t = σ1, . . . , σ|t| such that σ1 = σ, σ|t| ∈ T ,

16

Miné

and i < |t| =⇒ σi /∈ T . The set of all these finite trace prefixes forms
a tree rooted at σ. By hypothesis, this tree has no infinite path. We
now use the extra hypothesis that the non-determinism in τ is finite,
which ensures that the tree is finitely branching. By the contrapositive
of König’s lemma, the tree is then finite. We denote by l its (finite) depth.

We now argue that (σ, l) ∈ S ′
def
= cond(T ′). It is sufficient to prove

that, for each finite trace t′
def
= (σ0, l0), . . . , (σn, ln) for (Σ′, τ ′) starting

in state (σ0, l0)
def
= (σ, l), we have ∀i : (σi, li) ∈ T ′. By definition of τ ′,

li = l − i. Thus, if n < l, then ∀i : li > 0 and the property is obvious.
Otherwise, n ≥ l, and it is sufficient to prove that ∃i : σi ∈ T . Suppose
that this is not the case and ∀i : σi /∈ T . Then, by definition of τ ′, the
trace t = σ0, . . . , σl in Σ obeys τ . We have constructed a trace for τ
starting in σ with length strictly greater than l that does not encounter
a state in T , which contradicts the definition of l.

2

B.3 Proof of Thm. 3.1

Proof.

(i) We prove:
←−
f is a monotonic, complete ∩−morphism.

If A ⊆ B, then f({a}) ⊆ A implies f({a}) ⊆ B, and so,
←−
f (A) ⊆

←−
f (B),

which proves the monotony. Moreover,
←−
f (∩i∈IBi) = { a | f({a}) ⊆

∩i∈IBi } = { a | ∧i∈I f({a}) ⊆ Bi } = ∩i∈I { a | f({a}) ⊆ Bi } =

∩i∈I
←−
f (Bi), and so,

←−
f is a complete ∩−morphism.

(ii) We prove:
←−
f is a sup-∪−morphism.

The sup-∪−morphism property is a consequence of the monotony of←−
f : ∀i ∈ I : Bi ⊆ ∪j∈I Bj, so,

←−
f (Bi) ⊆

←−
f (∪j∈I Bj) and ∪i

←−
f (Bi) ⊆←−

f (∪j∈I Bj). To prove that
←−
f is not necessarily a ∪−morphism, consider

the strict complete ∪−morphism f such that f({a}) = {x, y}. Then,
←−
f ({x}) =

←−
f ({y}) = ∅ but

←−
f ({x, y}) = {a}) ∅ =

←−
f ({x}) ∪

←−
f ({y}).

To prove that
←−
f is not necessarily strict, consider the strict complete

∪−morphism f such that f({a}) = ∅. Then,
←−
f (∅) = {a}) ∅.

(iii) We prove: If f is a strict complete ∪−morphism, then A ⊆
←−
f (B) ⇐⇒

f(A) ⊆ B.

A ⊆
←−
f (B)

⇐⇒ ∀a ∈ A : f({a}) ⊆ B { def. of ←−· }
⇐⇒ ∪a∈A f({a}) ⊆ B

⇐⇒ f(A) ⊆ B { strict complete ∪−morphism }

17

Miné

(iv) We prove:
←−−−
f ∪ g =

←−
f ∩←−g .

a ∈ (
←−−−
f ∪ g)(B)

⇐⇒ f({a}) ∪ g({a}) ⊆ B { def. of ←−· }
⇐⇒ f({a}) ⊆ B ∧ g({a}) ⊆ B

⇐⇒ a ∈
←−
f (B) ∧ a ∈ ←−g (B) { def. of ←−· }

⇐⇒ a ∈ (
←−
f ∩←−g)(B)

(v) We prove:
←−−−
f ∩ g ⊇

←−
f ∪←−g .

a ∈ (
←−−−
f ∩ g)(B)

⇐⇒ f({a}) ∩ g({a}) ⊆ B { def. of ←−· }
⇐= f({a}) ⊆ B ∨ g({a}) ⊆ B

⇐⇒ a ∈
←−
f (B) ∨ a ∈ ←−g (B) { def. of ←−· }

⇐⇒ a ∈ (
←−
f ∪←−g)(B)

To prove that the equality does not necessarily hold, consider f and g
such that f({a}) = {x} and g({a}) = {y}. Then (f ∩ g)({a}) = ∅, and

so, a ∈
←−−−
f ∩ g(∅). However, a /∈

←−
f (∅) and a /∈ ←−g (∅).

(vi) We prove: If f is monotonic, then
←−−
f ◦ g ⊆ ←−g ◦

←−
f .

a ∈
←−−
f ◦ g(B)

⇐⇒ (f ◦ g)({a}) ⊆ B { def. of ←−· }
=⇒ ∀b ∈ g({a}) : f({b}) ⊆ B {monotony of f }
⇐⇒ ∀b ∈ g({a}) : b ∈

←−
f (B) { def. of ←−· }

⇐⇒ g({a}) ⊆
←−
f (B)

⇐⇒ a ∈ (←−g ◦
←−
f)(B) { def. of ←−· }

(vii) We prove: If f is a strict complete ∪−morphism, then
←−−
f ◦ g =←−g ◦

←−
f .

When f is a strict complete ∪−morphism, it is monotonic. The proof
of vi holds and we have moreover (∀b ∈ g({a}) : f({b}) ⊆ B) =⇒
(f ◦ g)({a}) = ∪{ f({b}) | b ∈ g({a}) } ⊆ B, which proves the equality.

(viii) We prove: f ⊆ g =⇒←−g ⊆
←−
f .

18

Miné

a ∈ ←−g (B)

⇐⇒ g({a}) ⊆ B { def. of ←−· }
=⇒ f({a}) ⊆ B { f ⊆ g }
⇐⇒ a ∈

←−
f (B) { def. of ←−· }

(ix) We prove: If f and g are strict complete ∪−morphisms, then f ⊆ g ⇐⇒
←−g ⊆

←−
f .

The =⇒ part has been proved in viii. Suppose instead now that←−g ⊆
←−
f ,

then we have on singletons:

b ∈ f({a})
⇐⇒ ∀B : (f({a}) ⊆ B =⇒ b ∈ B)

⇐⇒ ∀B : (a ∈
←−
f (B) =⇒ b ∈ B) { def. of ←−· }

=⇒ ∀B : (a ∈ ←−g (B) =⇒ b ∈ B) {←−g ⊆
←−
f }

⇐⇒ ∀B : (g({a}) ⊆ B =⇒ b ∈ B) { def. of ←−· }
⇐⇒ b ∈ g({a})

So, ∀a : f({a}) ⊆ g({a}). When f and g are strict complete
∪−morphisms, the property lifts to arbitrary sets, and we have f ⊆ g.

Note that this property implies that ←−g =
←−
f =⇒ f = g.

(x) We prove: If g is a strict complete ∪−morphism, then
←−−−−−−−−−−−−−−
λx.lfpx (λz.z ∪ f(z)) = λy.gfpy(λz.z ∩

←−
f (z)).

Let us note h(z)
def
= z ∪ f(z). Then h is a strict extensive complete

∪−morphism, and any x is a pre-fixpoint of h. By Cousot’s constructive
version of Tarski’s fixpoint theorem, we have ∀x : lfpx h = ∪i∈N hi(x).
Moreover, each hi is also a strict extensive complete ∪−morphism. We
have:

lfpx h ⊆ y

⇐⇒ ∪i∈N hi(x) ⊆ y {Tarski’s theorem }
⇐⇒ ∀i ∈ N : hi(x) ⊆ y

⇐⇒ ∀i ∈ N : x ⊆
←−
hi (y) { property iii }

⇐⇒ ∀i ∈ N : x ⊆
←−
h
i
(y) { property vii }

⇐⇒ x ⊆ ∩i∈N
←−
h
i
(y)

⇐⇒ x ⊆ gfpy
←−
h {Tarski’s theorem }

i.e.,
←−−−−−
λx.lfpx h = λy.gfpy

←−
h . We conclude using property iv to get

←−
h =

←−−−−−−−
(λx.x) ∪ f =

←−−
λx.x ∩

←−
f = (λx.x) ∩

←−
f .

19

Miné

We note in passing that λx.lfpx h is a strict complete ∪−morphism, as
the infinite join of strict complete ∪−morphisms. This property is useful
when using λx.lfpx h as argument in the above properties that require it.

2

We state without proof a few additional properties of interest (these are ex-
tremely simple and similar to the above ones):

• If f is extensive, then
←−
f is reductive.

• If f is reductive, then
←−
f is extensive.

•
←−−−
λA.A = λB.B (used in the proof of x).

• If f and g are monotonic and f ◦ g = g ◦ f = λx.x, then
←−
f = g and←−g = f .

The claim
←−−
post = p̃re stated in Sec. 3 is almost immediate:

←−−
post(B)

= {σ ∈ Σ | post({σ}) ⊆ B } {definition of ←−· }
= {σ ∈ Σ | ∀σ′ : (σ, σ′) ∈ τ =⇒ σ′ ∈ B } { definition of post }
= p̃re(B) { definition of p̃re }

Finally, we discuss briefly the use of these properties when deriving pro-
gram semantics, hinted at the end of Sec. 3.

When the forward concrete invariance semantics is defined by structural
induction on the syntax, we can apply the properties to derive its backward
version, given that all the forward functions are complete ∪−morphism. Here
are a few sample constructions:

• Sequences:

we have τ {| b1; b2 |}
def
= τ {| b2 |} ◦ τ{| b1 |}

and so ←−τ {| b1; b2 |} =←−τ {| b1 |} ◦ ←−τ {| b2 |}.
• Conditionals:

we have τ {| if (e) { b1 } else { b2 } |} X
def
= (τ {| b1 |} ◦ τ{| e? |})X ∪ (τ {| b2 |}

◦ τ{| ¬e? |})X
and so←−τ {| if (e) { b1 } else { b2 } |}X = (←−τ {| e? |} ◦ ←−τ {| b1 |})X∩(←−τ {| ¬e? |}
◦ ←−τ {| b2 |})X.

• Loops:

we have τ {| while (e) { b } |}X def
= τ {| ¬e? |}(lfpX λY.Y ∪(τ {| b |} ◦ τ{| e? |})Y)

and so ←−τ {| while (e) { b } |}X = gfp←−τ {| ¬e? |}X λY.Y ∩ (←−τ {| e? |} ◦ ←−τ {| b |})Y).

The forward semantics computes the set of all environments than can be seen
at the end of the program as a function of the possible starting environments.
The backward semantics, given a set of target environments at the end of the
program, gives the set of initial environments such that all the executions that

20

Miné

reach the end of the program necessarily do so in a target environment.

B.4 Proof of Thm. 4.1

Proof. We prove: γc(C \ {a · x ≥ b}) ⊆ ←−τ {|a · x ≥ b? |} γc(C).

Take ρ ∈ γc(C \ {a · x ≥ b}). Then, either a · ρ(x) ≥ b, in which case
ρ ∈ γc(C ∪ {a · x ≥ b}) ⊆ γc(C), or a · ρ(x) < b. In both cases, ρ ∈
γc(C) ∪ { ρ | a · ρ(x) < b } =←−τ {|a · x ≥ b? |} γc(C). 2

We now justify the correctness of the two heuristics we proposed in
Sec. 4.1, i.e., pre-processing the argument by P : (1) adding the constraint
a ·x ≥ b, and (2) adding rays r that satisfy τ {|a · x ≥ b? |}γg(VP , Rp∪{r}) =
τ {|a · x ≥ b? |} γg(VP , RP). Adding a constraint (1) is always sound as we
under-approximate the argument which, by monotony of the concrete back-
ward operator, under-approximates the result. We adding rays (2), we took
care to only add environments ρ such that a · ρ(x) < b, which are added by
the concrete function←−τ {|a · x ≥ b? |} anyway, so the transformation is sound.

B.5 Proof of Thm. 4.2

Proof. We prove: If R is closed and convex, then ←−τ {|V := ? |} R is either R
or ∅.
Let us note R′

def
= ←−τ {|V := ? |} R = { ρ ∈ E | ∀v ∈ Q : ρ[V 7→ v] ∈ R }. We

note that R′ ⊆ R (by choosing v = ρ(V), we get ρ ∈ R).

We now prove that, if R′ 6= ∅, then R′ = R. Assume that R′ 6= ∅ and,
ad absurdum, that R′ (R, i.e., there exist ρ, ρ′ ∈ R such that ρ ∈ R′ but
ρ′ /∈ R′. Thus, ∃v′ ∈ Q : ρ′[V 7→ v′] /∈ R. For any ε ∈ (0, 1], we now construct
a point ρ′ε in R that is at distance less than ε from ρ′[V 7→ v′]. We take ρ′ε
on the segment between ρ′ ∈ R and ρ[V 7→ Mε] ∈ R: ρ′ε

def
= (1 − αε)ρ

′ +
αερ[V 7→ Mε], for some well-chosen Mε and αε. More precisely, we choose
αε = ε/max { 1, |ρ(W)− ρ′(W)| | W 6= V } and Mε = ρ′(V) + (v′− ρ′(V))/αε.
This implies ∀W 6= V : |ρ′ε(W)−ρ′[V 7→ v′](W)| = |((1−αε)ρ′(W)+αερ(W))−
ρ′(W)| = αε|ρ(W) − ρ′(W)| ≤ ε. Moreover |ρ′ε(V) − ρ′[V 7→ v′](V)| = |((1 −
αε)ρ

′(V) + αεMε) − v′| = |ρ′(V) − αερ′(V) + αερ
′(V) + v′ − ρ′(V)) − v′| = 0.

So, we indeed have |ρ′ε−ρ′[V 7→ v′]|∞ ≤ ε. Finally, by convexity of R, we have
ρ′ε ∈ R. We can thus construct a sequence of points in R that converges to
ρ′[V 7→ v′]. As R is closed, this implies ρ′[V 7→ v′] ∈ R, and so, our hypothesis
ρ′ /∈ R′ is false. 2

B.6 Proof of Thm. 4.3

Proof.

21

Miné

(i) We prove: If R is convex, then ←−τ {|V := [a; b] |} R = (τ {|V := ? |}
◦ (τ {|V := V − a |} ∩ τ{|V := V − b |}) ◦ τ{|V ≥ a ∧ V ≤ b? |})R.
By definition ←−τ {|V := [a; b] |}R = { ρ ∈ E | ∀y ∈ [a; b] : ρ[V 7→ y] ∈ R }.

Assume that ρ ∈ (τ {|V := ? |} ◦(τ {|V := V − a |} ∩ τ{|V := V − b |}) ◦
τ{|V ≥ a ∧ V ≤ b? |})R. By definition of τ{|V := ? |}, there exists some
x such that ρ[V 7→ x] ∈ ((τ {|V := V − a |} ∩ τ{|V := V − b |}) ◦
τ{|V ≥ a ∧ V ≤ b? |})R. We have ρ[V 7→ x] ∈ (τ {|V := V − a |}
◦ τ{|V ≥ a ∧ V ≤ b? |})R, hence ρ[V 7→ x+ a] ∈ τ {|V ≥ a ∧ V ≤ b? |}R.
This implies in particular x ≥ 0. Likewise, we have ρ[V 7→ x + b] ∈
τ {|V ≥ a ∧ V ≤ b? |} R, and so x ≤ 0. We deduce that x = 0 and
ρ[V 7→ a], ρ[V 7→ b] ∈ τ {|V ≥ a ∧ V ≤ b? |} R ⊆ R. By convexity of R,
∀y ∈ [a; b] : ρ[V 7→ y] ∈ R. Hence, ρ ∈ ←−τ {|V := [a; b] |}R.

Conversely, suppose that ρ ∈ ←−τ {|V := [a; b] |} R. Then, by defi-
nition, ρ[V 7→ a], ρ[V 7→ b] ∈ R. Obviously, ρ[V 7→ a], ρ[V 7→
b] ∈ τ{|V ≥ a ∧ V ≤ b? |})R. As a consequence ρ[V 7→ 0] ∈
((τ {|V := V − a |} ∩ τ{|V := V − b |}) ◦ τ{|V ≥ a ∧ V ≤ b? |})R. We
deduce that ρ ∈ (τ {|V := ? |} ◦(τ {|V := V − a |} ∩ τ{|V := V − b |}) ◦
τ{|V ≥ a ∧ V ≤ b? |})R.

Note that we can safely under-approximate ←−τ {|V := X |} for any con-
stant set X with←−τ {|V := [minX; maxX] |}.

(ii) We prove: If R is convex, then←−τ {|V := V + [a; b] |}R = τ {|V := V − a |}
R ∩ τ {|V := V − b |}R.

←−τ {|V := V + [a; b] |}R
= { ρ | ∀x ∈ [a; b] : ρ[V 7→ ρ(V) + x] ∈ R }
= { ρ | ∀x ∈ {a, b} : ρ[V 7→ ρ(V) + x] ∈ R }
= { ρ | ρ[V 7→ ρ(V) + a] ∈ R } ∩ { ρ | ρ[V 7→ ρ(V) + b] ∈ R }
= τ {|V := V − a |}R ∩ τ {|V := V − b |}R

The fact that ∀x ∈ [a; b] : ρ[V 7→ ρ(V) + x] ∈ R ⇐⇒ ∀x ∈ {a, b} :
ρ[V 7→ ρ(V) + x] ∈ R comes form the hypothesis that R is convex.

(iii) We prove: ←−τ {|V := W |} = τ {|V := ? |} ◦ τ{|V = W? |}.
By definition, ←−τ {|V := W |}R = { ρ ∈ E | ρ[V 7→ ρ(W)] ∈ R }.

Take ρ ∈ (τ {|V := ? |} ◦ τ{|V = W? |})R. Then, by definition, ∃x :
ρ[V 7→ x] ∈ τ {|V = W? |} R, i.e., ρ[V 7→ x] ∈ R and ρ(W) = ρ[V 7→
x](V) = x. We deduce that ρ[V 7→ ρ(W)] = ρ[V 7→ x] ∈ R, and so,
ρ ∈ ←−τ {|V := W |}R.

Take now ρ ∈ ←−τ {|V := W |}R. Then, ρ[V 7→ ρ(W)] ∈ R. As obviously
ρ[V 7→ ρ(W)] satisfies the constraint V = W , we have ρ[V 7→ ρ(W)] ∈
τ {|V = W? |}R. Then ρ ∈ (τ {|V := ? |} ◦ τ{|V = W? |})R.

(iv) If V := e is invertible then ←−τ {|V := e |} = τ{|V := e−1 |}.

22

Miné

By definition of invertible, τ {|V := e |} ◦ τ{|V := e−1 |} = τ {|V := e−1 |}
◦ τ{|V := e |} = λx.x. We use the fact that f ◦ g = g ◦ f = λx.x for

monotonic f and g implies that
←−
f = g, as stated before and proved as

follows:

a ∈
←−
f (B)

⇐⇒ f({a}) ⊆ B { def. ←−· }
=⇒ (g ◦ f)({a}) ⊆ g(B) {monotony of g }
⇐⇒ a ∈ g(B) { g ◦ f = λx.x }

a ∈
←−
f (B)

⇐⇒ f({a}) ⊆ B { def. ←−· }
⇐⇒ (f ◦ g ◦ f)({a}) ⊆ (f ◦ g)(B) { f ◦ g = λx.x }
⇐= (g ◦ f)({a}) ⊆ g(B) {monotony of f }
⇐⇒ a ∈ g(B) { g ◦ f = λx.x }

2

B.7 Proof of Thm. 4.4

Proof. We prove: O is a lower widening.

We first prove that A O B ⊆ A ∩ B, i.e., using the generator representation
γg(VAOB, RAOB) ⊆ γg(VA, RA)∩γg(VB, RB). We first note that VAOB ⊆ VA and
RAOB ⊆ RA, which implies directly γg(VAOB, RAOB) ⊆ γg(VA, RA). Consider
now a point x ∈ γg(VAOB, RAOB). By definition of γg, x can be written as
x =

∑
v∈VAOB

αvv +
∑

r∈RAOB
βrr for some αv, βr ≥ 0 such that

∑
v αv = 1.

As VAOB ⊆ B, by convexity of B,
∑

v∈VAOB
αvv ∈ B. Moreover, for each

r ∈ RAOB, we have B ⊕ βrr ⊆ B ⊕ R+r = B, so, x ∈ B.

The termination follows simply from the fact that, in any sequence Xi+1 =
Xi O Yi+1, the set of generators in Xi decreases. Whenever VXi

= ∅, the
corresponding polyhedron is empty. 2

B.8 Proof of Thm. 4.5

Proof.

(i) We prove: If e vD f , then ←−τ {|V := e |}R ⊇ (←−τ {|V := f |}R) ∩D.

23

Miné

←−τ {|V := e |}R
⊇ (←−τ {|V := e |}R) ∩D
= { ρ ∈ D | ∀v ∈ J e Kρ : ρ[V 7→ v] ∈ R } {def. of ←−· }
⊇ { ρ ∈ D | ∀v ∈ J f Kρ : ρ[V 7→ v] ∈ R } { e vD f }
= (←−τ {|V := f |}R) ∩D

(ii) We prove: If e vD f , then ←−τ {| e? |}R ⊇ (←−τ {| f? |}R) ∩D.
As we now manipulate boolean expressions instead of numeric ones,
we consider the evaluation function J e K : E → P({t, f}) that denotes
whether e may hold (t) or may not hold (f) in an environment in E .
Then:

←−τ {| e? |}R
= R ∪ { ρ ∈ E | t /∈ J e Kρ } {def. of ←−τ {| e? |} }
⊇ R ∪ { ρ ∈ D | t /∈ J e Kρ }
⊇ R ∪ { ρ ∈ D | t /∈ J f Kρ } { e vD f }
⊇ D ∩ (R ∪ { ρ | t /∈ J f Kρ })
= D ∩ (←−τ {| f? |}R) { def. of ←−τ {| f? |} }

2

24

	Introduction
	Transition Systems
	Invariants and sufficient conditions
	Applications of sufficient conditions

	Backward Functions
	Under-Approximated Polyhedral Operators
	Tests
	Projection
	Assignments
	Lower widening
	Joins
	Expression approximation
	Implementation

	Related Work
	Conclusion
	References
	Example Analyses
	Simple loop
	Bubble sort

	Proofs
	Proof of Thm. 2.1
	Proof of Thm. 2.2
	Proof of Thm. 3.1
	Proof of Thm. 4.1
	Proof of Thm. 4.2
	Proof of Thm. 4.3
	Proof of Thm. 4.4
	Proof of Thm. 4.5

