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Order theory




Partial orders




Partial orders

Partial orders

Given a set X, a relation = € X x X is a partial order

if it is:
Q reflexive: Vx € X, x C x
@ antisymmetric: Vx,y e X, xCyAyCx = x=y
@ transitive: Vx,y,ze X, xCyAyLCz = xLC z

(X,C) is a poset (partially ordered set).

If we drop antisymmetry, we have a preorder instead.
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Partial orders

Examples of posets

e (Z,<)is a poset (in fact, completely ordered)
e (P(X),Q) is a poset (not completely ordered)

e (S5,=) is a poset for any S
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Partial orders

Examples of posets (cont.)

@ Given by a Hasse diagram, e.g.:
g
e f

gL g
c d fCf,g
\ / el €, 8
b dCd,f. g
C ctcef,g
- bgb,c,d,e,f,g
a aga7bvcadae)f)g
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Partial orders

Examples of posets (cont.)

e Infinite Hasse diagram for (NU { o0 }, <):

I
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Partial orders

Informal uses of posets

Posets are a very useful notion to discuss about:

@ logic: ordered by implication —
@ approximations: C is an information order

@ program verification: program semantics C specification
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Partial orders

(Least) Upper bounds

@ cis an upper bound of aand bif: aCcand bC ¢

@ cis a least upper bound (lub or join) of a and b if

e c is an upper bound of a and b
e for every upper bound d of aand b, cC d

The lub is unique and noted allb.
(proof: assume that ¢ and d are both lubs of a and b; by definition
of lubs, ¢ C d and d C ¢; by antisymmetry of C, ¢ = d)

Generalized to upper bounds of arbitrary (even infinite) sets
UY, Y C X (well-defined, as U is commutative and associative).

Similarly, we define greatest lower bounds (glb, meet) arib, MY,
(ambCa,band Ve, cCa,b = cLC alb)

Note: not all posets have lubs, glbs; e.g., ({ a,b},=).
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Partial orders

Complete partial order (CPO)

C C X is a chain in (X, C) if it is totally ordered
(Vx,y € C, xCyVyLEx).

A poset (X, C) is a complete partial order (CPO)
if every chain C (including (}) has a least upper bound LI C.

A CPO has a least element LI (), denoted L.

Examples:

e (N, <) is not complete, but (NU { 0o }, <) is complete.
o ({xeQ|0< x<1},<)is not complete, but
({xeR|0<x<1},<)is complete.
(P

e (P(Y),<C) is complete for any Y.
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Lattices

Lattices

A lattice (X, C, LI, M) is a poset with
@ a lub all b for every pair of elements a and b;

@ a glb ar b for every pair of elements a and b.

Examples:
e integer intervals ({[a,b]|a, b€ Z,a< b}U{0},C,L,N)
where [a, b] Ui [a/, b] = [min(a, d"), max(b, b)].

e divisibility (N*, |, ged, lcm)
where x|y &L JkeN, kx = y.

If we drop one condition, we have a (join or meet) semilattice.

See Birkhoff [Birk76].
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Lattices

Example: the divisibility lattice

VANT
\2/ \3/ 5 ......
N
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Lattices

Complete lattices

A complete lattice (X, C, LI, 11, L, T) is a poset with
Q alub LIS for every set S C X
Q aglbs foreveryset S C X
© a least element L

Q a greatest element T

Notes:

o limplies2asMX =U{y|Vxe X, yCx}
(and 2 implies 1 as well),

eland2imply3and4: L=Ul=1X,T=n0=0UX,

@ a complete lattice is also a CPO.
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Lattices

Complete lattice examples

o real segment [0,1]: ({x € R|0 < x <1}, <, max, min,0,1)
e powersets (P(S),C,U,N,0,S)

@ any finite lattice
(UY and MY for finite Y C X are always defined).

@ integer intervals with finite and infinite bounds:
({[a,b]lac ZU{-o0}, be ZU{ 400}, a<b}U{D},
ga l—la ma (2)7 [_OO7+OO])
with Ujes [aj, bi] = [minics ai, maxies bi].
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Lattices

Example: the powerset complete lattice

Example:  (P({0,1,2}),C,U,N,0,{0,1,2})

{0,1,2}
{0,1} {1,2}
{0} {2}
0
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Lattices

Derivation

Given (complete) posets or lattices (X, Cx,...), (Y,Cy,...)
we can derive new ones by:
e duality (X, dx,...)
Vx,x', x Dx xX' <= x' Cx x

@ adding a least element L (lifting)

(XU{L},C,..)

Vx,x', x C X' <% x=1VxCxx
@ product

(XxY,C,...)

Vx, Xy, (6y) E(X,y) <5 xEx X' AyCyy
@ point-wise lifting by some set S

(S—X.C,...)
Vx,x', x E X' <5 Vs e S, x(s) Ex X/(s)
@ sublattice
(X', Ex, Ux,Mx) where X’ C X is closed by Lix and My
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Fixpoints

Functions

A function f : (X,Cx,...) = (Y,Cy,...) is
@ monotonic if
Vx,x', x Cx X' = f(x) Cy f(x')

(aka: increasing, isotone, order-preserving, morphism)
@ strict if f(Lx) =_ly

@ continuous between CPOs if
VC chain C X, {f(c)|ce C}isachaininY
and f(Ux C) =Uy {f(c)|ceC}

@ a (complete) LI—morphism between (complete) lattices
if VS C X, f(uxs):Uy{f(S)‘SG 5}

@ extensive if X = Y and Vx, x Cx f(x)
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Fixpoints

Fixpoints

Given f : (X,C) — (X,E)
@ x is a fixpoint of f if f(x) = x
@ x is a prefixpoint of £ if x C f(x)
@ x is a postfixpoint of f if f(x) C x

We may have several (or none) fixpoints
o fp(f) = {xeX|f(x)=x}

o Ifp, f = minc {y e fp(f)|x Ty} if it exists
(least fixpoints)

o Ifpf € ifp, f
o dually, gfp, f, gfpf  (greatest fixpoints)
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Fixpoints

Tarski's fixpoint theorem

Tarksi's theorem

If f: X — X is monotonic in a complete lattice X
then fp(f) is a complete lattice.

Proved by Knaster and Tarski [Tars55].
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Fixpoints

Tarski's fixpoint theorem

Tarksi's theorem

If f: X — X is monotonic in a complete lattice X
then fp(f) is a complete lattice.

Proof:
We prove Ifpf =M {x|f(x) C x} (meet of postfixpoints).

Let f* ={x|f(x)C x} and a=T1f*.
Vx € f*, aC x (by definition of 1)
so f(a) C f(x) (as f is monotonic)
so f(a) C x (as x is a postfixpoint).

(

We deduce that f(a) C 11 f*, ie. f(a)C a.
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Fixpoints

Tarski's fixpoint theorem

Tarksi's theorem

If f: X — X is monotonic in a complete lattice X
then fp(f) is a complete lattice.

Proof:
We prove Ifpf =M {x|f(x) C x} (meet of postfixpoints).

f(a)C a

so f(f(a)) C f(a) (as f is monotonic)
so f(a) € f*  (by definition of f*)

so aC f(a).

We deduce f(a) = a, so a € fp(f).

Note that y € fp(f) implies y € f*.
As a=T1f* aC y, and we deduce a = Ifpf.
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Fixpoints

Tarski's fixpoint theorem

Tarksi's theorem

If f: X — X is monotonic in a complete lattice X
then fp(f) is a complete lattice.

Proof:
Given S C fp(f), we prove that Ifp 5 f exists.

Consider X' = {xe X| U SC x}.

X’ is a complete lattice.

Moreover Vx' € X', f(x') € X'.

f can be restricted to a monotonic function ' on X'

We apply the preceding result, so that Ifp f’ = Ifp s f exists.
By definition, Ifp,, s f € fp(f) and is smaller than any fixpoint
larger than all s € S.
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Fixpoints

Tarski's fixpoint theorem

Tarksi's theorem

If f: X — X is monotonic in a complete lattice X
then fp(f) is a complete lattice.

Proof:
By duality, we construct gfp f and gfps f.

The complete lattice of fixpoints is:
(fp(f), C, AS.Ifp s f, AS.gfpnsf, Ifpf, gfpf).
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Fixpoints

“Kleene” fixpoint theorem

“Kleene” fixpoint theorem

If f: X — X is continuous in a CPO X and a C f(a)
then Ifp, f exists.

Inspired by Kleene [Klee52].
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Fixpoints

“Kleene” fixpoint theorem

“Kleene” fixpoint theorem

If f: X — X is continuous in a CPO X and a C f(a)
then Ifp, f exists.

Proof:
We prove that { f"(a)|n € N} is a chain
and Ifp, f =U{f"(a)|ne N}

a C f(a) by hypothesis.

f(a) C f(f(a)) by monotony of f.

By recurrence Vn, f"(a) C f"1(a).

Thus, { f"(a)|n € N}isachainand LU{f"(a)|n & N} exists.
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Fixpoints

“Kleene” fixpoint theorem

“Kleene” fixpoint theorem

If f: X — X is continuous in a CPO X and a C f(a)
then Ifp, f exists.

Proof:

F(U{F(a) | n € NY)

=U{f™(a)|neN}) (by continuity)
=aU(U{f*(a)|n € N}) (as all f+1(a) are greater than a)
=U{f"(a)|neN}.

So, U{f"(a)|ne N} e fp(f)

Moreover, any fixpoint greater than a must also be greater
than all f"(a), n € N.
So, U{f"(a)|ne N} =Ifp,f.

course 1, 2012-2013 Mathematical Tools Antoine Miné p. 23 / 44



Fixpoints

Well-ordered sets

(S,C) is a well-ordered set if:
@ L is a total order on S
@ every X C S such that X # () has a least element M X € X

Consequences:

@ any element x € S has a successor x +1 = M {y|xCy}
(except the greatest element, if it exists)

o if Ay, x=y+1, xisalimitand x=U{y|y C x}
(every bounded subset X C S has a lub
UX=M{y|VxeX,xCy})

Examples:
o (N,<)and (NU{ oo}, <) are well-ordered
e (Z,<), (R, <), (R*, <) are not well-ordered
@ ordinals 0,1,2,...,w,w+1,... are well-ordered (w is a limit)
well-ordered sets are ordinals up to order-isomorphism
(i.e., bijective functions f such that f and ! are monotonic)
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Fixpoints

Constructive Tarski theorem by transfinite iterations

Given a function f : X — X and a € X,

the transfinite iterates of f from a are:
def

Xo = a
def . . .
xn = f(Xp—1) if nis a successor ordinal
def . . .. .
xp = U{xm|m<n} if nisa limit ordinal

Constructive Tarski theorem

If f: X — X is monotonic in a complete lattice X and
a C f(a), then Ifp, f = x5 for some ordinal 4.

Generalisation of “Kleene” fixpoint theorem, from [Cous79].
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Fixpoints

Proof
f is monotonic in a complete lattice X,
X0 o al f(a)
xp = f(xn-1) if nis a successor ordinal
Xp & U {xm|m<n} ifnisa limit ordinal
Proof:

We prove that 39, x5 = xs5.1.

We note that m < n — x, C x,.

Assume by contradiction that Ad, x5 = xs511.

If nis a successor ordinal, then x,_1 C Xx,.

If nis a limit ordinal, then Vm < n, x, C Xp.
Thus, all the x, are distinct.

By choosing n > | X|, we arrive at a contradiction.
Thus ¢ exists.
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Fixpoints

Proof
f is monotonic in a complete lattice X,
X0 o al f(a)
xp = f(xn-1) if nis a successor ordinal
Xp & U {xm|m<n} ifnisa limit ordinal
Proof:

Given § such that x541 = xs, we prove that xs = Ifp, f.

f(X(;) = X541 = X5, SO X5 € fp(f)
Given any y € fp(f), y 3 a, we prove by transfinite induction
that Vn, x, C y.
By definition xg = a C y.
If nis a successor ordinal, by monotony,
Xp—1 By = f(Xn—l) C f(y), e, xp Cy.
If nis a limit ordinal, Vm < n, x,, C y implies
xp=U{xm|m<n}Cy.
Hence, xs C y and x5 = Ifp, f.
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Fixpoints

Ascending chain condition

An ascending chain C in (X,C) is a sequence ¢; € X
such that i <j = ¢ <.

A poset (X, C) satisfies the ascending chain condition (ACC)

iff for every ascending chain C, di € N, Vj > i, ¢; = ¢;.

Similarly, we can define the descending chain condition (DCC).

Examples:
@ the powerset poset (P(X),C) is ACC (and DCC) iff X is finite

@ the pointed integer poset (ZU{ L },C) where
xEy < x=1Vx=yis ACC and DCC

e the divisibility poset (N*,|) is DCC but not ACC.
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Fixpoints

Kleene fixpoints in ACC posets

“Kleene" finite fixpoint theorem

If f: X — X is monotonic in an AAC poset X and a C f(a)
then Ifp, f exists.

Proof:

We prove 3n € N, Ifp, f = f"(a).

By monotony of f, the sequence x, = f"(a) is an increasing chain.
By definition of AAC, 3n € N, x, = xp41 = f(xn).

Thus, x, € fp(f).

Obviously, a = xg C f(x,).

Moreover, if y € fp(f) and y J a, then Vi, y 3 fi(a) = x;.

Hence, y J x, and x, = Ifp, (f).
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Galois connections

Galois connections

Given two posets (C, <) and (A, C), the pair
(a: C— A, v:A— C)is a Galois connection iff:

VacA ceC,alc)Ca < c<~(a)

which is noted (C, <) <;—> (A ).

[0}

@ « is the upper adjoint or abstraction; A is the abstract domain.

@ + is the lower adjoint or concretization; C is the concrete domain.
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Galois connections

Properties of Galois connections

Assuming Va, c, a(c) C a <= ¢ < 7(a), we have:
Q 7o« is extensive: V¢, ¢ < y(a(c))
proof: a(c) C afc) = ¢ < v(a(c))

@ « o~ is reductive: Ya, a(y(a)) C a

© « is monotonic
proof: c < ¢’ = ¢ <~v(a(c)) = alc) C a(cd)
© 7 is monotonic
Q yoaoy=1y
proof: a(+(2)) C a(1(2)) = (a) < 7(a(1())) and
aJa(y(a)) = 7(a) = v(a(r(a)))
Q aoyoa=a
@ «o~isidempotent: coyoaoy=ao7y
© o« is idempotent
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Galois connections

Alternate characterization

If the pair (a: C — A, : A — C) satisfies:
© 7 is monotonic,
@ « is monotonic,
© 7o« is extensive

@ « oy is reductive

then («,7) is a Galois connection.

(proof left as exercise)
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Galois connections

Uniqueness of the adjoint

Given (C, <) % (A D),

each adjoint can be uniquely defined in term of the other:
Q a(c)=T1{alc<(a)}
Q@ 1(a) =V{cla(c)Ea}

Proof: of 1

Va, c <v(a) = oafc) C a.

Hence, a(c) is a lower bound of { a|c < v(a) }.

Assume that 2’ is another lower bound.

Then, Va, c <~v(a) = 4’ C a.

By Galois connection, we have then Va, a(c) C a = &' C a.
This implies &’ C «a(c).

Hence, the greatest lower bound of { a|c < ~(a) } exists,

and equals «a(c).

The proof of 2 is similar (by duality).
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Galois connections

Properties of Galois connections (cont.)

If (a: C— A~v:A— C), then:
Q@ VX C C,if VX exists, then a(V X) =L {a(x)|[xe X} .

@ VX CA, ifMX exists, then y(MX) = A{~v(x)|x € X }.

Proof: of 1

By definition of lubs, Vx € X, x <V X.

By monotony, ¥x € X, a(x) C a(V X).

Hence, a(V X) is an upper bound of { a(x)|x € X }.
Assume that y is another upper bound of { a(x)|x € X }.
Then, Vx € X, a(x) C y.

By Galois connection Vx € X, x < v(y).

By definition of lubs, V X < ~(y).

By Galois connection, a(V X) C y.

Hence, { a(x)|x € X } has a lub, which equals a(V X).

The proof of 2 is similar (by duality).
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Galois connections

Deriving Galois connections

Given (C,<) £ (A,C) and (C', <') & % (A, ),
we can construct new Galois connections by

Q@ duality: (A, D) &= S (C,>)

@ composition: (C, <) <:> (A,C) when (A,C) = (C', <)

© point-wise Iifting by some set S:
(S = C,<) &= (S — A,LC) where
FLF st“f(s> <F(s), ((F)(s) = 1(F(s)),
fCf’ < Vs, f(s) C f'(s), (&(f))(s) = a(f(s)).
© functional lifting of monotonic operators
(C= <N & (A5 A D)
where 3(f) = 7' o f o and &(f) = a/ o f o .
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Galois connections

Galois embeddings

If (C,<) &= (A,C), the following properties are equivalent:
Qais surjective (Vae A, dce C,a(c) = a)
@ ~ is injective (Va,a € A,v(a) =~v(d) = a=2)
Q aovy=id (Vaeg A, id(a) = a)

Such (a,7) is called a Galois embedding, which is noted
(C,<) & (A.C)

Proof:
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Galois connections

Galois embeddings

If (C,<) % (A,), the following properties are equivalent:

Q o is surjective (Vae A, dce C,a(c) = a)
@ ~ is injective (Va,a € A,v(a) =~v(d) = a=2)
Q aovy=id (Vaeg A, id(a) = a)

Such (a,7) is called a Galois embedding, which is noted
(C,<) & (A.C)

Proof: 1 — 2

Assume that y(a) = v(&').

By surjectivity, take ¢, ¢’ such that a = a(c), &’ = «o(c').
Then 7(a(c)) = y(a(c").

And a(y(a(e))) = aly(a(c))-

Asaovoa—a a(c) = a(d).
Hence a = &'.
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Galois connections

Galois embeddings

If (C,<) &= (A,C), the following properties are equivalent:
Qais surjective (Vae A, dce C,a(c) = a)
@ ~ is injective (Va,a € A,v(a) =~v(d) = a=2)
Q aovy=id (Vaeg A, id(a) = a)

Such (a,7) is called a Galois embedding, which is noted
(C,<) & (A.C)

Proof: 2 — 3

Given a € A, we know that v(«a(v(a))) = v(a).
By injectivity of v, a(vy(a)) = a.
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Galois connections

Galois embeddings

If (C,<) &= (A,C), the following properties are equivalent:
Qais surjective (Vae A, dce C,a(c) = a)
@ ~ is injective (Va,a € A,v(a) =~v(d) = a=2)
Q aovy=id (Vaeg A, id(a) = a)

Such (a,7) is called a Galois embedding, which is noted
(C,<) & (A.C)
Proof: 3 —= 1

Given a € A, we have a(y(a)) = a.
Hence, 3c € C, a(c) = a, using ¢ = v(a).
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.~ Galois comnections
Galois embeddings (cont.) _

(C,<) &= (A, D)

C a A

A Galois connection can be made into an embedding by quotienting
A by the equivalence relation a = 3’ <= ~(a) = v(a).
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p: X — X is an upper closure in the poset (X, L) if it is:
@ monotonic: x C x' = p(x) C p(x'),
@ extensive: x C p(x), and
© idempotent: pop =p.




Galois connections

Upper closures and Galois connections

Given (C,<) £ (A,C),
~ o« is an upper closure on (C, <).
Given an upper closure p on (X,C), we have a Galois embedding:

(X,C) == (p(X),C)

— we can rephrase abstract interpretation using upper closures
instead of Galois connections, but we lose:

@ the notion of abstract representation
(a data-structure A representing elements in p(X))

@ the ability to have several distinct abstract representations
for a single concrete object
(non-necessarily injective ~y versus id)
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Galois connections

Sound, best, and exact abstractions

Given (C,<) £ (A,C)

@ a € Ais a sound abstraction of ¢ € C if ¢ < 7(a)
or, equivalently, a(c) C a.

e Given c € C, its best abstraction is a(c).
(proof: recall that a(c) =M{alc <~(a)})

@ g: A— Ais a sound abstraction of f : C — C

ifVae A, (foy)(a) <(vog)(a)
or equivalently Ya € A, (ao f ov)(a) C g(a).

o Given f: C = C, its best abstraction is a0 f o~y
(proof: g sound <= Va, (aofov)(a)C g(a), so oo foryisthe
smallest sound abstraction)

@ g: A— Ais an exact abstraction of f: C — C if
foy=nog.
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Galois connections

Composition of sound, best, and exact abstractions

If g and g’ abstract respectively f and f’ then:
e if f and f’ are sound abstractions and f is monotonic,
then g o g’ is a sound abstraction of f o f,
(proof: Va, (f o f'ov)(a) < (foyoeg’)(a) < (vogog’)(a))
e if g, g’ are exact abstractions,
then g o g’ is an exact abstraction,
(proof: fof'oy=foyog' =vogog’)

e if g and g’ are best abstractions,
then g o g’ is not always a best abstraction!

(we will see examples later)

Note: without o and a Galois connection, we can still define sound
and exact abstractions.
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Galois connections

Fixpoint abstraction example theorem

If:
o (C,<,V,A, L, T)is a complete lattice,
@ g: A— Ais a sound abstraction of a monotonic f : C =, C,
@ and a is a postfixpoint of g (g(a) C a)

then a is a sound abstraction of Ifp f.

Proof:
By definition, g(a) C a.

By monotony, v(g(a)) < v(a).

By soundness, f(v(a)) < v(a).

By Tarski's theorem Ifp f = A { x| f(x) < x }.
Hence, Ifp f < ~(a).

Notes:
@ no « is required here,
@ many other fixpoint abstraction theorems exist.
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