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Overview of the lecture

How to reason about memory properties (bis)

Last lecture:
◮ a broad overview of problems and techniques
◮ concrete and abstract memory models
◮ an introduction to shape analysis: TVLA

Today:
◮ a logic to describe properties of memory states
◮ abstract domain
◮ static analysis algorithms
◮ combination with numerical domains
◮ widening operators...
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An introduction to separation logic

Outline
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An introduction to separation logic

Our model

Environment + Heap

Addresses are values: Vaddr ⊆ V

Environments e ∈ E map variables into their addresses

Heaps (h ∈ H) map addresses into values

E = X→ Vaddr

H = Vaddr → V

h is actually only a partial function

Memory states:
M = E× H
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An introduction to separation logic

Example of a concrete memory state

x and z are two list elements containing values 64 and 88, and where
the former points to the latter

y stores a pointer to z

Memory layout
(pointer values underlined)

address

&x = 300

304

&y = 308

&z = 312

316 0x0

88

312

312

64

e : x 7→ 300
y 7→ 308
z 7→ 312

h : 300 7→ 64
304 7→ 312
308 7→ 312
312 7→ 88
316 7→ 0
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An introduction to separation logic

Weak updates

Notion of weak update

Udpate

where the affected cell cannot be computed precisely in the abstract

that must be over-approximated in a coarse manner

We remarked many cases of weak-updates:

x ∈ [−10,−5]; y ∈ [5, 10]
int ⋆ p;
if(?)

p = &x;
else

p = &y;
⋆p = 0;

Best result of the analysis ?

range for x

range for y

Weak updates are a curse for the static analysis

Huge loss in precision incurred by weak updates
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An introduction to separation logic

Separation logic principle: avoid weak updates

How to deal with weak updates ?

Avoid them !

Always materialize exactly the cell that needs be modified

Can be very costly to achieve, and not always feasible

Notion of property that holds over a memory region

Use a special separating conjunction operator ∗

Local reasoning:
powerful principle, which allows to consider only part of the program
memory

Separation logic has been used in many contexts, including manual
verification, static analysis, etc...
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An introduction to separation logic

Separation logic

Logic made of a set of formulas
inference rules...

Pure formulas

Set of pure formulas, similar to first order logics

e ::= n (n ∈ N)
| l l-value
| e ′ + e ′′ binary
| . . .

P ::= e = e ′ | P ′ ∨ P ′′ | P ′ ∧ P ′′ . . .

Denote numerical properties among the values

Heap formulas (syntax on the next slide)

Set of formulas to describe concrete heaps

Concretization relation of the form (e, h) ∈ γ(F )
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An introduction to separation logic

Heap formulas

Main connectors

Each formula describes a heap region

F ::= emp empty region
| true empty region
| l 7→ v memory cell
| F ′ ∗ F ′′ separating conjunction
| F ′ ∧ F ′′ classical conjunction
| . . . many other connectors (see biblio)

Denotations: the usual stuff...

γ(emp) = ∅; γ(true) = M

(e, h) ∈ γ(l 7→ v) if and only if h(JlK(e, h)) = v

(e, h) ∈ γ(F ′ ∧ F ′′) if and only if (e, h) ∈ γ(F ′) and (e, h) ∈ γ(F ′′)

Separating conjunction: next slide...
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An introduction to separation logic

The separating conjunction

Merge of concrete stores

Let h0, h1 ∈ (Vaddr → V), such that dom(h0) ∩ dom(h1) = ∅.
Then, we let h0 � h1 be defined by:

h0 � h1 : dom(h0) ∪ dom(h1) −→ V

x ∈ dom(h0) 7−→ h0(x)
x ∈ dom(h1) 7−→ h1(x)

Concretization of separating conjunction

Logical formulas denote sets of heaps; concretization γ

Binary logical connector on formulas ∗ defined by:

γ(F0 ∗ F1) = {(e, h0 � h1) | (e, h0) ∈ γ(F0) ∧ (e, h1) ∈ γ(F1)}

Exercise: concretization of a 7→ &b ∧ b 7→ &a ? of a 7→ &b ∗ b 7→ &a ?
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An introduction to separation logic

Separating conjunction vs non separating conjunction

Classical conjunction: properties for the same memory region

Separating conjunction: properties for disjoint memory regions

a 7→ &b ∧ b 7→ &a

the same heap verifies a 7→ &b

and b 7→ &a

there can be only one cell

thus a = b

a 7→ &b ∧ b 7→ &a

two separate sub-heaps
respectively satisfy a 7→ &b

and b 7→ &a

thus a 6= b

Separating conjunction and non-separating conjunction have very
different properties

Both express very different properties
e.g., no ambiguity on weak / strong updates
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An introduction to separation logic

An example

Concrete memory layout
(pointer values underlined)

address

&x = 300

304

&y = 308

&z = 312

316 0x0

88

312

312

64

e : x 7→ 300
y 7→ 308
z 7→ 312

h : 300 7→ 64
304 7→ 312
308 7→ 312
312 7→ 88
316 7→ 0

A formula that abstracts away the addresses:

x 7→ 〈64, &z〉 ∗ y 7→ &z ∗ z 7→ 〈88, 0〉
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An introduction to separation logic

Separating and non separating conjunction

There are two conjunction operators ∧ and ∗

How to relate them ?

Separating conjunction vs normal conjunction

(e, h0) ∈ γ(F0) (e, h1) ∈ γ(F1)

(e, h0 � h1) ∈ γ(F0 ∗ F1)

(e, h) ∈ γ(F0) (e, h) ∈ γ(F1)

(e, h) ∈ γ(F0 ∧ F1)

Reminiscent of Linear Logic [Girard87]:
resource aware / non resource aware conjunction operators
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An introduction to separation logic

Programs: syntax and semantics

Basic language

L-values: l ::= x (x ∈ X) . . . | ⋆e | l · f

Expressions: e ::= l | c (c ∈ V) | e ⊕ e | &l | malloc(n)

Statements:
s ::= l := e | if(e) {s} else {s} | while(e) {s} | s; s | free(l);

Semantics

L-values: JlK : M→ Vaddr

Expressions: JeK : M→ V

Programs and statements:
◮ we assume a label before each statement
◮ each statement defines a set of transition (→)
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An introduction to separation logic

Separating logic triple

Program proofs based on triples

Notation: {F}p{F ′} if and only if:

∀s, s ′ ∈ S, s ∈ γ(F ) ∧ s ′ ∈ JpK(s) =⇒ s ′ ∈ γ(F ′)

Hoare triples

Application: formalize proofs of programs

A few rules (straightforward proofs):

F0 =⇒ F ′
0

{F ′
0
}p{F ′

1
} F ′

1
=⇒ F ′

0

{F0}p{F1}
consequence

{x 7→?}x := e{x 7→ e}
mutation

{x 7→? ∗ F}x := e{x 7→ e ∗ F}
mutation − 2
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An introduction to separation logic

The frame rule

What about the resemblance between rules “mutation” and “mutation-2” ?

Theorem: the frame rule

{F0}s{F1}

{F0 ∗ F}s{F1 ∗ F}
frame

Proof by induction on the rules
(see biblio for a more complete set of rules)

Rules are proved by case analysis on the program syntax

We can reason locally about programs
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An introduction to separation logic

Application of the frame rule

Let us consider the program below:

int i;
int ⋆ x;
int ⋆ y; {i 7→? ∗ x 7→? ∗ y 7→?}
x = &i; {i 7→? ∗ x 7→ &i ∗ y 7→?}
y = &i; {i 7→? ∗ x 7→ &i ∗ y 7→ &i}
⋆ x = 42; {i 7→ 42 ∗ x 7→ &i ∗ y 7→ &i}

Each step impacts a disjoint memory region

This case is easy
See biblio for more complex applications
(verification of the Deutsch-Shorr-Waite algorithm)
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An introduction to separation logic

Summarization and inductive definitions

What do we still miss ?

So far, formulas denote fixed sets of cells
Thus, no summarization of unbounded regions...

Example all lists pointed to by x, such as:
&x 0x0

&x

0x0

&x

0x0

&x

0x0

How to precisely abstract these stores with one formula i.e., no
infinite disjunction ?
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An introduction to separation logic

Inductive definitions in separation logic

List definition

α · list := α = 0 ∧ emp
∨ α 6= 0 ∧ α · next 7→ γ ∗ α · data 7→ β ∗ γ · list

Formula abstracting our set of structures:

&x 7→ α ∗ α · list

Summarization: this formula is finite and describe infinitely many
heaps

Concretization: next slide...

Practical implementation in verification/analysis tools

Verification: hand-written definitions

Analysis: either built-in or user-supplied, or partly inferred
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An introduction to separation logic

Concretization by unfolding

Intuitive semantics of inductive predicates

Inductive predicates can be unfolded, by unrolling their definitions

Syntactic unfolding is noted
U
−→

A formula F with inductive predicates describes all stores described by

all formulas F ′ such that F
U
−→ F ′

Example:

Let us start with x 7→ α0 ∗ α0 · list; we can unfold it as follows:
&x 7→ α0 ∗ α0 · list

U
−→ &x 7→ α0 ∗ α0 · next 7→ α1 ∗ α0 · data 7→ β1 ∗ α1 · list
U
−→ &x 7→ α0 ∗ α0 · next 7→ α1 ∗ α0 · data 7→ β1 ∗ emp ∧ α1 = 0x0

We get the concrete state below:

&x

0x0
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An introduction to separation logic

Example: tree

Example:

0x0

0x0

0x0

0x0

Inductive definition

Two recursive calls instead of one:

α · tree := α = 0 ∧ emp
∨ α 6= 0 ∧ α · left 7→ β ∗ α · right 7→ γ

∗ β · tree ∗ γ · tree
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An introduction to separation logic

Example: doubly linked list

Example: binary tree

0x0

0x...

0x...

0x...

0x...

0x0

Inductive definition

We need to propagate the prev pointer as an additional parameter:

α · dll(p) := α = 0 ∧ emp
∨ α 6= 0 ∧ α · next 7→ γ ∗ α · prev 7→ p ∗ γ · dll(α)
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An introduction to separation logic

Example: sortedness

Example: sorted list

&x

0x0

8 9 34

Inductive definition

Each element should be greater than the previous one

The first element simply needs be greater than −∞...

We need to propagate the lower bound, using a scalar parameter

α · lsortaux(n) := α = 0 ∧ emp
∨ α 6= 0 ∧ β ≤ n ∧ α · next 7→ γ

∗ α · data 7→ β ∗ γ · lsortaux(β)

α · lsort() := α · lsortaux(−∞)
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An introduction to separation logic

A new overview of the remaining part of the lecture

How to apply separation logic to static analysis and design abstract
interpretation algorithms based on it ?

In this lecture, we will:

choose a small but expressive set of separation logic formulas

define wide families of abstract domains

study algorithms for local concretization (equivalent to focus) and
global abstraction (widening...)
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A shape abstract domain relying on separation

Outline

1 An introduction to separation logic

2 A shape abstract domain relying on separation

3 Combination with a numerical domain

4 Standard static analysis algorithms

5 Inference of inductive definitions and call-stack summarization

6 Conclusion
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A shape abstract domain relying on separation

Choice of a set of formulas

Our set of predicates

An abstract value is a separating conjunction of terms

Each term describes
◮ either a contiguous region
◮ or a summarized region, described by an inductive defintion

Abstract elements have a straightforward interpretation as a shape
graph

Unless necessary, we omit environments (concretization into sets of
heaps)
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A shape abstract domain relying on separation

Abstraction into separating shape graphs

Memory splitting into regions

&t 0x...

0x...

24

0x...

42

0x0

32

Graph abstraction:

{

values, addresses −→ nodes
cells −→ edges

&t

24 42

0x0

32

next

data

next

data

next

data

Region summarization:
&t

24

next

data

list

◮ abstraction parameterized by a set of inductive definitions

Defines a concretization relation

Let us formalize this...
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A shape abstract domain relying on separation

Contiguous regions

Shape graphs

Edges: denote memory regions

Nodes: denote values, i.e. addresses or cell contents

Points-to edge, denote contiguous memory regions

Separation logic formula: α · f 7→ β

Abstract and concrete views:

α β
f

ν(α)

f ν(β)

Concretization:

γS(α · f 7→ β) =
{([ν(α) + offset(f) 7→ ν(β)], ν) | ν : {α, β, . . .} → N}

◮ ν: bridge between memory and values
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A shape abstract domain relying on separation

Separation

A graph = a set of edges

Denotes the separating conjunction of the edges

Empty graph emp

γS(emp) = {(∅, ν) | ν : nodes→ V} i.e., empty store

Separating conjunction

γS(S
♯
0 ∗ S

♯
1
) = {(h0 � h1, ν) | (h0, ν) ∈ γS(S

♯
0
) ∧ (h1, ν) ∈ γS(S

♯
1
)}

S♯
0 S♯

1

γ(S♯
0) γ(S♯

1)

γ γ
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A shape abstract domain relying on separation

Separation example

Field splitting model

Separation impacts edges / fields, not pointers

Shape graph

α

β0

β1

f

g

accounts for both abstract states below:
ν(α)

offset(f)

offset(g)

ν(β1)

ν(β1)

ν(α)

offset(f)

offset(g) ν(β0) = ν(β1)

In other words, separation

asserts addresses are distinct

says nothing about contents
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A shape abstract domain relying on separation

Inductive edges

List definition

α · list ::= (emp, α = 0)
| (α · next 7→ β0 ∗ α · data 7→ β1 ∗ β0 · list, α 6= 0)

where emp denotes the empty heap

Concretization as a least fixpoint

Given an inductive def ι

γS(α · ι) =
⋃

{

γS(F ) | α · ι
U
−→ F

}

Alternate approach:
index inductive applications with induction depth
allows to reason on length of structures
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A shape abstract domain relying on separation

Inductive structures IV: a few instances

More complex shapes: trees

α
tree

U
−→ι

α

β0

β1

left

right

tree

tree

Relations among pointers: doubly-linked lists

α
dll(δ)

U
−→ι α

β

δ

next

prev

dll(α)

Relations between pointers and numerical: sorted lists

α
lsort(δ)

U
−→ι α

β0

β1

next

data

lsort(β1)

δ ≤ β1
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A shape abstract domain relying on separation

Inductive segments

A frequent pattern

ν(α) ν(π)

&x

&y

0x0

Could be expressed directly as an inductive with a parameter:
α · list_endp(π) ::= (emp, α = π)

| (α · next 7→ β0 ∗ α · data 7→ β1

∗ β0 · list_endp(π), α 6= 0)

This definition would derive from list
Thus, we make segments part of the fundamental predicates of
the domain

&x

&y

list list list

Multi-segments: possible, but harder for analysis
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Combination with a numerical domain
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Combination with a numerical domain

Example

How to express both shape and numerical properties ?

List of even elements:

&x

0x0

68 24 0 112

Sorted list:

&x

0x0

8 9 34

Many other examples:
◮ list of open filed descriptors
◮ tries
◮ balanced trees: red-black, AVL...

Note: inductive definitions also talk about data
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Combination with a numerical domain

A first approach to domain combination

Basis

Graphs form a shape domain D
♯
S

abstract stores together with a physical mapping of nodes

γS : P((D♯
S → M)× (nodes→ V))

Numerical values are taken in a numerical domain D
♯
num

abstracts physical mapping of nodes

γnum : D
♯
num → P((nodes → V))

Concretization of the combined domain [CR]

γ(S♯,N♯) = {σ ∈ M | ∃ν ∈ γnum(N♯), (σ, ν) ∈ γS(S
♯)}

Quite similar to a reduced product
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Combination with a numerical domain

Combination by reduced product

Reduced product

Product abstraction: D♯ = D
♯
0
× D

♯
1

γ(x0, x1) = γ(x0) ∩ γ(x1)

Reduction: D
♯
r is the quotient of D♯ by the equivalence relation ≡

defined by (x0, x1) ≡ (x ′
0
, x ′

1
) ⇐⇒ γ(x0, x1) = γ(x ′

0
, x ′

1
)

Domain operations (join, transfer functions) are pairwise (are usually
composed with reduction)

Why not to use a product of the shape domain with a numerical
domain ?

How to compare / join the following two elements ?

&t

α

α is even

next

data

leven

&t
leven
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Combination with a numerical domain

Towards a more adapted combination operator

Why does this fail here ?

The set of nodes / symbolic variables is not fixed

Variables represented in the numerical domain depend on the shape
abstraction

⇒ Thus the product is not symmetric

Intuitions

Graphs form a shape domain D
♯
S

For each graph S♯ ∈ D
♯
S, we have a numerical lattice D

♯

num〈S♯〉

◮ example: if graph S♯ contains nodes α0, α1, α2, D
♯

num〈S♯〉
should

abstract {α0, α1, α2} → V

An abstract value is a pair (S♯,N♯), such that N♯ ∈ D
♯

num〈N♯〉
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Combination with a numerical domain

Cofibered domain

Definition [AV]

Basis: abstract domain (D♯
0
,⊑♯

0
), with concretization

γ0 : D
♯
0
→ D

Function: φ : D
♯
0
→ D1, where each element of D1 is an

abstract domain (D♯
1
,⊑♯

1
), with a concretization

γ
D
♯
1
: D

♯
1
→ D

Lift functions: ∀x♯, y ♯ ∈ D
♯
0
, such that x♯⊑♯

0
y ♯, there

exists a function Πx♯,y♯ : φ(x♯)→ φ(y ♯), that is
monotone for γx♯ and γy♯

Domain: D♯ is the set of pairs (x♯
0
, x♯

1
) where

x
♯
1
∈ φ(x♯

0
)

bC

S0

bCS1

bC
S2

D
♯
num〈S0〉

b

b

bb b

D
♯
num〈S1〉

b

b b

b

D
♯
num〈S2〉

b

b

Generic product, where the second lattice depends on the first
Provides a generic scheme for widening, comparison
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Combination with a numerical domain

Domain operations

Lift functions allow to switch domain when needed

Comparison of (x ♯
0
, x

♯
1
) and (y ♯

0
, y

♯
1
)

1 First, compare x
♯
0

and y
♯
0

in D
♯
0

2 If x
♯
0
⊑♯

0
y
♯
0
, compare Π

x
♯
0 ,y

♯
0
(x♯

1
) and y

♯
1

Widening of (x ♯
0
, x

♯
1
) and (y ♯

0
, y

♯
1
)

1 First, compute the widening in the basis z
♯
0
= x

♯
0
▽y

♯
0

2 Then move to φ(z♯
0
), by computing x

♯
2
= Π

x
♯
0,z

♯
0
(x♯

1
) and

y
♯
2
= Π

y
♯
0 ,z

♯
0
(y ♯

1
)

3 Last widen in φ(z♯
0
): z

♯
1
= x

♯
2
▽

z
♯
0
y
♯
2

(x♯
0
, x♯

1
)▽(y ♯

0
, y ♯

1
) = (z♯

0
, z♯

1
)
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Combination with a numerical domain

Domain operations

Transfer functions, e.g., assignment

Require memory location be materialized in the graph

◮ i.e., the graph may have to be modified
◮ the numerical component should be updated with lift functions

Require update in the graph and the numerical domain

◮ i.e., the numerical component should be kept coherent with the graph

Proofs of soundness of transfer functions rely on:

the soundness of the lift functions

the soundness of both domain transfer functions

Xavier Rival (INRIA) Shape analysis based on separation logic Nov, 23th. 2012 41 / 74



Standard static analysis algorithms
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Standard static analysis algorithms

Static analysis overview

A list insertion function:

list ⋆ l assumed to point to a list
list ⋆ t assumed to point to a list element
list ⋆ c = l;
while(c != NULL && c -> next != NULL && (. . .)){

c = c -> next;
}
t -> next = c -> next;
c -> next = t;

list inductive structure def.

Abstract precondition:

&l

&c

&t

next

data

list

Result of the (interprocedural) analysis

Over-approximations of reachable concrete states
e.g., at the loop exit:

&l

&c

&t

next

data

listlist

next

data
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Standard static analysis algorithms

Transfer functions

Abstract interpreter design

Follows the semantics of the language under consideration

The abstract domain should provide sound transfer functions

Transfer functions

Assignment: x→ f = y→ g or x→ f = earith

Test: analysis of conditions (if, while)

Variable creation and removal

Memory management: malloc, free

Should be sound i.e., not forget any concrete behavior

Abstract operators

Join and widening: over-approximation

Inclusion checking: check stabilization of abstract iterates
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Standard static analysis algorithms

The algorithms underlying the transfer functions

Unfolding: cases analysis on summaries
x y

list list
=⇒

x y

list

next

data

list
∨

x y

= 0x0
list

Abstract postconditions, on “exact” regions, e.g. insertion
0x0

x y

list

next

data

list

next

data

=⇒
x y

list

next

data

list

next

data

Widening: builds summaries and ensures termination

x y

list list
▽

x y

list

next

data

list

=⇒
x y

list list
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Standard static analysis algorithms

Unfolding as a local case analysis

Unfolding principle

Case analysis, based on the inductive definition

Generates symbolic disjunctions
analysis performed in a disjunction domain

Example, for lists:
α

list

U
−→ α α = 0

α
list

U
−→

α α′

β

next

data

list
α 6= 0

Numeric predicates: approximated in the numerical domain

Soundness: by definition of the concretization of inductive structures

γS(S) ⊆
⋃

{γS(S0) | S
U
−→ S0}
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Standard static analysis algorithms

Local reasoning

Before the assignment c = c→ next;:

α

l, c

list
α 6= 0

1 Result of the unfolding: two rules to consider
◮ empty list does not need be considered

contradiction with num. invariant α 6= 0
◮ non-empty list case:

α α′

β

l, c
next

data

list

2 Result of the assignment:

α α′

β

l c
next

data

list

note: sound analysis of the assignment in itself is trivial (frame rule)
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Standard static analysis algorithms

Unfolding and degenerated cases

assume(l points to a dll)
c = l;
① while(c 6= NULL && condition)

c = c -> next;
② if(c 6= 0 && c -> prev 6= 0)

c = c -> prev→ prev;

at ①:
α0

dll(δ1)
l, c

at ②:
α0 α1

dll(δ0) dll(δ1) dll(δ1)
l c

⇒ non trivial unfolding

Materialization of c -> prev:
α α′ α′′

β′

dll(β) dll(β′)

next

prev

dll(β′)

Segment splitting lemma: basis for segment unfolding

α α′

ι ι′

i + j

describes the same set of stores as α α′′ α′

ι ι′′
i

ι′′ ι′

j

Materialization of c -> prev -> prev:
α β′

α′ α′′

β′′

dll(β) dll(β′′)

nextnext

prev
prev

dll(β′)

Implementation issue: discover which inductive edge to unfold
non decidable !
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Standard static analysis algorithms

Need for a folding operation

Back to the list traversal example... assume(l points to a list)
c = l;
while(c 6= NULL){
c = c→ next;

}

First iterates in the loop:
◮ at iteration 0 (before entering the loop):

α0

l, c

list

◮ at iteration 1:
α0 α1

β1

l c
next

data

list

◮ at iteration 2:
α0 α1 α2

β1 β2

l c
next

data

next

data

list

How to guarantee termination of the analysis ?

How to introduce segment edges / perform abstraction ?
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Standard static analysis algorithms

Widening

The lattice of shape abstract values has infinite height

Thus iteration sequences may not terminate

Definition of a widening operator ▽

Over-approximates join:

{

X ♯ ⊆ γ(X ♯
▽Y ♯)

Y ♯ ⊆ γ(X ♯
▽Y ♯)

Enforces termination: for all sequence (X ♯
n)n∈N , the sequence

(Y ♯
n )n∈N defined below is ultimately stationary

{

Y
♯
0

= X
♯
0

∀n ∈ N, Y
♯
n+1

= Y
♯
n▽X

♯
n+1
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Standard static analysis algorithms

Canonicalization

Upper closure operator

ρ : D♯ −→ D
♯
can ⊆ D♯ is an upper closure operator (uco) iff it is

monotone, extensive and idempotent.

Canonicalization

Disjunctive completion: D
♯
∨ = finite disjunctions over D♯

Canonicalization operator ρ∨ defined by ρ∨ : D
♯
∨ −→ D

♯
can∨ and

ρ∨(X
♯) = {ρ(x♯) | x♯ ∈ X ♯} where ρ is an uco and D

♯
can has finite

height

Usually more simple to compute
Canonicalization is used in many shape analysis tools:
TVLA, most separation logic based analysis tools
However less powerful than widening: does not exploit history of
computation
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Standard static analysis algorithms

Per region weakening

The weakening principles shown in the following apply both in
canonicalization and widening approaches

We can apply the local reasoning principle to weakening

inclusion test (comparison)

canonicalization

join / widening

Application: inclusion test

Operator ⊑♯ should satisfy X ♯⊑♯Y ♯ =⇒ γ(X ♯) ⊆ γ(Y ♯)

If S
♯
0
⊑♯S

♯
0,weak

and S
♯
1
⊑♯S

♯
1,weak

α0 α1 α2S♯
0 S♯

1
⊑♯

α0 α1 α2S♯
0,weak

S♯
1,weak
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Standard static analysis algorithms

Inductive weakening

Weakening identity

X ♯⊑♯X ♯...

Trivial, but useful, when a graph region appears in both widening
arguments

Weakening unfolded region

If S
♯
0

U
−→ S

♯
1
, γ(S♯

1
) ⊆ γ(S♯

0
)

Soundness follows the the soundness of unfolding

Application to a simple example:
α0 α1

β1

l

next

data

list ⊑♯ α0

l
list
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Standard static analysis algorithms

Comparison operator in the shape domain

Algorithm structure

Based on separation and local reasoning:

γ(S♯
0
) ⊆ γ(S♯

1
) =⇒ γ(S♯

0 ∗ S♯) ⊆ γ(S♯
1 ∗ S♯)

Algorithm:
◮ applies local rules and “consumes” graph regions proved weaker
◮ keeps discovering new rule applications

Structural rules such as:
◮ segment splitting:

S♯ ⊑ α
ι =⇒ S♯ ∗ β α

ι ι ⊑ β
ι

◮ inductive folding:
α

ι

U
−→ S

♯
0

S
♯ ⊑ S

♯
0

}

=⇒ S♯ ⊑ α
ι

Correctness:

S
♯
0
⊑ S

♯
1
=⇒ γ(S♯

0
) ⊆ γ(S♯

1
)
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Standard static analysis algorithms

Comparison operator in the combined domain

We need to tackle the fact nodes names may differ (cofibered domain)

&t α0 α1

α2

α2 is even

next

data

leven

&t β0

leven

Instrumented comparison in the shape domain

Comparison S
♯
0
⊑♯S

♯
1
: rules should compute a physical mapping

Ψ : nodes1 −→ nodes0

Soundness condition: (σ, ν) ∈ γS(S
♯
0
) =⇒ (σ, ν ◦Ψ) ∈ γS(S

♯
0
)

Comparison in the cofibered domain

Lift function for numerical abstract values: Π
S
♯
0 ,S

♯
1
(N♯

0
) = N

♯
0
◦Ψ

Thus, we simply need to compare N
♯
0
◦Ψ and N

♯
1
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Standard static analysis algorithms

Join operator

Similar iterative scheme, based on local rules

But needs to reason locally on two graphs in the same time:
each rule maps two regions into a common over-approximation

Graph partitioning and mapping

Inputs: S
♯
0
,S♯

1

Performed by a function Ψ : nodes0 × nodes1 → nodes⊔

Ψ is computed at the same time as the join

If ∀i ∈ {0, 1}, ∀s ∈ {lft, rgh}, S
♯
i ,s⊑

♯S
♯
s ,

α0 α1 α2S♯
0,lft S♯

1,lft

β0 β1 β2S♯
0,rgh S♯

1,rgh

Ψ Ψ Ψ ⊑ γ0 γ1 γ2S♯
0 S♯

1
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Standard static analysis algorithms

Segment introduction

Rule

if

α

β0 β1 β0 β1

ι ι

Ψ Ψ

S♯
lft

S♯
rgh ⊑

then











S
♯
lft▽S

♯
rgh = γ0 γ1

ι ι

(α, β0)
Ψ
←→ γ0

(α, β1)
Ψ
←→ γ1

Application to list traversal, at the end of iteration 1:
◮ before iteration 0:

α0

l, c
list

◮ end of iteration 0:
β0 β1

β2

l c

next

data

list

◮ join, before iteration 1:
γ0 γ1

l c
list list list

{

Ψ(α0, β0) = γ0

Ψ(α0, β1) = γ1
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Standard static analysis algorithms

Segment extension

Rule

if

α0 α1

β0 β1 β0 β1

ι ι

ι ι

Ψ Ψ

S♯
lft

S♯
rgh ⊑

then











S
♯
lft▽S

♯
rgh = γ0 γ1

ι ι

(α0, β0)
Ψ
←→ γ0

(α1, β1)
Ψ
←→ γ1

Application to list traversal, at the end of iteration 1:
◮ previous invariant before iteration 1:

α0 α1

l c
list list list

◮ end of iteration 1:
β0 β1 β2

β3

l c
list list

next

data

list

◮ join, before iteration 1:
γ0 γ1

l c
list list list

{

Ψ(α0, β0) = γ0

Ψ(α1, β2) = γ1
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Standard static analysis algorithms

Rewrite system properties

Comparison, canonicalization and widening algorithms can be
considered rewriting systems over tuples of graphs

Each step applies a rule / computation step

Termination

The systems are terminating

This ensures comparison, canonicalization, widening are computable

Non confluence !

The results depends on the order of application of the rules

Implementation requires the choice of an adequate strategy
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Standard static analysis algorithms

Properties

Inclusion checking is sound

If S
♯
0
⊑♯S

♯
1
, then γ(S♯

0
) ⊆ γ(S♯

1
)

Canonicalization is sound

γ(S♯) ⊆ γ(ρcan(S
♯))

Widening is sound and terminating

γ(S♯
0
) ⊆ γ(S♯

0
▽S

♯
1
)

γ(S♯
1
) ⊆ γ(S♯

0
▽S

♯
1
)

▽ ensures termination of abstract iterates

Soundness of local reasoning and of local rules

Termination of widening: ▽ can introduce only segments, and may
not introduce infintely many of them
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Inference of inductive definitions and call-stack summarization

Outline

1 An introduction to separation logic

2 A shape abstract domain relying on separation

3 Combination with a numerical domain

4 Standard static analysis algorithms

5 Inference of inductive definitions and call-stack summarization

6 Conclusion
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Inference of inductive definitions and call-stack summarization

Interprocedural analysis

Analysis of programs that consist in several functions (or procedures)

Difficulty: how to cope with multiple (possibly recursive) calls

Relational approach

analyze each function once

compute function summaries
abstraction of input-output
relations

analysis of a function call:
instantiate the function
summary (hard)

Inlining approach

inline functions at function
calls

just an extension of
intraprocedural analysis

In this section, we study the inlining approach for recursion

Side result: a widening for inductive definitions
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Inference of inductive definitions and call-stack summarization

Approaches to interprocedural analysis

“relational” approach “inlining” approach

analyze each definition
abstracts P(S̄→ S̄)

analyze each call
abstracts P(S)

+ modularity - not modular
+ reuse of invariants - re-analysis in 6= contexts

- deals with state relations + deals with states
- complex higher order + straightforward iteration

iteration strategy

challenge: frame problem challenge: unbounded calls
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Inference of inductive definitions and call-stack summarization

Challenges in interprocedural analysis

void main(){
dll ⋆ l ; //assume l points to a sll
l = fix(l , NULL);
}
dll ⋆ fix(dll ⋆ c ,dll ⋆ p){

dll ⋆ ret;
if(c != NULL){

c -> prev = p;
①c -> next = fix(c -> next, c);
if(check(c -> data)){

ret = c -> next;
remove(c);

②} else ret = c ;
}
return ret;
}

{

turns a linked list into a doubly linked list
removes some elements

main l

fix

ret

c

p

?

∅

fix

ret

c

p

?

fix

ret

c

p

?

fp

fp

fp

∅

∅

?

3

8

11

2

main l

fix

ret

c

p

?

∅

fix

ret

c

p

?

fix

ret

c

p
fp

fp

fp

∅

∅ 3

8

11

2

Heap is unbounded, needs abstraction (shape analysis)

But stack may also grow unbounded, needs abstraction

Complex relations between both stack and heap
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Inference of inductive definitions and call-stack summarization

Calling contexts as shape graphs

main l

fix

ret

c

p

?

∅

fix

ret

c

p

?

fix

ret

c

p

?

fp

fp

fp

∅

∅

?

3

8

11

2

main

fix

fix

fix

fp

fp

fp

0x0
l

p

c

p

c

p

c

prev

next
prev

next
prev

next

list

stack heap

Concrete assembly call stack modelled in a separating shape
graph together with the heap

◮ one node per activation record address
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Inference of inductive definitions and call-stack summarization

Calling contexts as shape graphs

main l

fix

ret

c

p

?

∅

fix

ret

c

p

?

fix

ret

c

p

?

fp

fp

fp

∅

∅

?

3

8

11

2

main

fix

fix

fix

fp

fp

fp

0x0
l

p

c

p

c

p

c

prev

next
prev

next
prev

next

list

stack heap

Concrete assembly call stack modelled in a separating shape
graph together with the heap

◮ one node per activation record address
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Inference of inductive definitions and call-stack summarization

Calling contexts as shape graphs

main l

fix

ret

c

p

?

∅

fix

ret

c

p

?

fix

ret

c

p

?

fp

fp

fp

∅

∅

?

3

8

11

2

main

fix

fix

fix

fp

fp

fp

0x0
l

p

c

p

c

p

c

prev

next
prev

next
prev

next

list

stack heap

Concrete assembly call stack modelled in a separating shape
graph together with the heap

◮ one node per activation record address
◮ explicit edges for frame pointers
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Inference of inductive definitions and call-stack summarization

Calling contexts as shape graphs

main l

fix

ret

c

p

?

∅

fix

ret

c

p

?

fix

ret

c

p

?

fp

fp

fp

∅

∅

?

3

8

11

2

main

fix

fix

fix

fp

fp

fp

0x0
l

p

c

p

c

p

c

prev

next
prev

next
prev

next

list

stack heap

Concrete assembly call stack modelled in a separating shape
graph together with the heap

◮ one node per activation record address
◮ explicit edges for frame pointers
◮ local variables turn into activation record fields
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Inference of inductive definitions and call-stack summarization

Calling contexts as shape graphs

main l

fix

ret

c

p

?

∅

fix

ret

c

p

?

fix

ret

c

p

?

fp

fp

fp

∅

∅

?

3

8

11

2

main

fix

fix

fix

fp

fp

fp

0x0
l

p

c

p

c

p

c

prev

next
prev

next
prev

next

list

stack heap

Concrete assembly call stack modelled in a separating shape
graph together with the heap

◮ one node per activation record address
◮ explicit edges for frame pointers
◮ local variables turn into activation record fields
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Inference of inductive definitions and call-stack summarization

Calling contexts as shape graphs

main l

fix

ret

c

p

?

∅

fix

ret

c

p

?

fix

ret

c

p

?

fp

fp

fp

∅

∅

?

3

8

11

2

main

fix

fix

fix

fp

fp

fp

0x0
l

p

c

p

c

p

c

prev

next
prev

next
prev

next

list

stack heap

Concrete assembly call stack modelled in a separating shape
graph together with the heap

◮ one node per activation record address
◮ explicit edges for frame pointers
◮ local variables turn into activation record fields
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Inference of inductive definitions and call-stack summarization

Inference of a call-stack inductive structure

Second and third iterates: a repeating pattern

main

fix

fix

fp

fp

0x0
l

p

c

p

c

prev

next
prev

next

list

main

fix

fix

fix

fp

fp

fp

0x0
l

p

c

p

c

p

c

prev

next
prev

next
prev

next

list

Computing an inductive rule for summarization: subtraction

Xavier Rival (INRIA) Shape analysis based on separation logic Nov, 23th. 2012 66 / 74



Inference of inductive definitions and call-stack summarization

Inference of a call-stack inductive structure

Second and third iterates: a repeating pattern

main

fix

fix

fp

fp

0x0
l

p

c

p

c

prev

next
prev

next

list

main

fix

fix

fix

fp

fp

fp

0x0
l

p

c

p

c

p

c

prev

next
prev

next
prev

next

list

Computing an inductive rule for summarization: subtraction
◮ subtract top-most activation record
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Inference of inductive definitions and call-stack summarization

Inference of a call-stack inductive structure

Second and third iterates: a repeating pattern

main

fix

fix

fp

fp

0x0
l

p

c

p

c

prev

next
prev

next

list

main

fix

fix

fix

fp

fp

fp

0x0
l

p

c

p

c

p

c

prev

next
prev

next
prev

next

list

Computing an inductive rule for summarization: subtraction
◮ subtract top-most activation record
◮ subtract common stack region
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Inference of inductive definitions and call-stack summarization

Inference of a call-stack inductive structure

Second and third iterates: a repeating pattern

main

fix

fix

fp

fp

0x0
l

p

c

p

c

prev

next
prev

next

list

main

fix

fix

fix

fp

fp

fp

0x0
l

p

c

p

c

p

c

prev

next
prev

next
prev

next

list

Computing an inductive rule for summarization: subtraction
◮ subtract top-most activation record
◮ subtract common stack region
◮ gather relations with next activation records: additional parameters
◮ collect numerical constraints
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Inference of inductive definitions and call-stack summarization

Inference of a call-stack inductive structure

Second and third iterates: a repeating pattern

main

fix

fix

fp

fp

0x0
l

p

c

p

c

prev

next
prev

next

list

main

fix

fix

fix

fp

fp

fp

0x0
l

p

c

p

c

p

c

prev

next
prev

next
prev

next

list

Computing an inductive rule for summarization: subtraction

Inferred inductive rule

stk(β1, β2)

fix::ctx

β1 β2

U
−→

fix

stk(β0, β1)

ctx

β0

β1

β2

c

p
prev

next
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Inference of inductive definitions and call-stack summarization

Inference of a call-stack summary: widening iterates

Fixpoint at function entry:

first iterate:
main

fix

fix

fp

fp

0x0
l

p

c

p

c

prev

next
prev

next

list

second iterate:
main

fix

fix

fix

fp

fp

fp

0x0
l

p

c

p

c

p

c

prev

next
prev

next
prev

next

list

widened iterate:
main

fix

fix

stk(β2, β3) stk(β0, β1)

fix
⋆

0x0

β0

β1

β2

β3

l

c

p

c

p

prev

next

prev

next

list

Fixpoint reached

Fixpoint upon function return:

◮ function return involves unfolding of stack summaries
◮ simpler widening sequence: no rule to infer
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Inference of inductive definitions and call-stack summarization

Widening over inductive definitions

Domain structure

An abstract value should comprise:

a set S of unfolding rules for the stack inductive

a shape graph G

a numeric abstract value N

Shape graph G is defined in a lattice specified by S ,
thus, this is an instance of the cofibered abstraction

Lift functions are trivial:
◮ adding rules simply weakens shape graphs
◮ i.e., no need to change them syntactically, their concretization just gets

weaker

Termination in the lattice of rules:
limiting of the number of rules that can be generated to some given
bound
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Conclusion

Outline

1 An introduction to separation logic

2 A shape abstract domain relying on separation

3 Combination with a numerical domain

4 Standard static analysis algorithms

5 Inference of inductive definitions and call-stack summarization

6 Conclusion
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Conclusion

Abstraction choices

Many families of symbolic abstractions including TVLA and separation
logic based approaches

Variants: region logic, ownership, fractional permissions

Common ingredients

Splitting of the heap in regions
◮ TVLA: covering, via embedding
◮ Separation logic: partitioning, enforced at the concrete level

Use of induction in order to summarize large regions

More limited pointer analyses: no inductives, no summarization...
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Conclusion

Algorithms

Rather different process, compared to numerical domains

From abstract to concrete (locally)

Unfold abstract properties in a local maner

Allows quasi-exact analysis of usual operations (assignment,
condition test...)

From concrete to abstract (globally)

Guarantees termination

Allows to infer pieces of code build complex structures

Intuition:
◮ static analysis involves post-fixpoint computations (over program

traces)
◮ widening produces a fixpoint over memory cells
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Conclusion

Open problems

Many opportunities for research:

Improving expressiveness
e.g., sharing in data-structures

◮ new abstractions
◮ combining several abstractions into more powerful ones

Improving scalability
◮ shape analyses remain expensive analyses, with few “cheap” and useful

abstractions
◮ cut down the cost of complex algorithms
◮ isolate smaller families of predicates

Applications, beyond software safety:
◮ security
◮ verification of functional properties
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Internships

Several topics possible, soon to be announced on the lecture webpage:

Internal reduction operator

inductive definitions are very expressive thus tricky to reason about

design of an internal reduction operator on abstract elements with
inductive definitions

Modular inter-procedural analysis

a relation between pre-conditions and post-conditions can be
formalized in a single shape graph

design of an abstract domain for relations between states
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