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Overview of the lecture

How to reason about memory properties (bis)

@ Last lecture:

» a broad overview of problems and techniques

| 4

>

concrete and abstract memory models
an introduction to shape analysis: TVLA

o Today:

| 4

| 4
>
>
| 4

a logic to describe properties of memory states

abstract domain

static analysis algorithms
combination with numerical domains
widening operators...
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© An introduction to separation logic

g A shape abstract domain relying on separation

© Combination with a numerical domain

Q Standard static analysis algorithms

© Inference of inductive definitions and call-stack summarization

© Conclusion



An introduction to separation logic

Our model

Environment 4+ Heap
@ Addresses are values: Vpqqr C V
@ Environments ¢ € E map variables into their addresses

@ Heaps (# € H) map addresses into values

E = X—)\/addr
H = Vagar >V

@ £ is actually only a partial function

@ Memory states:
M=ExH
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An introduction to separation logic

Example of a concrete memory state

@ x and z are two list elements containing values 64 and 88, and where
the former points to the latter

@ y stores a pointer to z

Memory layout

(pointer values underlined)

address
&x = 300
304

&y = 308
&z = 312

w
—_
[\V]

(&)
—
[\V]

:

316 | 0z0
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An introduction to separation logic

Weak updates

Notion of weak update
Udpate

@ where the affected cell cannot be computed precisely in the abstract

o that must be over-approximated in a coarse manner

We remarked many cases of weak-updates:

x € [-10,-5]; y € [5,10]
int x p;
if(?)
p = &x;
else
p =&y,
*p =0;

Best result of the analysis ?
@ range for x

@ range for y

@ Weak updates are a curse for the static analysis

@ Huge loss in precision incurred by weak updates
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An introduction to separation logic

Separation logic principle: avoid weak updates

How to deal with weak updates ?
Avoid them !

@ Always materialize exactly the cell that needs be modified

@ Can be very costly to achieve, and not always feasible

@ Notion of property that holds over a memory region
@ Use a special separating conjunction operator *

o Local reasoning:
powerful principle, which allows to consider only part of the program
memory

@ Separation logic has been used in many contexts, including manual
verification, static analysis, etc...
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An introduction to separation logic

Separation logic
@ Logic made of a set of formulas
@ inference rules...

Pure formulas

@ Set of pure formulas, similar to first order logics

e = n (neN)
| l-value
| €&+¢€ binary
P i= e=¢e|PVP'|PAP". .

@ Denote numerical properties among the values

Heap formulas (syntax on the next slide)
@ Set of formulas to describe concrete heaps
@ Concretization relation of the form (e, £) € v(F)
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An introduction to separation logic

Heap formulas

Main connectors
Each formula describes a heap region

F emp empty region
true empty region
/— v  memory cell
F’' x F” separating conjunction
F' N F"  classical conjunction
many other connectors (see biblio)

Denotations: the usual stuff...
o y(emp) =0; ~(true) =M
o (e,n) € v(I — v) if and only if A([/](e, #)) = v
o (e,h) € y(F' AN F") if and only if (e, #) € v(F') and (e, #) € v(F")

Separating conjunction: next slide...
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An introduction to separation logic

The separating conjunction

Merge of concrete stores

Let fig, i1 € (Vaddr — V), such that dom(fg) N dom(fy) = 0.
Then, we let Ay ® A1 be defined by:

ho ® kb . dom(fy) Udom(h) — V
x € dom(fy) —  ho(x)
X € dom(ﬁl) — ﬁl(X)

Concretization of separating conjunction
@ Logical formulas denote sets of heaps; concretization ~

@ Binary logical connector on formulas x defined by:
V(Fo * F1) = {(e, o ® f1) | (e, fo) € ¥(Fo) A (e, i) € v(F1)}

o Exercise: concretization of a+— &b A b+ &a? of a— &b x b+— &a ?
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An introduction to separation logic

Separating conjunction vs non separating conjunction

@ Classical conjunction: properties for the same memory region

@ Separating conjunction: properties for disjoint memory regions

ar—~> &b Nb— &a ar~> &b Nb— &a
@ the same heap verifies a — &b @ two separate sub-heaps
and b+ &a respectively satisfy a — &b
@ there can be only one cell and b &a
A rhiE g b @ thus a# b

@ Separating conjunction and non-separating conjunction have very
different properties

@ Both express very different properties
e.g., no ambiguity on weak / strong updates
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An introduction to separation logic

An example

Concrete memory layout

(pointer values underlined) e- X
y
address =
&x = 300| 64
304 312 h: 300
&y = 308| 312 ﬂ 304
&z = 312| 88 308
316] 0z0 312
316

A formula that abstracts away the addresses:

X+ (64,&2) * y — &z * z — (88,0)
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An introduction to separation logic

Separating and non separating conjunction

@ There are two conjunction operators A and x

@ How to relate them ?

Separating conjunction vs normal conjunction

(e.f0) €v(Fo)  (e,m) €v(FA) (e h) €v(Fo) (e h) €v(F)
(e, hy ® ﬁl) € ’Y(FO * Fl) (e, ﬁ) € ’Y(Fo VAN Fl)

@ Reminiscent of Linear Logic [Girard87]:
resource aware / non resource aware conjunction operators
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An introduction to separation logic

Programs: syntax and semantics

Basic language
o L-values: | == x(xe€X) ... | xe | [ -£f
@ Expressions: e = /| c(ceV) | ede | & | malloc(n)

@ Statements:

s u= [:=e | if(e){s}else{s} | while(e){s} | s;s | free(/);

Semantics
o L-values: [/] : M — Vaqar
o Expressions: [e] : M — V
@ Programs and statements:

we assume a label before each statement
each statement defines a set of transition (—)
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An introduction to separation logic

Separating logic triple

Program proofs based on triples
o Notation: {F}p{F'} if and only if:
Vs,s' €S, sevy(F)As € [p](s) = s’ € v(F')
Hoare triples

@ Application: formalize proofs of programs

A few rules (straightforward proofs):
fb—=F {fRip{A} H=F
{Fotp{F1}

consequence

{x=?x:=e{x— e} mutation

mutation — 2

{x—=?x Flx:=e{x—exF}
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An introduction to separation logic

The frame rule

What about the resemblance between rules “mutation” and “mutation-2" ?

Theorem: the frame rule

{Fo}ts{F:}
{Fo x F}s{F1 % F}

frame

@ Proof by induction on the rules
(see biblio for a more complete set of rules)

@ Rules are proved by case analysis on the program syntax

We can reason locally about programs J

Xavier Rival (INRIA) Shape analysis based on separation logic Nov, 23th. 2012 16 / 74



An introduction to separation logic

Application of the frame rule

Let us consider the program below:

inti;

int x x;

intxy;, {i—=?7xx—=7xy—7}
x=¢&i; {i—=?xx—>&ixy—7?}
y=4&i; {i-?7xx—&ixy— &i}
*x=42; {i—42%xx—&ixy—&i}

@ Each step impacts a disjoint memory region

@ This case is easy
See biblio for more complex applications
(verification of the Deutsch-Shorr-Waite algorithm)
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An introduction to separation logic

Summarization and inductive definitions

What do we still miss ?

So far, formulas denote fixed sets of cells
Thus, no summarization of unbounded regions...

@ Example all lists pointed to by x, such as:

&x |’,

0x0

-
&x | |’

@ How to precisely abstract these stores with one formula i.e., no

infinite disjunction ?
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An introduction to separation logic

Inductive definitions in separation logic

List definition

a-list = a=0 A emp
V a#0 A a-next— v x«-datar— [ * - list

@ Formula abstracting our set of structures:
&x — a *x « - list

@ Summarization: this formula is finite and describe infinitely many
heaps

@ Concretization: next slide...

Practical implementation in verification/analysis tools
@ Verification: hand-written definitions

@ Analysis: either built-in or user-supplied, or partly inferred
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An introduction to separation logic

Concretization by unfolding

Intuitive semantics of inductive predicates
@ Inductive predicates can be unfolded, by unrolling their definitions
Syntactic unfolding is noted N
@ A formula F with inductive predicates describes all stores described by
all formulas F’ such that F -4 F/

Example:

@ Let us start with x — ag * ag - list; we can unfold it as follows:
&x — o * «p - list

u .

— &Xl—>ao*ozo-next>—>o¢1>kozo-data>—>61*al-llst

u

—  &X > ap * ap -next — a1 * aqg - data +— 1 x emp A a; = 0x0

@ We get the concrete state below:

-~ 0x0

&x | }’,
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An introduction to separation logic

Example: tree

o Example:
A |
et | l——-\\
it S
L N
0x0 0x0
0x0 0x0

Inductive definition
@ Two recursive calls instead of one:
o - tree = a=0A emp

V. a#0A a-left — % a-right — v
x 3 - tree x 7y - tree
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An introduction to separation logic

Example: doubly linked list

@ Example: binary tree

|Ox...|” \‘|0x...|" ‘l OXO|
[ox0 |~ Mox ]~ ox. ]

Inductive definition
@ We need to propagate the prev pointer as an additional parameter:

a-dli(p) = a=0A emp
V a#0 A a-next— yx*a-prev px*v-dl(a
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An introduction to separation logic

Example: sortedness

o Example: sorted list

Inductive definition
@ Each element should be greater than the previous one
@ The first element simply needs be greater than —co...

@ We need to propagate the lower bound, using a scalar parameter

a - Isortyx(n) = a=0A emp
V. a#0AB<nA a-next— 7
x - data — [ * 7y - Isortaux(3)

a-lsort() = a - Isort,yy (—o0)

.
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An introduction to separation logic

A new overview of the remaining part of the lecture

How to apply separation logic to static analysis and design abstract
interpretation algorithms based on it ?

In this lecture, we will:
@ choose a small but expressive set of separation logic formulas
@ define wide families of abstract domains

@ study algorithms for local concretization (equivalent to focus) and
global abstraction (widening...)
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A shape abstract domain relying on separation

QOutline

© A shape abstract domain relying on separation
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A shape abstract domain relying on separation

Choice of a set of formulas

Our set of predicates
@ An abstract value is a separating conjunction of terms

o Each term describes

either a contiguous region
or a summarized region, described by an inductive defintion

@ Abstract elements have a straightforward interpretation as a shape
graph

@ Unless necessary, we omit environments (concretization into sets of
heaps)
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A shape abstract domain relying on separation

Abstraction into separating shape graphs

@ Memory splitting into regions

_ -~ ox. .. | ox. .. 3| oxo
&t 0x. .. P” 24 42 32
. values, addresses — nodes
o Graph abstraction:
cells — edges
@ ()__next O»Qxi ()__next @
data data data
@ Region summarization:
(M)_next o
© O
data

» abstraction parameterized by a set of inductive definitions

@ Defines a concretization relation
@ Let us formalize this...
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A shape abstract domain relying on separation

Contiguous regions

Shape graphs
o Edges: denote memory regions

@ Nodes: denote values, i.e. addresses or cell contents

Points-to edge, denote contiguous memory regions
@ Separation logic formula: - f — 3
@ Abstract and concrete views:

£ [B)

@ Concretization:
Ys(a-f = B) =

{([v(a) + offset(£) — v(B)],v) | v: {a,B,...} — N}

» v: bridge between memory and values
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A shape abstract domain relying on separation

Separation

@ A graph = a set of edges

@ Denotes the separating conjunction of the edges

Empty graph emp
vs(emp) = {(0,v) | v : nodes — V} i.e., empty store

Separating conjunction

15(S5 % S = {(ho ® i, v) | (o, v) € 15(SE) A (i, v) € 15(S5)}

Q% O s O
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A shape abstract domain relying on separation

Separation example

Field splitting model

@ Separation impacts edges / fields, not pointers

@ Shape graph

v(a)

v(a)

offset(g) offset(g)

offset(f) offset(f)

In other words, separation
@ asserts addresses are distinct

@ says nothing about contents
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A shape abstract domain relying on separation

Inductive edges

List definition
a-list = (emp,a=0)
|  (a-next— [y *x a-data— [y * [ - list,a # 0)

where emp denotes the empty heap

Concretization as a least fixpoint

Given an inductive def ¢

IYS(O"L):U{’)’S(F)|06'Li>F}

o Alternate approach:
index inductive applications with induction depth
allows to reason on length of structures
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A shape abstract domain relying on separation

Inductive structures 1V: a few instances

@ More complex shapes: trees

left
u
Ctree _>L
right tree
@ Relations among pointers: doubly-linked lists
1z pext (111(0)
Cdll(é) 3 o
prev °

o Relations between pointers and numerical: sorted lists

next
u ® Isort(8,)
@lsort(d) L 0 @ 6 < by
data
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A shape abstract domain relying on separation

Inductive segments

A frequent pattern

@ Could be expressed directly as an inductive with a parameter:
a-list_endp(n) = (emp,a =)
|  (a-next— [y * a-datars fq
x o - list_endp(7), o # 0)
@ This definition would derive from list
Thus, we make segments part of the fundamental predicates of

the domain

. > ( ) )
list list " list

@ Multi-segments: possible, but harder for analysis
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Combination with a numerical domain

Example

How to express both shape and numerical properties ?

o List of even elements:

@ Many other examples:

» list of open filed descriptors
> tries
» balanced trees: red-black, AVL...

@ Note: inductive definitions also talk about data
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Combination with a numerical domain

A first approach to domain combination

Basis

@ Graphs form a shape domain [DﬁS
abstract stores together with a physical mapping of nodes
s - P((DL — M) x (nodes — V))
@ Numerical values are taken in a numerical domain IDflum
abstracts physical mapping of nodes

Ynum - IDElum — P((NOdeS — \/))

Concretization of the combined domain [CR]

(5%, N = {o € M| T € yaum(N), (0,v) € 15(59)}

@ Quite similar to a reduced product
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Combination with a numerical domain

Combination by reduced product

Reduced product

@ Product abstraction: Df = IDFJ X IDt:il
Y(x0, x1) = v(x0) Ny(x1)

o Reduction: D! is the quotient of Df by the equivalence relation =
defined by (x0,x1) = (x5,%1) <= ~v(x0,x1) = 7(x}, x1)

@ Domain operations (join, transfer functions) are pairwise (are usually
composed with reduction)

@ Why not to use a product of the shape domain with a numerical
domain 7

@ How to compare / join the following two elements ?

@ (M_next oM
—leven

data

« is even
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Combination with a numerical domain

Towards a more adapted combination operator

Why does this fail here 7
@ The set of nodes / symbolic variables is not fixed

@ Variables represented in the numerical domain depend on the shape
abstraction

= Thus the product is not symmetric

Intuitions
@ Graphs form a shape domain IDﬁS

@ For each graph St e DY, we have a numerical lattice Iwam<Sn>

example: if graph S* contains nodes g, ay, o, IDﬁum<sn> should
abstract {ag, a1, 0} — V

@ An abstract value is a pair (S, N*), such that N ¢ Dium

(N¥)

.
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Combination with a numerical domain

Cofibered domain

Definition [AV]
@ Basis: abstract domain (ID%, Eg), with concretization
Yo : IDg —-D
@ Function: ¢ : IDg — D1, where each element of Dy is an
abstract domain ([Dji, Eg) with a concretization
Y
o Lift functions: Vx!, yf € Df, such that xﬁggyﬁ, there

exists a function M, s : d(x*) — ¢(y*), that is
monotone for 7,: and 7,

@ Domain: D is the set of pairs (xé,xf) where
x € ¢()

v

@ Generic product, where the second lattice depends on the first

@ Provides a generic scheme for widening, comparison
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Combination with a numerical domain

Domain operations

o Lift functions allow to switch domain when needed
Comparison of (x¢,x!) and (v¢, y¥)
© First, compare xg and yg in ID%

Q If x}Chyl, compare I'IXng(xf) and y?

Widening of (x¢,x}) and (yZ, v¥)
© First, compute the widening in the basis zg = §Vy§
© Then move to (;S(zg), by computing xg = I'ngzg(xf) and
vi = ﬂygﬁzg(y{i)
© Last widen in (;S(zg): zlﬁ = xgvzgyg

(X)) V(. 1) = (2, 2L)
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Combination with a numerical domain

Domain operations

Transfer functions, e.g., assignment
@ Require memory location be materialized in the graph

i.e., the graph may have to be modified
the numerical component should be updated with lift functions

@ Require update in the graph and the numerical domain

i.e., the numerical component should be kept coherent with the graph
.

Proofs of soundness of transfer functions rely on:
@ the soundness of the lift functions

@ the soundness of both domain transfer functions
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Standard static analysis algorithms
Static analysis overview

A list insertion function:

list x 1 assumed to point to a list

list x t assumed to point to a list element

list x c = 1;

while(c 1= NULL && ¢ -> next != NULL && (. ..)){
¢ = ¢ ->next;

}

t ->next = ¢ ->next;
c ->next = 1t;

o list inductive structure def.
@ Abstract precondition:
) Q

next .
data
O

Result of the (interprocedural) analysis

@ Over-approximations of reachable concrete states
e.g., at the loop exit:

@ M) M) next, M) next, M
list st
@ data . data .
)
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Standard static analysis algorithms

Transfer functions

Abstract interpreter design
@ Follows the semantics of the language under consideration

@ The abstract domain should provide sound transfer functions

Transfer functions
@ Assignment: x - f =y — g or x — f = €euith
@ Test: analysis of conditions (if, while)
@ Variable creation and removal

@ Memory management: malloc, free

Should be sound i.e., not forget any concrete behavior

Abstract operators

@ Join and widening: over-approximation

@ Inclusion checking: check stabilization of abstract iterates
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Standard static analysis algorithms

The algorithms underlying the transfer functions

@ Unfolding: cases analysis on summaries

C" Cy \ * AN next O_,x Oy
list list Olist N list v list — 020

data

@ Abstract postconditions, on “exact” regions, e.g. insertion

)

data list
next
list list list data
data

data

@ Widening: builds summaries and ensures termination

nex
X y X y list X y

C list C list \Y% list - C list C list
data (:)
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Standard static analysis algorithms

Unfolding as a local case analysis

Unfolding principle
@ Case analysis, based on the inductive definition

@ Generates symbolic disjunctions
analysis performed in a disjunction domain

@ Example, for lists:

O Y @o=0

Drext N

: u 5 (\ren
list “ ?é

data

@ Numeric predicates: approximated in the numerical domain

Soundness: by definition of the concretization of inductive structures

715(5) € Js(S0) | S 5 So}
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Standard static analysis algorithms
Local reasoning

Before the assignment ¢ = ¢ — next;:
1,c

: list

a#0
© Result of the unfolding: two rules to consider

» empty list does not need be considered
contradiction with num. invariant a # 0

» non-empty list case:
1,c
next
‘Qﬂ—‘ O
data @

c

1
next
©
data o

@ Result of the assignment:

note: sound analysis of the assignment in itself is trivial (frame rule)

Xavier Rival (INRIA) Shape analysis based on separation logic

Nov, 23th. 2012

47 |/ 74



Standard static analysis algorithms

Unfolding and degenerated cases

assume(1l points to a dll) @_,
c=1; o at [ o)
while(c # NULL && condition) @ @)
c = c ->next; @ at D -y dll(6,) dli(s,) \E/dll:'m)
0 if(c # 0&& c ->prev # 0)
¢ = c->prev — prev; = non trivial unfolding

@ Materialization of c -> prev:

prev

Segment splitting lemma: basis for segment unfolding

i+ j . i J
describes the same set of stores as (D= )——>()

@ Materialization of c -> prev -> prev:

@ Implementation issue: discover which inductive edge to unfold
non decidable !
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Standard static analysis algorithms

Need for a folding operation

@ Back to the list traversal example... ass“;“e(l points to a list)
c=1

while(c # NULL){
¢ = ¢ — next;

}

o First iterates in the loop:
» at iteration 0 (before entering the loop):
1,¢c

» at iteration 1:

1 c
next (a7)
list

data @

» at iteration 2:

1 c
next /\next o\
&Y G az
st

data data @

@ How to guarantee termination of the analysis ?

@ How to introduce segment edges / perform abstraction ?
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Standard static analysis algorithms

Widening

@ The lattice of shape abstract values has infinite height

@ Thus iteration sequences may not terminate

Definition of a widening operator V

@ Over-approximates join:

Xt C y(Xtvyh)
Vi C a(Xtvyh)

@ Enforces termination: for all sequence (X,g),,EN, the sequence
(Y,?),,EN defined below is ultimately stationary

v} = X}
VneN, Y, = Yivxi,

v
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Standard static analysis algorithms

Canonicalization

Upper closure operator

p : D! —s Dan C DY is an upper closure operator (uco) iff it is
monotone, extensive and idempotent.

Canonicalization

@ Disjunctive completion: [Dg/ = finite disjunctions over DF

@ Canonicalization operator p, defined by py : [Dg/ — [Dﬁanv and
pv(XB) = {p(x*) | x* € X*} where p is an uco and Dfan has finite
height

@ Usually more simple to compute
@ Canonicalization is used in many shape analysis tools:
TVLA, most separation logic based analysis tools
@ However less powerful than widening: does not exploit history of

computation
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Standard static analysis algorithms

Per region weakening

The weakening principles shown in the following apply both in

canonicalization and widening approaches

We can apply the local reasoning principle to weakening

@ inclusion test (comparison)
@ canonicalization

@ join / widening

Application: inclusion test

@ Operator C? should satisfy X!C#Y! — ’y(Xu) € W(Yﬁ)

o If SHEFS] ea and STEES]

1,weak

@ s e s e ¢

R EIRCEIRC
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Standard static analysis algorithms

Inductive weakening

Weakening identity
o XACHXE..

@ Trivial, but useful, when a graph region appears in both widening
arguments

Weakening unfolded region
o If §§ 5 SL, (S]) € A(Sh)

@ Soundness follows the the soundness of unfolding

@ Application to a simple example:
" next ()

Ot
T N C* O
data @ 1
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Standard static analysis algorithms

Comparison operator in the shape domain

Algorithm structure
@ Based on separation and local reasoning:
7(S5) S (S]) = (8§ * 5*) S (Sf  S%)
o Algorithm:

applies local rules and “consumes” graph regions proved weaker
keeps discovering new rule applications

@ Structural rules such as:
» segment splitting;:
St (@O — St @ *@ C O

» inductive folding: C C s - 8 } = St C O—

Correctness:
St C st = 1(sh) c(sh)
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Standard static analysis algorithms

Comparison operator in the combined domain

We need to tackle the fact nodes names may differ (cofibered domain) |

@ (a)—Dext o .
leven ' ‘
data leven

az is even

Instrumented comparison in the shape domain

@ Comparison SggﬁSf: rules should compute a physical mapping
VU : nodes; — nodesg

@ Soundness condition: (o,v) € ’ys(Sg) = (o,voV¥) e ’ys(Sg)

Comparison in the cofibered domain

o Lift function for numerical abstract values: [1; Sj(Ng) = Ng oWV
01

@ Thus, we simply need to compare Ng oV and Nlﬁ

ot
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Standard static analysis algorithms

Join operator

@ Similar iterative scheme, based on local rules

@ But needs to reason locally on two graphs in the same time:
each rule maps two regions into a common over-approximation

Graph partitioning and mapping
o Inputs: Sﬁ,Sf
@ Performed by a function V¥ : nodesg x nodes; — nodes;

@ W is computed at the same time as the join

If Vi € {0,1}, Vs € {Ift,xgh}, S CFSE,

@ Siun_ X Sl XD
L C s 0« ®
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Standard static analysis algorithms

Segment introduction

Rule
i t
sh{D SiVSin = @0

ol v
A D < (o, 1) «—m

@ Application to list traversal, at the end of iteration 1:
» before iteration 0:

:list
1l,c
» end of iteration 0:
HSXt @list
1 c
data
» join, before iteration 1:
- o) _
Cl‘Dlist nst¥c/1isc \U(Oéo,ﬁo) = 7
\U(QOa 61) = N
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Standard static analysis algorithms

Segment extension

Rule
$,O—® Skt =
AU
then (Ozo, ,80) 0

(a1, 81) 2 1

v v
G s B €

@ Application to list traversal, at the end of iteration 1:
» previous invariant before iteration 1:

© O
list list ~— list
1 c

» end of iteration 1:
@ DRt ()
st list st
1 c

data

» join, before iteration 1:
@mt list @list \U(QOa 60) Yo
V(ag, ) = m
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Standard static analysis algorithms

Rewrite system properties

@ Comparison, canonicalization and widening algorithms can be
considered rewriting systems over tuples of graphs

@ Each step applies a rule / computation step

Termination
@ The systems are terminating

@ This ensures comparison, canonicalization, widening are computable

~

Non confluence !
@ The results depends on the order of application of the rules

o Implementation requires the choice of an adequate strategy
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Standard static analysis algorithms

Properties

Inclusion checking is sound

If SECESE, then 4(SE) € v(SP)

Canonicalization is sound
V(Sﬁ) < 'Y(pcan(sﬁ))

Widening is sound and terminating
(8§ € Y(SEvs))

(5 C A(SivSE)
V ensures termination of abstract iterates

@ Soundness of local reasoning and of local rules

@ Termination of widening: V can introduce only segments, and may
not introduce infintely many of them
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Inference of inductive definitions and call-stack summarization

QOutline

© Inference of inductive definitions and call-stack summarization
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Inference of inductive definitions and call-stack summarization

Interprocedural analysis

@ Analysis of programs that consist in several functions (or procedures)

o Difficulty: how to cope with multiple (possibly recursive) calls

Relational approach

@ analyze each function once Inlining approach

@ compute function summaries
abstraction of input-output
relations

o inline functions at function
calls

@ just an extension of

@ analysis of a function call: : .
intraprocedural analysis

instantiate the function
summary (hard)

@ In this section, we study the inlining approach for recursion

@ Side result: a widening for inductive definitions
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Inference of inductive definitions and call-stack summarization

Approaches to interprocedural analysis

“relational” approach | “inlining” approach
analyze each definition analyze each call
abstracts P(S — 95) abstracts P(S)
+ modularity - not modular
+ reuse of invariants - re-analysis in # contexts
- deals with state relations + deals with states
- complex higher order + straightforward iteration
iteration strategy
challenge: | frame problem challenge: ‘unbounded calls‘
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Inference of inductive definitions and call-stack summarization

Challenges in interprocedural analysis

void main(){

?"*/;/(/lassum)e/POiﬂtS to asll turns a linked list into a doubly linked list
= fix(/,NULL);
removes some elements

}
dll x fix(dllx c,dll x p){ nain, [T =1 main [T
dll x ret; ip, = = fp i, = 0

if(c !=NULL){ fix Jc ] K fix e — [E
C ->prev =p; I et 2 p zet L
[c ->next = fix(c -> next, c); B L L
if(check(c -> data)){ i Co— [}s] i C— 8
ret = ¢ ->next; £p fpi.
remove(c); e :—‘—’L o o —
O} else ret = c; Tot 7 Tot -
}
return ret; 0 d 2

}
@ Heap is unbounded, needs abstraction (shape analysis)
@ But stack may also grow unbounded, needs abstraction

@ Complex relations between both stack and heap
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Inference of inductive definitions and call-stack summarization

Calling contexts as shape graphs

stack heap

» 5B
’Uv.
TS

fix |¢ |——| 0|3
ret ?

fpi

P = —

fix [g —— | |8|
ret ?

fp i

P 5 -

fix [ ._—__>L 11
ret ?

@ Concrete assembly call stack modelled in a separating shape
graph together with the heap

» one node per activation record address
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Inference of inductive definitions and call-stack summarization

Calling contexts as shape graphs

stack heap

main
fp:, . O

T T main
fix |¢ -—— 0|3

ret ?
” Ne,
P, s o fix
fix [g —— | |8|

ret ?
£p i fixO
P v ra
fix [ ._—__>L 11

7

= - fixO

@ Concrete assembly call stack modelled in a separating shape
graph together with the heap

» one node per activation record address
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Inference of inductive definitions and call-stack summarization

Calling contexts as shape graphs

stack heap
main

R B [ main
fixfe = - E !
ret ?

o O
P, s o flz_{
fix [g —— | |8| fp!
ret ?

fp i, fi O
N — o
fix |¢ .,_—__>L 11 fp:
ret ?

fixO

@ Concrete assembly call stack modelled in a separating shape
graph together with the heap

» one node per activation record address
» explicit edges for frame pointers
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Inference of inductive definitions and call-stack summarization

Calling contexts as shape graphs

stack heap

main

fp:,
P 0

fix |¢ -—— 0|3
ret ?

fp

P = -

fix [g —— | |8|
ret ?

£p

P = -

fix [ .._—__>L 11
Tot 7

@ Concrete assembly call stack modelled in a separating shape
graph together with the heap

» one node per activation record address
» explicit edges for frame pointers
» local variables turn into activation record fields
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Inference of inductive definitions and call-stack summarization

Calling contexts as shape graphs

stack heap
main
fp:,
P 0
fix |¢ -—— 0|3
ret ? prev
p i,
B -
fix [ —— | |8| mexe| )
ret ?
fp i
B e
fix [ ,_—__>L 11 mext ),
Tet 7

list

@ Concrete assembly call stack modelled in a separating shape
graph together with the heap
» one node per activation record address
» explicit edges for frame pointers
» local variables turn into activation record fields
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Inference of inductive definitions and call-stack summarization

Calling contexts as shape graphs

» 5B
’Uv.
TS

fix |¢ |——| 0|3
ret ?

fpi

P, = —

fix [g —— | |8|
ret ?

fp i

P, = —

fix [ .._—__>L 11
ret ?

@ Concrete assembly call stack modelled in a separating shape
graph together with the heap

» one node per activation record address
» explicit edges for frame pointers
» local variables turn into activation record fields
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Inference of inductive definitions and call-stack summarization

Inference of a call-stack inductive structure

@ Second and third iterates: a repeating pattern

C list

@ Computing an inductive rule for summarization: subtraction
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Inference of inductive definitions and call-stack summarization

Inference of a call-stack inductive structure

@ Second and third iterates: a repeating pattern

@ Computing an inductive rule for summarization: subtraction
» subtract top-most activation record

Xavier Rival (INRIA) Shape analysis based on separation logic Nov, 23th. 2012 66 / 74



Inference of inductive definitions and call-stack summarization

Inference of a call-stack inductive structure

@ Second and third iterates: a repeating pattern

@ Computing an inductive rule for summarization: subtraction
» subtract top-most activation record
» subtract common stack region
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Inference of inductive definitions and call-stack summarization

Inference of a call-stack inductive structure

@ Second and third iterates: a repeating pattern

@ Computing an inductive rule for summarization: subtraction
» subtract top-most activation record
subtract common stack region
gather relations with next activation records: additional parameters
collect numerical constraints

v

v

v
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Inference of inductive definitions and call-stack summarization

Inference of a call-stack inductive structure

@ Second and third iterates: a repeating pattern

@ Computing an inductive rule for summarization: subtraction

Inferred inductive rule

C fix:ict
s:k(ﬁ;,/ci:) u 3 P
® ® six(OF—=

prev,

N
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Inference of inductive definitions and call-stack summarization

Inference of a call-stack summary: widening iterates

o Fixpoint at function entry:

first iterate: second iterate: widened iterate:

Fixpoint reached J

@ Fixpoint upon function return:

» function return involves unfolding of stack summaries
» simpler widening sequence: no rule to infer
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Inference of inductive definitions and call-stack summarization

Widening over inductive definitions

Domain structure

An abstract value should comprise:
@ a set S of unfolding rules for the stack inductive
@ a shape graph G
@ a numeric abstract value N

Shape graph G is defined in a lattice specified by S,
thus, this is an instance of the cofibered abstraction

o Lift functions are trivial:
» adding rules simply weakens shape graphs
» i.e., no need to change them syntactically, their concretization just gets

weaker
@ Termination in the lattice of rules:
limiting of the number of rules that can be generated to some given

bound
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Conclusion

Abstraction choices

Many families of symbolic abstractions including TVLA and separation
logic based approaches J

@ Variants: region logic, ownership, fractional permissions

Common ingredients

@ Splitting of the heap in regions

TVLA: covering, via embedding

Separation logic: partitioning, enforced at the concrete level
@ Use of induction in order to summarize large regions

@ More limited pointer analyses: no inductives, no summarization...
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Conclusion

Algorithms

Rather different process, compared to numerical domains )

From abstract to concrete (locally)
@ Unfold abstract properties in a local maner

@ Allows quasi-exact analysis of usual operations (assignment,
condition test...)

From concrete to abstract (globally)
@ Guarantees termination
@ Allows to infer pieces of code build complex structures

@ Intuition:

static analysis involves post-fixpoint computations (over program
traces)
widening produces a fixpoint over memory cells

.
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Conclusion

Open problems

Many opportunities for research:
@ Improving expressiveness
e.g., sharing in data-structures

» new abstractions
» combining several abstractions into more powerful ones

@ Improving scalability

» shape analyses remain expensive analyses, with few “cheap” and useful

abstractions
» cut down the cost of complex algorithms
isolate smaller families of predicates

@ Applications, beyond software safety:

> security
» verification of functional properties
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Conclusion

Internships

Several topics possible, soon to be announced on the lecture webpage:

Internal reduction operator
@ inductive definitions are very expressive thus tricky to reason about

@ design of an internal reduction operator on abstract elements with
inductive definitions

Modular inter-procedural analysis

@ a relation between pre-conditions and post-conditions can be
formalized in a single shape graph

@ design of an abstract domain for relations between states
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Conclusion
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