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Introduction

Concurrent programming

Idea:
Decompose a program into a set of (loosely) interacting processes.

Why concurrent programs?

@ exploit parallelism in current computers
(multi-processors, multi-cores, hyper-threading)

“Free lunch is over”
change in Moore’s law (%2 transistors every 2 years)

@ exploit several computers
(distributed computing)

e ease of programming
(GUI, network code, reactive programs)
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Introduction

Models of concurrent programs

Many models:

process calculi: CSP, w—calculus, join calculus
@ message passing

@ shared memory (threads)

@ transactional memory
°

combination of several models

Example implementations:
o C, C++, etc. with a thread library (POSIX threads, Win32)
C, C++, etc. with a message library (MPI, OpenMP)

°
@ Java (native threading API)
°
°

Erlang  (based on m—calculus)

JoCaml  (OCaml + join calculus)

processor-level  (interrupts, test-and-set instructions)
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Introduction

Scope

In this talk: thread model

@ implicit communication through shared memory

@ explicit communication through synchronisation primitives
@ a fixed number of threads  (no dynamic creation of threads)
°

numeric programs  (real-valued variables)

Goal: static analysis
@ to infer numeric program invariants
@ to discover possible run-time errors  (e.g., division by 0))

@ parametrized by a choice of abstract domains
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Introduction

Outline

@ State-based analyses
e Sequential programs (reminders)

e Concurrent programs

@ Toward thread-modular analyses

e Detour through proof methods
(Floyd—Hoare, Owicki—Gries, Jones)

e Rely-guarantee in abstract interpretation form

@ Interference-based abstract analyses
e A denotational-style analysis
o Weakly consistent memory models

e Synchronisation
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Introduction

Simple structured numeric language

o finite set of (toplevel) threads: stat; to stat,
o finite set of numeric program variables X € V
o finite set of statement locations ¢/ € £

o finite set of potential error locations w € Q

prog = Ustat;’|| ... || ‘stat,’ (parallel composition)
‘stat! = ‘X <+ expr’ (assignment)
| ‘if expr < 0 then ‘stat’ (conditional)
| ‘while ‘expr > 0 do ‘stat’ (loop)
| ‘stat;’stat’ (sequence)
expr = X|[c,c] | — expr | expr o, expr
C15C2€RU{+OO7_OO}706{+a_7x’/}7MG{:7>727<7§}
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State-based analyses
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State-based analyses Sequential program semantics (reminders)

Sequential program semantics (reminders)
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State-based analyses Sequential program semantics (reminders)

Transition systems (reminder)

Transition system: (X, 7,/)

@ X: a set of program states

@ 7 C X X X: a transition relation
we note (o,0’) € Tas 0 —, o’

o [ C X: a set of initial states

Traces: sequences of states (0g,...,0p,...)
@ X *: finite traces
@ 2“: infinite countable traces
o ¥ & ¥*UTY: finite or infinite countable traces

o pref(t) set of prefixes of t (including t)

We view program semantics and properties as sets of traces
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State-based analyses Sequential program semantics (reminders)

Traces of a transition system (reminder)

Maximal trace semantics: M C P(X)

@ set of total executions (og,...,0n,...)
e starting in an initial state og € I and either
o ending in a blocking state in B < {¢|Vo':0 /4, o'}
e or infinite
M < {{00,...,0n) |00 €I Nop, € BAYi < n:oj —;0j11} U
{<00./...,U,, ...HUO el AViioj —- 0’,'+1}

@ note: traces in M have not strict prefix in M
t,tue MAt € pref(u) = t=u

@ able to express many properties of programs, e.g.:

o safety: M C S (executions stay in S)
e ordering: M C 57° 53° (S2 can only occur after ;)
e termination: M C X* (executions are finite)
e inevitability: M C ¥*S ¥ (executions pass through S)
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State-based analyses Sequential program semantics (reminders)

Traces of a transition system (reminder)

Finite prefix trace semantics: T C P(X*)

@ set of finite prefixes of executions:
T o {(O’o,...,O’n> ’0’0 el,Vi<nioj—; O-,'Jr]_}
@ T is an abstraction of the maximal trace semantics
T = ap(M) where ap,(X) = {t e X*|3ue X:t € pref(u) }
@ T can prove safety properties: T C S* (executions stay in S)
T can prove ordering: T C 57 S5
(if Sy and S, occur, S, occurs after ;)
T cannot prove termination nor inevitability
ap({a"b|n>0}) = (terminates)
ap({a"b|n>0}U{a”})= (may not terminate)
{a",a"b|n>0}
o fixpoint characterisation: T = Ifp F where
F(X)=1U{{(o0,...,0n41)|{00,...,0n) EXANOp—7 Op+1}
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State-based analyses Sequential program semantics (reminders)

From sequential programs to transition systems

Simple sequential numeric program: prog = “stat’*.

Program states: Y = (Lx E)UQ

@ a control state in £

def
@ a memory state: an environment in £ = V — R

@ an error state in Q

Initial states:
start at the first control point ¢/, and with variables set to 0:
I < {(0i, A\V.0)}

Note that P(X) =~ (£ — P(£)) x P():
@ a state property in P(&) at each program point in £,

@ and a set of errors in P(Q2).
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State-based analyses Sequential program semantics (reminders)

From sequential programs to transition systems (cont.)

Expression semantics: E[expr] : &€ — (P(R) x P(Q))

E[X]p = ({p(x)},0)
E[[c,2]]p = ({xeR[a<x<c} 0)
E[—e]p E et (Vi, O1) =E[er]pin

({-vilvieWi}, Or)

Eleron e2]p = letVie{1,2}:(V;, O;) =E[e]pin
({viow|vie Vi,o#/Vwn#0},
OLUO,U{wifo=/N0e W })

@ defined by structural induction on the syntax
@ evaluates in an environment p to a set of values

@ also returns a set of accumulated errors  (divisions by zero)
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State-based analyses Sequential program semantics (reminders)

From sequential programs to transition systems (cont.)

Transitions generated by statements: 7[‘stat’] C ¥ x X

TIOX ] L {(01,p) = (02, p[X = V]) | p € E, v € fst(E[e] p) } U
{(l1,p) 5 w|pe& wesndE[e]p)}

7[Lif e > 0 then 2573 &

{({1,p) = (£2,p)|pe &, Tvefst(E[e] p):vxO0} U
{(01,0) = (13.0) | p € £, v € fot(ELe] p) v 540} U
T[?sBlu{(lL,p) > w|p €&, wesnd(E[e]p)}

7[“*while 2e 1 0 do 3s%] &
{(1,p) = (2,p)|pEE}U
{(€2,p) = (£3,p)|p € &, v e fst(E[e] p):vixO0} U
{(£2,p) = (t4,p)|p€ &, Tv e fst(E[e] p): vl O} U
T[BsPlu{(2,p) > w|p €&, we snd(E[e] p) }

T[sy; 2s5,"3] def [ s12) U 7[25,"3]

Again, defined by structural induction on the syntax.
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State-based analyses Sequential program semantics (reminders)

From sequential programs to transition systems (cont.)

n
e ~0-~0~o
f: e >0 0
|
; e — 0
o+ 2; j
o n <+ [—00, +00]; 3.
e while ¢/ < ndo :
if [0,1] = 0 then
i i+1 .
o ~__~
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State-based analyses Sequential program semantics (reminders)

State abstraction (reminder)

Reachable state semantics: R C P(X)
@ set of states reachable in any execution:
R < {5]3o0,...,00):00 € 1,Vi<nici—,0i41Ao=0,}

@ R is an abstraction of the finite trace semantics: R = as(T)
where as(X) = {o|3oo,...,00) €X:0 =04}

@ R can prove safety properties: R C S (executions stay in S)
R cannot prove ordering, termination, inevitability

@ fixpoint characterisation: R = Ifp G where
G(X)=1U{o|30' e X:0' =0}
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State-based analyses Sequential program semantics (reminders)

Equational form

Principle:
@ see Ifp f as the least solution of an equation x = f(x)
@ partition states by control: P(L x &) ~ L — P(E)
Xy € P(E): invariants at £ € L
Ve LlL:X, = {me&|(t,m)eR}
— set of (recursive) equations on X}

Example:

Xy =1

XQ = C[[I — 2]] Xl

X3 = C[[n — [—OO,+OO]]]X2

L2
2 n ¢ [~o0, +o0;
3 while “ i < ndo

5F[0,1] = O then 4+~ YA
ml(—l—l—l X5:C[[I<I7HX4
07 Xo = Xs
/8 X7:X5UC[[I<—I+1HX6

Xg=C[i>n] X,
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State-based analyses Sequential program semantics (reminders)

Equational form (cont.)

We derive the equation system eq(‘stat’’)
from the program syntax ‘stat’" by induction:

def

eq(“X —e?) =X =C[X+e]Xn}

eq("'if e 1 0 then 2s73) <!
{Xg}z = C[[e > OH X, Xz = Xz U C[e l?él 0]] Xn } U eq(ms“/)
eq("*while 2e 1 0 do 3s"4) &
{ X =X UXa, Xz =Clexa0] X, Xpa=Cleh 0] Xpp } U
eq(3s™)

eq(‘ 51;525253) def eq(élslm) U (52524?3)

where:

o X' X' are fresh variables storing intermediate results
def

o C[X<«e]X ={p[X—vV]lpeX,veE][e]p}
Clex<t0]X = {peX|IveE[p]p:v0}

(for the sake of simplicity, we ignore error collecting here)
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State-based analyses Sequential program semantics (reminders)

Abstract equation system

Given a numeric abstract domain:

@ abstract elements £F abstracting P(€)
with concretization v : £ — P(&)

e sound abstract operators C*[ X « e], Cf[e 0], U*
ffis sound <= VX! € &% F(y(X¥)) C ~(FH(XH))

@ a widening operator V

we can over-approximate in the abstract the solution of the system
Advantages:

@ separate programming language from equation language

@ various choice of solving strategies
(chaotic iterations [Bour93])
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State-based analyses Sequential program semantics (reminders)

Denotational form

Input-output function C[ stat].

Clstat] : (P(£) x P(Q)) — (P(£) x P(2))

C[X e[ (R, 0) = (0, 0) Uler ({p[X = V]|ve V,}. Op)
Clesa07] (R, 0) “ (8, 0) U Lyeg ({p|3v € Vyivixi0}, O,)

def

where (V,, O,) = E[e]p
C[if exxOthens] X = (C[s] ocC[ex0?])X LiC[er40?] X
C[while exi0dos] X =

Cleqa 0?] (IfpAY. XU (C[s] cC[e=07])Y)

Cls1; 2] & C[s2] oC[s1]

U
(W

@ mutate memory states in £, accumulate errors in
(U is the element-wise U in P(&) x P(2))
@ structured: nested loops yield nested fixpoints
@ big-step: forget information on intermediate locations ¢
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State-based analyses Sequential program semantics (reminders)

Abstract denotational analysis

Extend £ to D! & £F x P(Q).
Ct[stat] : D — D*
CH[X < e](R*, O) and C*[e10?] ( R¥, O) are given

CH[if e 0 then s] X &
(CH[s] o C*le0?] )X LIE C¥[ e 4 07 ] X*

C![ while e 0 do s X <
Ctlenk 0] (limAYEYE v (XTI (CH[s] o C*[ena 07])YH))

Cls1; 2] & Csp] o CHs1]

@ the abstract interpreter mimicks an actual interpreter
o efficient in memory  (intermediate invariants are not kept)

@ less flexibility on the iteration scheme
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State-based analyses Concurrent program semantics

Concurrent program semantics
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State-based analyses Concurrent program semantics

Labelled transition systems

Labelled transition system: (X, A, 7,/)

@ X: a set of program states

o A: a set of actions

e TC XY x Ax X: a transition relation
we note (0,a,0') €T as o >, o

o /| C ¥: a set of initial states

Traces: sequences of states interspersed with actions,

aj a a
denoted as g S 01 = -0, 2 Ontl
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State-based analyses Concurrent program semantics

From concurrent programs to labelled transition systems

Notations:
@ concurrent program:  prog ::= ‘istat;"1 || --- || ‘nstat,’n

o thread are identified by number in 7 < {1,...,n}

Program states: Y = ((T — L) x&)UQ

e a control state {(t) € L for each thread t € T
@ a single shared memory state in p € £

@ or an error state in w € Q

Initial states:
threads start at their first control point ¢/, variables are set to 0:
| < {0, AV.0)

Actions:  thread identifiers A & T
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State-based analyses Concurrent program semantics

From concurrent programs to labelled transition systems

Transition relationt: 7 CY X AX X

def - =/

(Za p) _t>T (Z/7p/) — (f(t), P) _>7'[statt] (E (t)7p/) A
Vu # t:l(u) = Z,(u)

@ based on the transition relation of individual threads 7[stat:]
seen as sequential processes stat;

o choose a thread t to run
o update p and £(t)
o leave /(u) intact for u # t

@ each o — ¢’ in 7[stat;] leads to many transitions in 7!
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State-based analyses Concurrent program semantics

Interleaved trace semantics

Maximal and finite prefix trace semantics as before:
t
blocking states: B = {o|Vo',t:0 /4. o'}

Maximal traces: M (finite or infinite)

th— - i
M L {003--- —>1O'n|00E//\O‘nEB/\VI<n20','i>TO','+1}U
{00301... |00€//\Vi:(f;37 Oir1}

Finite prefix traces: T

e 1 th— . t;
Td:f{aoﬁ“- —>10,,\00€I/\Vl<n:a,-—>70,-+1}

fixpoint form: T = Ifp F where

n—1

F(X):IU{003~-~ian+1|aog~-~t—> O'nEX/\O'niTO'nle}

abstraction: T = ap(M)
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State-based analyses Concurrent program semantics

Fairness

Fairness conditions: avoid threads being denied to run

Given enabled(o,t) <% 3o’ € Y0 5, o,

an infinite trace og LY < Op In s
e weakly fair if Vt € T
(Ji:Vj > i:enabled(cj,t)) = (Vi:3j >iaj=1t)
(no thread can be continuously enabled without running)

@ strongly fair if Vt € T
(Vi:3j > i:enabled(cj, t)) = (Vi:3j >iaj=1t)
(no thread can be infinitely often enabled without running)

Proofs under fairness conditions  given:

@ the maximal traces M of a program

@ a property X to prove (as a set of traces)

@ the set F of all (weakly or strongly) fair and of finite traces
= prove M N F C X instead of M C X
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State-based analyses Concurrent program semantics

Fairness (cont.)

Example: whilex >0dox - x+ 1] x<+ —1
@ may not terminate without fairness

@ always terminates under weak and strong fairness

Finite prefix traces
M N F C X reduces to ap(M N F) C ap(X)
for all fairness conditions F, ap(MNF) = ap(M) =T

— fairness-dependent properties cannot be proved with finite prefixes

In the following, we ignore fairness conditions.
(see [Cous85])
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State-based analyses Concurrent program semantics

Equational state semantics

State abstraction R: as before

e R d:ef{0|E|003~~0,,:00€/Vi<n:0;$70;+1/\020,,}

def

o R=as(T) where as(X) £ {o|3oo B -+ 0, X:0=0,)}

® R=IfpG where G(X)=IU{c|30’ eX,teT:0’ 5,0}

Equational form:  (without error handling)

e for each £ € T — L, a variable X; with value in £
@ equations are derived from thread equations eq(stat;) as:
Xy, = Urer { F( A, - X5,) |
ERAES f(/m, X)) € fq(stattz:
Vi < N:£;i(t) =4, Yu # t:4i(u) = l1(u) }
(join with U equations updating a single thread)
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State-based analyses Concurrent program semantics

Equational state semantics (example)

Example: inferring 0 < x <y <10

t1 | to
while 20 =0do | while ““0 =0 do
2if x <ythen| “ify < 10then
Bxex+1 By y+1
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State-based analyses

Concurrent program semantics

Equational state semantics (example)

Example: inferring 0 < x < y <10

t

to

while 0 = 0 do
2if x < y then
Bxex+1

while 0 = 0 do
5 if y < 10 then
By y+1l

(Simplified) equation system:

X174 =1U C[[X — X+ 1HX374 @] C[[X > y]]X274
@] C[[y —y+ ]-]]Xl,ﬁ U C[[y > 10]].1)175
X274 = X174 U C[[y —y+ 1]] X276 U C[[y > 10]].)(275
X3’4 = C[[X < y]]XQA @] C[[y —~y+ 1]];(3,6 @] C[[y > 10]].)(3’5
Xis = C[[X — X+ 1HX3,5 @] C[[X > y]]Xg’5 U &4

Xos =15 U Aoy
Xss =C[x <y]Xos U Xzs

X176 = C[[X — X+ 1HX3,6 U C[[X > y]]X276 U C[[y < 10]]/’)('1,5

X276 = Xl’(, U C[[y < 10]] X2’5

X376 = C[[X < y]] X2’5 U C[[y < 10]] X3,5
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State-based analyses Concurrent program semantics

Equational state semantics (example)

Example: inferring 0 < x < y <10

t1 to
while 0 =0do | while “0 = 0do
2if x < y then 5if y < 10 then
Bxex+1 By y+1

pros
@ easy to construct
@ easy to further abstract in an abstract domain &*

cons
@ explosion of the number of variables and equations
@ explosion of the size of equations
— efficiency issues
@ the equation system does not reflect the program structure
(not defined by induction on the concurrent program)
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State-based analyses Concurrent program semantics

Wish-list

We would like to:

@ keep information attached to syntactic program locations
(control points in £, not control point tuples in T — L)

@ be able to abstract away control information
(precision/cost trade-off control)

@ avoid duplicating thread instructions

@ have a computation structure based on the program syntax
(denotational style)

Ideally:

thread-modular denotational-style semantics
(analyze each thread independently by induction on its syntax)
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Towards thread-modular analyses Detour through proof methods

Detour through proof methods
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Towards thread-modular analyses Detour through proof methods

Floyd—Hoare logic

Logic to prove properties about sequential programs [Hoar69].

Hoare triples:  {P} stat {Q}

@ annotate programs with logic assertions {P} stat { Q}
(if P holds before stat, then Q holds after stat)

e check that {P}stat{Q} is derivable with the following rules
(the assertions are program invariants)

{PAex0}s{Q} PAerk0 = Q

{Ple/x]} X «+ e{P} {P}if e 0 then s {Q}
{Prsi{@} {Q@}s{R} {PAexa0}s{P}
{P}s1;2{R} {P}while exx0do s{P A er40}

{P}s{@} P=FP Q@ = Q
{P}s{Q}
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Towards thread-modular analyses Detour through proof methods

Floyd—Hoare logic as abstract interpretation

Link with the equational state semantics:

Correspondence between ‘stat’ and {P} stat {Q}:
o if P (resp. Q) models exactly the points in X} (resp. Xp)
then {P} stat {Q} is a derivable Hoare triple
o if {P}stat{Q} is derivable, then X; = P and &y = Q
(all the points in X (resp. Xy) satisfy P (resp. Q))
= X, provide the most precise Hoare assertions
in a constructive form

o v(X*) provide (less precise) Hoare assertions
in a computable form

Link with the denotational semantics:

both C[stat] and the proof tree for {P} stat {Q}
reflect the syntactic structure of stat
(compositional methods)
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Towards thread-modular analyses Detour through proof methods

Owicki—Gries proof method

Extension of Floyd—Hoare to concurrent programs [Owic76].

Principle:  add a new rule, for ||

{P1}si{Qi} {P2}s2{Q:}
{P1AP}si | s2{Q1 N Q}
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Towards thread-modular analyses Detour through proof methods

Owicki—Gries proof method

Extension of Floyd—Hoare to concurrent programs [Owic76].

Principle:  add a new rule, for ||

{P1}si{Qi} {P2}s2{Q:}
{P1AP}si | s2{Q1 N Q}

This rule is not always sound!

eg, wehave {X=0,Y=0}X+1{X=1Y=0}
and {X=0,Y=0}if X=0then Y+ 1{X=0,Y =1}
butnot {X =0,Y =0} X<« 1]if X =0then Y <« 1{false}

— we need a side-condition to the rule:
{P1}s1{Q1} and {P>} s, {Q2} must not interfere
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Towards thread-modular analyses Detour through proof methods

Owicki—Gries proof method (cont.)

interference freedom
given proofs Al and AQ of {Pl}Sl {Ql} and {PQ}SQ {02}

A1 does not interfere with A, if:

for any ® appearing before a statement in Ay

for any {P;} s; {Q;} appearing in A,

{® A P} s, {®d} holds

and moreover {Q; A Py} sh{Q1}
i.e.: the assertions used to prove {P;}s; {Q;} are stable by s,
eg, {(X=0,Yel[o,]]} X« 1{X=1Y¢€]0,1]}

{X €][0,1],Y =0}if X =0then Y < 1{X €[0,1], Y € [0, 1]}

= {X=0,Y=0}X<«+1]ifX=0thenY <« 1{X=1Y €][0,1]}

Summary:
@ pros: the invariants are local to threads
@ cons: the proof is not compositional
(proving one thread requires delving into the proof of other threads)

= not satisfactory
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Towards thread-modular analyses Detour through proof methods

Jones' rely-guarantee proof method

Idea: explicit interferences with (more) annotations [Jone81].
Rely-guarantee “quintuples’: R, G F {P} stat {Q}

o if P is true before stat is executed

@ and the effect of other threads is included in R (rely)

@ then @ is true after stat

@ and the effect of stat is included in G (guarantee)

where:
@ P and Q are assertions on states  (in P(X))
@ R and G are assertions on transitions  (in P(X x A x X))

The parallel composition rule becomes:

RU Gy, G + {Pl}Sl {Ql} RUG:, G - {PQ}SQ {Qg}
R,GilUG F{P1 AP} s || s2{Q1 A Q2}
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Towards thread-modular analyses Detour through proof methods

Rely-guarantee example

Example: proving 0 < x <y <10

1 while 0 = 0 do * while 0 = 0 do
2if x < y then if y < 10 then
Bxex+1 By y+1
at /1,/2:0<x<y <10 at /4, /5:0< x<y <10
at /3:0<x<y<10 at 6:0< x<y<10
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Towards thread-modular analyses Detour through proof methods

Rely-guarantee example

Example: proving 0 < x <y <10

> while 0 = 0 do | x unchanged y unchanged | “* while 0 = 0 do
“2if x < y then | y incremented if y < 10 then
Bxex+1 |y<10 By y+1
at /1,/2:0<x<y <10 at /4, /5:0< x<y <10
at /3:0<x<y<10 at 6:0<x<y<10

In this example:
@ guarantee exactly what is relied on  (R; = G; and Ry, = G)
@ rely and guarantee are global assertions

Benefits of rely-guarantee:
@ invariants are still local to threads
@ checking a thread does not require looking at other threads,

only at an abstraction of their semantics
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Detour through proof methods

Auxiliary

t1 | [59)
“x(—x—i—lzz|£3x<—x—i—1£4

Goal:  prove {x =0} t1 || t2 {x = 2}.



Towards thread-modular analyses Detour through proof methods

Auxiliary variables

t1 | to

£1X<_X+1z2‘zsx<_x_|_1z4

Goal:  prove {x =0} t1 || t2 {x = 2}.
we must rely on and guarantee that
each thread increments x exactly once!

Solution: auxiliary variables
do not change the semantics but store extra information:

@ past values of variables (history of the computation)
@ program counter of other threads (pc,)
Example:  for t1: {(pc, = (3 Ax=0)V (pc, = l4Ax=1)}

x4—x+1
{(pca =3 Ax=1)V (pcy =l4Ax=2)}
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Rely-guarantee as abstract interpretation
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Local invariants

State projection: on athread t € T

def

@ add auxiliary variables V; = VU {pc,|ue T ,u #t}

@ enriched environments for t: &; oo Vi =R

(for simplicity, pc, are numeric variables, i.e., £L C R)
def

@ local states: ¥y = (L x &)UQ
def

(recall that ¥ = ((T — £) x £) UQ)

e projection: m(0,p) = (0(t), p[Vu # t: pc,, — £(u)])
extended naturally to m; : P(X) — P(X;)

. . def
Local invariants on t: Ry = m:(R)
(where R is the reachable state abstraction)

Note: 7 is a bijection, no information is lost
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Interferences

Interference: caused by a thread t € T

A; € P(T x X)
Ar & ay(T) where ay(X) & {(0,0")|3---0 o'~ e X}

subset of the transition system 7
@ spawned by t and

@ actually observed in some execution trace
(recall that T is the prefix trace abstraction)
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Nested fixpoint form

Nested fixpoints:
We note: A & Mt eT. A, RE NeT.R.

© we express R; as a function of A and thread t € T
R: = Ifp G:(A) where
G : (T =P(XExX))—P(X:) = P(Xy)
G(V)(X) & 7 (1) U{me(c) | 3Ime(0) € X:
o5, 0'vVaAu#t(0,0') € Y(u)}
(a state is reachable if it is reachable by transitions from t and from
the environment A)

@ we express A; as a function of R and thread t € T

A = B(R)(t) where

B:(Nt:TP(X)) =T — P(XxX)

B(Y)(t) = {(0,0")|me(0) € Y(t) Ao 0"}
(collect transitions starting from reachable states)

o ...
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Nested fixpoint form (cont.)

Q@ R:=Ifp Gt(Z)
@ A: = B(R)(t)
@ we deduce: S = Ifp H where
H:(Nt: TP(50) — (Nt : TP(5L)

H(X) < At.Ifp G(B(X))

(Mt : T.%; are functions from t € T to ¥;)
(Ifp is a fixpoint on vectors indexed by 7))

= nested fixpoints

Nested iterations:

By constructive versions of fixpoint theorems:
O S=1lfp H=U,nH (0)
@ H(X)(t) = Ifp G:(B(X)) = Unen(Gt(B(X)))"(0)
(=~ sequential semantics of each thread in isolation)
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Abstract rely-guarantee

Suggested algorithm:  nested iterations

once abstract domains for states and interferences are chosen
@ start from Sﬁ ot Ati o8

e while A is not stable
e compute S,,+1 L Atlfp Gu( +) by iteration with widening v
(~ separate analysis of each thread)
° compute An+1 & Aﬁ v B (5n+1)

e when A A,,H, return S,,

=—> thread-modular analysis
parameterized by abstract domains
able to easily reuse existing sequential analyses
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Abstracting states and interference

Flow-insensitive abstractions:

@ on states: forget auxiliary variables
ay: P(X:) — (L x P(E))

aa(X) = { (Lo e) [ (L) € X}
@ on interferences: forget all control locations:
ac:P(ZXX)—=PExE)

ac(X) = {(p, ) 130T ((,p),(,0)) € X }

Non-relational abstractions: on interferences

o forget the input-sensitivity:
aj : P(EXE)—=P(E)
ai(X) = {013 (p.p) € X}

o forget the relationship between variables:
an: P(E€)— (V—P(R))

def

an(X) & AV € Vf (V)] p € X}

Further abstractions in numeric abstract domains.
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

From traces to thread-modular analyses

abstract states abstract interferences static analyzer

E (T x £) — &t E T 5 &t
foo

input-insensitive interferences

ag —@ —@® — @
T = P(E)
fo
local states flow-insensitive interferences rely-guarantee
[ N N ] o—0 06— 0 o 0o (without aux. variables)
(T x L) = P(E) T — P(E x E)
1‘0@ MC
local states interferences rely-guarantee
oo e ® © e o o e (with aux. variables)
R:Nt: T.P(X¢) A:T — P(ExX)
pre por
interleaved execution trace prefixes test

® @ @® @ TcP(

course 11, 2012-2013 Static Analysis of Concurrent Programs Antoine Miné p. 47 / 81



Towards thread-modular analyses Rely-guarantee as abstract interpretation

Compare with sequential analyses. . .

abstract states
L— &t

]ag

states
00 reachability

R € P(%)

Tas
execution trace prefixes
o—0—0—0 test

T € P(T¥)

static analyzer
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Construction of an interference-based analysis

Construction of an interference-based analysis
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Construction of an interference-based analysis

Reminder: sequential analysis in denotational form

Expression semantics:  E[expr] : £ = (P(R) x P(Q))
E[XTp = ({p(X)}, 0)

Ellc,ellp = ({xeRla<x<a}, )
E[[—elﬂp def |et<V1, 01>:E[[61]]pin <{—V1‘V1€ Vl}, 01>
E[ero, e2]p & let Vie {1,2}:(V,, O;) =E[e]pin
<{V1<>V2|V,‘€ \/;,03&/\/V2#0}, 01U02U{wif0://\06 V2}>

Statement semantics:  C[stat] : (P(€) x P(Q)) = (P(€) x P(Q2))
C[X «e] (R, 0) = (0,0) Ull,er ({pIX = V]IV EV,}, 0,)
Cle=a0?](R, O) = (0, 0) U [,cg ({p|IveE V,ivx0}, 0,)

Clif exaOthens] X < (C[s] oC[e=0?])XLC[e0?7] X

C[while exx0dos] X =
Cle40?] (IfpAY.X L (C[s] o C[e07])Y)
Clst; 2] & C[s2] oC[s1]

def

where (V,, O,) = E[e]p
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Construction of an interference-based analysis

Denotational semantics with interferences

Interferences in Z & 7 x V x R
(t, X, v) means: t can store the value v into the variable X

We define the analysis of a thread t
with respect to a set of interferences | C 7.

Expressions with interference: for thread t

Ei[expr] : (€ x P(Z)) = (P(R) x P())

@ Apply interferences to read variables:
EJX](p, 1) < ({p(X)}U{v|Tu#t:(u X, v)el} D)
@ Pass recursively | down to sub-expressions:

Ef-e](p /) =
let <V1, Ol>:Et[[el]]<p, /> in ({*V1|V1 S Vl}, Ol>
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Construction of an interference-based analysis

Denotational semantics with interferences (cont.)

Statements with interference: for thread t

Ci[stat] : (P(E) x P(Q) x P(I)) = (P(E) x P(Q) x P(I))

@ pass interferences to expressions
@ collect new interferences due to assignments
@ accumulate interferences from inner statements
G[X «e](R, 0, 1) %
(0,0, 1) U Lyep ({pIX = Vv eV, ), Op { (£ X, v) [vE V)

Cilsii 2] = Cls2] 0 CGs1]

(nOting <Vpe Op> d:ef Et[[e]] <[), />)
(U is now the element-wise U in P(E) x P(Q) x P(I))
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Construction of an interference-based analysis

Denotational semantics with interferences (cont.)

Program semantics: P[prog] C Q

Given prog ::= stat; || --- || stat,, we compute:

Plprog] ' |IfoA(O, I). e [Celstate] (o, 0, />]M]Q

@ each thread analysis starts in an initial environment set
& & {AV.0}

o [X]q,z projects X € P(E) x P(2) x P(Z) on P(Q) x P(I)
and interferences and errors from all threads are joined
(the output environments are ignored)

e P[prog] only outputs the set of possible run-time errors
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Construction of an interference-based analysis

Example

t1 | tr

while 20 =0do | while ”“0=0do
2if x <ythen | “ify < 10then
Bxe—x+1 By y+1

Concrete interference semantics:

iteration 1

=10

/1:x=0,y=0

4 : x=0,y€[0,10]

new | ={(t2, y,1),....(t2, y,10) }
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Construction of an interference-based analysis

Example

t1 | tr

while 20 =0do | while ”“0=0do
2if x <ythen | “ify < 10then
Bxe—x+1 By y+1

Concrete interference semantics:

iteration 2

I:{<t2,y, >? <
/1 : x€[010]y20
]

,10
newl:{(tl,x, 1) S(t1, x,10),(t2, y,1),...,(t2, ¥, 10) }

course 11, 2012-2013 Static Analysis of Concurrent Programs Antoine Miné p. 54 /81



Construction of an interference-based analysis

Example

t1 | tr

while 20 =0do | while ”“0=0do
2if x <ythen | “ify < 10then
Bxe—x+1 By y+1

Concrete interference semantics:

iteration 3

= {0 1)
/1:x€l0,10], y =0
4 x =0, yG[Ol]

newl—{(tl,x,l) S (t1, x,10),(t2, y,1),...,(t2, ¥, 10) }

t1, X, 10>,<t2,y, 1),...,<t2,y, 10>}
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Construction of an interference-based analysis

Example

t1 | to

while 20 =0do | while ”“0=0do
2if x <ythen | “ify < 10then
Bxex+1 By y+il

Concrete interference semantics:

iteration 3
I:{<t1axal> <
/1: x €10,10], y:0
4 : x=0,y€][0,10]

newl:{(tl,x,1),...,(t1,x, 10),(to, y, 1),...,(t2, y, 10) }

Note: we don't get that x < y at /1, only that x,y € [0, 10]

t1, X, 10),<t2,y, 1),...,<t2,y, 10>}
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Construction of an interference-based analysis

Interference abstraction

Abstract interferences Z*

P(Z) £ P(T x V x R) is abstracted as Z¢ < (T x V) — Rf
where R abstracts P(R) (e.g. intervals)

Abstract semantics with interferences C/[s]

derived from C![s] in a generic way:
Example: C[X « e] (R%, Q, I*)
o for each Y in e, get its interference Y5 = | |% {/*(u, Y)|u#t}

o if Y4 # L% replace Y in e with get( Y, RY) Uk Vi
(where get(Y, R*) extracts the abstract values in R* of a variable
Y from Rf € &%)

@ compute (R¥ O') =Ci[e] (R*, O)
@ enrich /*(t, X ) with get(X, R¥)
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Construction of an interference-based analysis

Static analysis with interferences

P4 prog ] £
[ano, 1), (0, 1)V | for [CE[[statt]] (&, 0, m]

Q7 ]Q

o effective analysis by structural induction
@ termination ensured by a widening

@ parametrized by a choice of abstract domains R, &F

@ interferences are flow-insensitive and non-relational in Rf

e thread analysis remains flow-sensitive and relational in &£*

[Miné12]
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Construction of an interference-based analysis Path-based semantics

Path-based semantics
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Construction of an interference-based analysis Path-based semantics

Control paths

atomic ::= X < expr | expr > 0?
Control paths
7 : stat — P(atomic™)
(X—e) Z {X«e}
7(if exa0thens) & ({exa0?}-7(s))U{ept 07}
(while e > 0 do s) % (U,.ZO({ ex107} - ﬂ(s))") {er4 0?7}
(

T\ 51, 52) = 71'(51) 7'('(52)

™

s

m(stat) is a (generally infinite) set of finite control paths
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Construction of an interference-based analysis Path-based semantics

Path-based concrete semantics of sequential programs

Join-over-all-path semantics
[P]:(P(&)xP(Q)— (P(E)xP(Q) P C atomic*

[PI(R,0)= || (Clsalo---oClst])(R, O)

S1-....SnEP

Semantic equivalence

C[stat] = [n(stat)]

(not true in the abstract)

Advantages:
@ easily extended to concurrent programs (path interleavings)

@ able to model program transformations (weak memory models)
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Construction of an interference-based analysis Path-based semantics

Path-based concrete semantics of concurrent programs

def
Ty =

{interleavings of m(stat;), t € T }
= {p € atomic* |Vt € T, proj.(p) € m(stat;)}

Interleaving program semantics

P.lprog] € [ [m]({&, 0)]q

(proj(p) keeps only the atomic statement in p coming from thread t)
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Construction of an interference-based analysis Path-based semantics

Soundness of the interference semantics

P.[prog] C P[prog]

Proof sketch:

o define [P]X = [|{Cst;.. ;0] X|s1-...-s,€ P},
then [7(s)] = Ci[s];

@ given the interference fixpoint | C Z from P[ prog],
prove by recurrence on the length of p € 7, that:
o Vte Tavp € [ [[p]]<50, ®>]€'
I €[ lproje(p)[(&o, 0, I')]¢ such that
VX eV, p(X)=p(X)or {u, X, p(X)) €I for some u # t.

o [ [PI(&, D)lg € Urer [ t[proji(p)[{&0, 0, g

Note: sound but not complete
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Construction of an interference-based analysis Weakly consistent memories

Weakly consistent memories
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Construction of an interference-based analysis Weakly consistent memories

Issues with weak consistency

program written

Fl «— 1; F2 «— 1;
if F, = 0 then | if F; = O then
51 S

(simplified Dekker mutual exclusion algorithm)

S1 and S; cannot execute simultaneously.
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Construction of an interference-based analysis Weakly consistent memories

Issues with weak consistency

program written program executed
Fi+1; F+1; —— if ;, =0then | if /; =0 then
ifF2:0then ifF1:0then F1<—].; F2<—].;
51 52 51 52

(simplified Dekker mutual exclusion algorithm)

S1 and S; can execute simultaneously.
Not a sequentially consistent behavior!

Caused by:
o write FIFOs, caches, distributed memory
@ hardware or compiler optimizations, transformations
o ...

behavior accepted by Java [Mans05]
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Weakly consistent memories
Out of thi

original program

Rl(—X; Rz(—Y;
Y(—Rl X(—Rz

(example from causality test case #4 for Java by Pugh et al.)

We should not have Ry = 42.



Construction of an interference-based analysis Weakly consistent memories

Out of thin air principle

“optimized” program

original program

Rl X: | Ry Y: — A

Ri+X; | R+ Y;
YR | X+—R, YleRl X2<_R2

(example from causality test case #4 for Java by Pugh et al.)

We should not have R; = 42.

Possible if we allow speculative writes!
— we disallow this kind of program transformations.

(also forbidden in Java)

course 11, 2012-2013 Static Analysis of Concurrent Programs Antoine Miné p. 64 / 81



Weakly consistent memories

original program
XeX+1| X+ X+1

We assumed that assignments are atomic. . .



Construction of an interference-based analysis Weakly consistent memories

Atomicity and granularity

executed program

original program

I’1<—X+1 I’2(—X+1
XeX+1| X+ X+1 X n X

We assumed that assignments are atomic. . .
but that may not be the case

The second program admits more behaviors
e.g.: X =1 at the end of the program

[Reyn04]
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Construction of an interference-based analysis Weakly consistent memories

Path-based definition of weak consistency

Acceptable control path transformations: p ~~ ¢

only reduce interferences and errors
@ Reordering: Xy <—e1-Xo e ~» Xo e - X1+ €
(if X1 ¢ var(ex), Xa ¢ var(er), and e; does not stop the program)
@ Propagation: X <—e-s ~» X« e-s[e/X]
(if X ¢ var(e), var(e) are thread-local, and e is deterministic)

e Factorization: sy ... s, ~» X< e-si[X/e] ... sy[X/€]
(if X is fresh, Vi, var(e) N Ival(s;) = 0, and e has no error)

@ Decomposition: X «<—e1+e ~ T+ e - X+ T+e
(change of granularity)

but NOT:
@ “out-of-thin-air” writes: X < e ~ X <+ 42-X < ¢
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Construction of an interference-based analysis Weakly consistent memories

Soundness of the interference semantics

Interleaving semantics of transformed programs P’,[ prog |

o 7'(s) = {p|3p en(s):p ~ *p}
o . = {interleavings of 7'(stat;), t € T }
o Pllprog] = [ [ ]{&. 0)]q

P.lprog] € P[prog]

— the interference semantics is sound
wrt. weakly consistent memories and changes of granularity
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Construction of an interference-based analysis Synchronisation

Synchronisation
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Construction of an interference-based analysis Synchronisation

Scheduling
stat = lock(m)
|  unlock(m)
| X « islocked(m)
| yield
m € M : finite set of non-recursive mutexes
each thread has a fixed, distinct priority

Real-time scheduling

@ only the highest priority unblocked thread can run
@ lock and yield may block

o yielding threads wake up non-deterministically
(preempting lower-priority threads)

@ explicit synchronisation enforces memory consistency
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Construction of an interference-based analysis Synchronisation

Mutual exclusion

lock(m) unlock(m)
W W '
Pl — @@ 0

R R W R
lock(m) unlock(m)

Interleaving semantics P.[ prog ] :

restrict interleavings of control paths

Interference semantics P[ prog ], P*[ prog]:
partition wrt. an abstract local view of the scheduler C
0 & ~ ExC, & ~ C— &l
0T ¥ TxVxR ~ IT%¥ TxCxVxR,
P E (T xV) 5 R TFE (T xCxV) o R
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Construction of an interference-based analysis Synchronisation

Mutual exclusion

lock(m) unlock(m)

Data-race effects

Partition wrt. mutexes M C M held by the current thread t
o C[X <« e](p, M, I) adds
{(t, M, X, v) |veE[X](p, M, 1)} tol
o E[X](p. M, I)=
{pX)JU{v|{t,M X, v)yel, t£t, MM =0}
o flow-insensitive, subject to weak memory consistency
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Construction of an interference-based analysis Synchronisation

Mutual exclusion

lock(m) unlock(m)
W W '
Pl — @@

P2 rerrereeee e H—H
R R W R

lock(m) unlock(m)

Well-synchronized effects

@ last write before unlock affects first read after lock

@ partition interferences wrt. a protecting mutex m (and M)
o CiJunlock(m)] (p, M, I') stores p(X) into /

o C[lock(m)] (p, M, I') imports values form [ into p

@ imprecision: non-relational, largely flow-insensitive
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Construction of an interference-based analysis

Example analysis

Synchronisation

abstract consumer/producer

t t
while 0=0 do while 0=0 do
lock(m);" lock(m);
if X >0then ?X < X —1; X~ X+1;
unlock(m); if X > 10 then X « 10;
By« X unlock(m)

@ at /1, the unlock — lock effect from t> imports {X} x [1,10]

e at (2, X € [1,10], no effect from to: X <= X — 1 is safe

e at /3, X €[0,9], and t» has the effects {X} x [1,10]

so, Y € [0, 10]
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Construction of an interference-based analysis

Real-time scheduling

Synchronisation

priority-based critical sections

high thread low thread
L < islocked(m); lock(m);
if L =0 then Z+Y,
Y+ Y+1; Y + 0;
yield unlock(m)

Partition interferences and memory states wrt. scheduling state

@ partition wrt. mutexes tested with islocked
o L < islocked(m) creates two partitions

e Py where L =0 and m is free

o P; where L =1 and m is locked

@ Py handled as if m where locked

@ blocking primitives merge Py and P; (lock, yield)
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Construction of an interference-based analysis Limitations of the interference abstraction

Limitations of the interference abstraction
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Construction of an interference-based analysis Limitations of the interference abstraction

Lack of relational lock invariants

a difficult example

& :X=Y="5
while 1 do while 1 do
lock(m); lock(m);
if X > 0 then if X < 10 then
X+ X-1; X+ X+1;
Y+~Y—-1; Y+ Y+1,
unlock(m) unlock(m)

Our analysis finds X € [0, 10], but no bound on Y.

Actually Y € [0,10].
To prove this, we would need to infer the relational invariant
X =Y at lock boundaries.
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Construction of an interference-based analysis Limitations of the interference abstraction

Lack of inter-process flow-sensitivity

a more difficult example

while 1 do while 1 do
lock(m); lock(m);
X< X+1, X+~ X+1;
unlock(m); unlock(m);
lock(m); lock(m);
X+ X-1; X+ X-1,
unlock(m) unlock(m)

Our analysis finds no bound on X.

Actually X € [—2,2] at all program points.

To prove this we need to infer an invariant on

the history of interleaved executions:

no more than two incrementation (resp. decrementation) can
occur without a decrementation (resp. incrementation).
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Summary




Summary

Conclusion

We presented a static analysis that is:
@ inspired from thread-modular proof methods
@ sound for all interleavings
@ sound for weakly consistent memory semantics
@ aware of scheduling and synchronization

@ parametrized by abstract domains

Future work: leverage the connection with rely-guarantee

@ relational interferences
(especially for synchronized program parts)

o flow-sensitive interferences and invariants
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