
Static Analysis of Concurrent Programs
MPRI 2–6: Abstract Interpretation,

application to verification and static analysis

Antoine Miné

CNRS, École normale supérieure

course 11, 2012–2013

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 1 / 81

Introduction

Concurrent programming

Idea:

Decompose a program into a set of (loosely) interacting processes.

Why concurrent programs?

exploit parallelism in current computers
(multi-processors, multi-cores, hyper-threading)

“Free lunch is over”
change in Moore’s law (×2 transistors every 2 years)

exploit several computers
(distributed computing)

ease of programming
(GUI, network code, reactive programs)

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 2 / 81

Introduction

Models of concurrent programs

Many models:

process calculi: CSP, π−calculus, join calculus

message passing

shared memory (threads)

transactional memory

combination of several models

Example implementations:

C, C++, etc. with a thread library (POSIX threads, Win32)

C, C++, etc. with a message library (MPI, OpenMP)

Java (native threading API)

Erlang (based on π−calculus)

JoCaml (OCaml + join calculus)

processor-level (interrupts, test-and-set instructions)

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 3 / 81

Introduction

Scope

In this talk: thread model

implicit communication through shared memory

explicit communication through synchronisation primitives

a fixed number of threads (no dynamic creation of threads)

numeric programs (real-valued variables)

Goal: static analysis

to infer numeric program invariants

to discover possible run-time errors (e.g., division by 0))

parametrized by a choice of abstract domains

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 4 / 81

Introduction

Outline

State-based analyses

Sequential programs (reminders)

Concurrent programs

Toward thread-modular analyses

Detour through proof methods
(Floyd–Hoare, Owicki–Gries, Jones)

Rely-guarantee in abstract interpretation form

Interference-based abstract analyses

A denotational-style analysis

Weakly consistent memory models

Synchronisation

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 5 / 81

Introduction

Simple structured numeric language

finite set of (toplevel) threads: stat1 to statn

finite set of numeric program variables X ∈ V

finite set of statement locations ` ∈ L
finite set of potential error locations ω ∈ Ω

Language syntax

prog ::= `stat1
` || . . . || `statn

` (parallel composition)

`stat` ::= `X ← expr ` (assignment)
| `if expr ./ 0 then `stat` (conditional)
| `while `expr ./ 0 do `stat` (loop)
| `stat; `stat` (sequence)

expr ::= X | [c1, c2] | − expr | expr �ω expr

c1, c2 ∈ R ∪ {+∞,−∞}, � ∈ {+,−,×, / }, ./∈ {=, >,≥, <,≤}

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 6 / 81

State-based analyses

State-based analyses

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 7 / 81

State-based analyses Sequential program semantics (reminders)

Sequential program semantics (reminders)

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 8 / 81

State-based analyses Sequential program semantics (reminders)

Transition systems (reminder)

Transition system: (Σ, τ, I)

Σ: a set of program states

τ ⊆ Σ× Σ: a transition relation
we note (σ, σ′) ∈ τ as σ →τ σ

′

I ⊆ Σ: a set of initial states

Traces: sequences of states 〈σ0, . . . , σn, . . .〉
Σ∗: finite traces

Σω: infinite countable traces

Σ∞
def
= Σ∗ ∪ Σω: finite or infinite countable traces

pref (t) set of prefixes of t (including t)

We view program semantics and properties as sets of traces

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 9 / 81

State-based analyses Sequential program semantics (reminders)

Traces of a transition system (reminder)

Maximal trace semantics: M ⊆ P(Σ∞)

set of total executions 〈σ0, . . . , σn, . . .〉
starting in an initial state σ0 ∈ I and either

ending in a blocking state in B
def
= {σ | ∀σ′:σ 6→τ σ

′ }
or infinite

M
def
= { 〈σ0, . . . , σn〉 |σ0 ∈ I ∧ σn ∈ B ∧ ∀i < n:σi →τ σi+1 } ∪
{ 〈σ0, . . . , σn . . .〉 |σ0 ∈ I ∧ ∀i :σi →τ σi+1 }

note: traces in M have not strict prefix in M
t, u ∈ M ∧ t ∈ pref (u) =⇒ t = u

able to express many properties of programs, e.g.:

safety: M ⊆ S∞ (executions stay in S)
ordering: M ⊆ S∞1 S∞2 (S2 can only occur after S1)
termination: M ⊆ Σ∗ (executions are finite)
inevitability: M ⊆ Σ∗S Σ∞ (executions pass through S)

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 10 / 81

State-based analyses Sequential program semantics (reminders)

Traces of a transition system (reminder)

Finite prefix trace semantics: T ⊆ P(Σ∗)

set of finite prefixes of executions:

T
def
= { 〈σ0, . . . , σn〉 |σ0 ∈ I , ∀i < n:σi →τ σi+1 }

T is an abstraction of the maximal trace semantics
T = αp(M) where αp(X)

def
= { t ∈ Σ∗ | ∃u ∈ X : t ∈ pref (u) }

T can prove safety properties: T ⊆ S∗ (executions stay in S)

T can prove ordering: T ⊆ S∗1 S∗2
(if S1 and S2 occur, S2 occurs after S1)

T cannot prove termination nor inevitability
αp({ anb | n ≥ 0 }) = (terminates)
αp({ anb | n ≥ 0 } ∪ { aω }) = (may not terminate)
{ an, anb | n ≥ 0 }

fixpoint characterisation: T = lfp F where
F (X) = I ∪ { 〈σ0, . . . , σn+1〉 | 〈σ0, . . . , σn〉 ∈ X ∧ σn →τ σn+1 }

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 11 / 81

State-based analyses Sequential program semantics (reminders)

From sequential programs to transition systems

Simple sequential numeric program: prog = `i stat`x .

Program states: Σ
def
= (L × E) ∪ Ω

a control state in L
a memory state: an environment in E def

= V→ R

an error state in Ω

Initial states:

start at the first control point `i , and with variables set to 0:

I
def
= { (`i , λV .0) }

Note that P(Σ) ' (L → P(E))× P(Ω):

a state property in P(E) at each program point in L,

and a set of errors in P(Ω).

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 12 / 81

State-based analyses Sequential program semantics (reminders)

From sequential programs to transition systems (cont.)

Expression semantics: EJ expr K : E → (P(R)× P(Ω))

EJ X K ρ def
= 〈 { ρ(X) }, ∅ 〉

EJ [c1, c2] K ρ def
= 〈 { x ∈ R | c1 ≤ x ≤ c2 }, ∅ 〉

EJ−e1 K ρ def
= let 〈V1, O1 〉 = EJ e1 K ρ in

〈 {−v1 | v1 ∈ V1 }, O1 〉

EJ e1 �ω e2 K ρ def
= let ∀i ∈ { 1, 2 }: 〈Vi , Oi 〉 = EJ ei K ρ in

〈 { v1 � v2 | vi ∈ Vi , � 6= / ∨ v2 6= 0 },
O1 ∪ O2 ∪ {ω if � = / ∧ 0 ∈ V2 } 〉

defined by structural induction on the syntax

evaluates in an environment ρ to a set of values

also returns a set of accumulated errors (divisions by zero)

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 13 / 81

State-based analyses Sequential program semantics (reminders)

From sequential programs to transition systems (cont.)

Transitions generated by statements: τ [`stat`
′
] ⊆ Σ× Σ

τ [`1X ← e`2]
def
= { (`1, ρ)→ (`2, ρ[X 7→ v]) | ρ ∈ E , v ∈ fst(EJ e K ρ) } ∪
{ (`1, ρ)→ ω | ρ ∈ E , ω ∈ snd(EJ e K ρ) }

τ [`1if e ./ 0 then `2s`3]
def
=

{ (`1, ρ)→ (`2, ρ) | ρ ∈ E , ∃v ∈ fst(EJ e K ρ): v ./ 0 } ∪
{ (`1, ρ)→ (`3, ρ) | ρ ∈ E , ∃v ∈ fst(EJ e K ρ): v 6./ 0 } ∪
τ [`2s`3] ∪ { (`1, ρ)→ ω | ρ ∈ E , ω ∈ snd(EJ e K ρ) }

τ [`1while `2e ./ 0 do `3s`4]
def
=

{ (`1, ρ)→ (`2, ρ) | ρ ∈ E } ∪
{ (`2, ρ)→ (`3, ρ) | ρ ∈ E , ∃v ∈ fst(EJ e K ρ): v ./ 0 } ∪
{ (`2, ρ)→ (`4, ρ) | ρ ∈ E , ∃v ∈ fst(EJ e K ρ): v 6./ 0 } ∪
τ [`3s`2] ∪ { (`2, ρ)→ ω | ρ ∈ E , ω ∈ snd(EJ e K ρ) }

τ [`1s1; `2s2
`3]

def
= τ [`1s1

`2] ∪ τ [`2s2
`3]

Again, defined by structural induction on the syntax.

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 14 / 81

State-based analyses Sequential program semantics (reminders)

From sequential programs to transition systems (cont.)

Example

• i ← 2;
• n← [−∞,+∞];
•while • i < n do

if [0, 1] = 0 then
i ← i + 1

•

n

i

...

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 15 / 81

State-based analyses Sequential program semantics (reminders)

State abstraction (reminder)

Reachable state semantics: R ⊆ P(Σ)

set of states reachable in any execution:
R

def
= {σ | ∃〈σ0, . . . , σn〉:σ0 ∈ I , ∀i < n:σi →τ σi+1 ∧ σ = σn }

R is an abstraction of the finite trace semantics: R = αs(T)

where αs(X)
def
= {σ | ∃〈σ0, . . . , σn〉 ∈ X :σ = σn }

R can prove safety properties: R ⊆ S (executions stay in S)

R cannot prove ordering, termination, inevitability

fixpoint characterisation: R = lfp G where
G (X) = I ∪ {σ | ∃σ′ ∈ X :σ′ →τ σ }

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 16 / 81

State-based analyses Sequential program semantics (reminders)

Equational form

Principle:

see lfp f as the least solution of an equation x = f (x)

partition states by control: P(L × E) ' L → P(E)
X` ∈ P(E): invariants at ` ∈ L
∀` ∈ L:X`

def
= {m ∈ E | (`,m) ∈ R }

=⇒ set of (recursive) equations on X`

Example:

`1 i ← 2;
`2 n← [−∞,+∞];
`3 while `4 i < n do

`5 if [0, 1] = 0 then
`6 i ← i + 1

`7

`8

X1 = I
X2 = CJ i ← 2 KX1

X3 = CJ n← [−∞,+∞] KX2

X4 = X3 ∪ X7

X5 = CJ i < n KX4

X6 = X5

X7 = X5 ∪ CJ i ← i + 1 KX6

X8 = CJ i ≥ n KX4

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 17 / 81

State-based analyses Sequential program semantics (reminders)

Equational form (cont.)

We derive the equation system eq(`stat`
′
)

from the program syntax `stat`
′

by induction:

eq(`1X ← e`2)
def
= {X`2 = CJ X ← e KX`1 }

eq(`1if e ./ 0 then `2s`3)
def
=

{X`2 = CJ e ./ 0 KX`1, X`3 = X`3′ ∪ CJ e 6./ 0 KX`1 } ∪ eq(`2s`3
′
)

eq(`1while `2e ./ 0 do `3s`4)
def
=

{X`2 = X`1 ∪ X`4′ , X`3 = CJ e ./ 0 KX`2, X`4 = CJ e 6./ 0 KX`2 } ∪
eq(`3s`4

′
)

eq(`1s1; `2s2
`3)

def
= eq(`1s1

`2) ∪ (`2s2
`3)

where:

X `3′ , X `4′ are fresh variables storing intermediate results

CJ X ← e KX def
= { ρ[X 7→ v] | ρ ∈ X , v ∈ EJ e K ρ }

CJ e ./ 0 KX def
= { ρ ∈ X | ∃v ∈ EJ ρ K ρ: v ./ 0 }

(for the sake of simplicity, we ignore error collecting here)

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 18 / 81

State-based analyses Sequential program semantics (reminders)

Abstract equation system

Given a numeric abstract domain:

abstract elements E] abstracting P(E)
with concretization γ : E] → P(E)

sound abstract operators C]J X ← e K , C]J e ./ 0 K , ∪]
f] is sound ⇐⇒ ∀X] ∈ E]: f (γ(X])) ⊆ γ(f](X]))

a widening operator O

we can over-approximate in the abstract the solution of the system

Advantages:

separate programming language from equation language

various choice of solving strategies
(chaotic iterations [Bour93])

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 19 / 81

State-based analyses Sequential program semantics (reminders)

Denotational form

Input-output function CJ stat K .

CJ stat K : (P(E)× P(Ω))→ (P(E)× P(Ω))

CJ X ← e K 〈R, O 〉 def
= 〈 ∅, O 〉 t

⊔
ρ∈R 〈 { ρ[X 7→ v] | v ∈ Vρ }, Oρ 〉

CJ e ./ 0? K 〈R, O 〉 def
= 〈 ∅, O 〉 t

⊔
ρ∈R 〈 { ρ | ∃v ∈ Vρ: v ./ 0 }, Oρ 〉

where 〈Vρ, Oρ 〉
def
= EJ e K ρ

CJ if e ./ 0 then s K X
def
= (CJ s K ◦ CJ e ./ 0? K)X t CJ e 6./ 0? K X

CJ while e ./ 0 do s K X
def
=

CJ e 6./ 0? K (lfpλY .X t (CJ s K ◦ CJ e ./ 0? K)Y)

CJ s1; s2 K def
= CJ s2 K ◦ CJ s1 K

mutate memory states in E , accumulate errors in Ω
(t is the element-wise ∪ in P(E)× P(Ω))

structured: nested loops yield nested fixpoints

big-step: forget information on intermediate locations `

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 20 / 81

State-based analyses Sequential program semantics (reminders)

Abstract denotational analysis

Extend E] to D] def
= E] × P(Ω).

C]J stat K : D] → D]

C]J X ← e K 〈R], O 〉 and C]J e ./ 0? K 〈R], O 〉 are given

C]J if e ./ 0 then s K X] def
=

(C]J s K ◦ C]J e ./ 0? K)X] t] C]J e 6./ 0? K X]

C]J while e ./ 0 do s K X] def
=

C]J e 6./ 0? K (limλY].Y] O (X] t (C]J s K ◦ C]J e ./ 0? K)Y]))

C]J s1; s2 K def
= C]J s2 K ◦ C]J s1 K

the abstract interpreter mimicks an actual interpreter

efficient in memory (intermediate invariants are not kept)

less flexibility on the iteration scheme

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 21 / 81

State-based analyses Concurrent program semantics

Concurrent program semantics

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 22 / 81

State-based analyses Concurrent program semantics

Labelled transition systems

Labelled transition system: (Σ,A, τ, I)

Σ: a set of program states

A: a set of actions

τ ⊆ Σ×A× Σ: a transition relation
we note (σ, a, σ′) ∈ τ as σ

a→τ σ
′

I ⊆ Σ: a set of initial states

Traces: sequences of states interspersed with actions,

denoted as σ0
a0→ σ1

a1→ · · ·σn
an→ σn+1

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 23 / 81

State-based analyses Concurrent program semantics

From concurrent programs to labelled transition systems

Notations:

concurrent program: prog ::= `i1stat1
`x1 || · · · || `instatn

`xn

thread are identified by number in T def
= { 1, . . . , n }

Program states: Σ
def
= ((T → L)× E) ∪ Ω

a control state `(t) ∈ L for each thread t ∈ T
a single shared memory state in ρ ∈ E
or an error state in ω ∈ Ω

Initial states:

threads start at their first control point `it , variables are set to 0:

I
def
= {λt.`it , λV .0 }

Actions: thread identifiers A def
= T

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 24 / 81

State-based analyses Concurrent program semantics

From concurrent programs to labelled transition systems

Transition relation: τ ⊆ Σ×A× Σ

(`, ρ)
t→τ (`

′
, ρ′)

def⇐⇒ (`(t), ρ)→τ [statt] (`
′
(t), ρ′) ∧

∀u 6= t: `(u) = `
′
(u)

based on the transition relation of individual threads τ [statt]
seen as sequential processes statt

choose a thread t to run
update ρ and `(t)
leave `(u) intact for u 6= t

each σ → σ′ in τ [statt] leads to many transitions in τ !

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 25 / 81

State-based analyses Concurrent program semantics

Interleaved trace semantics

Maximal and finite prefix trace semantics as before:

blocking states: B
def
= {σ | ∀σ′, t:σ

t
6→τ σ

′ }

Maximal traces: M (finite or infinite)

M
def
= {σ0

t0→ · · · tn−1→ σn |σ0 ∈ I ∧ σn ∈ B ∧ ∀i < n:σi
ti→τ σi+1 } ∪

{σ0
t0→ σ1 . . . |σ0 ∈ I ∧ ∀i :σi

ti→τ σi+1 }

Finite prefix traces: T

T
def
= {σ0

t0→ · · · tn−1→ σn |σ0 ∈ I ∧ ∀i < n:σi
ti→τ σi+1 }

fixpoint form: T = lfp F where

F (X) = I ∪ {σ0
t0→ · · · tn→ σn+1 |σ0

t0→ · · · tn−1→ σn ∈ X ∧ σn
tn→τ σn+1 }

abstraction: T = αp(M)

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 26 / 81

State-based analyses Concurrent program semantics

Fairness

Fairness conditions: avoid threads being denied to run

Given enabled(σ, t)
def⇐⇒ ∃σ′ ∈ Σ:σ

t→τ σ
′,

an infinite trace σ0
t0→ · · ·σn

tn→ · · · is:

weakly fair if ∀t ∈ T :
(∃i : ∀j ≥ i : enabled(σj , t)) =⇒ (∀i : ∃j ≥ i : aj = t)
(no thread can be continuously enabled without running)

strongly fair if ∀t ∈ T :
(∀i : ∃j ≥ i : enabled(σj , t)) =⇒ (∀i : ∃j ≥ i : aj = t)
(no thread can be infinitely often enabled without running)

Proofs under fairness conditions given:

the maximal traces M of a program

a property X to prove (as a set of traces)

the set F of all (weakly or strongly) fair and of finite traces

=⇒ prove M ∩ F ⊆ X instead of M ⊆ X
course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 27 / 81

State-based analyses Concurrent program semantics

Fairness (cont.)

Example: while x ≥ 0 do x ← x + 1 || x ← −1

may not terminate without fairness

always terminates under weak and strong fairness

Finite prefix traces

M ∩ F ⊆ X reduces to αp(M ∩ F) ⊆ αp(X)

for all fairness conditions F , αp(M ∩ F) = αp(M) = T

=⇒ fairness-dependent properties cannot be proved with finite prefixes

In the following, we ignore fairness conditions.
(see [Cous85])

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 28 / 81

State-based analyses Concurrent program semantics

Equational state semantics

State abstraction R: as before

R
def
= {σ | ∃σ0

t0→ · · ·σn:σ0 ∈ I ∀i < n:σi
ti→τ σi+1 ∧ σ = σn }

R = αs(T) where αs(X)
def
= {σ | ∃σ0

t0→ · · ·σn ∈ X :σ = σn }

R = lfp G where G (X) = I ∪ {σ | ∃σ′ ∈ X , t ∈ T :σ′
t→τ σ }

Equational form: (without error handling)

for each ` ∈ T → L, a variable X` with value in E
equations are derived from thread equations eq(statt) as:
X`1

=
⋃

t∈T {F(X`2
, . . . ,X`N) |

∃X`1 = F(X`2 , . . . ,X`N) ∈ eq(statt):

∀i ≤ N: `i (t) = `i , ∀u 6= t: `i (u) = `1(u) }
(join with ∪ equations updating a single thread)

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 29 / 81

State-based analyses Concurrent program semantics

Equational state semantics (example)

Example: inferring 0 ≤ x ≤ y ≤ 10

t1 t2

while `1 0 = 0 do while `4 0 = 0 do
`2 if x < y then `5 if y < 10 then
`3 x ← x + 1 `6 y ← y + 1

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 30 / 81

State-based analyses Concurrent program semantics

Equational state semantics (example)

Example: inferring 0 ≤ x ≤ y ≤ 10

t1 t2

while `1 0 = 0 do while `4 0 = 0 do
`2 if x < y then `5 if y < 10 then
`3 x ← x + 1 `6 y ← y + 1

(Simplified) equation system:

X1,4 = I ∪ CJ x ← x + 1 KX3,4 ∪ CJ x ≥ y KX2,4

∪ CJ y ← y + 1 KX1,6 ∪ CJ y ≥ 10 KX1,5

X2,4 = X1,4 ∪ CJ y ← y + 1 KX2,6 ∪ CJ y ≥ 10 KX2,5

X3,4 = CJ x < y KX2,4 ∪ CJ y ← y + 1 KX3,6 ∪ CJ y ≥ 10 KX3,5

X1,5 = CJ x ← x + 1 KX3,5 ∪ CJ x ≥ y KX2,5 ∪ X1,4

X2,5 = X1,5 ∪ X2,4

X3,5 = CJ x < y KX2,5 ∪ X3,4

X1,6 = CJ x ← x + 1 KX3,6 ∪ CJ x ≥ y KX2,6 ∪ CJ y < 10 KX1,5

X2,6 = X1,6 ∪ CJ y < 10 KX2,5

X3,6 = CJ x < y KX2,6 ∪ CJ y < 10 KX3,5

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 30 / 81

State-based analyses Concurrent program semantics

Equational state semantics (example)

Example: inferring 0 ≤ x ≤ y ≤ 10

t1 t2

while `1 0 = 0 do while `4 0 = 0 do
`2 if x < y then `5 if y < 10 then
`3 x ← x + 1 `6 y ← y + 1

pros

easy to construct

easy to further abstract in an abstract domain E]

cons

explosion of the number of variables and equations

explosion of the size of equations
=⇒ efficiency issues

the equation system does not reflect the program structure
(not defined by induction on the concurrent program)

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 30 / 81

State-based analyses Concurrent program semantics

Wish-list

We would like to:

keep information attached to syntactic program locations
(control points in L, not control point tuples in T → L)

be able to abstract away control information
(precision/cost trade-off control)

avoid duplicating thread instructions

have a computation structure based on the program syntax
(denotational style)

Ideally:

thread-modular denotational-style semantics
(analyze each thread independently by induction on its syntax)

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 31 / 81

Towards thread-modular analyses Detour through proof methods

Detour through proof methods

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 32 / 81

Towards thread-modular analyses Detour through proof methods

Floyd–Hoare logic

Logic to prove properties about sequential programs [Hoar69].

Hoare triples: {P} stat {Q}
annotate programs with logic assertions {P} stat {Q}
(if P holds before stat, then Q holds after stat)

check that {P}stat{Q} is derivable with the following rules
(the assertions are program invariants)

{P[e/x]}X ← e {P}
{P ∧ e ./ 0} s {Q} P ∧ e 6./ 0 =⇒ Q

{P} if e ./ 0 then s {Q}

{P} s1 {Q} {Q} s2 {R}
{P} s1; s2 {R}

{P ∧ e ./ 0} s {P}
{P}while e ./ 0 do s {P ∧ e 6./ 0}

{P ′} s {Q ′} P =⇒ P ′ Q ′ =⇒ Q

{P} s {Q}

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 33 / 81

Towards thread-modular analyses Detour through proof methods

Floyd–Hoare logic as abstract interpretation

Link with the equational state semantics:

Correspondence between `stat`
′

and {P} stat {Q}:
if P (resp. Q) models exactly the points in X` (resp. X`′)
then {P} stat {Q} is a derivable Hoare triple

if {P} stat {Q} is derivable, then X` |= P and X`′ |= Q
(all the points in Xl (resp. X`′) satisfy P (resp. Q))

=⇒ X` provide the most precise Hoare assertions
in a constructive form

γ(X]) provide (less precise) Hoare assertions
in a computable form

Link with the denotational semantics:

both CJ stat K and the proof tree for {P} stat {Q}
reflect the syntactic structure of stat
(compositional methods)

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 34 / 81

Towards thread-modular analyses Detour through proof methods

Owicki–Gries proof method

Extension of Floyd–Hoare to concurrent programs [Owic76].

Principle: add a new rule, for ||

{P1} s1 {Q1} {P2} s2 {Q2}
{P1 ∧ P2} s1 || s2 {Q1 ∧ Q2}

This rule is not always sound!

e.g., we have {X = 0,Y = 0}X ← 1 {X = 1,Y = 0}
and {X = 0,Y = 0} if X = 0 then Y ← 1{X = 0,Y = 1}

but not {X = 0,Y = 0}X ← 1 || if X = 0 then Y ← 1 {false}

=⇒ we need a side-condition to the rule:
{P1} s1 {Q1} and {P2} s2 {Q2} must not interfere

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 35 / 81

Towards thread-modular analyses Detour through proof methods

Owicki–Gries proof method

Extension of Floyd–Hoare to concurrent programs [Owic76].

Principle: add a new rule, for ||

{P1} s1 {Q1} {P2} s2 {Q2}
{P1 ∧ P2} s1 || s2 {Q1 ∧ Q2}

This rule is not always sound!

e.g., we have {X = 0,Y = 0}X ← 1 {X = 1,Y = 0}
and {X = 0,Y = 0} if X = 0 then Y ← 1{X = 0,Y = 1}

but not {X = 0,Y = 0}X ← 1 || if X = 0 then Y ← 1 {false}

=⇒ we need a side-condition to the rule:
{P1} s1 {Q1} and {P2} s2 {Q2} must not interfere

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 35 / 81

Towards thread-modular analyses Detour through proof methods

Owicki–Gries proof method (cont.)

interference freedom

given proofs ∆1 and ∆2 of {P1} s1 {Q1} and {P2} s2 {Q2}
∆1 does not interfere with ∆2 if:

for any Φ appearing before a statement in ∆1

for any {P ′2} s ′2 {Q ′2} appearing in ∆2

{Φ ∧ P ′2} s ′2 {Φ} holds
and moreover {Q1 ∧ P ′2} s ′2 {Q1}

i.e.: the assertions used to prove {P1} s1 {Q1} are stable by s2

e.g., {X = 0,Y ∈ [0, 1]}X ← 1 {X = 1,Y ∈ [0, 1]}
{X ∈ [0, 1],Y = 0} if X = 0 then Y ← 1{X ∈ [0, 1],Y ∈ [0, 1]}

=⇒ {X = 0,Y = 0}X ← 1 || if X = 0 then Y ← 1 {X = 1,Y ∈ [0, 1]}

Summary:

pros: the invariants are local to threads

cons: the proof is not compositional
(proving one thread requires delving into the proof of other threads)

=⇒ not satisfactory
course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 36 / 81

Towards thread-modular analyses Detour through proof methods

Jones’ rely-guarantee proof method

Idea: explicit interferences with (more) annotations [Jone81].

Rely-guarantee “quintuples”: R,G ` {P} stat {Q}
if P is true before stat is executed

and the effect of other threads is included in R (rely)

then Q is true after stat

and the effect of stat is included in G (guarantee)

where:

P and Q are assertions on states (in P(Σ))

R and G are assertions on transitions (in P(Σ×A× Σ))

The parallel composition rule becomes:

R ∪ G2,G1 ` {P1} s1 {Q1} R ∪ G1,G2 ` {P2} s2 {Q2}
R,G1 ∪ G2 ` {P1 ∧ P2} s1 || s2 {Q1 ∧ Q2}

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 37 / 81

Towards thread-modular analyses Detour through proof methods

Rely-guarantee example

Example: proving 0 ≤ x ≤ y ≤ 10

checking t1

`1 while 0 = 0 do

x unchanged

`2 if x < y then

y incremented

`3 x ← x + 1

y ≤ 10

at `1, `2 : 0 ≤ x ≤ y ≤ 10
at `3 : 0 ≤ x < y ≤ 10

checking t2

y unchanged

`4 while 0 = 0 do
`5 if y < 10 then
`6 y ← y + 1

at `4, `5 : 0 ≤ x ≤ y ≤ 10
at `6 : 0 ≤ x ≤ y < 10

In this example:

guarantee exactly what is relied on (R1 = G1 and R2 = G2)

rely and guarantee are global assertions

Benefits of rely-guarantee:

invariants are still local to threads
checking a thread does not require looking at other threads,
only at an abstraction of their semantics

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 38 / 81

Towards thread-modular analyses Detour through proof methods

Rely-guarantee example

Example: proving 0 ≤ x ≤ y ≤ 10

checking t1

`1 while 0 = 0 do x unchanged
`2 if x < y then y incremented
`3 x ← x + 1 y ≤ 10

at `1, `2 : 0 ≤ x ≤ y ≤ 10
at `3 : 0 ≤ x < y ≤ 10

checking t2

y unchanged `4 while 0 = 0 do
`5 if y < 10 then
`6 y ← y + 1

at `4, `5 : 0 ≤ x ≤ y ≤ 10
at `6 : 0 ≤ x ≤ y < 10

In this example:

guarantee exactly what is relied on (R1 = G1 and R2 = G2)

rely and guarantee are global assertions

Benefits of rely-guarantee:

invariants are still local to threads
checking a thread does not require looking at other threads,
only at an abstraction of their semantics

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 38 / 81

Towards thread-modular analyses Detour through proof methods

Auxiliary variables

Example

t1 t2

`1 x ← x + 1 `2 `3 x ← x + 1 `4

Goal: prove {x = 0} t1 || t2 {x = 2}.

we must rely on and guarantee that
each thread increments x exactly once!

Solution: auxiliary variables
do not change the semantics but store extra information:

past values of variables (history of the computation)

program counter of other threads (pc t)

Example: for t1: {(pc2 = `3 ∧ x = 0) ∨ (pc2 = `4 ∧ x = 1)}
x ← x + 1

{(pc2 = `3 ∧ x = 1) ∨ (pc2 = `4 ∧ x = 2)}

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 39 / 81

Towards thread-modular analyses Detour through proof methods

Auxiliary variables

Example

t1 t2

`1 x ← x + 1 `2 `3 x ← x + 1 `4

Goal: prove {x = 0} t1 || t2 {x = 2}.
we must rely on and guarantee that
each thread increments x exactly once!

Solution: auxiliary variables
do not change the semantics but store extra information:

past values of variables (history of the computation)

program counter of other threads (pc t)

Example: for t1: {(pc2 = `3 ∧ x = 0) ∨ (pc2 = `4 ∧ x = 1)}
x ← x + 1

{(pc2 = `3 ∧ x = 1) ∨ (pc2 = `4 ∧ x = 2)}
course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 39 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Rely-guarantee as abstract interpretation

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 40 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Local invariants

State projection: on a thread t ∈ T

add auxiliary variables Vt
def
= V ∪ { pcu | u ∈ T , u 6= t }

enriched environments for t: Et
def
= Vt → R

(for simplicity, pcu are numeric variables, i.e., L ⊆ R)

local states: Σt
def
= (L × Et) ∪ Ω

(recall that Σ
def
= ((T → L)× E) ∪ Ω)

projection: πt(`, ρ)
def
= (`(t), ρ[∀u 6= t: pcu 7→ `(u)])

extended naturally to πt : P(Σ)→ P(Σt)

Local invariants on t: Rt
def
= πt(R)

(where R is the reachable state abstraction)

Note: πt is a bijection, no information is lost

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 41 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Interferences

Interference: caused by a thread t ∈ T

At ∈ P(Σ× Σ)

At
def
= αt(T) where αt(X)

def
= { (σ, σ′) | ∃ · · ·σ t→ σ′ · · · ∈ X }

subset of the transition system τ

spawned by t and

actually observed in some execution trace
(recall that T is the prefix trace abstraction)

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 42 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Nested fixpoint form

Nested fixpoints:

We note: A
def
= λt ∈ T .At , R

def
= λt ∈ T .Rt .

1 we express Rt as a function of A and thread t ∈ T :

Rt = lfp Gt(A) where

Gt : (T → P(Σ× Σ))→ P(Σt)→ P(Σt)

Gt(Y)(X)
def
= πt(I) ∪ {πt(σ′) | ∃πt(σ) ∈ X :

σ
t→τ σ

′ ∨ ∃u 6= t: (σ, σ′) ∈ Y (u) }
(a state is reachable if it is reachable by transitions from t and from

the environment A)

2 we express At as a function of R and thread t ∈ T :

At = B(R)(t) where

B : (Πt : T .P(Σt))→ T → P(Σ× Σ)

B(Y)(t)
def
= { (σ, σ′) |πt(σ) ∈ Y (t) ∧ σ t→τ σ

′ }
(collect transitions starting from reachable states)

3 . . .
course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 43 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Nested fixpoint form (cont.)

1 Rt = lfp Gt(A)

2 At = B(R)(t)

3 we deduce: S = lfp H where

H : (Πt : T .P(Σt))→ (Πt : T .P(Σt))

H(X)
def
= λt.lfp Gt(B(X))

(Πt : T .Σt are functions from t ∈ T to Σt)
(lfp is a fixpoint on vectors indexed by T)

=⇒ nested fixpoints

Nested iterations:

By constructive versions of fixpoint theorems:

1 S = lfp H =
⋃

n∈NH
n
(∅)

2 H(X)(t) = lfp Gt(B(X)) =
⋃

n∈N(Gt(B(X)))n(∅)
(' sequential semantics of each thread in isolation)

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 44 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Abstract rely-guarantee

Suggested algorithm: nested iterations

once abstract domains for states and interferences are chosen

start from S
]
0

def
= A

]
0

def
= ⊥]

while A
]
n is not stable

compute S
]

n+1
def
= λt.lfp G]

t (A
]

n) by iteration with widening O
(' separate analysis of each thread)

compute A
]

n+1
def
= A

]

n O B
]
(S
]

n+1)

when A
]
n = A

]
n+1, return S

]
n

=⇒ thread-modular analysis
parameterized by abstract domains
able to easily reuse existing sequential analyses

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 45 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Abstracting states and interference

Flow-insensitive abstractions:

on states: forget auxiliary variables
αa : P(Σt)→ (L × P(E))

αa(X)
def
= { (`, ρ|V→R

) | (`, ρ) ∈ X }
on interferences: forget all control locations:
αc : P(Σ× Σ)→ P(E × E)

αc(X)
def
= { (ρ, ρ′) | ∃`, `′: ((`, ρ), (`

′
, ρ′)) ∈ X }

Non-relational abstractions: on interferences

forget the input-sensitivity:
αi : P(E × E)→ P(E)

αi (X)
def
= { ρ′ | ∃ρ: (ρ, ρ′) ∈ X }

forget the relationship between variables:
αn : P(E)→ (V→ P(R))

αn(X)
def
= λV ∈ V.{ ρ(V) | ρ ∈ X }

Further abstractions in numeric abstract domains.
course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 46 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

From traces to thread-modular analyses

abstract states
(T × L)→ E]

abstract interferences
T → E]

static analyzer

input-insensitive interferences

T → P(E)

αE
OO

local states

(T × L)→ P(E)

αE

OO

flow-insensitive interferences

T → P(E × E)

αi

OO

rely-guarantee
(without aux. variables)

local states

R : Πt : T .P(Σt)

αa

OO

interferences

A : T → P(Σ× Σ)

πc

OO

rely-guarantee
(with aux. variables)

πt

OO
αt

OO

interleaved execution trace prefixes test
T ∈ P(Σ∗)

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 47 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Compare with sequential analyses. . .

abstract states
L → E] static analyzer

states

R ∈ P(Σ)

αE

OO

reachability

execution trace prefixes

T ∈ P(Σ∗)

αs

OO

test

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 48 / 81

Construction of an interference-based analysis

Construction of an interference-based analysis

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 49 / 81

Construction of an interference-based analysis

Reminder: sequential analysis in denotational form

Expression semantics: EJ expr K : E → (P(R)× P(Ω))

EJ X K ρ def
= 〈 { ρ(X) }, ∅ 〉

EJ [c1, c2] K ρ def
= 〈 { x ∈ R | c1 ≤ x ≤ c2 }, ∅ 〉

EJ−e1 K ρ def
= let 〈V1, O1 〉 = EJ e1 K ρ in 〈 {−v1 | v1 ∈ V1 }, O1 〉

EJ e1 �ω e2 K ρ def
= let ∀i ∈ { 1, 2 }: 〈Vi , Oi 〉 = EJ ei K ρ in

〈 { v1 � v2 | vi ∈ Vi , � 6= / ∨ v2 6= 0 }, O1 ∪ O2 ∪ {ω if � = / ∧ 0 ∈ V2 } 〉

Statement semantics: CJ stat K : (P(E)× P(Ω))→ (P(E)× P(Ω))

CJ X ← e K 〈R, O 〉 def
= 〈 ∅, O 〉 t

⊔
ρ∈R 〈 { ρ[X 7→ v] | v ∈ Vρ }, Oρ 〉

CJ e ./ 0? K 〈R, O 〉 def
= 〈 ∅, O 〉 t

⊔
ρ∈R 〈 { ρ | ∃v ∈ Vρ: v ./ 0 }, Oρ 〉

CJ if e ./ 0 then s K X
def
= (CJ s K ◦ CJ e ./ 0? K)X t CJ e 6./ 0? K X

CJ while e ./ 0 do s K X
def
=

CJ e 6./ 0? K (lfpλY .X t (CJ s K ◦ CJ e ./ 0? K)Y)

CJ s1; s2 K def
= CJ s2 K ◦ CJ s1 K

where 〈Vρ, Oρ 〉
def
= EJ e K ρ

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 50 / 81

Construction of an interference-based analysis

Denotational semantics with interferences

Interferences in I def
= T × V× R

〈 t, X , v 〉 means: t can store the value v into the variable X

We define the analysis of a thread t
with respect to a set of interferences I ⊆ I.

Expressions with interference: for thread t

EtJ expr K : (E × P(I))→ (P(R)× P(Ω))

Apply interferences to read variables:

EtJ X K 〈 ρ, I 〉 def
= 〈 { ρ(X) } ∪ { v | ∃u 6= t: 〈 u, X , v 〉 ∈ I }, ∅ 〉

Pass recursively I down to sub-expressions:

EtJ−e1 K 〈 ρ, I 〉 def
=

let 〈V1, O1 〉 = EtJ e1 K 〈 ρ, I 〉 in 〈 {−v1 | v1 ∈ V1 }, O1 〉
. . .

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 51 / 81

Construction of an interference-based analysis

Denotational semantics with interferences (cont.)

Statements with interference: for thread t

CtJ stat K : (P(E)× P(Ω)× P(I))→ (P(E)× P(Ω)× P(I))

pass interferences to expressions

collect new interferences due to assignments

accumulate interferences from inner statements

CtJ X ← e K 〈R, O, I 〉 def
=

〈 ∅, O, I 〉 t
⊔
ρ∈R 〈 { ρ[X 7→ v] | v ∈ Vρ }, Oρ, { 〈 t, X , v 〉 | v ∈ Vρ } 〉

CtJ s1; s2 K def
= CtJ s2 K ◦ CtJ s1 K

· · ·

(noting 〈Vρ, Oρ 〉
def
= EtJ e K 〈 ρ, I 〉)

(t is now the element-wise ∪ in P(E)× P(Ω)× P(I))

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 52 / 81

Construction of an interference-based analysis

Denotational semantics with interferences (cont.)

Program semantics: PJ prog K ⊆ Ω

Given prog ::= stat1 || · · · || statn, we compute:

PJ prog K def
=
[
lfpλ〈O, I 〉.

⊔
t∈T [CtJ statt K 〈 E0, ∅, I 〉]Ω,I

]
Ω

each thread analysis starts in an initial environment set

E0
def
= {λV .0 }

[X]Ω,I projects X ∈ P(E)× P(Ω)× P(I) on P(Ω)× P(I)
and interferences and errors from all threads are joined
(the output environments are ignored)

PJ prog K only outputs the set of possible run-time errors

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 53 / 81

Construction of an interference-based analysis

Example

Example

t1 t2

while `1 0 = 0 do while `4 0 = 0 do
`2 if x < y then `5 if y < 10 then
`3 x ← x + 1 `6 y ← y + 1

Concrete interference semantics:

iteration 1
I = ∅
`1 : x = 0, y = 0
`4 : x = 0, y ∈ [0, 10]
new I = { 〈 t2, y , 1 〉, . . . , 〈 t2, y , 10 〉 }

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 54 / 81

Construction of an interference-based analysis

Example

Example

t1 t2

while `1 0 = 0 do while `4 0 = 0 do
`2 if x < y then `5 if y < 10 then
`3 x ← x + 1 `6 y ← y + 1

Concrete interference semantics:

iteration 2
I = { 〈 t2, y , 1 〉, . . . , 〈 t2, y , 10 〉 }
`1 : x ∈ [0, 10], y = 0
`4 : x = 0, y ∈ [0, 10]
new I = { 〈 t1, x , 1 〉, . . . , 〈 t1, x , 10 〉, 〈 t2, y , 1 〉, . . . , 〈 t2, y , 10 〉 }

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 54 / 81

Construction of an interference-based analysis

Example

Example

t1 t2

while `1 0 = 0 do while `4 0 = 0 do
`2 if x < y then `5 if y < 10 then
`3 x ← x + 1 `6 y ← y + 1

Concrete interference semantics:

iteration 3
I = { 〈 t1, x , 1 〉, . . . , 〈 t1, x , 10 〉, 〈 t2, y , 1 〉, . . . , 〈 t2, y , 10 〉 }
`1 : x ∈ [0, 10], y = 0
`4 : x = 0, y ∈ [0, 10]
new I = { 〈 t1, x , 1 〉, . . . , 〈 t1, x , 10 〉, 〈 t2, y , 1 〉, . . . , 〈 t2, y , 10 〉 }

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 54 / 81

Construction of an interference-based analysis

Example

Example

t1 t2

while `1 0 = 0 do while `4 0 = 0 do
`2 if x < y then `5 if y < 10 then
`3 x ← x + 1 `6 y ← y + 1

Concrete interference semantics:

iteration 3
I = { 〈 t1, x , 1 〉, . . . , 〈 t1, x , 10 〉, 〈 t2, y , 1 〉, . . . , 〈 t2, y , 10 〉 }
`1 : x ∈ [0, 10], y = 0
`4 : x = 0, y ∈ [0, 10]
new I = { 〈 t1, x , 1 〉, . . . , 〈 t1, x , 10 〉, 〈 t2, y , 1 〉, . . . , 〈 t2, y , 10 〉 }

Note: we don’t get that x ≤ y at `1, only that x , y ∈ [0, 10]

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 54 / 81

Construction of an interference-based analysis

Interference abstraction

Abstract interferences I]

P(I)
def
= P(T × V× R) is abstracted as I] def

= (T × V)→ R]
where R] abstracts P(R) (e.g. intervals)

Abstract semantics with interferences C]tJ s K

derived from C]J s K in a generic way:

Example: C]tJ X ← e K 〈R], Ω, I] 〉

for each Y in e, get its interference Y]
R =

⊔]
R { I]〈 u, Y 〉 | u 6= t }

if Y]
R 6= ⊥

]
R, replace Y in e with get〈Y , R] 〉 t]R Y]

R
(where get(Y ,R]) extracts the abstract values in R] of a variable
Y from R] ∈ E])

compute 〈R]′, O ′ 〉 = C]J e K 〈R], O 〉

enrich I]〈 t, X 〉 with get(X ,R]′)

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 55 / 81

Construction of an interference-based analysis

Static analysis with interferences

Abstract analysis

P]J prog K def
=[

limλ〈O, I] 〉. 〈O, I] 〉O
⊔]

t∈T

[
C]tJ statt K 〈 E]0, ∅, I] 〉

]
Ω,I]

]
Ω

effective analysis by structural induction

termination ensured by a widening

parametrized by a choice of abstract domains R], E]

interferences are flow-insensitive and non-relational in R]

thread analysis remains flow-sensitive and relational in E]

[Miné12]

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 56 / 81

Construction of an interference-based analysis Path-based semantics

Path-based semantics

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 57 / 81

Construction of an interference-based analysis Path-based semantics

Control paths

atomic ::= X ← expr | expr ./ 0?

Control paths

π : stat → P(atomic∗)

π(X ← e)
def
= {X ← e }

π(if e ./ 0 then s)
def
= ({ e ./ 0? } · π(s)) ∪ { e 6./ 0? }

π(while e ./ 0 do s)
def
=
(⋃

i≥0({ e ./ 0? } · π(s))i
)
· { e 6./ 0? }

π(s1; s2)
def
= π(s1) · π(s2)

π(stat) is a (generally infinite) set of finite control paths

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 58 / 81

Construction of an interference-based analysis Path-based semantics

Path-based concrete semantics of sequential programs

Join-over-all-path semantics

�J P K : (P(E)× P(Ω))→ (P(E)× P(Ω)) P ⊆ atomic∗

�J P K〈R, O 〉 def
=

⊔
s1·...·sn∈P

(CJ sn K ◦ · · · ◦ CJ s1 K)〈R, O 〉

Semantic equivalence

CJ stat K = �Jπ(stat) K
(not true in the abstract)

Advantages:

easily extended to concurrent programs (path interleavings)

able to model program transformations (weak memory models)

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 59 / 81

Construction of an interference-based analysis Path-based semantics

Path-based concrete semantics of concurrent programs

Concurrent control paths

π∗
def
= { interleavings of π(statt), t ∈ T }
= { p ∈ atomic∗ | ∀t ∈ T , proj t(p) ∈ π(statt) }

Interleaving program semantics

P∗J prog K def
= [�Jπ∗ K〈 E0, ∅ 〉]Ω

(proj t(p) keeps only the atomic statement in p coming from thread t)

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 60 / 81

Construction of an interference-based analysis Path-based semantics

Soundness of the interference semantics

Soundness theorem

P∗J prog K ⊆ PJ prog K

Proof sketch:

define �tJ P K X
def
=
⊔
{CtJ s1; . . . ; sn K X | s1 · . . . · sn ∈ P },

then �tJπ(s) K = CtJ s K ;

given the interference fixpoint I ⊆ I from PJ prog K ,
prove by recurrence on the length of p ∈ π∗ that:

∀t ∈ T ,∀ρ ∈ [�J p K〈 E0, ∅ 〉]E ,
∃ρ′ ∈ [�tJ proj t(p) K〈 E0, ∅, I 〉]E such that
∀X ∈ V, ρ(X) = ρ′(X) or 〈 u, X , ρ(X) 〉 ∈ I for some u 6= t.

[�J p K〈 E0, ∅ 〉]Ω ⊆
⋃

t∈T [�tJ proj t(p) K〈 E0, ∅, I 〉]Ω

Note: sound but not complete
course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 61 / 81

Construction of an interference-based analysis Weakly consistent memories

Weakly consistent memories

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 62 / 81

Construction of an interference-based analysis Weakly consistent memories

Issues with weak consistency

program written

F1 ← 1; F2 ← 1;
if F2 = 0 then if F1 = 0 then

S1 S2

−→
program executed

if F2 = 0 then if F1 = 0 then
F1 ← 1; F2 ← 1;
S1 S2

(simplified Dekker mutual exclusion algorithm)

S1 and S2 cannot execute simultaneously.

Not a sequentially consistent behavior!

Caused by:

write FIFOs, caches, distributed memory

hardware or compiler optimizations, transformations

. . .

behavior accepted by Java [Mans05]

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 63 / 81

Construction of an interference-based analysis Weakly consistent memories

Issues with weak consistency

program written

F1 ← 1; F2 ← 1;
if F2 = 0 then if F1 = 0 then

S1 S2

−→
program executed

if F2 = 0 then if F1 = 0 then
F1 ← 1; F2 ← 1;
S1 S2

(simplified Dekker mutual exclusion algorithm)

S1 and S2 can execute simultaneously.
Not a sequentially consistent behavior!

Caused by:

write FIFOs, caches, distributed memory

hardware or compiler optimizations, transformations

. . .

behavior accepted by Java [Mans05]

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 63 / 81

Construction of an interference-based analysis Weakly consistent memories

Out of thin air principle

original program

R1 ← X ; R2 ← Y ;
Y ← R1 X ← R2

−→
“optimized” program

Y ← 42;
R1 ← X ; R2 ← Y ;
Y ← R1 X ← R2

(example from causality test case #4 for Java by Pugh et al.)

We should not have R1 = 42.

Possible if we allow speculative writes!
=⇒ we disallow this kind of program transformations.

(also forbidden in Java)

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 64 / 81

Construction of an interference-based analysis Weakly consistent memories

Out of thin air principle

original program

R1 ← X ; R2 ← Y ;
Y ← R1 X ← R2

−→
“optimized” program

Y ← 42;
R1 ← X ; R2 ← Y ;
Y ← R1 X ← R2

(example from causality test case #4 for Java by Pugh et al.)

We should not have R1 = 42.

Possible if we allow speculative writes!
=⇒ we disallow this kind of program transformations.

(also forbidden in Java)

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 64 / 81

Construction of an interference-based analysis Weakly consistent memories

Atomicity and granularity

original program

X ← X + 1 X ← X + 1

−→
executed program

r1 ← X + 1 r2 ← X + 1
X ← r1 X ← r2

We assumed that assignments are atomic. . .

but that may not be the case

The second program admits more behaviors
e.g.: X = 1 at the end of the program

[Reyn04]

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 65 / 81

Construction of an interference-based analysis Weakly consistent memories

Atomicity and granularity

original program

X ← X + 1 X ← X + 1
−→

executed program

r1 ← X + 1 r2 ← X + 1
X ← r1 X ← r2

We assumed that assignments are atomic. . .
but that may not be the case

The second program admits more behaviors
e.g.: X = 1 at the end of the program

[Reyn04]

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 65 / 81

Construction of an interference-based analysis Weakly consistent memories

Path-based definition of weak consistency

Acceptable control path transformations: p q

only reduce interferences and errors

Reordering: X1 ← e1 · X2 ← e2 X2 ← e2 · X1 ← e1

(if X1 /∈ var(e2), X2 /∈ var(e1), and e1 does not stop the program)

Propagation: X ← e · s X ← e · s[e/X]
(if X /∈ var(e), var(e) are thread-local, and e is deterministic)

Factorization: s1 · . . . · sn X ← e · s1[X/e] · . . . · sn[X/e]
(if X is fresh, ∀i , var(e) ∩ lval(si) = ∅, and e has no error)

Decomposition: X ← e1 + e2 T ← e1 · X ← T + e2

(change of granularity)

. . .

but NOT:

“out-of-thin-air” writes: X ← e X ← 42 · X ← e

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 66 / 81

Construction of an interference-based analysis Weakly consistent memories

Soundness of the interference semantics

Interleaving semantics of transformed programs P′∗J prog K

π′(s)
def
= { p | ∃p′ ∈ π(s): p′ ∗ p }

π′∗
def
= { interleavings of π′(statt), t ∈ T }

P′∗J prog K def
= [�Jπ′∗ K〈 E0, ∅ 〉]Ω

Soundness theorem

P′∗J prog K ⊆ PJ prog K

=⇒ the interference semantics is sound
wrt. weakly consistent memories and changes of granularity

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 67 / 81

Construction of an interference-based analysis Synchronisation

Synchronisation

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 68 / 81

Construction of an interference-based analysis Synchronisation

Scheduling

Synchronization primitives

stat ::= lock(m)
| unlock(m)
| X ← islocked(m)
| yield

m ∈ M : finite set of non-recursive mutexes
each thread has a fixed, distinct priority

Real-time scheduling

only the highest priority unblocked thread can run

lock and yield may block

yielding threads wake up non-deterministically
(preempting lower-priority threads)

explicit synchronisation enforces memory consistency

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 69 / 81

Construction of an interference-based analysis Synchronisation

Mutual exclusion

WW W

R RWR

lock(m) unlock(m)

p1

p2

lock(m) unlock(m)

Interleaving semantics P∗J prog K :

restrict interleavings of control paths

Interference semantics PJ prog K , P]J prog K :

partition wrt. an abstract local view of the scheduler C

E E × C, E] C→ E]

I def
= T × V× R I def

= T × C× V× R,
I] def

= (T × V)→ R] I] def
= (T × C× V)→ R]

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 70 / 81

Construction of an interference-based analysis Synchronisation

Mutual exclusion

WW W

R RWR

lock(m) unlock(m)

lock(m) unlock(m)

p2

p1

Data-race effects

Partition wrt. mutexes M ⊆ M held by the current thread t

CtJ X ← e K 〈 ρ, M, I 〉 adds
{ 〈 t, M, X , v 〉 | v ∈ EtJ X K 〈 ρ, M, I 〉 } to I

EtJ X K 〈 ρ, M, I 〉 =
{ ρ(X) } ∪ { v | 〈 t ′, M ′, X , v 〉 ∈ I , t 6= t ′, M ∩M ′ = ∅ }
flow-insensitive, subject to weak memory consistency

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 70 / 81

Construction of an interference-based analysis Synchronisation

Mutual exclusion

WW W

R RWR

lock(m) unlock(m)

p1

p2

lock(m) unlock(m)

Well-synchronized effects

last write before unlock affects first read after lock

partition interferences wrt. a protecting mutex m (and M)

CtJ unlock(m) K 〈 ρ, M, I 〉 stores ρ(X) into I

CtJ lock(m) K 〈 ρ, M, I 〉 imports values form I into ρ

imprecision: non-relational, largely flow-insensitive

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 70 / 81

Construction of an interference-based analysis Synchronisation

Example analysis

abstract consumer/producer

t1 t2

while 0=0 do while 0=0 do
lock(m);`1 lock(m);
if X > 0 then `2 X ← X − 1; X ← X + 1;
unlock(m); if X > 10 then X ← 10;
`3 Y ← X unlock(m)

at `1, the unlock− lock effect from t2 imports {X} × [1, 10]

at `2, X ∈ [1, 10], no effect from t2: X ← X − 1 is safe

at `3, X ∈ [0, 9], and t2 has the effects {X} × [1, 10]
so, Y ∈ [0, 10]

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 71 / 81

Construction of an interference-based analysis Synchronisation

Real-time scheduling

priority-based critical sections

high thread low thread

L← islocked(m); lock(m);
if L = 0 then Z ← Y ;

Y ← Y + 1; Y ← 0;
yield unlock(m)

Partition interferences and memory states wrt. scheduling state

partition wrt. mutexes tested with islocked

L← islocked(m) creates two partitions
P0 where L = 0 and m is free
P1 where L = 1 and m is locked

P0 handled as if m where locked

blocking primitives merge P0 and P1 (lock, yield)

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 72 / 81

Construction of an interference-based analysis Limitations of the interference abstraction

Limitations of the interference abstraction

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 73 / 81

Construction of an interference-based analysis Limitations of the interference abstraction

Lack of relational lock invariants

a difficult example

E0 : X = Y = 5

while 1 do while 1 do
lock(m); lock(m);
if X > 0 then if X < 10 then

X ← X − 1; X ← X + 1;
Y ← Y − 1; Y ← Y + 1;

unlock(m) unlock(m)

Our analysis finds X ∈ [0, 10], but no bound on Y .

Actually Y ∈ [0, 10].

To prove this, we would need to infer the relational invariant
X = Y at lock boundaries.

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 74 / 81

Construction of an interference-based analysis Limitations of the interference abstraction

Lack of inter-process flow-sensitivity

a more difficult example

while 1 do while 1 do
lock(m); lock(m);
X ← X + 1; X ← X + 1;
unlock(m); unlock(m);
lock(m); lock(m);
X ← X − 1; X ← X − 1;
unlock(m) unlock(m)

Our analysis finds no bound on X .

Actually X ∈ [−2, 2] at all program points.
To prove this we need to infer an invariant on
the history of interleaved executions:
no more than two incrementation (resp. decrementation) can
occur without a decrementation (resp. incrementation).

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 75 / 81

Summary

Summary

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 76 / 81

Summary

Conclusion

We presented a static analysis that is:

inspired from thread-modular proof methods

sound for all interleavings

sound for weakly consistent memory semantics

aware of scheduling and synchronization

parametrized by abstract domains

Future work: leverage the connection with rely-guarantee

relational interferences
(especially for synchronized program parts)

flow-sensitive interferences and invariants

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 77 / 81

Bibliography

Bibliography

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 78 / 81

Bibliography

Bibliography

[Bour93] F. Bourdoncle. Efficient chaotic iteration strategies with

widenings. In Proc. FMPA’93, LNCS vol. 735, pp. 128–141, Springer,

1993.

[Carr09] J.-L. Carré & C. Hymans. From single-thread to

multithreaded: An efficient static analysis algorithm. In

arXiv:0910.5833v1, EADS, 2009.

[Cous84] P. Cousot & R. Cousot. Invariance proof methods and

analysis techniques for parallel programs. In Automatic Program

Construction Techniques, chap. 12, pp. 243–271, Macmillan, 1984.

[Cous85] R. Cousot. Fondements des méthodes de preuve d’invariance

et de fatalité de programmes parallèles. In Thèse d’Etat es sc. math.,

INP Lorraine, Nancy, 1985.

[Hoar69] C. A. R. Hoare. An axiomatic basis for computer

programming. In Com. ACM, 12(10):576–580, 1969.

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 79 / 81

Bibliography

Bibliography (cont.)

[Jone81] C. B. Jones. Development methods for computer programs

including a notion of interference. In PhD thesis, Oxford University, 1981.

[Lamp77] L. Lamport. Proving the correctness of multiprocess

programs. In IEEE Trans. on Software Engineering, 3(2):125–143, 1977.

[Lamp78] L. Lamport. Time, clocks, and the ordering of events in a

distributed system. In Comm. ACM, 21(7):558–565, 1978.

[Mans05] J. Manson, B. Pugh & S. V. Adve. The Java memory

model. In Proc. POPL’05, pp. 378–391, ACM, 2005.

[Miné12] A. Miné. Static analysis of run-time errors in embedded

real-time parallel C programs. In LMCS 8(1:26), 63 p., arXiv, 2012.

[Owic76] S. Owicki & D. Gries. An axiomatic proof technique for

parallel programs I. In Acta Informatica, 6(4):319–340, 1976.

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 80 / 81

Bibliography

Bibliography (cont.)

[Reyn04] J. C. Reynolds. Toward a grainless semantics for

shared-variable concurrency. In Proc. FSTTCS’04, LNCS vol. 3328,

pp. 35–48, Springer, 2004.

[Sara07] V. A. Saraswat, R. Jagadeesan, M. M. Michael & C. von

Praun. A theory of memory models. In Proc. PPoPP’07, pp. 161–172,

ACM, 2007.

course 11, 2012–2013 Static Analysis of Concurrent Programs Antoine Miné p. 81 / 81

	Introduction
	State-based analyses
	Sequential program semantics (reminders)
	Concurrent program semantics

	Towards thread-modular analyses
	Towards thread-modular analyses
	Detour through proof methods
	Rely-guarantee as abstract interpretation

	Construction of an interference-based analysis
	Path-based semantics
	Weakly consistent memories
	Synchronisation
	Limitations of the interference abstraction

	Summary
	Bibliography

