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1 Abstract Interpretation

Definition 1 (partial order). A partial order (D, <) is given by a set D and a binary relation < € D x D
such that:

1. (reflexivity) Va € D, a < a;
2. (antisymmetry) Ya,a' € D, [a < a' Nd' <a] = a=d;
3. (transitivity) and Va,a',a” € D, [a<a' ANd' <d'] = a<d".

Definition 2 (closure). Given a partial order (D, <) and a mapping p : D — D.

1. We say that p is a upper closure operator, if and only if:
(a) (idempotence) ¥d € D, p(p(d)) = p(d);
(b) (extensivity) ¥d € D, d < p(d);
(¢) (monotonicity) Vd,d € D, d < d = p(d) < p(d').

2. We say that p is a lower closure operator, if and only if:
(a) (idempotence) ¥d € D, p(p(d)) = p(d);
(b) (antiextensivity) ¥d € D, p(d) < d;
(c) (monotonicity) Vd,d € D, d < d = p(d) < p(d').

Definition 3 (least upper bound). Given a partial order (D, <) and a subset X C A, we say that m € D
is a least upper bound for X, if and only if:

1. (bound)Va € X, a <m;
2. (least one) andVa € D, [Va' € X,d' <a] = m <a.

By antisymmetry, if it exists a least upper bound is unique, thus we call it the least upper bound.

Definition 4 (greatest lower bound). Given a partial order (D, <) and a subset X C A, we say that
m € D is a greatest lower bound for X, if and only if:

1. (bound)Va € X, m < a;
2. (least one) and Va € D, Vo' € X,a <d'] = a<m.

By antisymmetry, if it exists a greatest lower bound is unique, thus we call it the greatest lower bound.

Definition 5 (complete lattice). Given a partial order (D, <), we say that D is a complete lattice if any
subset X has a least upper bound UX.
In a complete lattice, any subset X has a greatest lower bound MX. Moreover,

NX)=w{de X |Vz € X,d < z}.

The element T = U(D) is the greatest element of D, and the element L = U(() is the least element.
A complete lattice is usually denoted by (D, <, L, T,U,M).



Proof. Let us show that the hypothesis of Def. 4 are satisfied.

— Let x be an element of X.
By Def. 1.(1), we have x < z.

Thus by Def. 3.(1), we have z < U{d € X |Vx € X,d < z}.

— Let m be an element of D such that for any element x € X, m < z.
By Def. 3.(2), we have L{d € X |Vz € X,d <z} <m.

Thus by Def. 4, U{d | Vz € X,d < x} is the greatest least bound of X.
a

Definition 6 (chain-complete partial order). Given a partial order (D, <), we say that (D, <) is a
chain-complete partial order if and only if any chain X C D has a least upper bound LIX .
A chain-complete partial order is denoted by a triple (D, <, U).

Definition 7 (inductive function). Given a chain-complete partial order (D, C,U), we say that a function
F : D — D is inductive if and only if the two following properties are satisfied:

1. Ve e D, x CF(z) = F(x) CFF(z));
2. for any chain C of elements in D such that x C F(x), for any x € C, we have: UC C F(UC).

Proposition 1. Let (D,C,U) be a chain-complete partial order and F : D — D be a function such that:
Ve,y € D,z Cy = F(z) CF(y).
Then F is an inductive function.

Proof. Let us prove that the hypotheses of Def. 7 are satisfies:

1. Let 29 € D be an element such that 2 C F(z).
Since F is monotonic, it follows that F(xq) C F(F(xo)).

2. Let C be a chain of elements in D such that, for any element z € C, z C F(z).

Let x € C be an element.

By Def. 3.(1), z C UC.

Since F is monotonic, we have: F(z) C F(UX);

Since, by hypothesis, x C F(z) and by Prop. 1.(3), it follows that + C F(UX);

Thus, by Def. 3.(2), UC C F(UC).

d

Definition 8 (inductive definition). Let (D, C,U) be a chain-complete partial order, xg € D be an ele-
ment such that xg CF(xg), and F : D — D be an inductive function.
There ezists a unique collection of elements (X,) such that for any ordinal o:

X, =g whenever o = 0
X, =F(X,-1) whenever o is a succesor ordinal
Xo=U{X3| B <o} otherwise.

The collection (X,) is called the transfinite iteration of F starting from xo. For each ordinal o, the element
X, is usually denoted by F°(xq).



Proof. We show by induction over the ordinals, that for any ordinal ogp, there exists a unique family of
elements (X,)o<o, sSuch that the three following properties are satisfied:

- (a)
X, = whenever o = 0,
X, =F(Xo—1) whenever o is a succesor ordinal,
Xo=U{Xp | B <o} otherwise.

— (b) (X5)o<o, 1s increasing,
— (c) and for any ordinal o < 09, X, C F(X,).

1. (a) There exists a unique element X such that X, = xo.
(b) (x0) is an increasing family (of one element).
(¢) By hypothesis, zo C F(zo).

2. Let og be an ordinal.
We assume that there exists a unique family (X,),<o, such that the equations (a) are satisfied.
We also assume that (X,)o<o, is increasing and that for any ordinal o < og, X, C F(X,).
We define Y, = X, whenever o < oy and Y,,+1 = F(X,,).

(a) The family (Y,)o<o,+1 satisfies the equations (a).

(b) Now we consider a family (Z,)o<o,+1 Of elements in D which satisfies the equations (a).
Then by induction hypotheses (uniqueness), we have Z, =Y, for any ordinal o < og.
Moreover, since (Z,)o<o,+1 satisfies the equations (a), we have Z,, 11 =F(Z,,).

Since Z,, = Y, it follows by extensionality that F(Z,,) = F(Y,).
Moreover, we have: F(Y,,) = Yo +1.

So Z00+1 = Y00+1.

Thus (ZO)OS00+1 = (Y0)0§00+1'

(¢) By induction hypotheses, (Y5)o<o, is increasing.
By induction hypotheses again Y,, < F(Y,,).
Since Yo, +1 = F(Ys,), it follows that Yy, C Yo, 41.
Thus (Y,)o<o,+1 1S increasing.

(d) By induction hypotheses, for any o < o, Y, C F(Y5,).
Since F is inductive, by Def. 7.(1), it follows that F(Y,,) C F(F(Y,,)).
Since Yo, 41 = F(Ys, ), we get Yo, 11 C F(Yo11).

3. Let og be a limit ordinal.

We assume that there exists a unique family (X,)o,<o, such that the equations (a) are satisfied.
We define Y, = X, whenever o < op and Y,, = U{Xg | 8 < 0p}.

(a) The family (Y,)o<o, satisfies the equations (a).



(b) Now we consider a family (Z,),<o, of elements in D which satisfies the equations (a).
Then by induction hypotheses (uniqueness), we have Z, =Y, for any ordinal o < 0g.
Moreover, since (Z,),<0, Satisfies the equations (a), we have Z,, = U{Zg | 8 < 0p}.
Since Zg = Yp, for any 5 < oy, it follows that: U{Z3 | B < 0o} = U{Ys | 5 < 0p}.
Moreover, we have: U{Ys | B < 0o} = Yo,.

So Z,, =Y.
Thus (Z5)o<o, = (Yo)o<oo-

(¢) By induction hypotheses, (Y;)o<o, is increasing.
By Def. 3.(1), for any ordinal o < 09, we have: Y, < U{Y, | o’ < 0p}.
Since Y, = U{Y, | 0’ < 0o}, it follows that Y, C Y, for any ordinal o < oy.

(d) By induction hypotheses, for any o < o9, Y, C F(Y,).
Since F is inductive, by Def. 7.(2), it follows that U{Y, | 0 < 0} C F(U{Y, | 0 < 00}).
Since Yo, = U{Y, | 0 < 0}, we get Yy,, C F(Yy,).

d

Proposition 2. Let (D, C,U) be a chain-complete partial order, xo € D be an element such that xqg C F(xq),
and F : D — D an inductive function.
Then:

1. for any pair of ordinals (0,0), [o < /] = F°(zo) C F (x0);
2. for any ordinal o, xo C F°(xz).

Proof. The assertion 1 is implied by the hypotheses induction of the proof that Def. 8 is well-defined.
The assertion 2 follows from the fact that for any ordinal, 0 < o, and by the assertion 1.
O

Lemma 1 (least fix-point). Let:

1. (D,C,U) be a chain-complete partial order;
2. F e D — D be a monotonic map;
3. ko € D be an element such that: xo C F(xg).

Then: there exists y € D such that:

7$0gy5

- Fly) =y,
—VzeD, [[F(z) =zAz9Cz] = yCzl.

This element is called the least fix-point of F which is greater than xo, and is written Ifp, F.

Proof. Let xg € D, such that z¢o C F(zo).

By hypothesis, F is monotonic.
By Prop. 1, F is inductive.
By Def. 8, it follows that the collection (F°(xz¢)), indexed over the ordinals is well-defined.

By Prop. 2.(1), the collection (F°(xg)), is increasing.
Since D is a set, the collection (F°(zg)), is ultimately stationary.

Thus there exists an ordinal o such that F°(zg) = Fo+!(z).



Thus, F(F°(z0)) = F°(x0).
By Prop. 2.(2), for any ordinal o, we have: z¢ C F°(xg).

Consider another fix-point y € D such that zq C y.
We have y = F(y).

Let us show by transfinite induction that F°(xq) C y.
+ We have, by hypothesis, zo C y.
Since, FO(zg) = wo, it follows that F9(xq) C y.

e Let us consider an ordinal o such that F°(zg) C y.
Since, F is monotonic, we have F(F°(zq)) C F(y).
Then by Def. 8, Fo1(zq) = F(F°(x0)).

And by hypothesis F(y) = y.
Thus Fot(zg) C y.

e Let us consider an ordinal o such that for any 3 < o, we have F(z¢) C y.
By Def. 3.(2), we get that U{F?(z¢) | 8 < 0} C .
By Def. 8, F°(z¢) = U{F’(z0) | B < o}.
Thus, F°(zg) C y.

Thus F°(z) is the least fix-point of F.
O

Remark 1. We have seen in this proof that, under the hypotheses of Lemma 1, Ifp, F = F°(z0) for a given
ordinal o.

Definition 9 (Galois connexion). Given two partial orders (D,C) and (D!, C), we say that the pair of
maps (a,7y) forms a Galois connection between D and D* if and only if:

1. a : D— Dt
2.7 : D= D;
3. and Vd € D, Vd* € D%, [a(d) C d* < d C y(d*)].
In such a case, we write:
D % Dt

Proposition 3. Let (D, C) and (D*,C) be partial orders, and D % D! be a Galois connexion.
The following properties are satisfied:

Vde D, d Cv(a(d));

Vb € DF, a(y(d)) C dt;

(a0 is monotonic) Vd,d' € D, d Cd = «(d) C a(d');
(v is monotonic) Vd*, d'* € D, d* C d* = ~(d*) C y(d'*);
Vd € D, a(d) = a(y(a(d)));

vd* € D, y(d*) = y(a(v(d)));

o« is an upper closure operator;

a o is a lower closure operator.

B NS> Grds o~

Proof. Let (D, C) and (D*, C) be partial orders, and D % D* be a Galois connexion.



. Let d € D be an element.

By Def. 1.(1), we have: a(d) C «a(d).
By Def. 9.(3), it follows that: d C y(«a(d)).

. Let d¥ € D* be an element.

By Def. 1.(1), we have: y(d¥) C ~(d*).
By Def. 9.(3), it follows that: a(y(d*)) C d*.

. Let d,d’ € D be two elements such that d C d'.
By hypothesis, we have d C d'.
Moreover, by Prop. 3.(1), we have d’ C v(«a(d')).

Thus by Def. 1.(3), we get: d C v(a(d)).
By Def. 9.(3), it follows that: a(d) C «(d').

. Let d*,d'* € D* be two elements such that d* C d't.
By Prop. 3.(2), we have a(vy(d*)) C d*.
Moreover, by hypothesis, we have df C d’*.

Thus by Def. 1.(3), we get: a(y(d¥)) C d'%.
By Def. 9.(3), it follows that: v(d*) C ~v(d'*).

. Let d € D be an element.

By Prop. 3.(1), we have: d C v(a(d)).
By Prop. 3.(3), it follows that a(d) C a(y(a(d))).

)

By Def. 1.(1), we have: y(a(d)) C y(a(d
) E a(d).

By Def. 9.(3), it follows that: a(y(a(d)
By Def. 1.(2), it follows that a(d) = a(y(a(d))).

. Let d¥ € D* be an element.

By Prop. 3.(2), we have: a(y(d*) C d*.
By Prop. 3.(4), it follows that y(a(y(d*))) C v(d*).

By Def. 1.(1), we have: a(y(d")) C a(y(d*))
By Def. 9.(3), it follows that: 'y(dﬁ) C y(a(y(dh)).

By Def. 1.(2), it follows that y(d*) = y(a(y(d"))).

. Let d,d’ € D such that d C d'.

(a) By Prop. 3.(6), we have y(a(x(a(d)))) = 1(a(d)).
(b) By Prop. 3.(1), we have d C v(a(d)).



(¢) By Prop. 3.(3), we have a(d) C a(d’).
Then by prop. 3.(4), it follows that y(a(d)) C y(a(d")).

8. Let d*,d'* € D* such that d C d'%.

(a) By Prop. 3.(5), we have a(y(a(y(d")))) = a(y(d?)).
(b) By Prop. 3.(2), we have a(y(d*)) C d*.
(c) By Prop. 3.(4), we have y(d*) C v(d'*).
Then by prop. 3.(3), it follows that a(y(d*)) C a(y(d")).

a

Proposition 4. Let (D,C, 1, T,U,N) and (D* C, 1% T% 11,M) be two complete lattices. Let o be a mapping
between D and D* such that for any subset X C D, we have a(UX) = U{a(d) | d € X}.
Then there exists a unique mapping v between D* and D such that:

D%D”

is a Galois connexion.
Moreover, for any element d* € D¥, we have:

y(d*) = U{d | a(d) C &}

Proof. Let (D,C, 1, T,u,N)and (D C, L% T% 11,M) be two complete lattices. Let a be a mapping between
D and DF such that for any subset X C D, we have a(UX) = U{a(d) | d € X}.

1. (« is monotonic)

Let d,d’ € D, such that d C d'.
By Def. 3, we have U{d,d'} = d'.

Thus, we have: a(d") = a(U{d,d'}).

By the hypothesis on «, we have a(U{d,d'}) = L{a(d), a(d")}.
Thus, a(d') = W{a(d), a(d)}.

And by Def. 3.(1), it follow that a(d) C «(d’).

2. (existence)
Let 7/ be the mapping between D¥ and D such that:

7' (d) = U{d | a(d) C &}.

Let d € D and d* € D*.
— We assume that a(d) C d*.
We have: 7/ (d*) = U{d | a(d) C d*}.
Thus, by Def. 3.(1), we have d C +/(d*).

— We assume that d C +/(d").
By hypothesis, we have: v/(d*) = U{d | a(d) C d*}.
Thus, d C U{d | a(d) C d*}.
Since « is monotonic, we have: a(d) C a(U{d | a(d) C d*}).
By hypothesis on a, we have a(U{d | a(d) C d*}) = U{a(d) | a(d) C d*}.
Thus, a(d) C U{a(d) | a(d) T dt}.
For any d € D, such that a(d) C d*, we have a(d) C dF.
Thus, by Def. 3.(1), we have U{a(d) | a(d) C d*} C d*.
By Def. 1.(3), we get: a(d) C d*.



Thus: ,
D <= D!,

3. (uniqueness) Let v such that:
D <= D*.

Let d! € DY be an abstract element.

For any d € D such that a(d) C d*, we have by Def. 9.(3), d C ~y(d*).
By hypothesis, 7/(d*) = U{d | a(d) C d*}.
Thus, Def. 3.(2), we get that v'(d*) C v(d*).

By prop.3.(2), we have a(y(d")) C d*.
We have already proved that:
’Y/
#
D % D*.
is a Galois connexion.
Thus, by Def. 9.(3), we have (d*) C ~/(d*).

By Def. 1.(2), we get that (d*) = +/(d¥).
Thus v = ~".
a

Proposition 5. Given (D, C) and (D, C) two partial orders, D % D! a Galois connexion, and X C D a
subset of D, if, X has a least upper bound UX and {a(d) | d € X} has a least upper bound L{a(d) | d € X},

then we have:
a(UX) =H{a(d) |de X}.

Proof. Let (D,C) and (D*,C) be two partial orders, D % D! be a Galois connexion, and X C D be
a subset of D, such that X has a least upper bound UX and {a(d) | d € X} has a least upper bound
WH{a(d) | de X}.

— Let d be an element in X.

Since X has a least upper bound, we have by Def. 3.(1), d C UX.
By Prop. 3.(3), we have a(d) C a(UX).

Since {a(d) | d € X} has aleast upper bound, and by Def. 3.(2), it follows that L{a(d) | d € X} C a(UX).

— Let d be an element in X.
By Prop. 3.(1), we have d C y(a(d)).
Since {a(d) | d € X} has a least upper bound, and by Def. 3.(1), we have a(d) C L{a(d) | d € X}.

Thus by Prop. 3.(4), it follows that v(a(d)) C v(LW{a(d) | d € X}).
By Def. 1.(3), it follows that d C y(LU{a(d) | d € X}).

Since X has a least upper bound, and by Def. 3.(2), it follows that UX C v(LU{a(d) | d € X}).

By Def. 9.(3), we get that a(UX) C U{«a(d) | d € X}.



By Def. 1.(2), we conclude that a(UX) = U{«a(d) | d € X}.
O

Proposition 6. Given (D,C) and (D*,C) two partial orders, D % D* a Galois connegion, and X* C

D¥ a subset of D¥, if, X* has a least upper bound UX* and {v(d*) | d* € X*} has a least upper bound
U{y(d") | d* € X*}, then we have:

YUXF) = y(a(Uy(d) | dF € XF})).

Proof. Let (D, C) and (D*,C) be two partial orders, D % D! be a Galois connexion, and X* C D¥ be a
subset of D¥ such that: X* has a least upper bound LIX* and {y(d*) | d* € X*} has a least upper bound
() | dF € X7},

— Let d* be an element in X*.
Since X* has a least upper bound, we have by Def. 3.(1), d* C LX*.
By Prop. 3.(4), we have y(d) C y(LUX?).

Since {v(d*) | d* € X*} has a least upper bound, and by Def. 3.(2), it follows that U{~y(d*) | d* € X*} C
Y(UXF).

Then, by Prop. 3.(4) and Prop. 3.(3), we have y(a(U{y(d*) | d* € X*})) C y(a(y(LXH))).
But, by Prop. 3.(6), we have y(a(y(UX*))) = y(LX?).
Thus, it follows that: y(a(U{y(d*) | d* € X*} C y(UX?).

— Let d* be an element in X*.
By Prop. 3.(2), we have d* C a(y(d*)).

Since {7(d*) | d* € X*} has a least upper bound, and by Def. 3.(1), we have y(d*) C U{~y(d*) | d* € X*}.
Thus by Prop. 3.(3), it follows that a(y(d*)) C a(U{y(d*) | d* € X*}).

By Def. 1.(3), it follows that d* C a(U{y(d*) | d* € X*}).

Since X* has a least upper bound, and by Def. 3.(2), it follows that LIX* C a(U{y(d") | d* € X*}).

By Prop. 3.(4), we get that y(UX*) C y(a(U{y(d") | d* € X*})).

By Def. 1.(2), we conclude that y(LIX#) = y(a(U{y(d?) | d* € X*})).
O

Lemma 2. Let:

(D, C,U) and (D¥ C,L) be chain-complete partial orders;

D % D! be a Galois connexion;

F e 105 — D be a monotonic mapping;

F# € D* — D* be mapping such that: [Vd* € D F(vy(d*)) C v(F*(d*))];
xo € D such that zg C F(xg).

Grds o e =~

Then:
afzo) C F*(a(xg)).



Proof. Let us show that a(xg) C F*(a(zo)).

We have: zg C F(zo).

By Prop. 3.(1), we have: zg C v(a(xo)).

Then, since F is monotonic, it follows that F(zg) C F(y(a(xo))).

By hypothesis, F(y(a(zo))) € 7(F(a(z0))).

Thus, xo C v(F*(a(x))). By Def. 9.(3), it follows that a(zg) C F*(a(zo)).

d

Theorem 1 (soundness). Let:

1. (D,C,V) and (D¥,C,L) be chain-complete partial orders;

2. D % D! be a Galois connexion;

3. F€ D — D and F* € D* — D* be monotonic mappings such that: [Vd* € D, F(y(d*)) C ~v(F*(d*))];
4. g € D be an element such that: zo C F(zg).

Then, both Ifp, F and lfpu(mo)lﬁ‘ji exist, and moreover:

psoF € Y (Ufpa(ag) FP)-
Proof. We assume that the hypotheses of The. 1 are satisfied.

1. We have 2y C F(z() and F is monotonic.
Thus, by Lem. 1, F has a least fix-point greater than z.
Moreover, by Rem. 1, there exists an ordinal o such that Ifp, F = (o).

2. By Lem. 2, a(zg) C F¥(a(xo)).

Thus, by Lem. 1, F* has a least fix-point greater than .
Moreover, by Rem. 1, there exists an ordinal of such that UPer(a, ]F = i’ (a(zo)).

3. We consider an ordinal 3 such that o < 3 and of < §.
We have: Ifp, F = F?(zo) and lfpa(mo)]Fﬁ = F*8 (a(x)).
We show by transfinite induction that for any ordinal o, F°(zq) C v(F*(a(z0))).

— By Def. 8, we have FO(zq) = z9 and F**(a(z¢)) = a(xo).
By Prop. 3.(1), we have xg C v(a(zp)).
Thus, FO(2¢) € y(F*(a(x0))).

— We consider an ordinal o such that F°(zq) C v(F*(a(x0))).
By Def. 8, we have: Fo+1(zq) = F(F°(x0)).
Since F is monotonic, we have: F(F°(z¢)) C F(v(F**(a(zo)))).
By hypothesis, F((F*°(a(x0)))) C 7(F(F*(a(z0))).
Then, by Def. 8, we have: F*!(a(zg)) = F¥(F*(a(x0))).
And by extensionality, v(F* ! (a(xg))) = v(F*(F*°(a(x0)))).
Thus: Fo1(zq) C y(FH (a(xo))).

10



— We consider an ordinal o such that for any ordinal 8 < o we have: F?(xq) C v(F*4(a(x0))).
By Def. 8, we have: F°(xq) = U{F®(x¢) | B < o}.
Thus, by Def. 3.(1), we get that, for any ordinal 3 such that 3 < o, F°(zg) C v(F**(a(x0))).
Thus, since {y(F*(a(z0))) | B < o} is a chain, by Def. 6, and by Def. 3.(2), it follows that:
F(20) C U{(F*# (a(z0))) | 6 < o}.

For any ordinal 3 such that 8 < o,

by Def. 3.(1), we have: F*3(a(z0)) C L{F*A(a(z0))) | B < o};

then by Prop. 3.(4), we get that: v(F**(a(x0))) € v(U{F*?(a(z0))) | B < o}).

Then by Def. 3.(2), it follows that U{y(F*’(a(x0))) | B < 0} C v(L{F*’(a(x0))) | B < 0});

By Def. 8, LI{F*?(a(z0))) | B < o} = F#°(a(xy)).
Thus, by extensionality, v(U{F*?(a(x0))) | B < 0}) = y(F*°(a(x0))).
It follows that: F°(zq) C v(F!°(a(zo))).

a

Theorem 2. We suppose that:

(D, C) be a partial order;
(D C,U) be chain-complete partial order;
D % D! be a Galois connexion;
F e D — D and F* € D* — D¥ are monotonic;
Vd* € D¥, F(v(d")) C y(F*(d"));
Tg, inv € D such that:
— 29 C F(zg) C F(inv) C inv,
— inv = y(a(in)),
— and a(F(y(a(inv)))) = F*(a(inv));

Then, lfpa(zo)Fﬁ exists and fy(lfpa(zo)lﬁ‘ﬁ) C inw.

S s Lo v~

Proof. Let us show this result.

— By Lem. 2, a(zo) C F¥(a(x0)).

Thus, by Lem. 1, F¥ has a least fix-point greater than z.
Moreover, by Rem. 1, there exists an ordinal of such that UPer(a, ]F = F#of (a(zo)).

— Let us show by induction over of that F#o* (a(zg)) C alinv).

e By Def. 8, we have F¥°(a(z)) = a(xg).
Thus, by Def. 1.(1), a(zo) C alzg).
So, F#0(a(z0)) C a(xp).

By hypothesis, x¢ C inwv.
By Prop. 3.(3), we get that a(zg) C a(inv).

Thus, by Def. 1.(3), it follows that F**(a(z)) C a(inv).

11



e Let o be an ordinal such that F*°(a(zg)) C a(inv).

Since F* is monotonic, we have F*(F°(a(z0))) C F*(a(inv)).
By Def. 8, F**! (a(x0)) = ]Fﬁ(wo( ( 0)))-

By hypothesis, a(F(y(a(inv)))) = Ff(a(inv)).

Thus, F#2+ (a(z0)) C a(F(y(a(in))).

By hypothesis, y(a(inv)) = inv.

Thus, by extensionality, F(y(a(inv))) = F(inv).
By hypothesis, F(inv) C inv.

Thus, F(y(a(inv))) C inv.

By Prop. 3.(3), a(F(y(a(inv)))) C a(inv).

Thus, by Def. 1.(3), Ffot(a(zg)) C a(inv).
e Let o be an ordinal such that for any ordinal 3 < o, we have F*3(a(x¢)) C a(inv).

By Def. 3.(2), L{F*(a(z0)) | B < o} C a(inv).
By Def. 8, F¥°(a(x¢)) = U{F*?(a(z0)) | B < o}.
Thus, F#°(a(xg)) C a(inv).

Thus, ifpa(z,) Fé C a(inv).

— We have seen that lfpoé(wo)ﬂﬂi C a(inv).
By Prop. 3.(4), we have: ’y(lfpa(xo)Fﬁ) C v(a(inv)).
By hypothesis, y(a(inv)) = inv.
Thus, 7(lfpa(zo)Fﬁ) C inw.

a

Theorem 3. We suppose that:

. (D, C,U) and (D* C,U) are chain-complete partial orders;
. (D,C) &=
.F: D— ‘D 1S a monotonic map;

1

2 (D*,C) is a Galois connezion;

3

4. xo s a concrete element such that xo C F(xzg);
5

6

.Fo~y C~oFt;
.Floa=aoFo~voa.

Then:

— Ifp,,F and lfpa(m)IF‘ﬂ erist;
— Ufp,, F € 7(D*) <= Ufp, F = 7(Ufpo(ue) FP).-

Proof. We assume that the hypotheses of The. 3 are satisfied.

1. We have 2o C F(zp) and F is monotonic.
Thus, by Lem. 1, F has a least fix-point greater than z.
Moreover, by Rem. 1, there exists an ordinal 0® such that Ifp, F = Fo" (o).

12



2. Let us show, by induction over the ordinal op, that there exists a unique collection of elements (X?%),<o,
such that for any ordinal o < oq:
— i
Xt = a(zo) whenever 0 =0

X =FH(X"_)) whenever o is a succesor ordinal
Xi= I_I{Xg | B <o} otherwise.

— ii. for any ordinal o < 0y, there exists an element d € D such that X} = a(d),
— iii. (X#)p<o, is increasing,
— iv. and for any ordinal o < 0p, X} C F*(X}).
(a) i There exists a unique element X§ such that X} = a(x).
ii. a(mo) = ()é(.%‘o).
ifi. (a(zg)) is an increasing family (of one element).

iv. By hypothesis, 2o C F(zo).

By Prop. 3.(1), zo C v(a(z0)).
Since F is monotonic, F(zg) C F(y(a(zg))).

Thus, by Def. 1.(3), it follows that zo C F(vy(a(zg))).
By Prop. 3.(3), we get that: a(zg) C a(F(y(a(zg)))).

By hypothesis, F*(a(z0)) = a(F(y(a(zo)))).
Thus, a(z¢) C F#(a(xg)).

(b) Let oy be an ordinal.
We assume that there exists a unique family (X#),<,, such that the equations (a) are satisfied.
We also assume that there exists a family of elements (X,),<,, such that for any ordinal, a(X,) = X?,
that (Xg)ogoo is increasing and that for any ordinal o < oy, Xg C F4(X,).
We define Y = X¥ whenever o < oy and YjOH =F4(X}).

i. The family (Y,})o<o,+1 satisfies the equations (a).

ii. Now we consider a family (Z%),<,,+1 of elements in DF which satisfies the equations (a).
By induction hypotheses (uniqueness), we have Z# = Y for any ordinal o < 0.
Moreover, since (Z%),<o,+1 satisfies the equations (a), we have ZﬁO_H =F*Z},).

Since 7}, =Y} , it follows by extensionality that F*(Z! ) = F*(Y}).
Moreover, we have: F¥(Y} ) = YOﬁOH.

Thus 2!, =Y}, .

It follows that (ZB)OSOOJ"l = (Yo’j)ogoo-i-l-

13



iii. By induction hypotheses, there exists a family (X,)o<o, Such that (Y}),<,, =

It follows that Ygﬁo = a(X,).

By extensionality, F¥(Y} ) = F*(a(X,)).

By hypothesis, Y | = F4(YE).

By hypothesis, F¥(a(X,)) = a(F(y(a(Xp)))).
Thus, Y 11 = a(F(v(a(X0)))-

We define X,,+1 = F(v(a(Xo))).
We have YOﬁ(H_1 = a(Xogt1)-

Since (Y)o<o, = ((X0))o<op, it follows that (V) p<op11 = (a(X0))o<ogt1-

iv. By induction hypotheses, (Y}),<,, is increasing.
By induction hypotheses again YoﬁO C Fﬁ(YfO).
Since Y}, = F¥(V}), it follows that Y C Y} .
Thus (Y}#)o<op+1 is increasing.

v. By induction hypotheses, for any o < og, Y# C F¥(Y#).

Moreover, Yfg C on L1

Since Y} = a(X,,) and Yoﬂﬁ_1

= a(Xog+1), it follows that a(X,,) C a(Xeg+1)-

(O‘(XO))OSOO'

By Prop. 3.(4), since F is monotonic, and by Prop. 3.(3), a(F(v(a(Xos,)))) C a(F(y(a(Xog+1))))-

By hypothesis, a o F oy o a = Ff o o, thus F¥(a(X,,)) C IE‘”(a(XﬁOH)).

Since, Y} = a(X,,) and Y/ .| = a(Xo,41), it follows that F¥(Y} ) C FH(FH(Y])).

By induction hypothesis, YfOH =FH(Y}).
Thus, Y}, CFH(YE ).

Thus, we denote by F#°(a(xg)) the unique collection which satisfies the equations (2).

Let us show that F# has a fix-point.

The collection (F*°(a(z0))) which is indexed over the ordinals is increasing.
Since D? is a set, it follows that there exists an ordinal of, such that F#°* (a(z0))
Since (F#°(a(z0))) satisfied equation (2), it follows that F# (IW"n (afzp))) = Fof («
Moreover, we have already proven that a(zg) C Fio* (a(zp)).

Let is show that F#°(a(x)) is the least fix-point of F¥.

Consider another fix-point y* € D such that a(zg) C y*.
We have y* = F#(y#).

Let us show by transfinite induction that F*°* (a(z0)) C y*.

— We have, by hypothesis, a(xq) C yF.
Since, F#0(a(z0)) = a(x), it follows that F#(a(zg)) C a(y).

14

(x

Fio 1 (a(zq)).

0))-



— Let us consider an ordinal o such that F#°(a(xg)) C y*.
We know that F#°(a(zo)) € a(D).
Thus there exists an element 2 € D such that F*°(a(zg)) = a(x).
Then, a(z) C yF.
By Prop. 3.(4), since F is monotonic, and by Prop. 3.(3), a(F(y(a(x)))) T a(F(y(y*))).
By hypothesis, F(y(y%)) € v(F*(y%)).
By Prop. 3.(3), we get that a(F(y(y%))) C a(v(Fi(y"))).

By Prop. 3.(2), a(y(F*(y*))) C F*(y*).

Thus, by Def. 1.(3), a(F(y(a(x)))) T F¥(y#).

By hypothesis, a(F(y(a(z))
Moreover, a(z) = F#(a(xg)).

Thus, by extensionality, a(
But by definition, ]Fﬁ(]FﬁO(a(xo))) Fﬂ"“(a( 0)).
Thus, Ffot! (a(z0)) C Fi(y?).

By hypothesis, F#(y?) = yF.
Thus Ffot! (a(xg)) C ot

— Let us consider an ordinal o such that for any 3 < o, we have F*3 () C y.
By Def. 3.(2), we get that U{F*4(x¢) | 8 < 0} C .
By hypothesis, F°(x) = U{F*3 () | B < o}.
Thus, F#°(z0) C y.

Thus, F#°° is the least fix-point of F# which is bigger than a(xg).
(e) Let us prove that Ifp, F C 'y(lfpa(mo)lﬁ'ﬁ).
We consider an ordinal 3 such that 0® < 3 and of < 3.

We have: lfp, F = F?(z() and lfpa(gm)IF‘ﬁ = F*8 (a(zp)).
We show by transfinite induction that for any ordinal o, F°(xq) C ~(F**(a(zo))).

— By hypotheses, we have F°(zq) = 2o and F#°(a(zq)) = a(zo).
By Prop. 3.(1), we have zg C y((zo)).
Thus, FO(z0) € v(F*°(a(20))).

— We consider an ordinal o such that F°(zg) C v(F**(a(x0))).
By Def. 8, we have: FoT1(zq) = F(F°(x0)).
Since F is monotonic, we have: F(IF°(z¢)) C F(v(F*(a(zo)))).
By hypothesis, F(1(F**(a(zo))) € 7(F*(F*(a(zo))))
Then, by hypothesis, we have: Fio+1(a(zq)) = FH(F (a(x0))).
And by extensionality, v(F1T! (a(x))) = v(FH(F#(a(z)))).
Thus: FoT!(z0) C y(FFoH (a(xo))).
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— We consider an ordinal o such that for any ordinal 8 < o we have: F#(zq) C v(F*2(a(x0))).
By Def. 8, we have: F°(zq) = U{F#(x) | B < o}.
Thus, by Def. 3.(1), we get that, for any ordinal 8 such that 8 < o, F°(xq) C v(F*?(a(x0))).
Thus, since {y(F*3(a(x0))) | B < o} is a chain, by Def. 6, and by Def. 3.(2), it follows that:
F*(20) € U (¥ (a(z0))) | 8 < o}.

For any ordinal 8 such that 8 < o,

by Def. 3.(1), we have: F*4(a(x¢)) € U{F*?(a(x0))) | B < o};

then by Prop. 3.(4), we get that: v(F*%(a(x0))) C v(U{F**(a(x0))) | B < 0}).

Then by Def. 3.(2), it follows that U{y(F**(a(z0))) | 8 < 0} C v(L{F*?(a(z0))) | B < 0});
By hypothesis, LI{F*?(a(z¢))) | B < o} = F*(a(z0)).

Thus, by extensionality, v(L{F*®(a(x0))) | B < 0o}) = v(F#°(a(x))).
It follows that: F°(zg) C (F**(a(xo))).

Thus, Ifp,,F C v(ifpgs (o).
(f) Let us prove that: Ifp, F € v(D*) <> Ifp, F = Y(UPar(zo ]Fﬁ)
i. We assume that Ifp, F = ’y(lfpa(xo)IFﬁ).
Then, by definition of v(D¥), ifp, F € v(D?).
ii. Now we assume that Ifp, F € y(D?).
A. We know that: Ifp, F C y(ifpy s F*)-
B. Let us prove that: fy(lfpa(zo)Fﬁ) C ifp,,F

We propose to prove by induction over the ordinals that F**(a(z¢)) C a(lfp, F).

x We have zo C Ifp, F.
By Prop. 3.(3), a(z0) C a(lfp, F).

* Let us assume that there exists an ordinal o, such that F**(a(zo)) C a(lfp,,F).
There exists x € D, such that F*°(a(z¢)) = a(z).

Thus a(z) C a(lfp,, (z0))-
By Prop. 4, since F is monotonic, and by Prop. 3, a(F(y(a(x)))) C a(]F('y(a(lfpm ()))))-

By hypothesis, a(F(y(a(x)))) = F¥(a()).

Since F#°(a(xg)) = a(z), by extensionality, we get that: F*(F*(a(zq))) = F*(a(z)).
Since by equations (2), it follows that Ffo+1(a(zg)) = F*(F*°(a(xo))).

Thus, F#**!(a(0)) E a(F(v(a(ifp,,I))))-

By Prop. 3.(1), v(a(lfpy,F)) E Ufp,F-
Since [F is monotonic, F(vy(a(lfp,,F))) T F(ifp,,F).

But F(lfp, F) = ifp, F.
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Thus, F(y(e(lfp,,F))) C ifp,,F.
By Prop. 3.(3), a(F(v(a(lfp,,F)))) E a(ifp,,F).

By Def. 1.(3), it follows that: F***!(a(z0)) C a(lfp,,F).

x Let us assume that there exists an ordinal og, such that for any ordinal o < oy, F#(a(z¢)) C

a(lfp,,IF).

Since (F#°(a(z0))) is a chain, U{F# (a(zg)) | 0 < 0o} exists.

By Def. 3.(2), L{F*(a(z0)) | 0 < oo} C a(lfp,,F).

By equations (2), we have F#+1 (a(zg)) = U{F**(a(z0)) | 0 < 0o}
Thus, F*** (a(z0)) T a(lfp,,F).

We have proved that Ifp,(q, Fﬁ C a(lfp,,F).

By Prop. 3.(4), (lfpa(xo)w) < v(a(lfp,,F)).

But since, Ifp, F € v(D?), there exists # € D, such that v(z) = Ifp,, F.
By extensionality, v(a(y(z))) = v(a(lfp,,F)).

By Prop. 3.(6), 7(z) = v(a(y(2))).

Thus 7(a(Ufpy, F)) = Ufpy, I

It follows that: ’y(lfpa(mo)w) C Ifp,,F

Thus ifp,,F = ¥(ifpa(ee) F)-
O

Corollary 1 (relative completeness). We suppose that:

(D, C,U) and (D¥ C,L)) are chain-complete partial orders;
(D, Q) == = (D*,C) is a Galois connezion;

for any cham X8 C D U(y(XF)) € (D),

F : D — D is a monotonic map;

xo 1s a concrete element such that xo C F(xg);

aoFory =T

Zo € 7(Dﬁ)"

F(v(D¥)) € y(D?).

BN G Lo v~

Then, both lfp, F and lfp, s, IF exist, and moreover:

Proof. We assume that the hypotheses of The. 1 are satisfied.

— By hypothesis 4, F is monotonic.
By hypothesis 5, 2 C F(zo).
Thus, by Lem. 1, F has a least fix-point greater than z.
Moreover, by Rem. 1, there exists an ordinal o such that Ifp, F = F°(x).

— Let us show by induction over the ordinal o that F°(zq) € v(D?¥).

17



e We have FO(z0) = .
By hypothesis 7, 2o € v(D*).
Thus FO(z0) € v(D?).
e We assume that there exists an ordinal 3 such that F?(z¢) € v(D¥).

By induction hypothesis, F?(zo) € v(D¥).
By hypothesis 8, F(F?(z0)) € v(D*).
Since FA*1(z) = F(FA(x0)).

It follows that FA*1(zq) € y(D¥).

e We assume that there exists an ordinal 8 such that for any ordinal 8’ < 8, F#' (x) € v(D*).

We have F#(xz¢) = U{F?" | B’ < 8}.
By hypothesis 3, F#(xq) € v(D*).

Thus, since Ifp, F = F°(x), it follows that Ifp, F € y(D*).

All the hypotheses of The. 3 are satisfied.

Thus, lfpa(%)IFﬁ exists.

Moreover, since Ifp, F € v(DF), it follows that: lfpa(zo)]Fﬁ = ’y(lfpa(mo)w).

2 Site-graphs

Let N be a countable set of agent identifiers.
Let A be a finite set of agent types.
Let S be a finite set of site types.

Definition 10 (site-graphs). A site-graph is a triple (Ag, Site, Link) where:

— Ag : N — A is a partial map between N and A such that the subset of N of the elements i such that
Ag(i) is defined is finite;
— Site CN x S is a subset of N X § such that for any pair (i,s) € Site, Ag(i) is defined;
— Link C Site® is a relation over Site such that:
1. for any site a € Site, (a,a) & Link;
2. for any pair (a,b) € Link, we have (b,a) € Link;
3. for any sites a,b,b’ € Site, if both (a,b) € Link and (a,b") € Link, then b=1V'.
Whenever (a,b) € Link, we say that there is a link between the site a and the site b.
Whenever a € Site, but there exists no b € Site such that (a,b) € Link, we say that a is free.

Definition 11 (embeddings). An embedding between two site-graphs (Ag, Site, Link) and (Ag', Sité', Link)
is given by a partial mapping ¢ : N — N, such that:

1. (agent mapping) For any i € N, Ag(i) is defined if and only if (i) is defined;

2. (well-formedness) For any i € N, if Ag(i) is defined, then Ag (¢(i)) is defined;

3. (into mapping) For any i,i € N, if ¢(i) and ¢'(i) are defined, then ¢(i) = ¢(i') = i=1';
4. (agent types) For any i € N, if Ag(i) is defined, then Ag(i) = Ag (¢(3));
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5. (site types) For any site (i, s) € Site, (¢(i), s) € Site';

6. (free sites) For any pair (i,s) € Site such that for any (i',s") € Site, ((i,s), (¢, s")) & Link, then for any
(i", ") € Sitd, ((6(0),5), (", s")) & Link;

7. (links) For any link ((i,s),(i',s")) € Link, ((¢(), s), (¢(i'),s")) € Link'.

Definition 12 (automorphism). An embedding between a site-graph and itself is called an automorphism.

Definition 13 (paths). Let G = (Ag, Site, Link) be a site-graph. We define a path of length n > 0 in the
site-graph G a sequence (i, Sk)o<k<zxn—1 0f 2 X n pairs of sites in Site such that:

1. For any j such that 0 < j <n, ((i2x,S2x;), (l2xj+1,S2x;j+1)) € Link.
2. For any j such that 1 < j < n, iox; = i2xj—1 and Saxj 7 S2xj—1-

Proposition 7 (sub-paths). Let G = (Ag, Site, Link) be a site-graph and (ix, Sk)o<k<2xn—1 be a path
of length n > 0 in the site-graph G. Let m,m’ be two integers such that 0 < m < m' < n, then,
(ik, Sk)2xm<k<2xm’—1 IS a path in the site-graph G.

Proof. We have m’ —m > 0.
For any integer k such that 2 x m < k <2 xm’ — 1, we have by Def. 13, (ix, si) € Site.
Moreover,

1. for any integer k such that m < k < m’, by Def. 13.(1), ((iaxk, S2xk)s (i2xk+1; S2xk+1)) € Link;
2. for any integer k such that m < k < m’, by Def. 13.(2), iaxr = toxr—1 and Soxg 7# Saxk—1-

By Def. 13, it follows that (ix, Sk)2xm<k<2xm’/—1 is a path in the site-graph G.
O

Proposition 8 (path composition). Let G = (Ag, Site, Link) be a site-graph and (ix, Sk)o<k<2xn—1 and
(1), S}, Jo<k<2xn’—1 be two paths of length n > 0 and n' > 0 in the site-graph G such that iaxn—1 = i, and

!
S2xn—1 # So-
Then, the sequence (i}, s].)o<k<2x(n4n’)—1 where:

{(ﬁ;ﬁ%) = (ikysk) whenever 0 <k <2xn-—1

(1,87) = (1 _owms Sh_oxn) Whenever2xn <k<2x (n+n')—-1
18 a path of length n +n' in G.

Proof. Let G = (Ay, Site, Link) be a site-graph and (ix, Sg)o<k<2xn—1 and (i}, $i)o<k<2xn’—1 be two paths
of size n > 0 and n’ > 0 in the site-graph G such that iax,—1 = i, and Saxn—1 # S;-

We have 2 x (n+n') > 0.

We consider the sequence (i}, 57 )o<k<2x (nt+n’)—1 Which is defined as follows:

"

(i, s%) = (i, Sk) whenever 0 <k <2xn—1
(0, 80) = (1) _oxns Sk—oxn) Whenever 2xn<k<2x(n+n’)—1

Let k be an integer such that 0 <k <2 x (n+n') — 1.
— We assume that k <2 xn—1.
We have: (i}, s)) = (ix, Sk)-

Thus, by Def. 13, (ix, sk) € Site.
Thus (i}, s}) € Site.
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— We assume that £ > 2 xn — 1.

We have: (i, 5) = (i _oxns Sk—2xn)-
Thus, by Def. 13, (%} _5ypns Sk_axn) € Site.

Thus (i, sj) € Site.

— Let k be an integer such that 0 < k <n +n'.

e We assume that k < n.

We have (i/2/><k78/2/><k) = (faxk, S2xx) and (i/zlxk+1vs/2/xk+1) = (12xk+1, 52xk+1)-
Since (i, Sk)o<k<2xn—1 is a path, by Def. 13.(1), ((i2xk; S2xk), ((2xk+1, S2xk+1)) € Link.

Thu37 ((i/Q/xlw 5/2,><k)7 (i/2/><k+17 8/2,><k+1)) € Link.

e We assume that k& > n.

-/ " _ -/ / -/ " _ -/ /
We have (i3, Sh.x) = (ZQX(k—n)’S2><(k—n)) and (ig,j 41, Soxp1) = (22><(k—n)+1’s2><(k—n)+1)‘
We know that the sequence (2}, S} )o<k<2xn/—1 is a path.

By Def. 13.(1), ((igy (k—ny> Sox (k—n))> (Fox (k—n)+1> Sox (k—n)1)) € Link.
Thusv ((7’/2/><k7 sgxk)v (7’/2,><k+17 SIQ/Xk+1)) € Link.

— Let k be an integer such that 1 < k <n+n'.

o We assume that & < n.

-1/ 1 - -/ 1 -
We have (if, ., 85y ) = (i2xk, S2xk) and (ig, 1,855k 1) = (f2xk—1, S2xk—1)-
Since (i, Sk)o<k<2xn—1 is a path, by Def. 13.(2), toxr = taxk—1 and Soxi 7 Saxk—1-
-/ . 12 1
Thus, i5,, = i,y and sy, 7 S5,

e We assume that k = n.

-1/ A -1/ _ 1 1 o " —
We have iy, = dg, iny )1 = faxn—1, Soxp = 505 S2x—1 = S2xn—1-
By hypothesis, if, = taxn—1 and s # Soxn—1-
-/ s 1 "
Thus, 5, ), = i5y,_q and sy, # Sy

e We assume that k& > n.

-1 1" _ -/ / -/ " _ ./ /
We have (i3, Sh.x) = (ZQX(k—n)’S2><(k—n)) and (ig, 1, Soxp—1) = (ZQX(k—n)—1782x(k—n)—1)'
: -/ ! : -/ ! ! /!
Since (i}, 5}, )o<k<2xn’—1 is a path, by Def. 13.(2), i (k—n) = Yo (ken)—1 and S (k—n) #+ S (km)—1-
-1/ s 1 "
Thus, 5, = 15,1 and 85, # 55, _1-

Thus, by Def. 13, (i}, 5} Jo<k<2x (n4n’)—1 is a path in G.

O

Proposition 9 (path image). Let G = (Ag, Site, Link) be a site-graph, ¢ be an automorphism of G, and
(tk, Sk)o<k<2xn—1 be a path of length n > 0 in G, then (¢(ir), Sk)o<k<axn—1 S a path of length n in G.
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Proof. Let G = (Ag, Site, Link) be a site-graph, ¢ be an automorphism of G, and (ix, sk)o<k<2xn—1 be a path
in G, then (¢(ix), Sk)o<k<2xn—1 is a path in G.

— Let k£ be an integer such that 0 < k <2 xn — 1.

By Def. 13, (ix, si) € Site.

By Def. 10, Ag(iy) is defined.

By Def. 11.(1), ¢(ix) is defined.

By Def. 11.(2), Ag(¢(ix)) is defined.
By Def. 11.(5), (6(ix), s) € Site.

— Let k be an integer such that 0 < k < n.

By Def. 13(1), ((iQXk, ngk), (igxk+1, 52><k+1)) € Link.
By Def. 11.(7), ((¢(i2xk), S2xk), (@(i2xk+1), S2xk+1)) € Link.

— Let k be an integer such that 1 <k < n.

By Def. 13.(2), d2xk = foxk—1 and saxi # S2xk—1-
By extensionality, ¢p(iaxr) = d(i2xk—1)-

Thus, by Def. 13, (QZS(Z]C), 5k)0§k§2><n—1 is a path in G.
O

Definition 14 (connected components). A site-graph (Ag, Site, Link) is a connected component, if and
only if, for any pair (i,i') € N? of agent identifiers such that Ag(i) and Ag(i') are defined and i # i', there
exists a pair (s,s') € 8% of site types, such that (i,s) € Site, (i',s") € Site, and there is a path in G between
the site (i,s) and the site (i',s').

Definition 15 (cycle). Let G be a site-graph. A cycle of length n > 0 is a path (ix, Sk)o<k<2xn—1 in the
site-graph G such that ig = iaxn—1 and Sg # Soxn—1-

Lemma 1 (rigidity) An embedding between two connected components is fully characterized by the image
of one agent.

Proof. Let G = (Ag, Site, Link) and G' = (Ag, Site, Link') be two connected components and ¢, ¢’ be two
embeddings between G and G'.

Let ¢ € N be an agent identifier such that Ag(¢) is defined.
We assume that ¢(i) = ¢'(4).

For any agent identifier i’ € N,

— We assume that Ag(i') is not defined.

Then by Def. 11.(1), neither ¢(:') nor ¢'(i’) are defined.
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— We assume that Ag(i') is defined and that ¢/ = 1.

By hypothesis, ¢(i) = ¢'(4).
Thus, 6(7') — o/ (7).

— We assume that Ag(i') is defined and that i’ # i.

By Def. 14 and since i # ¢’ , there exist two sites s and s’ and a path (ix, Sk)o<k<2xn—1 of length n > 0
between (i, s) and (i, s").
Moreover, by Def. 11.(1), both ¢(i) and ¢'(i) are defined.

By absurd, let us assume that ¢(i’) # ¢'(i’) and that n is minimal for this property.

We have n > 0.
e For any j € N, such that 0 < j < n, we have by Def. 13.(1), ((i2x;,S2x;), (i2xj+1,S2xj+1)) € Link;
e For any j such that 1 < j < n, we have by Def. 13.(2), i2x; = t2x;—1 and s2x; = S2x;—1.

We consider two cases:

1. We assume that n = 1.

We have ¢(iaxn) = ¢ (iaxn)-

2. We assume that n > 2.

Thus, by Def. 13, (ix, sk)o<k<2x(n—1)+1 is a path between ig = i and igy (n—1)4+1-
Since n is minimal, we get that ¢(izx(n—1)+1) = ¢’ (fax(n—1)41)-

By Def. 13(2), we have i2><(n71)+1 = i2><(n71)+2 and 82><(n71)+1 7é 52><(n71)+2~

Thus, by extensionality, ¢(iax(n—1)+1) = @(iax(n-1)+2) and ¢’ (iax(n-1)+1) = ¢’ (f2x (n-1)+2) -
ThUS, ¢(i2><n) = ¢/(i2><n)~

By Def. 13.(1), we have ((i2xn;S2xn), (2xn+1, S2xn+1)) € Link.

ThUS7 by Def. 11(7)7 ((¢(i2><n)u82><n)a (¢(i2><n+1)7 S2><n+1)) € Link

and ((¢'(i2xn), S2xn), (@' (izxn+1), S2xn+1)) € Link.

Since QZ5(7;2><7L) = ¢/(i2><n)7 it follows that ((¢(i2><n)752><n)7 (¢(i2><n+1)752><n+1)) € Link
and ((¢(i2xn); S2xn)s (@' (i2xn+1), S2xnt1)) € Link.

Then, by Def. 10.(3), it follows that @¢(ioxni+1) = & (i2xnr1)-

Thus, since ¢/ = iaxpt1, ¢(i') = ¢'(i’) which is absurd.

So whenever Ag(i') is defined, ¢(i') = ¢/(¢').

Thus ¢ and ¢’ are equal.
O

Proposition 10. Let G = (Ag, Site, Link) be a connected component without any cycle. Let ¢ be an auto-
morphism of G. Let i be an agent identifier such that Ag(i) is defined. Let (if, Sk)o<k<2xn—1 be a path between
i and ¢(1).

Then sg = Soxn—1-

Proof. Let G = (Ag, Site, Link) be a connected component without any cycle.
Let ¢ be an automorphism of G.
Let i be an agent identifier such that Ag(i) is defined.
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Let (i, Sk)o<k<2xn—1 be a path between ¢ and ¢(i) such that s # saxn—1-

Let us prove by induction over m, that for any m € N, (¢™ (ix), Sk)o<k<2xn—1 is a path in G.

— We assume that m = 0.

The sequence (¢™ (i), Sk)o<k<2xn—1 is equal to the sequence (i, Sk)o<k<2xn—1-
By hypothesis, (ix, Sk)o<k<2xn—1 is a path in G.
Thus, (gf)m(lk), 5k>0§k§2><n—1 is a path in G.

— We consider m € N such that (¢™ (ix), Sk)o<k<2xn—1 is a path in G.

By Prop. 9, (¢(¢™(ik)), Sk)o<k<2xn—1 is a path in G.
Since the sequence, (¢(¢™(ix)), Sk)o<k<2xn—1 is equal to the sequence (¢ (ix), sk)o<k<2xn—1-
(@™ (ik), Sk)o<k<2xn—1 is a path in G.

Let us prove by induction over m/, that for any m,m’ € N, such that m < m/, there exists a path
(1), 53 Jo<k<2xn’—1 in G such that i, = ¢ (ig), 5y, 1 = ¢™ (i0), 55 = S0, and sH, 1 = Saxn—1-

— We assume that m’ =m + 1.

We have ¢™ (ig) = ¢™ (¢(io)).
We have proved that (¢™ (i), Sk)o<k<2xn—1 1S a path in G.
Moreover, ¢™ (i) = ¢™ (ip)-

Since ig9xp_1 = (b(io)3 by extensionaly, ¢(¢™ (ig)) = ¢(¢™ (io)).
So ¢m(i2><n—1) = ¢m (i2><n—1)~

Lastly, so = sp and Soxn—1 = S2xn—1-

— We assume that there exist m,m’ € N, such that m < m’ and a path (2}, s} )o<k<2xn’—1 in G such that
i = ¢"(ig) and ih,,,_ = ¢™ (i) such that s; = so and sh,,, 1 = Soxn—1.

. . . . ’ .
We have already proved that there exists a path (i, s} )o<k<2oxn7—1 In G such that if = ¢™ (ig),
1 S " "
i1 = O™ T(io), s§ = so and 85,1 = Saxn—1.

Since sg # S2xn—1, by Prop. 8, there exists a path between the site (¢ (ig), so) and the site (¢7”,+1 (10), S2xn—1)
ingG.

By Def. 10, Def. 11.(1), and Def. 11.(2), the set {¢™" (io) | m” € N} is finite.
Thus there exists m < m’ such that ¢ (ig) = ¢™ (io).

By Def. 15, there exists a cycle in (Ag, Site, Link), which is absurd.

a

Lemma 2 (automorphism) Let G = (Ag, Site, Link) be a connected component without any cycle.
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— G has at most two automorphisms.

— If ¢ is a automorphism over G, such that there exists i € N, such that Ag(i) is defined and ¢(i) # i, then
there exist two agent identifiers i,i' € N and a site type s € S, such that Ag(i) = Ag(i'), (i,s), (i, s) €
Site, and ((i,s), (i',s)) € Link.

Proof. Let (Ag, Site, Link) be a connected component without any cycle.

— By Def. 11, the identify function restricted to the elements i € N such that Ag(4) is defined, is an auto-
morphism.

— Let us assume that there exists another automorphism ¢ of (Ag, Site, Link).

e Let us show that for any agent identifier ¢ € N such that Ag(i) is defined, then ¢(i) # 1.

We assume that there exists ¢ € N such that Ag(¢) is defined and ¢(i) = 1.

Then, ¢ and the restriction of the identify function to the elements i € N such that Ag(7) is defined
are two embeddings between (Ag, Site, Link) and (Ag, Site, Link).

Since (Ag, Site, Link) is connected, by Lem. 1, ¢ is equal to the restriction of the identify function
to the elements i € N such that Ag(i) is defined are two embeddings between (Ag, Site, Link) and
(Ag, Site, Link), which is absurd.

e Let i € N be an agent identifier such that Ag(¢) is defined.

Since (Ag, Site, Link) is connected and i # ¢(i), we can consider a path (ix, Sk)o<k<2xn—1 between i
and ¢(7).

By Prop. 10, so = saxn—1-

Let us prove by induction, that for any & € N, such that 0 < k < n, Ag(ix) = Agliaxn—1—-k),
Sk = S2xn—1—k, Plix) = loxn—1—k-

* We assume that k£ = 0.
By Def. 13, we have ig = i and iaxn—1 = ¢(1).
By Def. 11.(4), Ag(¢(i)) = Ag(r).
Thus, Ag(io) = Ag(iaxn—1)-
By hypothesis, we have sg = soxn_1-

By hypothesis, we have ¢(ig) = ioxn—1-

* We assume that there exists k € N such that 0 < k <n, Ag(ix) = Agliaxn—k—1), Sk = S2xn—k—1
and @(ix) = faxn—1-k-

- We assume that k is even.
We have by Def. 13.(1), ((ix, Sk), (ik+1,Sk+1)) € Link
and ((f2xn—ks S2xn—k)s (l2xn—k+1, S2xn—k+1)) € Link.

By Def. 10, ((i2xn—k+1552xn—k+1) ((2xn—k, S2xn—k)) € Link.
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By Def. 11.(1), ¢(ix) and ¢(ig+1) are defined.

By Def. 11.(2), Ag(é¢(ix)) and Ag(é(ig+1)) are defined.

By Def. 11.(5), (¢(ix), sk) € Site and (Pp(ig41), Sk+1) € Site.

By Def. 11(7) ((¢(Zk)7 Sk)v (d)(ik-‘rl)a Sk+1)) € Link.

By induction hypothesis, ¢(ix) = ioxnt1—k and sp = Soxp+1—k-

Thus, ((t2xn—k+1s52xn—k+1), (@(ik+1), Sk41)) € Link.

We already proved that ((i2xn—k+1, S2xn—k+1)s ((2xn—ks S2xn—k)) € Link.
By Def. 10.(3), it follows that ¢(ix+1) = toxn—k and Sgr1 = Soxn—k-

- We assume that k is odd and kK <n

We have by Def. 13.(2), i = ig+1 and ioxn—k = t2xn—k+1-

By induction hypothesis, ¢(ir) = toxn—k+1-

By extensionality, ¢(ik+1) = t2xn—k+1-

Thus, ¢(ixs1) = i2xn—k-

We can deduce that ix11 # toxn—k-

Since, moreover, (i;,8;)o<i<2xn+1 is & path and k+ 1 is even, 2 x n — k — 1 is even, and
k+1<2xn—k+1, and by Prop. 7, (i, $1)k+1<i<2xn—#k is & path between (i;41,s14+1) and
(#(i141), S23n—k)-

Thus, by Lem. 10, Sx+1 = Soxn—#k-

By Def. 10, ((i2><n k+1,52xn— k+1) (i2><n k752><n—k)) € Link.

By Def. 11.(1), (zk) and ¢(ig41) are defined.

By Def. 11.(2), Ag(¢(ix)) and Ag(¢(ik+1)) are defined.

By Def. 11.(5), (¢(ir), sk) € Site and (¢(ik+1), Sk+1) € Site.

By Def. 11.(7), ((¢(ix), sk); (¢(ik+1), Sk+1)) € Link.

By induction hypothesis, ¢(iy) = ioxnt+1—r and sp = Soxpt1—k-

Thus, ((t2xn—k+1sS2xn—k+1), (@(ik+1), Sk41)) € Link.

We already proved that ((i2xn—k+1,S2xn—k+1)s (12xn—k, S2xn—k)) € Link.

By Def. 10.(3), it follows that ¢(ig+1) = taxn—k and Sgr1 = Saxn—k-

Thusa we have (Ag(ln)a Sn) - (Ag(in—&-l), 3n+1)' and ¢(Zn) = in+1~
O
Lemma 3 (Euler) If a site-graph has no cycle, then it has an agent with at most one bound site.

Proof. Let G = (Ag, Site, Link) be a site-graph such that for any agent identifier i« € N such that Ag(i) is
defined, there exists two links ((41, 1), (i2, 82)), ((i}, s}), (i%, s5)) € Link such that i; =i} =4 and s; # s}.

We can assume, without any loss of generality, that the set N and S are totally ordered.
We define the following sequence (z,)nen of sites:

xo = (MIN{i € N | Ag(7) is defined }, MIN{s | (MIN{7 € N | Ag(¢) is defined },s) is bound in G})
Taxnt1 = (2',8) | (T2xn, S2xn), (2',8")) € Link
Taxnt2 = (Taxnt1, MIN{S | § # S2xnt1 A (Taxnt1,$) is bound in G}).

Let us prove that the sequence (z,)necn is well-defined and for any n € N, Ag(n) is defined, and (x,,) is
bound in (Ag, Site, Link).

— x¢ is well-defined, since any site has at least two bound sites.
Let us denote xg = (ig, So)-
By definition, Ag(ip) is defined, and xq is bound in G.
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— Let us assume that zox,, is well-defined, that Ag(FST(22xy)) is defined, and x9y, is bound in G.

Let us denote zoxy, = (i2x,,, S2xn)-
Since axy, is bound in G, by Def. 10, there exists a unique pair (i',s") such that (zaxn, (¢',5")) € Link.
Moreover, by Def. 10, Ag(i') is defined and (¢, s") is bound in G.

— Let us assume that zox,, 1 is well-defined, that Ag(FST(z2xn+1)) is defined.
Let us denote Zoxpn+1 = (f2x,+1, S2xn+1)-
By hypothesis, i2x 41 has at least two bound sites.
Thus the set {s | s # Saxn+1 A (Taxnt1,$) is bound in G} is not empty, and zax,, is well defined.
Moreover, iaxnt+1 = t2xn and Ag(iax,) is defined, thus Ag(iaxn+1) is defined.
Lastly, zoxn+1 is bound in G.

By Def. 10, the set of the elements i € N such that Ag(7) is defined is finite.

Moreover S is finite.

Thus the Cartesian product between the set of the elements ¢ € N such that Ag(i) is defined and S is finite.
Thus the set {xaxr | & € N} is finite.

Thus, there exists k and k' such that & < &’ and Toxr = Toxk’-

Let us prove that the sequence (2;)axk<i<2xk/+1 is a path between FST(zax) and FST(xax k).

— We have k' > k.
— For any integer [ such that k <1 < k’, we have, by definition of (z,,)nen, (Zaxi, Taxit1) € Link;

— For any integer [ such that k <1 < k/, we have, by definition of (2, )nen, FST(Z2xi41) = FST(Z2x;42)))
and SND(T2x141) 7 SND(Z2y42)))-

This is absurd, thus there exists an agent identifier i € N such that Ag(i) is defined and such that there
exists at most one site s € S such that (i, s) € Site and (7, s) is bound in (Ag,Site,Link).
O
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