MPRI

Abstract interpretation of protein-protein
interactions networks

Jérome Feret

Laboratoire d’Informatique de I'Ecole Normale Supérieure
INRIA, ENS, CNRS

http://www.di.ens.fr/~ feret

Friday, the 18th of January, 2013



Joint-work with...

Walter Fontana Vincent Danos Ferdinanda Camporesi
Harvard Medical School Edinburgh Bologna / ENS

Russ Harmer
Paris VI Paris VI

Jérome Feret 2 Friday, the 18th of January, 2013

Jean Krivine



Signalling Pathways
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Differential models

d

(%:—k1'$1°$2+l€_1'$3
d
%:—kl'x'l'a?g—l—k_l'ﬂ}g
dzg

7 :]{1'513‘1'332—16_1'ZIZ'3—|—2']€2'333'ZL'3—]~C_2'£U4>

dry 2 V45
< W—k2'$3—k2'$4—|—p4+x5—(k3'$4—]€_3'$5>
drs _
dt
dx
\d—f:—]ﬁ'xl'CQﬂ—k_l'ZEg

— do not describe the structure of molecules;
— combinatorial explosion: forces choices that are not principled;
— a nightmare to modify.
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A gap between two worlds

Two levels of description:

1. Databases of proteins interactions in natural language
+ documented and detailed description
+ transparent description
— cannot be interpreted

2. ODE-based models
+ can be integrated
— opaque modelling process, models can hardly be modified
— there are also some scalability issues.
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Rule-based approach

We use site graph rewrite systems

1. The description level matches with both

ﬁ

e the observation level
e and the intervention level

of the biologist.
We can tune the model easily.

2. Model description is very compact.
3. Quantitative semantics can be defined.
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Complexity walls

number of instances combinatorial wall
per molecular species
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Static analysis of reachable species (l/ll)

Semi-fluid medium: the notion of individual is meaningless.

Design a static analysis to approximate the set of reachable species [vmcAros]
which focuses on the relationships between the states of the sites of each
agent:

o
&

This analysis is efficient, suitable to our problem, and accurate.

——
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Static analysis of reachable species (llI/ll)

Applications:
1. check the consistency of a model [iccmsE07]
2. compute the properties to allow fast simulation [APLAS 07
3. simplify models,
4. compute independent fragments of chemical species [PNAS09, LICS'10,Chaos’10]

The analysis is complete (no false positif) for a significatif kernel of Kappa
[VMCAI'08].
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Model reduction

The ground differential system uses one variable per chemical species;

We directly compute its exact projection over independent fragments of chem-
ical species.

With a small model, 356 chemical species are reduced into 38 fragments:

/home/feret/demo/egfr-compressed.ka
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On a bigger model, 10'® chemical species are reduced into 180 000 frag-
ments. [PNAS09,LICS'10,Chaos’10]
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Modeling signaling pathway

e Signaling pathway:
- A cell measures (i.e. checks thresholds, integrates, compares) the
concentration of some proteins in order to make decisions.
- Many proteins (enzymes, receptors, transport molecules) are in-
volved.
- They interact by binding with each other and activating each other.

e rule-based models:

- A site graph-based rewrite language.
- Description level matches with biologists’ observation and manipu-
lation level.

e Static analysis:
We propose some static analysis tools in order to:

- help the design of rule-based models;
- compute (abstract) the properties of rule-based models.
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A single story
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A concurrent story

e

Concentrations
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When we combine the two stories. ..
Gnuplot

Jérdme Feret

Overshoot
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A chemical species
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E(r!1), R(I1,r12), R(r!2,I13), E(r!3)
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A Unbinding/Binding Rule

RO RO
o T
F F

E(r), R(l,r) « E(r!1), R(I!1,1)



Internal state

R Q) R Q)
E =

R(Y1~u,ll1), E(r!1) «— R(Y1~p,I!1), E(r11)
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Don’t care, Don’t write
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A contextual rule

) )
I I

R(Y1~u,r| ) — R(Y1~p,r)
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Creation/Suppression

RO—=| R R ()
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Early EGF example

egf rules 1

protein shorthands: E:=egf, R:=egfr, $0:=So0s,Sh:=Sh,6:=grb2
site abbreviations & fusions: Y68:-Y1068 Y48:-Y1148/73 Y7:=Y317 w:=PTB/SH2

Ligand-receptor binding, receptor dimerisation, rtk x-phosph, & de-phosph
01: R(Lr), E(r) <-> R(I,r), E(r!)
02: R(I1,r), R(IZr) <-> R(I1,r?), R(I2,r?)
03: R(r' Y63) -> R(r' Y6 8r)
R(Y68r) -> R(Y63)

04: R(r' Y48) -> R(r! Y48¢) receptor type: R(l,rY68Y48) |

R(Y48r) -> R(Y48)

Sh x-phosph & de-phosph
14: R(r2Y48r'), Sh(w!Y7) -> R(r2Y48e), ShiwlY7r)

77: Shir1Y7r) -> ShlrlY7) refined from

16: Sh(wY7r) -> Sh(rY7) Sh(YZ7r)-> Sh(Y7) l
Y6 8-G binding

09: R(Y68r), G(a,b) <-> R(Y68r)+G(al,b) refined from

11: RY68?), Gla,b2) <-> R(YESM)+6(al,b2) RIYOSNGlak-RIV6SM)+C(al)

Jérdme Feret 15
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Early EGF example
edf rules 2

refined from interface note: highlight
Sold)+G(b)<->So(d!)+G(b!) the interacting parts

G-So binding
10: R(Y68r), G(al;b), Sold) <-> R(Y68r!), G(al ,b2), Sold2)
12: G(a,b), Sold) <-> G(a,b!), Sold!)
22: Sh(wY7r2), G(aZb), Sold) <-> Shl(wY7r2), G(aZb!), S(d!)
19: Sh(w1Y7r2), G(aZb), Sold) <-> Sh(wlY7Zr2), G(aZb!), S(d!)

y“fséhg'\'(ii? ), ShTY7) <> RIY489), Shix'Y7) N o
3 P), T, {-> pt) TPt + = 1)+ 1
15: R(Y485], ShirY7?) <> R(YA8), Shix1y7p) —rrorieShimk->RIVESH)ShixT)
18: R(Y48%), ShixY7%), 6{al b) <> R(Y4872), Sh(xZY7#), ¢(alp)
20: R(Y487), ShixY7%), 6{al b?), §d%) <-> R(V4852) Shir2Y7#), 6(a! b?), $(d?)

hy not simply 6(b%)?77
Sh-6 binding Ahlegi

17: R(Y480), Sh(rlY7r), G(a,b) <-> R(Y48r), Sh(w!YZ7r2), G(aZb)
21: ShlwY7r), 6(a,b) <-> Sh(wrYZ7"), G(al,b)
23: ShlwY7r), 6(a,b2) <-> Sh(rY7"), G(al,b2)
24: R(Y48") Sh(wlY7r), G(a,b?), S(d3) <-> R(Y48r) ShirlY7r2) G(aZ b3), S(d3)
refined from
Shiw), G(a)<->Sh(w!), G(al)
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Properties of interest

1. Show the absence of modelling errors:

e detect dead rules;

e detect overlapping rules;

e detect non exhaustive interactions;

e detect rules with ambiguous molecularity.

2. Get idiomatic description of the networks:

e capture causality;
e capture potential interactions;
e capture relationships between site states.
(simplify rules)
3. Allow fast simulation:
e capture accurate approximation of the wake-up relation.
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Embedding

We write Z <1¢ Z' iff:
e O is a site-graph morphism:
- 1is less specific than @ (i),
- if there is a link between (i,s) and (i, s’),
then there is a link between (®(i),s) and (D (i), s’).
e @ is an into map (injective):
- O(i) = O(i') implies thggt i=1.
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Set of reachable chemical species

Let R = {R;} be a set of rules.
Let Species be the set of all chemical species (C, ¢y, cq,...,cx, ¢y, ... € Species).
Let Species, be the set of initial .

We write:

/ /
C‘]’ooo,CmHRkC],ooo)Cn

whenever:
1. there is an embedding of the lhs of Ry in the solution ¢y, ..., c.;

/

2. the (embedding/rule) produces the solution cj,...,c;.

We are interested in Species,, the set of all chemical species that can be
constructed in one or several applications of rules in R starting from the set
Species, of initial chemical species.

(We do not care about the number of occurrences of each chemical species).
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Inductive definition

We define the mapping [ as follows:

)

p(Species) — p(Species)

IF:<X HXU{C]-/ HRkER,cb...,cmeX,}.

/ /
\ C])ooo,CmHRkC‘l,ooo,Cn

The set p(Species) is a complete lattice.
The mapping F is an extensive U-complete morphism.

We define the set of reachable chemical species as follows:

Species,, = U {F"(Species,) | n € N}.
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Local views

R R
g . RO O

e Q g =
E E

a{R(Y1~u,I1), E(r11)}) = {R(Y1~u,lI.E); E(rI.R)}.



Galois connexion

Let Local view be the set of all local views.

Let o € p(Species) — p(Local view) be the function that maps any set of
complexes into the set of their local views.

The set p(Local view) is a complete lattice.
The function o is a U-complete morphism.

Thus, it defines a Galois connexion:

»(Species) % p(Local view).

x

(The function v maps a set of local views into the set of complexes that can
be built with these local views).
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Yo

v o & Is an upper closure operator: it abstracts away some information.

Guess the image of the following set of chemical species ?
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X oy

o oy Is a lower closure operator: it simplifies (or reduces) constraints.

Guess the image of the following set of local views ?
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One more question

ooy Is a lower closure operator: it simplifies (or reduces) constraints.

Guess the image of the following set of local views ?
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Abstract rules

RMR

- ROOR




Abstract counterpart to I

We define F* as:

p

p(Local view) — gp(Local view)
F* IRy € R, i, ..., vy € X,
1 x S XU | ST e e
J /v1,...,/vmaRk/v{,...,/vn
We have:

o [* is extensive;

e ¥ is monotonic;

e Fovy C v o F%;

o "o =ooFovyoa(we wil see later why).
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Soundness

Theorem 1 Let:
1. (D, C U) and (D, C, LU) be chain-complete partial orders;
2. D & D’ be a Galois connexion;
3. F e D — D and ¥ € D' — D* be monotonic mappings such that:
Foy CvyoF
4. xo € D be an element such that: xo C F(x,);

Then:
1. both /fo, F and Ifp,, F* exist,

2. /fprF C Y(/fpa(xO)Fﬂ)
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Combinatorial blow up
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Avoiding combinatorial blow up

P

Jérome Feret 31 Friday, the 18th of January, 2013



Packing

e packing strategy: a covering P of the set of sites.

e template: a class p € P in the covering.

e projection: for any p < P, the function TT, restricts a local view to p.

e sub-local-view: sub_local viewp ={T1,(Iv) | Iv € Local view, p € P}.
e abstraction: the following function

... | plLocal_view) — p(sub_local_views)
TX — {T,(W) | V€ X, p € P},

Is a U-complete morphism.
. . . . Y .
It defines a Galois connexion g(Local view) %# p(sub_local viewp).

xp

e counterpart: I}, = op o IF* o yp.
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Automatic packing

Let P be a covering such that:

1. each site is at least in one class of P;

2. whenever a rule tests two sites a and b,
then, foranyp € P,aep & b € p;

3. whenever a rule modifies two sites a and b,
then, foranyp € P,aep & b € p;

4. whenever a rule modifies a site a and tests a site b,
thenforanyp € P,aep=—"> € p;

Then:
F(vp(p(sub_local viewp))) C vp(p(sub local viewp))
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Relative completeness

Theorem 2 We suppose that:
1. (D, C,U) and (D? C, L)) are chain-complete partial orders;
2. (D, Q) Z (D, C) is a Galois connexion;
3. v(DY) is closed by U;
4. F : D — D is a monotonic map;
5. %o is a concrete element such that xo C F(xo);
6. xoFoy=TF%
7. xo € Y(D¥);
8. F(y(D%) C y(DA).
Then:
o lfo, F and Ifp,, F* exist;

® /prO]F — y(/fpoc(XO)]Fﬁ)
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Concretization

For any X € p(Local view), y(X) is given by a rewrite system:
For any /v € X, we add the following rules:

:/ p

o ~E
| and semi-links are non-terminal.
| is the initial symbol.
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Pumping lemma

e We use this rewrite system to enumerate the chemical species of v(X).
e There are two cases:
1. either there is a finite number of rewrite sequences;

2. or we encounter cyclic derivations
l.e. an open chemical species with a cycle of the following form:

R.I-r.E ... RI-r.E

can be built.

e We only enumerate chemical species that are reached through an acyclic
rewriting computation.

e It turns out that: if X € o(p(Species)) then each rewrite sequence is the
prefix of a terminating rewrite sequence.

(So there is an unbounded number of species if, and only if,
there is an unbounded number of rewrite sequences.)
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Examples

1. Make the demo for egf
2. Make the demo for fgf
3. Make the demo for Global invariants




Counting chemical species

Given a set of local views X, we can easily count the number of species in
v(X) by using the following lemmas:

Lemma 1 (rigidity) An embedding between two connected components is
fully characterized by the image of one agent.

Lemma 2 (automorphism) If v(X) is finite, then for any C € y(X):
e C has at most two automorphisms;

e if C has two automorphisms, then C has a bond of the form R.r — r.R.
Moreover one automorphism swaps the two R of this bond.

Lemma 3 (Euler) If a chemical species has no cycle, then it has an agent
with only one site.

sketch the algorithm
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Which information is abstracted away ?

Our analysis is exact (no false positive):
o for EGF cascade (356 chemical species);
o for FGF cascade (79080 chemical species);

We know how to build systems with false positives...
...but they seem to be biologically meaningless.

This raises the following issues:
e Can we characterize which information is abstracted away ?
e Which is the form of the systems, for which we have no false positive ?
e Do we learn something about the biological systems that we describe ?
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Which information is abstracted away ?

Theorem 3 We suppose that:
1. (D, C) be a partial order;

2. (D, C, 1) be chain-complete partial order;
Y
—— D¢ ' ion:
3. D = D* be a Galois connexion; Species
4. F ¢ D — D and F* € D — D are monotonic; .
5. F o Y g Y © Fﬁ, /f:Ooc(S,oeciesO)]Fh
. Speci
6. xo,/nv e D such that: peCieSe

o Xy C F(Xo) C F(/nv) C inv,
o Inv=y(x(inv)),
e and x(F(inv)) = F*(x(inv));

Then, /fp, F* exists and v (Ifo,, F) C inv.
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When is there no false positive ?

Theorem 4 We suppose that:
1. (D, C U) and (Df, C, LU) are chain-complete partial orders;
(D,C) == (D, ) is a Galois connexion;
. F: D — D is a monotonic map;

: Foyg'yow;

2.
3
4. xo IS a concrete element such that xy C F(x);
5
6. FFoax=xoFovyoa.

Then:
o lfo, F and Ifp,, F* exist;

o lfp F €v(D") & lfo, F =y (lfo,, F).
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Local set of chemical species

Definition 1 We say that a set X € p(Species) of chemical species is local if
and only if X € v(p(Local view)).

(ie. a set X is local if and only if X is exactly the set of all the species that are
generated by a given set of local views.)
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Swapping relation

We define the binary relation o among tuples Species” of chemical species.
SWAP

We say that (Cy,...,C,,) ~ (D;y,...,D,)if and only if:

=
- -~

(Cy,...,C,) matches with

-
Il

-
- -~

while (Dy,..., D, ) matches with |

-
Il
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Swapping closure

Theorem 5 Let X € p(Species) be a set of chemical species.
The two following assertions are equivalent:

1. the set X € p(Species) is local;
2. for any tuples (C;), (D;) € Species” such that:
o (C;) € X*,
e and (Ci) ~ (Dy);
we have (D;) € X*.
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Consequences

Let X € o(p(Species)) be a set of local views.

1. Each open complex C built with the local views in X is a sub-complex of
a close complex C’in y(X).

2. When considering the rewrite system that computes y(X), any partial
rewriting sequence can be completed in a successful one.

3. Wehave FFox =axoFovyo .
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Proof (easier implication way)

If:
o X =vy(x(X)),
o (C;) e X,
e and (C)) ~ (Dy);
Then:
we have «({Ci}) = «({D;}) (because (Ci) ~ (D;))
and «({Ci}) € x(X) (because (C;) € X* and by monotonicity);

s0 oe({Dj}) € ex(X);
so {D;} C y(«(X)) (by def. of Galois connexions);
so {D;} C X (since X = y(a(X)));

SO (Dj) e X*.
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Proof (more difficult implication way)

We suppose that X is close with respect to T

We want to prove that v(«(X)) C X.

We prove, by induction, that any open complex that can be built using the
rewrite system (associated with «(X)) can be embedded in a complex in X:

e By def. of «, this is satisfied for any local view in o(X);
e This remains satisfied after unfolding a semi-link with a local view;
e This remains satisfied after binding two semi-links.
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Initialization

CeX
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Unfolding a semi-link

-=-- "= ~~\\CEX

,” . BN S e
. open partial species ~ \
/7 = = = \
/ /,’ \
.’ / ‘.
I
\ !
\
\
\ \ /
N S /
~ \\ 4
~ i 7’
\\ ’/
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Unfolding a semi-link
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Binding two semi-links

- - T T == ~ ~ C// E X
_~ “open partial species~ (SV[AP)
N\
\
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Consequences

Let X € o(p(Species)) be a set of local views.

1. Each open complex C built with the local views in X is a sub-complex of
a close complex C’in y(X).

2. When considering the rewrite system that computes y(X), any partial
rewriting sequence can be completed in a successful one.

3. Wehave FFox =axoFovyo .
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Outline

We have proved that:
e if the set Species , of reachable chemical species is close with respect
swapping SVXJAP,

e thenthe reachability analysis is exact (i.e. Species,, = v (/fp, SpeC,eSO)IFﬁ)).

Now we give some sufficient conditions that ensure this property.
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Sufficient conditions

Whenever the following assumptions:
1. initial agents are not bound;
2. rules are atomic;
3. rules are local:

e only agents that interact are tested,
e no cyclic patterns (neither in Ihs, nor in rhs);

4. binding rules do not interfere i.e. if both:
e A(a~m,S),B(b~n,T) — A(a~m!1,S),B(b~n!1,T)
e and A(a~m’,S’),B(b~n’,T’) — A(a~m’!1,S’),B(b~n’!1,T"),
then:
e A(a~m,S),B(b~n’,T’) — A(a~m!1,S),B(b~n’!1,T");
5. chemical species in y(«(Species,,)) are acyclic,
are satisfied, the set of reachable chemical species is local.
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Proof outline

We sketch a proof in order to discover sufficient conditions that ensure this
property:

e We consider tuples of complexes in which the same kind of links occur
twice.

e We want to swap these links.
e We introduce the history of their computation.
e There are several cases...
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First case (I/V)

. / .
C € Species,, C’ € Species,,
/”— ~~\\ /’——__—-i\\
-, > - =~
’, S < RN
, N 7 N
’ A ,/ \
/ 3 / \
/ \ / \
I 1 I \
-
I \\ | I _ / |
\ \ ~ ! -
\ \ / \ /
N\ ~ / \ 4
~ > i <
S~ - S -~
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First case (lI/V)

just before the links are made

\ 7
X ——
V \/
/\ Al |
\
C € Species; C’ ¢ Species*
W € Species,
- m === - e .
P - = ~ P - = ~
P ~ - ~
P N -, ~
7/ N 7 N
7/ \
/ \ y; \
/ \ / \
/ \ / \
I 1 | \
| I |
\ ! \ I
‘\ /' \ /
\ /
\ /
N\ 7 N /
N -, S 7
________ ~ ~ - -

e e
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First case (lll/V)

we suppose we can swap the links

Jérdme Feret
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First case (IV/V)

Then, we ensure that further computation steps:
e are always possible;

e have the same effect on local views;

. . . SWAP
e commute with the swapping relation ~ .

SWAP

Cn——C - C/

Ao Ao

SWAP

n+1
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First case (V/V)

N/ X“’

Ry —

\/ —Yr'y
\/ . /

[A)
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Second case (I/ll)

C € Species,,

— wmm mm mm Em Em o o omm e
— —
— —
— —
— —

~ -
—
— =
— —-— -
e o . s

we assume that the chemical species C is acyclic
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Second case (Il/ll)
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Sufficient conditions

Whenever the following assumptions:
1. initial agents are not bound;
2. rules are atomic;
3. rules are local:

e only agents that interact are tested,
e no cyclic patterns (neither in Ihs, nor in rhs);

4. binding rules do not interfere i.e. if both:
e A(a~m,S),B(b~n,T) — A(a~m!1,S),B(b~n!1,T)
e and A(a~m’,S’),B(b~n’,T’) — A(a~m’!1,S’),B(b~n’!1,T"),
then:
e A(a~m,S),B(b~n’,T’) — A(a~m!1,S),B(b~n’!1,T");
5. chemical species in y(«(Species,,)) are acyclic,
are satisfied, the set of reachable chemical species is local.
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Third case (I/ll)

C € Species,,
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Third case (I/111)

\ 7 \ 7/
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Third case (I/111)

C € Species;,
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Dangerous sites

A site is dangerous if it may occur in a cycle within a complex (€ v(«(Species,,))).

We would weaken the fifth requirement into:

e The binding state of a dangerous site is never tested, unless for binding
or unbinding this site.

e When we bind dangerous sites, we only test that these sites are free.
Then, we prove that:

1. we can build any complex with free dangerous sites,
2. then, we can bind them as much as we like.
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Non local systems

Species, a R(a~u)
[ R(a~u) — R(a~p)
A} R(a~u),R(a~u) — R(a~u!
Ules =\ R(a-p),R(a~u) — R(a-p
_ R(a~p).R(@~p) — R(a-pl

R(a~ul1),R(a~u!l) € Species,,
R(a~p!1),R(a~p!1) € Species,,
But R(a~u!1),R(a~p!1) ¢ Species,,,.
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. A
Speciesy =

Rules A

<

Non local systems

A(a~u),B(a~u)

( A(a~u),
A(a~ull),

. A(a~ull),

B(a~u) — A(a~u!1),B(a~u'l)
B(a~u!1) — A(a~p!1),B(a~u!1)

\

B(a~u!1) — A(a~u!1),B(a~p!1) |

A(a~ul1),B(a~p!1) € Species,,
A(a~p!1),B(a~ul1) € Species ,
But A(a~p!1),B(a~p!1) ¢ Species .
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Non local systems

Species, a A(a~u)

A [ Ala~u) & A(a~p)
Rules = { A(a~u),A(a~p) — A(a~ul!l),A(a~p!1) }

A(a~ul1),A(a~p!1) € Species,
But A(a~p!1),A(a~p!1) ¢ Species,,,.

Jérome Feret 72 Friday, the 18th of January, 2013



Non local systems

Speciesy = R(a,b)

{ R(a,b),R(a) — R(a,b!1),R(al!l1)}

1> (1>

Rules

R(a,b!2),R(al2,b!1),R(al1,b)e Species
But R(al1,b!1) ¢ Species,,,.
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Outline

e we have a syntactic criterion in order to ensure that the set of reachable
chemical species of a kappa system is local ;

e we now design program transformations to help systems satisfying this
criterion ;

1. decontextualization
- is fully automatic;
- preserves the transition system;
- simplifies rules thanks to reachability analysis.

2. conjugation
- manual;
- preserves the set of reachable chemical species;
- uses backtrack to add new rules.
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Example

Initial rule:

R2(112,r),R1(I1,r),E2(r!1),E1(r12) — R2(113,r11),R1(112,r11),E2(rI2),E1(r'3)

Decontextualized rule:

R2(11_,r),R1(Il_,r) — R2(IL_r11),R1(IL_,r11)

We can remove redundant tests.
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Example

Initial rules:

Sh(Y7~p!2,pil1),G(al2,b),R(Y48~p!1) — Sh(Y7~p,pi!1),G(a,b),R(Y48~p!1)
Sh(Y7~p!3,pil1),G(a!3,b12),So(d'2),R(Y48~p!1) — Sh(Y7~p,pi!1),G(a,b!2),So(d!2),R(Y48~p!1)
Sh(Y7~p!1,pi),G(al1,b) — Sh(Y7~p,pi),G(a,b)

Sh(Y7~p!1,pi),G(all,b! ) — Sh(Y7~p,pi),G(a,b! )

Decontextualized rule:

Sh(Y7!1),G(al1) — Sh(Y7),G(a)

We can remove exhaustive enumerations.
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How does it work ?

To remove a test, we prove that:
e this test is satisfied whenever the other tests are satisfied;

e or each complex that passes all tests but this one also matches with the
left hand side of another rule that performs the same action.
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More formally

More formally:

e Each rule R is associated with the set S(R) of open chemical species
that can match its lhs;

e Rules are gathered in equivalence classes according to the actions they
perform;

e For each class [R], we compute:
G([R]) = U{S(R") I R" € [R]}.

e For each class [R]|, Reach([R]) is an over approximation of the set of
open chemical species that may match the lhs of a rule R’ € [R].

A rule R may be decontextualized in a rule R if:
S(R") N Reach([R]) € G([R]).

Decontextualization is more efficient, if the reachability analysis is accurate.
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An undecontextualizable rule

Initial rule:

Sh(Y7~u,pil1),R(Y48~p!1,rl ) -> Sh(Y7~p,pil1),R(Y48~p!1,r! )

Decontextualized rule:

Sh(Y7~u,pil1),R(Y48!1,rl_) -> Sh(Y7~p,pi!1),R(Y48!1,r )
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Conjugation

If a rule R’ is equivalent to a rule in the transitive closure of the system.
Then it may be included in the system without modifying reachable states.
To remove the context C of a rule, we try to apply it for another context C’ by:

removing the context C’ (backtrack) ;
building the context C ;
applying the initial rule ;
removing the context C (backtrack) ;
5. building the context C’.

=

This is proved manually.
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Conclusion

e A scalable static analysis to abstract the reachable chemical species.
e A class of models for which the abstraction is complete.
e Many applications:

- idiomatic description of reachable chemical species;
- dead rule detection;

- rule decontextualization;

- computer-driven kinetic refinement.

e It can also help simulation algorithms:

- wake up/inhibition map (agent-based simulation);
- flat rule system generation (for bounded set of chemical species);
- on the fly flat rule generation (for large/unbounded set)
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