
Completeness in abstract interpretation
Policy iteration

Damien Massé

LabSTICC, university of Brest

February 1, 2013

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 1 / 61

Introduction

Fixpoint approximation

Concrete domain: D (a poset or a lattice).
Concrete transfer function: φ : D m→ D.
Concrete semantics: C = lfpφ (or gfpφ).

Abstract domain: D] with γ : D] → D.
Abstract transfer function: φ] : D] m→ D].
Abstract semantics: C] w] lfpφ] (or gfpφ]).

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 2 / 61

Introduction

Loss of precision

Soundness
The abstract semantics is sound iff γ(C]) w C .

Soundness is often a consequence of:

γ ◦ φ] w φ ◦ γ

Of course we cannot γ(C]) = C . The loss of precision stems from:
1 the abstraction (the best result would be C] = α(C));
2 the abstract transfer function (which may be incomplete);
3 the abstract fixpoint approximation (widening or narrowing operator).

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 3 / 61

Introduction

Outline

1 Completeness of abstractions
1 Closure operators and completeness
2 Construction of complete domains
3 Application to model-checking

2 Policy iteration
1 General idea
2 min-policies
3 max-policies

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 4 / 61

Completeness of abstractions Closure operators

Abstraction and closure operators

Traditionnal approach of abstract interpretation: Galois connection:

D −−−→←−−−α
γ

D]

with:
α(X) v Y ⇐⇒ X v γ(Y)

Alternative approach (to study abstractions “as abstractions”): (upper)
closure operators:

ρ : D → D
X 7→ γ ◦ α(X)

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 5 / 61

Completeness of abstractions Closure operators

Closure operators

Definition
Upper closure operators are:

monotonic: ∀(X ,Y) ∈ D2,X v Y ⇒ ρ(X) v ρ(Y)

extensive: ∀X ∈ D,X v ρ(X)

idempotent: ρ ◦ ρ = ρ.

Lower closure operators are monotonic, reductive and idempotent.

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 6 / 61

Completeness of abstractions Closure operators

Properties
Closure operators can be used to abstractions without abstract domains.
Let uco(D) (resp. lco(D)) be the set of upper (resp. lower) closure
operators on D.

Proposition
uco(D) is a partially ordered set: ρ v ρ′ means that ρ′ is a coarser
abstraction than ρ.

Notice that ρ v ρ′ ⇒ ρ′(D) ⊇ ρ(D).

Theorem
If D is a complete lattice, then so is uco(D).

(
⊔
ρ)(X) = lfpλY .(X t (

⊔
(ρ(Y))))

(
d
ρ)(X) =

d
(ρ(X))

λX .X is the infimum, λX .> is the supremum.

ρ u ρ′ characterizes the reduced product of ρ and ρ′.
Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 7 / 61

Completeness of abstractions Closure operators

Moore families

Definition
If D is a complete lattice, a lower (resp. upper) Moore family of D is a
subset L of D such that:

L =Ml (L) = {uX | X ∈ L}

(resp. L =Mu(L) = {tX | X ∈ L}).

Moore families are closed under u (resp. under t).

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 8 / 61

Completeness of abstractions Closure operators

Moore families and closure operators

For complete lattices, Moore families and closure operators are equivalent.

Theorem
If D is a complete lattice, then uco(D) and lower Moore families of D are
isomorph:

1 ∀ρ ∈ uco(D), ρ(D) is a lower Moore family.
2 for all Moore family L, ρ = λX .

d
Y∈L,XvY Y is in uco(D) and

ρ(D) = L.
3 ρ v ρ′ ⇐⇒ ρ(D) ⊇ ρ′(D)

4
⊔
ρ = ρ′ ⇐⇒ ρ′(D) =

⋂
ρ(D)

5
d
ρ = ρ′ ⇐⇒ ρ′(D) =Ml (

⋃
ρ(D)).

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 9 / 61

Completeness of abstractions Completeness

Completeness
Soundness
Proposition For all φ : D m→ D and ρ ∈ uco(D), we have:

ρ ◦ φ(X) v ρ ◦ φ ◦ ρ(X)
ρ(lfpφ) v lfp(ρ ◦ φ)
ρ(gfpφ) v gfp(ρ ◦ φ)

Completeness
Definition

1 ρ ∈ uco(D) is said to be complete for a monotone operator φ if
ρ ◦ φ = ρ ◦ φ ◦ ρ.

2 when ρ(lfpφ) = lfp(ρ ◦ φ), ρ is said to be lfp-complete (with respect
to φ).

3 when ρ(gfpφ) = gfp(ρ ◦ φ), ρ is said to be gfp-complete (with respect
to φ).

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 10 / 61

Completeness of abstractions Completeness

Notes on completeness
1 Completeness can be defined for n-ary operators:

ρ ◦ φ(x1, . . . , xn) = ρ ◦ φ(ρ(x1), . . . ρ(xn))

2 Completeness can be defined for a family of operators. If ρ is
complete with respect to several operators, it is complete with respect
to any combination of these.

3 Completeness is also called « backward completeness ». Then
« forward completeness » is defined as:

φ ◦ ρ = ρ ◦ φ ◦ ρ

4 With Galois connections:
I backward completeness means: α ◦ f = f] ◦ α.
I forward completeness means: f ◦ γ = γ ◦ f].

with f] being the best abstract function (f] = α ◦ f ◦ γ).
5 Completeness can be defined with operations over two concrete

domains C and D: with φ : C m→ D and ρ ∈ uco(C) and η ∈ uco(D),
the pair 〈ρ, η〉 is complete for φ if η ◦ φ = η ◦ φ ◦ ρ.

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 11 / 61

Completeness of abstractions Completeness

Examples (1)

The supremum (λx .>) and infimum (λx .x) of uco(D) are complete for all
φ.

All closure operators are complete with respect to λx .x and λx .c (with
c ∈ D).

If D = ℘ (Z), the lattice of signs ({∅, {0},Z+,Z−,Z}) is complete for
λxy .x × y , but not for λxy .x + y .

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 12 / 61

Completeness of abstractions Completeness

Completeness and fixpoint-completeness

Proposition
Completeness implies lfp-completeness. Completeness does not imply
gfp-completeness, and fixpoint-completeness does not imply completeness.

1 lfp-complete but not complete: D = N ∪ {ω}, φ(x) = 1 + x ,
ρ = N∗ ∪ {ω}.

2 complete but not gfp-complete:

D = {[n,+∞[| n ∈ N} ∪ {∅}
φ([n,+∞[) = [n + 1,+∞[
φ(∅) = ∅
ρ = {[0,+∞[, ∅}

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 13 / 61

Completeness of abstractions Completeness

Completeness and gfp-completeness

Proposition
If ρ is complete w.r.t. φ and ρ is co-continuous, then ρ is gfp-complete.

Notes:
1 ρ is co-continuous means that for all decreasing chain Xi ,
ρ(uXi) = uρ(Xi).

2 for lower closure operators, completeness implies gfp-completeness,
completeness and continuity implies lfp-completeness.

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 14 / 61

Completeness of abstractions Completeness

Making abstractions complete
Let ρ ∈ uco(D) and φ : D m→ D.
With x ∈ D, what means φ ◦ ρ ◦ φ(x) = φ ◦ ρ(x) ?

φ(x) = y
ρ(x) = x ′

ρ(x ′) = y ′

z

z ′

ρ

ρ

φ

φ

ρ

y ∈ z ↓

x
x ∈ φ−1(z ↓)

v

(here X ↑= {Y | Y w X} and X ↓= {Y | Y v X}).
Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 15 / 61

Completeness of abstractions Completeness

φ(x) = y
ρ(x) = x ′

ρ(x ′) = y ′

z

ρ

ρ

φ

φ

ρ

y ∈ z ↓

x
x ∈ φ−1(z ↓)

z ′ = z

y ′ ∈ z ↓

x ′ ∈ φ−1(z ↓)

∃x ′ ∈ ρ such that x ′ w x and x ′ ∈ φ−1(ρ(φ(x))↓) is sufficient.

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 16 / 61

Completeness of abstractions Completeness

Equivalence of completeness

Lemma
ρ is complete with respect to φ iff:

∀z ∈ ρ,
∀x ∈ φ−1(z ↓),
∃x ′ ∈ ρ s.t. x v x ′ and x ′ ∈ φ−1(z ↓)

So, for all z in ρ, “maximal” elements of φ−1(z ↓) must be un ρ.

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 17 / 61

Completeness of abstractions Construction of complete operators

Construction of complete operators

Starting from an operator ρ, if ρ is not complete wrt. φ:

∃z ∈ ρ,
∃x ∈ φ−1(z ↓),
∀x ′, (x v x ′ and x ′ ∈ φ−1(z ↓))⇒ x ′ 6∈ ρ

We can make ρ complete:
1 by removing z ;
2 or by adding an x ′ in ρ.

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 18 / 61

Completeness of abstractions Construction of complete operators

Example

With the sign abstraction ρ and φ(X) = {x + 1 | x ∈ X}.

with z = ∅, φ−1(z ↓) = {∅}, ok.
with z = {0}, φ−1(z) = {∅, {−1}} not ok → remove {0} or add
{−1}.
with z = Z−, φ−1(z ↓) = ℘ (Z−∗), ok.
with z = Z−∗, not ok, remove Z−∗ or add]−∞,−2]

with z = Z+, not ok, remove it or add [−1,+∞[.
with z = Z+∗, ok.
with z = Z∗, not ok, remove it or add]−∞,−2] ∪ [0,+∞[.
with z = Z, ok.

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 19 / 61

Completeness of abstractions Construction of complete operators

Easier case: φ continuous
When φ is continuous, φ−1(z ↓) is bounded by its maximal elements.

Lemma
Let φ : D c→ D and z ∈ D. If x ∈ φ−1(z ↓) then there exists
y ∈ max(φ−1(z ↓)) such that x v y.

Thus ρ is complete w.r.t. φ iff:

∀z ∈ ρ, max(φ−1(z ↓)) ⊆ ρ

Note: with φ : C c→ D, the pair 〈ρ, η〉 with ρ ∈ uco(C) and η ∈ uco(D) is
complete w.r.t. φ (η ◦ φ ◦ ρ = η ◦ φ iff:

∀z ∈ η, max(φ−1(z ↓)) ⊆ ρ

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 20 / 61

Completeness of abstractions Construction of complete operators

Removing elements

We define:
Lφ(ρ) = {z ∈ D | max(φ−1(z ↓)) ⊆ ρ}

Lemma
Lφ(ρ) is a Moore family.

Sketch of proof : let Z ⊆ Lφ(ρ) (with Z 6= ∅), and w = uZ .
Let x ∈ max(φ−1(w ↓)). Then for all z ∈ Z , x ∈ φ−1(z ↓), so x v mz with
mz ∈ max(φ−1(z ↓)). Since φ(uz∈Zmz) v w , we have
uz∈Zmz ∈ φ−1(w ↓), and by maximality, uz∈Zmz = x . Thus x ∈ ρ, which
proves that w ∈ Lφ(ρ).
(when Z = ∅, x = >, hence x ∈ ρ).

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 21 / 61

Completeness of abstractions Construction of complete operators

Adding elements

We define:
Rφ(ρ) =Ml (

⋃
z∈ρ

max(φ−1(z ↓)))

Theorem
1 Lφ(ρ) ◦ φ ◦ ρ = Lφ(ρ) ◦ φ (i.e. 〈ρ, Lφ(ρ)〉 is complete w.r.t. φ);
2 ρ ◦ φ ◦ Rφ(ρ) = ρ ◦ φ ((i.e. 〈Rφ(ρ), ρ〉 is complete w.r.t. φ).

Sketch of proof:
1 ∀x , if z = (Lφ(ρ) ◦ φ)(x), then x ∈ φ−1(z ↓), so x v y st.

y ∈ max(φ−1(z ↓)) ⊆ ρ, so ρ(x) v y so (Lφ(ρ) ◦ φ ◦ ρ)(x) v z .
2 similar but y ∈ Rφ(ρ).

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 22 / 61

Completeness of abstractions Construction of complete operators

Corollary

Corollary: for all (ρ, η) ∈ uco(D), the three propositions are equivalent:
1 η ◦ φ ◦ ρ = η ◦ φ

2 Lφ(ρ) v η
3 ρ v Rφ(η)

Therefore:
1 we have a Galois connection: uco(D) −−−→←−−−

Lφ

Rφ
uco(D)

2 Lφ is additive, and Rφ is coadditive.

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 23 / 61

Completeness of abstractions Construction of complete operators

Absolute complete core

Definition: the absolute complete core of ρ for φ, when it exists, is the
minimal closure operator Cφ(ρ) greater than ρ and complete wrt φ.

Theorem: if φ is continuous, then for any ρ ∈ uco(D), the absolute
complete core of ρ for φ exists and is defined as:

Cφ(ρ) = lfpLρφ

with
Lρφ = λη.ρ t Lφ(η)

Furthermore, Lρφ is continuous (since Lφ is additive) so the fixpoint is
reached after (at most) ω iterations.

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 24 / 61

Completeness of abstractions Construction of complete operators

Absolute complete shell

Definition: the absolute complete shell of ρ for φ, when it exists, is the
maximal closure operator Sφ(ρ) less than ρ and complete wrt φ.

Theorem: if φ is continuous, then for any ρ ∈ uco(D), the absolute
complete shell of ρ for φ exists and is defined as:

Sφ(ρ) = gfpRρφ

with
Rρφ = λη.ρ t Rφ(η)

Furthermore, Rρφ is cocontinuous (since Rφ is additive) so the fixpoint is
reached after (at most) ω iterations.

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 25 / 61

Completeness of abstractions Construction of complete operators

Example

With D = ℘ (Z), let ρ = {∅,Z} ∪ {]−∞, n] | n ∈ Z}.
With φ = λX .{x2 | x ∈ X}, we have:

max φ−1(]−∞, n] ↓) =

{
∅ if n < 0
[−b
√
nc, b
√
nc] if n ≥ 0

Hence,
Cφ(ρ) = {∅,Z} ∪ {]−∞, n] | n < 0}
Rφ(ρ) = {∅} ∪ {[−m, n] | |n| ≤ m ≤ +∞}

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 26 / 61

Completeness of abstractions Application to model-checking

Application to model-checking

Transition system: (Σ, τ), with τ ∈ Σ× Σ.
Definition: classical predicate transformers from ℘ (Sigma) to ℘ (Σ):

pre[τ](Y) = {σ ∈ Σ | ∃σ′ ∈ Y , (σ, σ′) ∈ τ}
p̃re[τ](Y) = {σ ∈ Σ | ∀σ′ ∈ Σ, (σ, σ′) ∈ τ ⇒ σ′ ∈ Y }

post[τ](X) = {σ′ ∈ Σ | ∃σ ∈ X , (σ, σ′) ∈ τ}
p̃ost[τ](X) = {σ′ ∈ Σ | ∀σ ∈ Σ, (σ, σ′) ∈ τ ⇒ σ ∈ X}

We may omit [τ].

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 27 / 61

Completeness of abstractions Application to model-checking

Predicate transformers : basic results

Lemma: ∀(X ,Y) ∈ ℘ (Σ)2:
1 post(X) ⊆ Y ⇐⇒ X ⊆ p̃re(Y)

2 pre(Y) ⊆ X ⇐⇒ Y ⊆ p̃ost(Y)

Proposition: given three sets of states I, F and S:
1 the set of states reachable from I (forward collecting semantics) is

lfpλX .(I ∪ post(X)).
2 the set of states which may (backward collecting semantics) reach F

is lfpλX .(I ∪ pre(X)).
3 the set of states which will reach F is lfpλX .(I ∪ p̃re(X)).
4 the set of states which may « stay » in S is gfpλX .(S ∩ pre(X)).
5 the set of states which will « stay » in S is gfpλX .(S ∩ p̃re(X)).

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 28 / 61

Completeness of abstractions Application to model-checking

Partitions of states
Standard model-checking relies on abstract structures on partitions of
states:

Let A be a partition of Σ. The abstraction is ℘ (Σ) −−−→←−−−α
γ

℘ (A) with

α(X) = {S ∈ A | S ∩ X 6= ∅}
γ(X) = ∪X

The upper closure operator ρ = γ ◦ α is then

ρ(X) = {∪E | E ∈ A ∧ X ∩ E 6= ∅}

On A, we can define a (abstract) transition system (A, τ]). An example of
τ]:

(S,S ′) ∈ τ] ⇐⇒ ∃σ ∈ S,∃σ′ ∈ S ′, (σ, σ′) ∈ τ
With this example:

pre[τ]] = α ◦ pre[τ] ◦ γ
post[τ]] = α ◦ post[τ] ◦ γ

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 29 / 61

Completeness of abstractions Application to model-checking

Preservation

From the soundness of abstraction, we can deduce that (for example):

α(lfpλX .(I ∪ post[τ](X))) ⊆ lfpλS.(α(I) ∪ post[τ]](S))

which means that each concrete state reachable from I can be associated
to an abstract state reachable from α(I) in the abstract structure (this
property is known as weak preservation).

A complete abstraction would imply:

α(lfpλX .(I ∪ post[τ](X))) = lfpλS.(α(I) ∪ post[τ]](S))

This property would be known as strong preservation.

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 30 / 61

Completeness of abstractions Application to model-checking

Example

In this example, weak preservation is satisfied, but not strong preservation.

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 31 / 61

Completeness of abstractions Application to model-checking

Refinement in model-checking

Any partition can be associated to an abstract domain. But an abstract
domaine does not always induce a partition. But we can generate a new
partition from a refined abstract domain.

Proposition: let A be a partition of Σ, and ρ the associated closure
(ρ(X) = {S ∈ A | S ∩ X 6= ∅}). From ρ′ v ρ, we can deduce a new
partition A′:

S ∈ A′ ⇐⇒ ∃σ ∈ Σ, ρ′({σ}) = S

Then A′ is finer than A.

Hence we can make refinement on partitions.

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 32 / 61

Completeness of abstractions Application to model-checking

Completeness of the abstraction

Notice that completeness means here:

α ◦ post[τ] = post[τ]] ◦ α

which is equivalent to:
1 ρ ◦ post[τ] ◦ ρ = ρ ◦ post[τ] (backward completeness);
2 ρ ◦ p̃re[τ] ◦ ρ = p̃re[τ] ◦ ρ (hence the notion of forward completeness).

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 33 / 61

Completeness of abstractions Application to model-checking

Constructing complete abstraction

Since post[τ] is continuous, the absolute complete shell of ρ exists and is:

Spost[τ](ρ) = gfpλη.(ρ tMl (
⋃

X∈ρ
max(post[τ]−1(X ↓))))

We can see that: max(post[τ]−1(X ↓)) = p̃re(X).

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 34 / 61

Completeness of abstractions Application to model-checking

Successive refinements
The successive iterations give successive refinements of the initial partition.

This approach gives a theoretical basis of CEGAR (Counterexample guided
abstraction refinement) where the refinements are limited to
counterexample traces.
Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 35 / 61

Policy iteration

Outline

1 Completeness of abstractions
1 Closure operators and completeness
2 Construction of complete domains
3 Application to model-checking

2 Policy iteration
1 General idea
2 min-policies
3 max-policies

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 36 / 61

Policy iteration

Fixpoint approximation by widenings/narrowings

Common approach (cf Cousot’s thesis) to approximate fixpoints on
infinite-height lattices.
However this approach loses precision:

widenings (for lfp) are non-monotonic, imprecise;
narrowings are worse.

More generally, Kleene iterations are a slow and inefficient way to solve an
equation, when there exists direct (algebraic) methods, or faster methods.

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 37 / 61

Policy iteration

y = x

φ

lfpφ

I1

I2

Iω

I2ω

Iω+1

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 38 / 61

Policy iteration

Newton method

N1

N2

N3

N4

However, Newton method does not guarantee to get the least fixpoint
(even starting from −∞). We need:

a convex function (f = max{tangents(f)});
and a finite number of iterations (e.g. piecewise linear function).

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 39 / 61

Policy iteration

With non-convex function

We could consider f = max fi where each fi is concave. If we can compute
the next fixpoint of fi at each iteration, we can obtain the fixpoint of f .

p1

p2

p3

p4

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 40 / 61

Policy iteration

Alternative computation (from “above”)

Here f = min fi where each fi is convex. But we may not approximate the
least fixpoint.

p1

p2

policy 1

policy 2

policy 3
p3

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 41 / 61

Policy iteration

Policy iteration
Policy iteration (or strategy iteration) comes in two flavours:

1 From ∀x , φ(x) = min φi (x), we have:

lfpφ = min lfpφi

I φi are the min-policies;
I soundness is trivial;
I policy initialisation and improvement modify the precision

2 From ∀x , φ(x) = max φi (x), we have:

lfpφ = lfpλx .(lfpwxφi(x))

(where i(x) is such that φi(x)(x) = φ(x)).
I φi are the max-policies (strategies);
I soundness is tricky, and related to policy improvement;
I precision is automatic.

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 42 / 61

Policy iteration Context

Context

Policy iterations can be used to compute the exact abstract fixpoint. For
obvious reasons, they cannot be applied for any domain and abstract
functions:

specific numerical domains (e.g. weakly relational domains) appear to
be good choices :

I notion of convexity;
I finite number of equations.

programs must be adapted to the abstract domain (e.g. affine
programs).

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 43 / 61

Policy iteration Context

Affine programs

An affine program is defined by (N,E , st) where
N is the finite set of program points;
E ⊆ N × Stmt× N transitions labelled by statements;
st initial program point.

Statements are transitions which can include:
affine guards Ax + b ≥ 0 on the program variables x
affine assignments x := Ax + b.

More generally, we can define a statement (Q,q) as linear constraints
between the variables before (x) and after (x′) the transition:

(Q) .

(
x
x′

)
≤ (q)

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 44 / 61

Policy iteration Context

Template polyhedral domain

Most common example of weakly relational domain.
Abstraction of ℘ (Rn) relative to a template constraint matrix T ∈ Rm×n:

℘ (Rn) −−−−→←−−−−
αT

γT
(R ∪ {−∞,+∞})m

with γT (ρ) = {x ∈ Rn |Tx ≤ ρ}.

Example: octagons with two variables: T =



0 1
0 −1
1 0
−1 0
1 1
1 −1
−1 1
−1 −1


→ 8 “abstract” variables (Cy , C−y , . . .).

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 45 / 61

Policy iteration Equations

Abstraction and semantic equation
The abstraction function αT : ℘ (Rn)→ R ∪ {−∞,+∞})m is defined as:

[αT (X)]i = max{Tix | x ∈ X}

If X is a convex polyhedron, this function can be computed using linear
programming.

Proposition (abstract transition)
Given a set of states (at a program point n ∈ N) represented by a
polyhedron P : TX ≤ ρ, the abstraction of a set of successor states after
one affine transition (Q,q) from n to n′ is represented by the polyhedron
P ′ : TX ≤ ρ′ where:

[ρ′]i = max{Tix ′ |
(

Q
T 0

)(
x
x′

)
≤
(

q
ρ

)
}

Notice that any modification of ρ only changes the right-hand side of the
linear program.
Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 46 / 61

Policy iteration Equations

Duality result

[ρ′]i = −∞ if
(

Q
T 0

)(
x
x′

)
≤
(

q
ρ

)
is unsatisfiable.

otherwise:

[ρ′]i = min{
(
qTρT

)
λ |λ ≥ 0 ∧

(
QT TT

0

)
(λ) =

(
0
TT

i

)
}

Here, any modification ρ only changes the objective function of the
linear program, and not the polytope.

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 47 / 61

Policy iteration Equations

Example

One transition, with the guard: x + y ≤ 10 and the assignments
x ′ = −2y , y ′ = x − y + 3. For the octagon domain, the abstraction of the
pre operator on the transition gives:

Cx = min(ψ, φ)

with
ψ = −∞ iff the set of constraints { x + y − 10 ≤ 0, x − y + 3 ≤ Cy , −x + y − 3 ≤ C−y ,
−2y ≤ Cx , 2y ≤ C−x , x − 3y + 3 ≤ Cx+y , −x − y − 3 ≤ Cx−y , x + y + 3 ≤ C−x+y ,
−x + 3y − 3 ≤ C−x−y} is unsatisfiable.
φ = min{10λ0 + λ1(Cy − 3) + λ2(C−y + 3) + λ3Cx + λ4C−x + λ5(Cx+y − 3)

+λ6(Cx−y + 3) + λ7(C−x+y − 3) + λ8(C−x−y + 3)
|λ ≥ 0 ∧ λ0 + λ1 − λ2 + λ5 − λ6 + λ7 − λ8 = 1

∧λ0 − λ1 + λ2 − 2λ3 + 2λ4 − 3λ5 − λ6 + λ7 + 3λ8 = 0}

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 48 / 61

Policy iteration Equations

Equations

Vertex principle of linear programming
If there is a minimum value of the linear program, it occurs at one or more
vertices.

Thus, if [ρ′]i is not −∞, it can be defined as the minimum of a finite
number of affine function on ρ (one for each vertex of the polytope).

Proposition
[ρ′]i = min(ψi (ρ), φi (ρ)) where

ψi is monotonic and its image is in {−∞,+∞}
φi is the minimum of a (finite) number of several (monotonic) affine
functions.

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 49 / 61

Policy iteration Equations

Example

φ = min{10λ0 + λ1(Cy − 3) + λ2(C−y + 3) + λ3Cx + λ4C−x + λ5(Cx+y − 3)
+λ6(Cx−y + 3) + λ7(C−x+y − 3) + λ8(C−x−y + 3)

|λ ≥ 0 ∧ λ0 + λ1 − λ2 + λ5 − λ6 + λ7 − λ8 = 1
∧λ0 − λ1 + λ2 − 2λ3 + 2λ4 − 3λ5 − λ6 + λ7 + 3λ8 = 0}

With Cx+y = 10 and Cx = C−x = . . . = C−x−y = +∞, the optimal
solution is:

λ5 = 0.25 λ0 = 0.75 λi = 0 for i /∈ {0, 5}

which gives the affine expression:

6.75 + 0.25Cx+y

Hence we have φ = min(6.75 + 0.25Cx+y , . . .). The number of affine
expressions is exponential, hence we will try to compute them lazily.

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 50 / 61

Policy iteration Equations

Result

The abstract semantics of the program is the least solution of a system of
equations of the form:

xi = max(min(ψ1
i , φ

1
i),min(ψ2

i , φ
2
i), . . .)

where φj
i are monotonic and their images are in {−∞,+∞}, and ψj

i are
the minimum of a finite number of affine functions.
Notice that φj

i and affine functions are convex and concave. However, the
min operator is concave, and the max operator is convex.

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 51 / 61

Policy iteration min-policies

min-policies: policy selection

With min-policies, we construct a decreasing chain of post-fixpoints (each
one being the lfp of a policy).

Initial post-fixpoint: any post-fixpoint ρ0, computed e.g. with Kleene
iterations and widenings.
Policy selection: from ρk , compute ψj

i (ρk). If the result is −∞, select
−∞, otherwise compute φj

i (ρk) and select the optimal vertex.

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 52 / 61

Policy iteration min-policies

min-policies: fixpoint computation

Policy selection gives an equation system of the form:

xi = max(ai
1(x), ai

2(x), . . .)

where each ai
j is an affine and monotonic function. We can rewrite the

system as constraints:
xi ≥ ai

j (x) ∀i , j

The result is a polytope, whose minimum (e.g. the point minimizing
x1 + x2 + . . .+ xn, for finite components) is the least fixpoint of the
system. Hence we can compute it by solving a linear program.
The result is a new post-fixpoint ρk+1, which can be used to compute a
new policy.
The process terminates (the total number of policies is finite), but may
not give the lfp of the system. However, any intermediate result is sound.

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 53 / 61

Policy iteration max-policies

max-policies: policy selection

With max-policies, we construct a increasing chain of pre-fixpoints.

Initial pre-fixpoint: −∞.
Policy selection: from ρk , compute min(ψj

i (ρk), φj
i (ρk)). Select the

“best” transition (which gives the maximum).

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 54 / 61

Policy iteration max-policies

max-policies: fixpoint computation
Policy selection gives an system of equations of the form xi = φj

i where φ
j
i

is a linear program of the form:

min{
(
qTρT

)
λ |λ ≥ 0 ∧ (A)λ = (b)}

Theorem
If the policy improvement step is “lazy” (i.e. keeps the current policy as
much as possible), and the solution is finite, then the least solution of the
system greater than ρk is the greatest finite solution of the system:

xi ≤ φj
i

Intuition: this system describes a convex set of (strict) pre-fixpoint for the
semantics equations, including ρk . The “next” fixpoint is the greatest
element of this convex set.
However, the proof is a bit complicated (see Gawlitza and Seidl, ACM
TPLS 2011) and is done by induction over the successive policies.
Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 55 / 61

Policy iteration max-policies

Fixpoint computation

We can rewrite the system as constraints:

xi ≤ Tiy ′

(A)

(
y
y ′

)
≤
(

q
x

)
The result is a polytope, whose finite maximum (e.g. the point maximizing
x1 + x2 + . . .+ xn, for the components which are not +∞ or −∞) is the
least fixpoint of the system. Hence we can compute it by solving a linear
program.
The result is a new post-fixpoint ρk+1, which can be used to compute a
new policy.
The process terminates (the total number of policies is finite), and gives
the lfp of the abstract semantics. Any intermediate result is not sound.

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 56 / 61

Policy iteration gfp computation

gfp computation

Policy iteration can be used to compute overapproximations of gfp (in
replacement of narrowings), but:

min-policies become max-policies, and vice-versa.
max-policies can only be used if we can prove that we reach the gfp.
Intermediate results are not sound.
min-policies computes the abstract semantics and any intermediate
result is sound.

This approach can be used to prove the termination of a program (or find
an over-approximation of the non-terminating states).

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 57 / 61

Policy iteration gfp computation

Exemple
With only one loop:

real x,y;
while (x+y<=10) { x=-2y // y=x-y+3; }

Strategy Solution
1 Cx+y = 10 x + y ≤ 10
2 Cx = 6.75+ 0.25Cx+y , Cx+y = 10, x ≤ 9.25, x + y ≤ 10

Cx−y = 3.5+ Cx+y/2 x − y ≤ 8.5
3 Cx = 6.75+ 0.25Cx+y , Cx+y = 10, x ≤ 9.25, −4.625 ≤ y

Cx−y = 3.5+ Cx+y/2, C−y = 0.5Cx , −11.5 ≤ x + y ≤ 10
C−x−y = 3+ Cx−y x − y ≤ 8.5

4 Cx = 6.75+ 0.25Cx+y , Cx+y = 10, −9.5625 ≤ x ≤ 9.25
Cx−y = 3.5+ Cx+y/2, C−y = 0.5Cx , −4.625 ≤ y ≤ 6.125
C−x−y = 3+ Cx−y ,Cy = 3.25+ 0.25C−x−y −11.5 ≤ x + y ≤ 10
Cy−x = 3+ C−y , C−x = 3+ 0.5C−x−y + 0.5C−y −7.625 ≤ x − y ≤ 8.5

5 Cx = −3+ 0.5C−x−y + 0.5Cy , x = −1.5, y = 0.75
Cx+y = −3+ C−x+y , Cx−y = −3+ Cy
C−y = 0.5Cx , C−x−y = 3+ Cx−y ,
Cy = 0.5C−x , Cy−x = 3+ C−y ,
C−x = 3+ 0.5C−x−y + 0.5C−y

The program terminates from any state 6= (−1.5, 0.75).
Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 58 / 61

Policy iteration gfp computation

Issues

1 Complexity of the approach: exponential in theory, and in practice?
2 Selection of the template?

Policy iteration has been extended to quadratic zone domains (an
extension of polyhedral template with quadratic constraints), using
semi-definite programming. Its extension to more complex domains (e.g.
convex polyhedra) seems difficult.

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 59 / 61

Bibliography Completeness

Bibliography

On the construction of complete operators:
R. Giacobazzi, F. Ranzato and F. Scozarri, Making abstraction
complete, Journal of the ACM, 47(2):361–416, 2000.
On the application of completeness to abstract model-cheking:

I R. Giacobazzi and E. Quintarelli, Incompleteness, counterexamples and
refinements in abstract model-checking, Proceedings of SAS’01, LNCS
2126, 2001.

I F. Ranzato and F. Tapparo, Strong preservation as completeness in
abstract interpretation, Proceedings of ESOP’04, LNCS 2986, 2004.

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 60 / 61

Bibliography Policy iteration

Bibliography (2)
On policy iterations:

A. Costan et al., A Policy Iteration Algorithm for Computing Fixed
Points in Static Analysis of Programs, Proceedings of CAV’05, LNCS
3576, 2005.
S. Gaubert et al., Static Analysis by Policy Iteration on Relational
Domains, Proceedings of ESOP’07, LNCS 4421, 2007,
A. Adje et al., Coupling Policy Iteration with Semi-definite Relaxation
to Compute Accurate Numerical Invariants in Static Analysis,
Proceedings of ESOP’10, LNCS 6012, 2010.
T. Gawlitza and H. Seidl, Solving systems of rational equations
through strategy iteration, ACM Trans. Program. Lang. Syst. vol 33,
2011.
T. Gawlitza et al., Abstract interpretation meets convex optimization,
Journal of Symbolic Computation, Vol 47 issue 12, Sept. 2012.
D. Massé, Proving Termination by Policy Iteration, NSAD 2012.

Damien Massé (LabSTICC – UBO) Completeness & policy iteration February 1, 2013 61 / 61

	Introduction
	Completeness of abstractions
	Closure operators
	Completeness
	Construction of complete operators
	Application to model-checking

	Policy iteration
	Context
	Equations
	min-policies
	max-policies
	gfp computation

	Bibliography
	Completeness
	Policy iteration

