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Year 2018–2019

Course 02
18 September 2018

Course 02 Program Semantics Antoine Miné p. 1 / 124



Goal
Study broad classes of semantics
that express useful program properties:

several flavors: state, trace and relational semantics
at a concrete level:

express the strongest property of that shape that holds
uncomputable, must be further abstracted into a static analysis
(e.g., using numeric domains as seen in the two following courses)

independently from specific programming languages,
using transition systems
(we will quickly specialize to a simple numeric imperative language)

express them unversally as fixpoints
link them through abstractions
=⇒ construct a hierarchy of semantics

a first step in analysis design is choosing the (uncomputable) concrete semantics of
interest that can exactly express the properties at hand and is complete; sound
computable abstractions come later and are guided by a target class of programs
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Transition systems

Transition systems
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Transition systems

Transition systems: definition

Language-neutral formalism to discuss program semantics.

Transition system: (Σ, τ)

set of states Σ,
(memory states, λ−terms, configurations, etc., generally infinite)

transition relation τ ⊆ Σ× Σ.

(Σ, τ) is a general form of small-step operational semantics.

(σ, σ′) ∈ τ is noted σ → σ′:

starting in state σ, after one execution step, we can go to state σ′.
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Transition systems

Transition system: example

i ← 2;
n← [−∞,+∞];
while i < n do

if ? then
i ← i + 1

Σ def= {i , n} → Z

n

i

...

Course 02 Program Semantics Antoine Miné p. 5 / 124



Transition systems

From programs to transition systems
Example: on a simple imperative language.

Language syntax
`stat` ::= `X ← expr ` (assignment)

| `if expr ./ 0 then `stat` (conditional)
| `while `expr ./ 0 do `stat` (loop)
| `stat; `stat` (sequence)

X ∈ V, where V is a finite set of program variables,
` ∈ L is a finite set of control labels,
./ ∈ {=,≤, . . .}, the syntax of expr is left undefined.
(see next course)

Program states: Σ def= L × E are composed of:
a control state in L,
a memory state in E def= V→ R.

Course 02 Program Semantics Antoine Miné p. 6 / 124



Transition systems

From programs to transition systems

Transitions: τ [`stat`′ ] ⊆ Σ× Σ is defined by structural induction.

Assuming that expression semantics is given as EJ e K : E → P(R).
(see next course)

τ [`1X ← e`2] def= { (`1, ρ)→ (`2, ρ[X 7→ v ]) | ρ ∈ E , v ∈ EJ e K ρ }

τ [`1if e ./ 0 then `2s`3] def=
{ (`1, ρ)→ (`2, ρ) | ρ ∈ E , ∃v ∈ EJ e K ρ: v ./ 0 } ∪
{ (`1, ρ)→ (`3, ρ) | ρ ∈ E , ∃v ∈ EJ e K ρ: v 6./ 0 } ∪ τ [`2s`3]

τ [`1while `2e ./ 0 do `3s`4] def=
{ (`1, ρ)→ (`2, ρ) | ρ ∈ E } ∪
{ (`2, ρ)→ (`3, ρ) | ρ ∈ E , ∃v ∈ EJ e K ρ: v ./ 0 } ∪
{ (`2, ρ)→ (`4, ρ) | ρ ∈ E , ∃v ∈ EJ e K ρ: v 6./ 0 } ∪ τ [`3s`2]

τ [`1s1; `2s2
`3] def= τ [`1s1

`2] ∪ τ [`2s2
`3]
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Transition systems

Use of transition systems

Transition systems are a form of structured operational semantics.
Other examples:

semantics of λ−calculus
(states are terms, transitions are reductions)

abstract machines
(states are configurations, transitions are instruction execution)

concurrent programs
(states are sequences of configurations, transitions model one process step)

transitions are often labeled
(to denote syntactic instruction, rewriting rule, process, etc.)

In practice:
Transitions systems are a theoretical tool.
We do not convert explicitly programs to transition systems to be analyzed!
Instead, the analysis proceeds directly on the AST, the CFG, or an equation system
following the same structural induction rules as the ones defining the transition
system, but on an abstraction Σ] of program states Σ.
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Transition systems

Initial, final, blocking states

Initial and final states:
Transition systems (Σ, τ) are often enriched with:

I ⊆ Σ a set of distinguished initial states,
F ⊆ Σ a set of distinguished final states.

(e.g., limit observation to executions starting in an initial state
and ending in a final state)

Blocking states B:

states with no successor B def= {σ | ∀σ′ ∈ Σ:σ 6→ σ′ },
model both correct program termination and program errors,
(correct exit, program stuck, unhandled exception, etc.)

often include (or equal) final states F .
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State semantics

State semantics
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State semantics State operators

Motivation

Many verification problems can be reduced to inferring the
reachable program states:

absence of run-time error, unhandled exception, deadlock, etc.
(no bad state is reached)

infer variable bound inference, pointer targets
(application to verification and to optimization)

infer invariants
sometimes with some instrumentation of the semantics
(cost analysis by adding an instruction counter)

etc.

Reasoning at the state level, in P(Σ), is sufficient.
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State semantics State operators

Post-image, pre-image

Forward and backward images, in P(Σ)→ P(Σ):

successors: (forward, post-image)

postτ (S) def= {σ′ | ∃σ ∈ S:σ → σ′ }

predecessors: (backward, pre-image)

preτ (S) def= {σ | ∃σ′ ∈ S:σ → σ′ }

postτ and preτ are complete ∪−morphisms in (P(Σ),⊆,∪,∩, ∅,Σ).
(postτ (∪i∈I Si ) = ∪i∈I postτ (Si ), preτ (∪i∈I Si ) = ∪i∈I preτ (Si ))

postτ and preτ are strict. (postτ (∅) = preτ (∅) = ∅)
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State semantics State operators

Dual images

Dual post-images and pre-images:

p̃reτ (S) def= {σ | ∀σ′:σ → σ′ =⇒ σ′ ∈ S }
(states such that all successors satisfy S)

p̃ostτ (S) def= {σ′ | ∀σ:σ → σ′ =⇒ σ ∈ S }
(states such that all predecessors satisfy S)

p̃reτ and p̃ostτ are complete ∩−morphisms and not strict.

p̃ost is not much used. . .
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State semantics State operators

Correspondences between images and dual images

We have the following correspondences:

inverse: preτ = post(τ−1) postτ = pre(τ−1)

p̃reτ = p̃ost(τ−1) p̃ostτ = p̃re(τ−1)

(where τ−1 def= { (σ, σ′) | (σ′, σ) ∈ τ })

Galois connections:

(P(Σ),⊆) −−−−−→←−−−−−
postτ

p̃reτ (P(Σ),⊆) and

(P(Σ),⊆) −−−−−→←−−−−−
preτ̃

postτ (P(Σ),⊆).
proof:

postτ (A) ⊆ B ⇐⇒ {σ′ | ∃σ ∈ A:σ → σ′ } ⊆ B ⇐⇒ (∀σ ∈ A:σ → σ′ =⇒
σ′ ∈ B) ⇐⇒ (A ⊆ {σ | ∀σ′:σ → σ′ =⇒ σ′ ∈ B }) ⇐⇒ A ⊆ p̃reτ (B);
other directions are similar.
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State semantics State operators

Deterministic systems

Determinism:

(Σ, τ) is deterministic if ∀σ ∈ Σ: | postτ ({σ})| = 1,
(every state has a single successor, no blocking state)

most transition systems are non-deterministic.
(e.g., effect of input X ← [0, 10], program termination)

If τ is deterministic
then preτ = p̃reτ and postτ = p̃ostτ .
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State semantics Forward state reachability

Forward state reachability
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State semantics Forward state reachability

Forward reachability
R(I): states reachable from I in the transition system

R(I) def= {σ | ∃n ≥ 0, σ0, . . . , σn:σ0 ∈ I, σ = σn, ∀i :σi → σi+1 }
=

⋃
n≥0 postn

τ (I)

(reachable ⇐⇒ reachable from I in n steps of τ for some n ≥ 0)

R(I) can be expressed in fixpoint form:

R(I) = lfp FR where FR(S) def= I ∪ postτ (S)

(FR shifts S and adds back I)

Alternate characterization: R = lfpI GR where GR(S) def= S ∪ postτ (S).
(GR shifts S by τ and accumulates the result with S)

(proofs on next slide)
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State semantics Forward state reachability

Forward reachability: proof

proof: of R(I) = lfp FR where FR(S) def= I ∪ postτ (S)

(P(Σ),⊆) is a CPO and postτ is continuous, hence FR is continuous:
FR(∪i∈I Ai ) = ∪i∈I FR(Ai ).
By Kleene’s theorem, lfp FR = ∪n∈N F n

R(∅).
We prove by recurrence on n that: ∀n: F n

R(∅) = ∪i<n posti
τ (I).

(states reachable in less than n steps)
F 0
R(∅) = ∅

assuming the property at n,
F n+1
R (∅) = FR(

⋃
i<n posti

τ (I))
= I ∪ postτ (

⋃
i<n posti

τ (I))
= I ∪

⋃
i<n postτ (posti

τ (I))
= I ∪

⋃
1≤i<n+1 posti

τ (I)
=

⋃
i<n+1 posti

τ (I)

Hence: lfp FR = ∪n∈N F n
R(∅) = ∪i∈N posti

τ (I) = R(I).

The proof is similar for the alternate form, given that lfpI GR = ∪n∈NGn
R(I) and

Gn
R(I) = F n+1

R (∅) = ∪i≤n posti
τ (I).
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State semantics Forward state reachability

Graphical illustration

Transition system.
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State semantics Forward state reachability

Graphical illustration

Initial states I.

Course 02 Program Semantics Antoine Miné p. 19 / 124



State semantics Forward state reachability

Graphical illustration

Iterate F 1
R(I).
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State semantics Forward state reachability

Graphical illustration

Iterate F 2
R(I).
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State semantics Forward state reachability

Graphical illustration

Iterate F 3
R(I).
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State semantics Forward state reachability

Graphical illustration

States reachable from I: R(I) = F 5
R(I).
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State semantics Forward state reachability

Multiple forward fixpoints

Recall: R(I) = lfp FR where FR(S) def= I ∪ postτ (S).
Note that FR may have several fixpoints.

Example:

Initial state I R(I) = lfp FR gfp FR

Exercise:
Compute all the fixpoints of GR(S) def= S ∪ postτ (S) on this example.
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State semantics Forward state reachability

Example application of forward reachability

Infer the set of possible states at program end: R(I) ∩ F .

example

• i ← 0;
while i < 100 do

i ← i + 1;
j ← j + [0, 1]

done •

initial states I: j ∈ [0, 10] at control state •,
final states F : any memory state at control state •,
=⇒ R(I) ∩ F : control at •, i = 100, and j ∈ [0, 110].

Prove the absence of run-time error: R(I) ∩ B ⊆ F .
(never block except when reaching the end of the program)

To ensure soundness, over-approximations are sufficient.
(if R](I) ⊇ R(I), then R](I) ∩ B ⊆ F =⇒ R(I) ∩ B ⊆ F)
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State semantics Forward state reachability

Forward reachability in equational form
Idea:

Σ def= L × E : decompose states as control in L and memory in E
associate a variable X` in E for each label ` ∈ L
link X` through the semantics of instructions

Example:
`1 i ← 2;
`2 n← [−∞,+∞];
`3 while `4 i < n do

`5 if [0, 1] = 0 then
`6 i ← i + 1

`7
`8

X1 = I1
X2 = CJ i ← 2 KX1
X3 = CJ n← [−∞,+∞] KX2
X4 = X3 ∪ X7
X5 = CJ i < n KX4
X6 = X5
X7 = X5 ∪ CJ i ← i + 1 KX6
X8 = CJ i ≥ n KX4

initial states I def= { (`1, ρ) | ρ ∈ I1 } for some I1 ⊆ E ,
CJ · K : P(E)→ P(E) model assignments and tests (see next slide).
We get the strongest invariant at each program point.
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State semantics Forward state reachability

Systematic construction of the equation system
Atomic instructions:

CJ X ← e KX def= { ρ[X 7→ v ] | ρ ∈ X , v ∈ EJ e K ρ }

CJ e ./ 0 KX def= { ρ ∈ X | ∃v ∈ EJ ρ K ρ: v ./ 0 }

Systematic derivation of the equation system eq(`stat`′ )
from the program syntax `stat`′ by structural induction:

eq(`1X ← e`2) def= {X`2 = CJ X ← e KX`1 }

eq(`1if e ./ 0 then `2s`3) def=
{X`2 = CJ e ./ 0 KX`1, X`3 = X`3′ ∪ CJ e 6./ 0 KX`1 } ∪ eq(`2s`3′ )

eq(`1while `2e ./ 0 do `3s`4) def=
{X`2 = X`1 ∪ X`4′ , X`3 = CJ e ./ 0 KX`2, X`4 = CJ e 6./ 0 KX`2 } ∪ eq(`3s`4′ )

eq(`1s1; `2s2
`3) def= eq(`1s1

`2) ∪ (`2s2
`3)

where: X `3′ , X `4′ are fresh variables storing intermediate results
∪−morphisms in a complete lattice =⇒ a smallest solution exists
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State semantics Forward state reachability

Link between the fixpoint and equational presentation
By partitioning forward reachability wrt. control states,
we retrieve the equation system form of program semantics.

Control state partitioning

We assume Σ def= L × E ; note that: P(Σ) ' L → P(E).
We have a Galois isomorphism:

(P(Σ),⊆) −−−−→−→←←−−−−−
αL

γL (L → P(E), ⊆̇)

X ⊆̇Y def⇐⇒ ∀` ∈ L: X (`) ⊆ Y (`)

αL(S) def= λ`.{ ρ | (`, ρ) ∈ S }

γL(X ) def= { (`, ρ) | ` ∈ L, ρ ∈ X (`) }

given Feq
def= αL ◦ FR ◦ γL

we get an equation system ∀` ∈ L:X` = Feq,`(X1, . . . ,Xn)
Note that: αL ◦ γL = γL ◦ αL = id . (no abstraction)

simply reorganize the states by control location!
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State semantics Forward state reachability

Invariance proof method

Invariance proof method: find an inductive invariant I ⊆ Σ

I ⊆ I
(contains initial states)

∀σ ∈ I:σ → σ′ =⇒ σ′ ∈ I
(invariant by program transition)

that implies the desired property: I ⊆ P.

Link with the state semantics R(I):

Given FR(S) def= I ∪ postτ (S), we have FR(I) ⊆ I
=⇒ I is a post-fixpoint of FR.

Recall that R(I) = lfp FR
=⇒ R(I) is the tightest inductive invariant.
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State semantics Forward state reachability

Link with Hoare logic
Hoare logic: proof method where we

annotate program points with local sate invariants in P(Σ)
use logic rules to prove their correctness

{P[e/X ]}X ← e {P}
{P} stat1 {R} {R} stat2 {Q}

{P} stat1; stat2 {Q}

{P ∧ b} stat {Q} P ∧ ¬b ⇒ Q
{P} if b then stat {Q}

{P ∧ b} stat {P}
{P}while b do stat {P ∧ ¬b}

{P} stat {Q} P′ ⇒ P Q ⇒ Q′

{P′} stat {Q′}

Link with the state semantics R(I):
Recall the equation system ∀` ∈ L:X` = Feq,`(X1, . . . ,Xn)
obtained by partitioning reachability FR by control point
(P(Σ),⊆) −−−−→−→←←−−−−−

αL

γL (L → P(E), ⊆̇).

any post-fixpoint of Feq gives valid Hoare triples
lfp Feq gives the tightest Hoare triples
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State semantics Backward state co-reachability

Backward state co-reachability
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State semantics Backward state co-reachability

Backward co-reachability

C(F): states co-reachable from F in the transition system:

C(F) def= {σ | ∃n ≥ 0, σ0, . . . , σn:σ = σ0, σn ∈ F ,∀i :σi → σi+1 }
=

⋃
n≥0 pren

τ (F)

C(F) can also be expressed in fixpoint form:

C(F) = lfp FC where FC(S) def= F ∪ preτ (S)

Alternate characterization: C(F) = lfpF GC where GC(S) = S ∪ preτ (S)

Justification: C(F) in τ is exactly R(F) in τ−1.
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State semantics Backward state co-reachability

Graphical illustration

Transition system.
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State semantics Backward state co-reachability

Graphical illustration

Final states F .
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State semantics Backward state co-reachability

Graphical illustration

States co-reachable from F .
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State semantics Backward state co-reachability

Application of backward co-reachability

I ∩ C(B \ F)
Initial states that have at least one erroneous execution.

program

• j ← 0;
while i > 0 do

i ← i − 1;
j ← j + [0, 10]

done •

initial states I: i ∈ [0, 100] at •

final states F : any memory state at •

blocking states B: final, or j > 200 at any
location

I ∩ C(B \ F): at •, i > 20

I ∩ (Σ \ C(B))
Initial states that necessarily cause the program to loop.
Over-approximating C is useful to isolate possibly incorrect
executions from those guaranteed to be correct.
Iterate forward and backward analyses interactively
=⇒ abstract debugging [Bour93].
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State semantics Backward state co-reachability

Backward co-reachability in equational form

Principle:
As before, reorganize transitions by label ` ∈ L,
to get an equation system on (X`)`, with X` ⊆ E

Example:
`1 i ← 2;
`2 n← [−∞,+∞];
`3 while `4 i < n do

`5 if [0, 1] = 0 then
`6 i ← i + 1

`7
`8

X1 = CJ i → 2 KX2
X2 = CJ n→ [−∞,+∞] KX3
X3 = X4
X4 = CJ i < n KX5 ∪ CJ i ≥ n KX8
X5 = X6 ∪ X7
X6 = CJ i → i + 1 KX7
X7 = X4
X8 = F8

final states F def= { (`8, ρ) | ρ ∈ F8 } for some F8 ⊆ E ,

CJ X → e KX def= { ρ | ∃v ∈ EJ e K ρ: ρ[X 7→ v ] ∈ X }.
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State semantics Backward sufficient precondition state semantics

Backward sufficient precondition state semantics

Course 02 Program Semantics Antoine Miné p. 32 / 124



State semantics Backward sufficient precondition state semantics

Sufficient preconditions

S(Y): states with executions staying in Y.

S(Y) def= {σ | ∀n ≥ 0, σ0, . . . , σn: (σ = σ0 ∧ ∀i :σi → σi+1) =⇒ σn ∈ Y }
=

⋂
n≥0 p̃ren

τ (Y)

S(Y) can be expressed in fixpoint form:

S(Y) = gfp FS where FS(S) def= Y ∩ p̃reτ (S)

proof sketch: similar to that of R(I), in the dual.

FS is continuous in the dual CPO (P(Σ),⊇), because p̃reτ is:
FS(∩i∈I Ai ) = ∩i∈I FS(Ai ).
By Kleene’s theorem in the dual, gfp FS = ∩n∈N F n

S(Σ).
We would prove by recurrence that F n

S(Σ) = ∩i<n p̃rei
τ (Y).
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State semantics Backward sufficient precondition state semantics

Graphical illustration

Final states F .
Goal: when stopping, stop in F .
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State semantics Backward sufficient precondition state semantics

Graphical illustration

Goal: avoid stopping in a non-final state (i.e., error state)
but passing through a non-blocking state is not (yet) an error
=⇒ consider Y = F ∪ (Σ \ B).
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State semantics Backward sufficient precondition state semantics

Graphical illustration

Sufficient preconditions S(Y) to stop in F .
(without forcing the program to stop at all)
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State semantics Backward sufficient precondition state semantics

Graphical illustration

Sufficient preconditions S(Y) to stop in F .
(without forcing the program to stop at all) C(F)

Note: S(Y) ⊂ C(F)
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State semantics Backward sufficient precondition state semantics

Sufficient preconditions and reachability

Correspondence with reachability:

We have a Galois connection:

(P(Σ),⊆) −−−→←−−−R
S (P(Σ),⊆)

R(I) ⊆ Y ⇐⇒ I ⊆ S(Y)
definition of a Galois connection
all executions from I stay in Y
⇐⇒ I includes only sufficient pre-conditions for Y

so S(Y) =
⋃
{X |R(X ) ⊆ Y }

by Galois connection property
S(Y) is the largest initial set whose reachability is in Y

We retrieve Dijkstra’s weakest liberal preconditions.

(proof sketch on next slide)
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State semantics Backward sufficient precondition state semantics

Sufficient preconditions and reachability (proof)

proof sketch:

Recall that R(I) = lfpI GR where GR(S) = S ∪ postτ (S).
Likewise, S(Y) = gfpY GS where GS(S) = S ∩ p̃reτ (S).

Recall the Galois connection (P(Σ),⊆) −−−−−→←−−−−−
postτ

p̃reτ (P(Σ),⊆).

As a consequence (P(Σ),⊆) −−−−→←−−−−
GR

GS (P(Σ),⊆).

The Galois connection can be lifted to fixpoint operators:

(P(Σ),⊆) −−−−−−−−−→←−−−−−−−−−
x 7→lfpx GR

x 7→gfpx GS (P(Σ),⊆).

Exercise: complete the proof sketch.
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State semantics Backward sufficient precondition state semantics

Application of sufficient preconditions

Initial states such that all executions are correct:
I ∩ S(F ∪ (Σ \ B)).
(the only blocking states reachable from initial states are final states)

program

• i ← 0;
while i < 100 do

i ← i + 1;
j ← j + [0, 1]

done •

initial states I: j ∈ [0, 10] at •
final states F : any memory state at •
blocking states B: final, or j > 105 at
any location
I ∩ S(F ∪ (Σ \ B)): at •, j ∈ [0, 5]
(note that I ∩ C(F ∪ (Σ \ B)) gives I)
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State semantics Backward sufficient precondition state semantics

?? Research topic ??

Inferring sound sufficient preconditions requires under-approximations.
if S(X ) is a sufficient precondition, any S](X ) ⊂ S(X ) is stronger, thus also sufficient

Most works in abstract interpretation only target over-approximations.
The search for effective under-approximations remains an uncharted area.

Applications:

infer function contracts
infer sufficient conditions on the input so that the function has no error
infer plausible specifications

optimization
e.g., hoist dynamic checks outside loops when possible
replace: for i in [0,n] get(a,i)
with: if (X) then for i in [0,n] unsafe-get(a,i)

else for i in [0,n] get(a,i)
where X ensures no array overflow in the loop

infer counterexamples
infer conditions that ensures program mis-behavior
even in the presence of non-determinism
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Trace semantics

Trace semantics
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Trace semantics Traces and trace operations

Motivation

Program semantics:

A natural semantic model of program execution are traces
i.e., sequences of states encountered during execution

finite executions
terminating programs
also: partial executions, i.e., the semantics of test

extension to infinite executions
models possible non-termination

Properties:
Trace properties can express temporal relations
as well as termination and liveness properties
link with temporal logic
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Trace semantics Traces and trace operations

Sequences, traces

Trace: sequence of elements from Σ
ε: empty trace (unique)

σ: trace of length 1 (assimilated to a state)

σ0, . . . , σn−1: trace of length n
σ0, . . . , σn, . . .: infinite trace (length ω)

Trace sets:
Σn: the set of traces of length n
Σ≤n def= ∪i≤n Σi : the set of traces of length at most n
Σ∗ def= ∪i∈N Σi : the set of finite traces
Σω: the set of infinite traces
Σ∞ def= Σ∗ ∪ Σω: the set of all traces
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Trace semantics Traces and trace operations

Traces of a transition system

Execution traces:

Non-empty sequences of states linked by the transition relation τ .
can be finite (in P(Σ∗)) or infinite (in P(Σω))
can be anchored at initial states, or final states, or none

Atomic traces:

I: initial states ' set of traces of length 1
F : final states ' set of traces of length 1
τ : transition relation ' set of traces of length 2
({σ, σ′ |σ → σ′ })

(as Σ ' Σ1 and Σ× Σ ' Σ2)
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Trace semantics Traces and trace operations

Trace operations

Operations on traces:

length: |t| ∈ N ∪ {ω} of a trace t ∈ Σ∞

concatenation ·
(σ0, . . . , σn) · (σ′0, . . .)

def= σ0, . . . , σn, σ
′
0, . . .

(append to a finite trace)

t · t ′ def= t if t ∈ Σω (append to an infinite trace does nothing)

ε · t def= t · ε def= t (ε is neutral)

junction _

(σ0, . . . , σn)_(σ′0,σ′1 . . .)
def= σ0, . . . , σn,σ

′
1, . . . when σn = σ′0

undefined if σn 6= σ′0
ε_t and t_ε are undefined
t_t ′ def= t, if t ∈ Σω
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Trace semantics Traces and trace operations

Trace operations (cont.)

Extension to sets of traces:

A · B def= { a · b | a ∈ A, b ∈ B }
{ε} is the neutral element for ·

A_B def= { a_b | a ∈ A, b ∈ B, a_b defined }
Σ is the neutral element for _

A0 def= {ε} A_0 def= Σ
An+1 def= A · An A_n+1 def= A_A_n

Aω def= A · A · · · · A_ω def= A_A_ · · ·
A∗ def= ∪n<ωAn A_∗ def= ∪n<ωA_n

A∞ def= ∪n≤ωAn A_∞ def= ∪n≤ωA_n

Note: An 6= { an | a ∈ A }, A_n 6= { a_n | a ∈ A } when |A| > 1

Course 02 Program Semantics Antoine Miné p. 44 / 124



Trace semantics Traces and trace operations

Distributivity of junction

_ distributes over finite and infinite ∪:
A_(∪i∈I Bi ) = ∪i∈I (A_Bi ) and
(∪i∈I Ai )_B = ∪i∈I (Ai

_B)
where I can be finite or infinite.

_ distributes finite ∩ but not infinite ∩
example:

{aω}_(∩n∈N { am | n ≥ m }) = {aω}_∅ = ∅ but
∩n∈N ({aω}_{ am | n ≥ m }) = ∩n∈N {aω} = {aω}

but, if A ⊆ Σ∗, then A_(∩i∈I Bi ) = ∪i∈I (A_Bi )
even for infinite I

Note: concatenation · distributes infinite ∩ and ∪.
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Trace semantics Finite prefix trace semantics

Finite prefix trace semantics
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Trace semantics Finite prefix trace semantics

Prefix trace semantics

Tp(I): partial, finite execution traces starting in I.

Tp(I) def= {σ0, . . . , σn | n ≥ 0, σ0 ∈ I, ∀i :σi → σi+1 }
=

⋃
n≥0 I_(τ_n)

(traces of length n, for any n, starting in I and following τ)

Tp(I) can be expressed in fixpoint form:

Tp(I) = lfp Fp where Fp(T ) def= I ∪ T_τ

(Fp appends a transition to each trace, and adds back I)

(proof on next slide)
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Trace semantics Finite prefix trace semantics

Prefix trace semantics: proof

proof of: Tp(I) = lfp Fp where Fp(T ) = I ∪ T_τ

Similar to the proof of R(I) = lfp FR where FR(S) def= I ∪ postτ (S).

Fp is continuous in a CPO (P(Σ∗),⊆):
Fp(∪i∈I Ti )

= I ∪ (∪i∈I Ti )_τ
= I ∪ (∪i∈I Ti_τ) = ∪i∈I (I ∪ Ti_τ)

hence (Kleene), lfp Fp = ∪n≥0 F i
p(∅)

We prove by recurrence on n that ∀n: F n
p (∅) = ∪i<n I_τ_ i :

F 0
p (∅) = ∅,

F n+1
p (∅)

= I ∪ F n
p (∅)_τ

= I ∪ (∪i<n I_τ_ i )_τ
= I ∪ ∪i<n (I_τ_ i )_τ
= I_τ_0 ∪ ∪i<n (I_τ_ i+1)
= ∪i<n+1 I_τ_ i

Thus, lfp Fp = ∪n∈N F n
p (∅) = ∪n∈N ∪i<n I_τ_ i = ∪i∈N I_τ_ i .

Note: we also have Tp(I) = lfpI Gp where Gp(T ) = T ∪ T_τ .
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Trace semantics Finite prefix trace semantics

Prefix trace semantics: graphical illustration

cba

I def= {a}
τ

def= {(a, b), (b, b), (b, c)}

Iterates: Tp(I) = lfp Fp where Fp(T ) def= I ∪ T_τ .

F 0
p (∅) = ∅

F 1
p (∅) = I = {a}

F 2
p (∅) = {a, ab}

F 3
p (∅) = {a, ab, abb, abc}

F n
p (∅) = { a, abi , ab jc | i ∈ [1, n − 1], j ∈ [1, n − 2] }
Tp(I) = ∪n≥0 F n

p (∅) = { a, abi , abic | i ≥ 1 }
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Trace semantics Finite prefix trace semantics

Prefix trace semantics: expressive power

The prefix trace semantics is the collection of finite observations
of program executions.

=⇒ Semantics of testing.

Limitations:

no information on infinite executions,
(we will add infinite traces later)

can bound maximal execution time: Tp(I) ⊆ Σ≤n

but cannot bound minimal execution time.
(we will consider maximal traces later)
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Trace semantics Finite prefix trace semantics

Abstracting traces into states
Idea: view state semantics as abstractions of traces semantics.

A state in the state semantics
corresponds to any partial execution trace terminating in this state.

We have a Galois embedding between finite traces and states:

(P(Σ∗),⊆) −−−→−→←−−−−
αp

γp
(P(Σ),⊆)

αp(T ) def= {σ ∈ Σ | ∃σ0, . . . , σn ∈ T :σ = σn }
(last state in traces in T )

γp(S) def= {σ0, . . . , σn ∈ Σ∗ |σn ∈ S }
(traces ending in a state in S)

(proof on next slide)
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Trace semantics Finite prefix trace semantics

Abstracting traces into states (proof)

proof of: (αp , γp) forms a Galois embedding.

Instead of the definition α(c) ⊆ a ⇐⇒ c ⊆ γ(a), we use the alternate
characterization of Galois connections: α and γ are monotonic, γ ◦ α is extensive, and
α ◦ γ is reductive.
Embedding means that, additionally, α ◦ γ = id .

αp , γp are ∪−morphisms, hence monotonic
(γp ◦ αp)(T )
= {σ0, . . . , σn |σn ∈ αp(T ) }
= {σ0, . . . , σn | ∃σ′0, . . . , σ

′
m ∈ T :σn = σ′m }

⊇ T
(αp ◦ γp)(S)
= {σ | ∃σ0, . . . , σn ∈ γp(S):σ = σn }
= {σ | ∃σ0, . . . , σn:σn ∈ S, σ = σn }
= S
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Trace semantics Finite prefix trace semantics

Abstracting prefix traces into reachability

We can abstract semantic operators and their least fixpoint.

Recall that:
Tp(I) = lfp Fp where Fp(T ) def= I ∪ T_τ ,
R(I) = lfp FR where FR(S) def= I ∪ postτ (S),
(P(Σ∗),⊆) −−−→−→←−−−−

αp

γp
(P(Σ),⊆).

We have: αp ◦ Fp = FR ◦ αp;
by fixpoint transfer, we get: αp(Tp(I)) = R(I).

(proof on next slide)
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Trace semantics Finite prefix trace semantics

Abstracting prefix traces into reachability (proof)

proof: of αp ◦ Fp = FR ◦ αp

(αp ◦ Fp)(T )
= αp(I ∪ T_τ)
= {σ | ∃σ0, . . . , σn ∈ I ∪ T_τ :σ = σn }
= I ∪ {σ | ∃σ0, . . . , σn ∈ T_τ :σ = σn }
= I ∪ {σ | ∃σ0, . . . , σn ∈ T :σn → σ }
= I ∪ postτ ({σ | ∃σ0, . . . , σn ∈ T :σ = σn })
= I ∪ postτ (αp(T ))
= (FR ◦ αp)(T )
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Trace semantics Finite prefix trace semantics

Abstracting traces into states (example)

program

j ← 0;
i ← 0;
while i < 100 do

i ← i + 1;
j ← j + [0, 1]

done

prefix trace semantics:
i and j are increasing and 0 ≤ j ≤ i ≤ 100

forward reachable state semantics:
0 ≤ j ≤ i ≤ 100

=⇒ the abstraction forgets the ordering of states.
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Trace semantics Finite prefix trace semantics

Application: partitioning

program

X ← [10, 20];
Y ← [0, 1];
if Y ≥ 1 then X ← −X ;
• assert X 6= 0

a state semantics states that X ∈ [−20,−10] ∪ [10, 20] at •:
this implies that assert X 6= 0 is correct but it is difficult to abstract
(intervals are not sufficient: we need sets of intervals =⇒ costly)

a path sensitive analysis can state that, at •:
X ∈ [−20, 10] if we went through the then branch
X ∈ [10, 20] if we went through the else branch
in both cases, assert X 6= 0 is correct

=⇒ we partition the (interval) state abstraction
with respect to the history of computation (trace abstraction)

More in Xavier Rival’s course on partitioning
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Trace semantics Finite prefix trace semantics

Prefix closure

Prefix partial order: � on Σ∞

x � y def⇐⇒ ∃u ∈ Σ∞: x · u = y

(Σ∞,�) is a CPO, while (Σ∗,�) is not complete.

Prefix closure: ρp : P(Σ∞)→ P(Σ∞)

ρp(T ) def= { u | ∃t ∈ T : u � t, u 6= ε }

ρp is an upper closure operator on P(Σ∞ \ {ε}).
(monotonic, extensive T ⊆ ρp(T ), idempotent ρp ◦ ρp = ρp)

The prefix trace semantics is closed by prefix:
ρp(Tp(I)) = Tp(I).

(note that ε /∈ Tp(I), which is why we disallowed ε in ρp)
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Trace semantics Finite prefix trace semantics

Another state/trace abstraction: Ordering abstraction

Another Galois embedding between finite traces and states:

(P(Σ∗),⊆) −−−→−→←−−−−
αo

γo (P(Σ),⊆)

αo(T ) def= {σ | ∃σ0, . . . , σn ∈ T , i ≤ n:σ = σi }
(set of all states appearing in some trace in T )

γo(S) def= {σ0, . . . , σn | n ≥ 0,∀i ≤ n:σi ∈ S }
(traces composed of elements from S)

proof sketch:
αo and γo are monotonic, and αo ◦ γo = id .
(γo ◦ αo)(T ) = {σ0, . . . , σn | ∀i ≤ n: ∃σ′0, . . . , σ′m ∈ T , j ≤ m:σi = σ′j }
⊇ T .
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Trace semantics Finite prefix trace semantics

Semantic correspondence by ordering abstraction

We have: αo(Tp(I)) = R(I).

proof:
We have αo = αp ◦ ρp (i.e.: a state is in a trace if it is the last state of one of its
prefix).
Recall the prefix trace abstraction into states: R(I) = αp(Tp(I)) and the fact that
the prefix trace semantics is closed by prefix: ρp(Tp(I)) = Tp(I).
We get αo(Tp(I)) = αp(ρp(Tp(I))) = αp(Tp(I)) = R(I).

This is a direct proof, not a fixpoint transfer proof (our theorems do not apply . . . )

alternate proof: generalized fixpoint transfer

Recall that Tp(I) = lfp Fp where Fp(T ) def= I ∪ T_τ and R(I) = lfp FR where
FR(S) def= I ∪ postτ (S), but αo ◦ Fp = FR ◦ αo does not hold in general, so, fixpoint
transfer theorems do not apply directly.
However, αo ◦ Fp = FR ◦αo holds for sets of traces closed by prefix. By induction, the
Kleene iterates an

p and an
R involved in the computation of lfp Fp and lfp FR satisfy

∀n:αo(an
p) = an

R, and so αo(lfp Fp) = lfp FR.
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Trace semantics Finite suffix trace semantics

Finite suffix trace semantics
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Trace semantics Finite suffix trace semantics

Suffix trace semantics

Similar results on the suffix trace semantics,
going backwards from F :

Ts(F) def= {σ0, . . . , σn | n ≥ 0, σn ∈ F , ∀i :σi → σi+1 }
(traces following τ and ending in a state in F)

Ts(F) =
⋃

n≥0 τ
_n_F

Ts(F) = lfp Fs where Fs(T ) def= F ∪ τ_T
(Fs prepends a transition to each trace, and adds back F)

αs(Ts(F)) = C(F)
where αs (T ) def= {σ | ∃σ0, . . . , σn ∈ T :σ = σ0 }

ρs(Ts(F)) = Ts(F)
where ρs (T ) def= { u | ∃t ∈ Σ∞: t · u ∈ T , u 6= ε }
(closed by suffix)
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Trace semantics Finite suffix trace semantics

Graphical illustration

cba

F def= {c}
τ

def= {(a, b), (b, b), (b, c)}

Iterates: Ts(F) = lfp Fs where Fs(T ) def= F ∪ τ_T .

F 0
s (∅) = ∅

F 1
s (∅) = F = {c}

F 2
s (∅) = {c, bc}

F 3
s (∅) = {c, bc, bbc, abc}

F n
s (∅) = { c, bic, ab jc | i ∈ [1, n − 1], j ∈ [1, n − 2] }
Ts(F) = ∪n≥0 F n

s (∅) = { c, bic, abic | i ≥ 1 }
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Trace semantics Finite suffix trace semantics

Application: termination inference
A program terminates if we can find a ranking function
strictly decreasing function with a lower bound

0

0

1 0

0

2
1 0

0

2
1 0

0

Termination semantics:
start with final states, that terminate in 0 step
go backwards in the program traces
and annotate with one more step

This semantics:
infers the optimal ranking function
discovers initial states for which the program terminates
can be abstracted using numeric domain
(Work by Cousot & Cousot & Urban)
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Trace semantics Finite partial trace semantics

Finite partial trace semantics
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Trace semantics Finite partial trace semantics

Finite partial trace semantics
T : all finite partial finite execution traces.
(not necessarily starting in I or ending in F)

T def= {σ0, . . . , σn | n ≥ 0, ∀i :σi → σi+1 }
=

⋃
n≥0 Σ_τ_n

=
⋃

n≥0 τ
_n_Σ

T = Tp(Σ), hence T = lfp Fp∗ where Fp∗(T ) def= Σ ∪ T_τ
(prefix partial traces from any initial state)

T = Ts(Σ), hence T = lfp Fs∗ where Fs∗(T ) def= Σ ∪ τ_T
(suffix partial traces to any final state)

F n
p∗(∅) = F n

s∗(∅) =
⋃

i<n Σ_τ_i =
⋃

i<n τ
_i_Σ = T ∩ Σ<n

Tp(I) = T ∩ (I · Σ∗) (restricted initial states)

Ts(F) = T ∩ (Σ∗ · F) (restricted final states)
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Trace semantics Finite partial trace semantics

Partial trace semantics: graphical illustration

cba

τ
def= {(a, b), (b, b), (b, c)}

Iterates: T (Σ) = lfp Fp∗ where Fp∗(T ) def= Σ ∪ T_τ .

F 0
p∗(∅) = ∅

F 1
p∗(∅) = Σ = {a, b, c}

F 2
p∗(∅) = {a, b, c, ab, bb, bc}

F 3
p∗(∅) = {a, b, c, ab, bb, bc, abb, abc, bbb, bbc}

F n
p∗(∅) = { abi , ab jc, bic, bk | i ∈ [0, n − 1], j ∈ [1, n − 2], k ∈ [1, n] }

T = ∪n≥0 F n
p∗(∅) = { abi , ab jc, bic, b j | i ≥ 0, j > 1 }

(using Fs∗(T ) def= Σ ∪ τ_T , we get the exact same iterates)
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Trace semantics Finite partial trace semantics

Abstracting partial traces to prefix traces

Idea: anchor partial traces at initial states I.

We have a Galois connection:

(P(Σ∗),⊆) −−−→←−−−
αI

γI (P(Σ∗),⊆)

αI(T ) def= T ∩ (I · Σ∗) (keep only traces starting in I)

γI(T ) def= T ∪ ((Σ \ I) · Σ∗) (add all traces not starting in I)

We then have: Tp(I) = αI(T ).

(similarly Ts (F) = αF (T ) where αF (T ) def= T ∩ (Σ∗ · F))

(proof on next slide)
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Trace semantics Finite partial trace semantics

Abstracting partial traces to prefix traces (proof)

proof
αI and γI are monotonic.
(αI ◦ γI)(T ) = (T ∪ (Σ \ I) · Σ∗) ∩ I · Σ∗) = T ∩ I · Σ∗ ⊆ T .
(γI ◦ αI)(T ) = (T ∩ I · Σ∗) ∪ (Σ \ I) · Σ∗ = T ∪ (Σ \ I) · Σ∗ ⊇ T .
So, we have a Galois connection.

A direct proof of Tp(I) = αI(T ) is straightforward,
by definition of Tp , αI , and T .
We can also retrieve the result by fixpoint transfer.
T = lfp Fp∗ where Fp∗(T ) def= Σ ∪ T_τ .
Tp = lfp Fp where Fp(T ) def= I ∪ T_τ .
We have: (αI ◦ Fp∗)(T ) = (Σ ∪ T_τ) ∩ (I · Σ∗) = I ∪ ((T_τ) ∩ (I · Σ∗) =
I ∪ ((T ∩ (I · Σ∗))_τ) = (Fp ◦ αI)(T ).
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Trace semantics Finite partial trace semantics

(Partial) hierarchy of semantics

R(I) C(F) states

Tp(I)

αp

OO

Ts(F)

αp

OO

anchored traces

T

αI

bb

αF

<<

partial finite traces
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Trace semantics Maximal finite and infinite trace semantics

Maximal finite and infinite trace semantics
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Trace semantics Maximal finite and infinite trace semantics

Maximal traces

Maximal traces: M∞ ∈ P(Σ∞)
sequences of states linked by the transition relation τ ,
start in any state (I = Σ),
either finite and stop in a blocking state (F = B),
or infinite.

maximal traces cannot be “extended”
by adding a new transition in τ at their end

M∞
def= {σ0, . . . , σn ∈ Σ∗ |σn ∈ B,∀i < n:σi → σi+1 } ∪
{σ0, . . . , σn, . . . ∈ Σω | ∀i < ω:σi → σi+1 }

(can be anchored at I and F as: M∞ ∩ (I · Σ∞) ∩ ((Σ∗ · F) ∪ Σω))
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Trace semantics Maximal finite and infinite trace semantics

Partitioned fixpoint formulation of maximal traces

Goal: we look for a fixpoint characterization of M∞.

We consider separately finite and infinite maximal traces.

Finite traces: already done!
From the suffix partial trace semantics, recall:
M∞ ∩ Σ∗ = Ts(B) = lfp Fs

recall that Fs(T ) def= B ∪ τ_T in (P(Σ∗),⊆). . .

Infinite traces:
Additionally, we will prove: M∞ ∩ Σω = gfp Gs

where Gs(T ) def= τ_T in (P(Σω),⊆).

(proof in following slides)
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Trace semantics Maximal finite and infinite trace semantics

Infinite trace semantics: graphical illustration

cba

B def= {c}
τ

def= {(a, b), (b, b), (b, c)}

Iterates: M∞ ∩ Σω = gfp Gs where Gs(T ) def= τ_T .

G0
s (Σω) = Σω

G1
s (Σω) = abΣω ∪ bbΣω ∪ bcΣω

G2
s (Σω) = abbΣω ∪ bbbΣω ∪ abcΣω ∪ bbcΣω

G3
s (Σω) = abbbΣω ∪ bbbbΣω ∪ abbcΣω ∪ bbbcΣω

Gn
s (Σω) = { abnt, bn+1t, abn−1ct, bnct | t ∈ Σω }
M∞ ∩ Σω = ∩n≥0 Gn

s (Σω) = {abω, bω}

Course 02 Program Semantics Antoine Miné p. 73 / 124



Trace semantics Maximal finite and infinite trace semantics

Infinite trace semantics: proof

M∞ ∩ Σω = gfp Gs
where Gs(T ) def= τ_T in (P(Σω),⊆)

proof:

Gs is continuous in (P(Σω),⊇): Gs(∩i∈I Ti ) = ∩i∈I Gs(Ti ).
By Kleene’s theorem in the dual: gfp Gs = ∩n∈N Gn

s (Σω).
We prove by recurrence on n that ∀n: Gn

s (Σω) = τ_n_Σω:

G0
s (Σω) = Σω = τ_0_Σω,

Gn+1
s (Σω) = τ_Gn

s (Σω) = τ_(τ_n_Σω) = τ_n+1_Σω.

gfp Gs = ∩n∈N τ
_n_Σω

= {σ0, . . . ∈ Σω | ∀n ≥ 0:σ0, . . . , σn−1 ∈ τ_n }
= {σ0, . . . ∈ Σω | ∀n ≥ 0:∀i < n:σi → σi+1 }
= M∞ ∩ Σω
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Trace semantics Maximal finite and infinite trace semantics

Least fixpoint formulation of maximal traces
Idea: To get a least fixpoint formulation for whole M∞,

merge finite and infinite maximal trace least fixpoint forms.

Fixpoint fusion

M∞ ∩ Σ∗ is best defined on (Σ∗,⊆,∪,∩, ∅,Σ∗).
M∞ ∩ Σω is best defined on (Σω,⊇,∩,∪,Σω, ∅), the dual lattice
(we transform the greatest fixpoint into a least fixpoint!)

We mix them into a new complete lattice (Σ∞,v,t,u,⊥,>):
AvB def⇐⇒ (A ∩ Σ∗)⊆ (B ∩ Σ∗) ∧ (A ∩ Σω)⊇ (B ∩ Σω)
AtB def= ((A ∩ Σ∗)∪ (B ∩ Σ∗)) ∪ ((A ∩ Σω)∩ (B ∩ Σω))
AuB def= ((A ∩ Σ∗)∩ (B ∩ Σ∗)) ∪ ((A ∩ Σω)∪ (B ∩ Σω))
⊥ def= Σω

> def= Σ∗

In this lattice, M∞ = lfp Fs where Fs(T ) def= B ∪ τ_T .
(proof on next slides)
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Trace semantics Maximal finite and infinite trace semantics

Fixpoint fusion theorem

Theorem: fixpoint fusion

If X1 = lfp F1 in (P(D1),v1) and X2 = lfp F2 in (P(D2),v2)
and D1 ∩ D2 = ∅,
then X1 ∪ X2 = lfp F in (P(D1 ∪ D2),v) where:

F (X ) def= F1(X ∩ D1) ∪ F2(X ∩ D2),
A v B def⇐⇒ (A ∩ D1) v1 (B ∩ D1) ∧ (A ∩ D2) v2 (B ∩ D2).

proof:
We have:
F (X1 ∪X2) = F1((X1 ∪X2)∩D1)∪ F2((X1 ∪X2)∩D2) = F1(X1)∪ F2(X2) = X1 ∪X2,
hence X1 ∪ X2 is a fixpoint of F .
Let Y be a fixpoint. Then Y = F (Y ) = F1(Y ∩ D1) ∪ F2(Y ∩ D2), hence,
Y ∩D1 = F1(Y ∩D1) and Y ∩D1 is a fixpoint of F1. Thus, X1 v1 Y ∩D1. Likewise,
X2 v2 Y ∩D2. We deduce that X = X1 ∪ X2 v (Y ∩D1) ∪ (Y ∩D2) = Y , and so, X
is F ’s least fixpoint.

note: we also have gfp F = gfp F1 ∪ gfp F2.
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Trace semantics Maximal finite and infinite trace semantics

Least fixpoint formulation of maximal traces (proof)

We are now ready to finish the proof that M∞ = lfp Fs
where Fs(T ) def= B ∪ τ_T

proof:

We have:

M∞ ∩ Σ∗ = lfp Fs in (P(Σ∗),⊆),

M∞ ∩ Σω = lfp Gs in (P(Σω),⊇) where Gs(T ) def= τ_T ,

in P(Σ∞), we have
Fs(A) = (Fs(A) ∩ Σ∗) ∪ (Fs(A) ∩ Σω) = Fs(A ∩ Σ∗) ∪ Gs(A ∩ Σω).

So, by fixpoint fusion in (P(Σ∞),v), we have:
M∞ = (M∞ ∩ Σ∗) ∪ (M∞ ∩ Σω) = lfp Fs .

Note: a greatest fixpoint formulation in (Σ∞,⊆) also exists!
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Trace semantics Maximal finite and infinite trace semantics

Greatest fixpoint formulation of finite maximal traces

Actually, a fixpoint formulation in (Σ∞,⊆) also exists.

Alternate fixpoint for finite maximal traces:

We saw that M∞ ∩ Σ∗ = lfp Fs
where Fs(T ) def= B ∪ τ_T in (P(Σ∗),⊆).

Additionally, we have M∞ ∩ Σ∗ = gfp Fs in (P(Σ∗),⊆).

(Fs has a unique fixpoint in (P(Σ∗),⊆).)

(proof on next slide)
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Trace semantics Maximal finite and infinite trace semantics

Greatest fixpoint formulation of finite maximal traces

proof: of M∞ ∩ Σ∗ = gfp Fs where Fs (T ) def= B ∪ τ_T .
Fs is continuous in the dual (P(Σ∗),⊇): Fs (∩i∈I Ai ) = ∩i∈I Fs (Ai ).
By Kleene’s theorem in the dual (P(Σ∗),⊇), we get: gfp Fs = ∩n∈N F n

s (Σ∗).

We prove by recurrence on n that ∀n: F n
s (Σ∗) = (∪i<n τ_ i_B) ∪ (τ_n_Σ∗): i.e.,

F n
s (Σ∗) are the maximal finite traces of length at most n− 1, and the partial traces of

length exactly n followed by any sequence of states:
F 0

s (Σ∗) = Σ∗ = τ_0_Σ∗

Fs (F n
s (Σ∗)) = B ∪ (τ_F n

s (Σ∗))
= B ∪ τ_((∪i<n τ_ i_B) ∪ (τ_n_Σ∗))
= B ∪ (∪i<n τ_τ_ i_B) ∪ (τ_τ_n_Σ∗)
= B ∪ (∪1<i<n+1 τ_ i_B) ∪ (τ_n+1_Σ∗)
= (∪i<n+1 τ_ i_B) ∪ (τ_n+1_Σ∗)

We get:
∩n∈N F n

s (Σ∗) = ∩n∈N (∪i<n τ_ i_B) ∪ (τ_n_Σ∗) = ∪n∈N τ
_n_B =M∞ ∩ Σ∗.
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Trace semantics Maximal finite and infinite trace semantics

Greatest fixpoint of finite traces: graphical illustration

cba

B def= {c}
τ

def= {(a, b), (b, b), (b, c)}

Iterates: M∞ ∩ Σ∗ = gfp Fs where Fs(T ) def= B ∪ τ_T .

F 0
s (Σ∗) = Σ∗

F 1
s (Σ∗) = {c} ∪ abΣ∗ ∪ bbΣ∗ ∪ bcΣ∗

F 2
s (Σ∗) = {bc, c} ∪ abbΣ∗ ∪ bbbΣ∗ ∪ abcΣ∗ ∪ bbcΣ∗

F 3
s (Σ∗) = {abc, bbc, bc, c}∪ abbbΣ∗ ∪ bbbbΣ∗ ∪ abbcΣ∗ ∪ bbbcΣ∗

F n
s (Σ∗) = { abic, b jc | i ∈ [1, n − 2], j ∈ [0, n − 1] } ∪

{ abnt, bn+1t, abn−1ct, bnct | t ∈ Σ∗ }

M∞ ∩ Σ∗ = ∩n≥0 F n
s (Σ∗) = { abic, b jc | i ≥ 1, j ≥ 0 }
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Trace semantics Maximal finite and infinite trace semantics

Greatest fixpoint formulation of maximal traces

From:
M∞ ∩ Σ∗ = gfp Fs in (P(Σ∗),⊆) where Fs(T ) def= B ∪ τ_T
M∞ ∩ Σω = gfp Gs in (P(Σω),⊆) where Gs(T ) def= τ_T

we deduce: M∞ = gfp Fs in (P(Σ∞),⊆).

proof: similar to M∞ = lfp Fs in (P(Σ∞),v), by fixpoint fusion.
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Abstracting maximal traces into partial traces
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Trace semantics Abstracting maximal traces into partial traces

Finite and infinite partial trace semantics

Idea: complete the partial traces T with infinite traces.

T∞: all finite and infinite sequences of states
linked by the transition relation τ :

T∞
def= {σ0, . . . , σn ∈ Σ∗ | ∀i < n:σi → σi+1 } ∪
{σ0, . . . , σn, . . . ∈ Σω | ∀i < ω:σi → σi+1 }

(partial finite traces do not necessarily end in a blocking state)

Fixpoint form similar to M∞:
T∞ = lfp Fs∗ in (P(Σ∞),v) where Fs∗(T ) def= Σ ∪ τ_T ,

proof: similar to the proof of M∞ = lfp Fs .
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Trace semantics Abstracting maximal traces into partial traces

Finite trace abstraction

Finite partial traces T are an abstraction of all partial traces T∞.

We have a Galois embedding:

(P(Σ∞),v) −−−→−→←−−−−
α∗

γ∗ (P(Σ∗),⊆)

v is the fused ordering on Σ∗ ∪ Σω:
A v B def⇐⇒ (A ∩ Σ∗) ⊆ (B ∩ Σ∗) ∧ (A ∩ Σω) ⊇ (B ∩ Σω)

α∗(T ) def= T ∩ Σ∗
(remove infinite traces)

γ∗(T ) def= T
(embedding)

T = α∗(T∞)

(proof on next slide)
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Trace semantics Abstracting maximal traces into partial traces

Finite trace abstraction (proof)

proof:

We have Galois embedding because:
α∗ and γ∗ are monotonic,
given T ⊆ Σ∗, we have (α∗ ◦ γ∗)(T ) = T ∩ Σ∗ = T ,
(γ∗ ◦ α∗)(T ) = T ∩ Σ∗ w T , as we only remove infinite traces.

Recall that T∞ = lfp Fs∗ in (P(Σ∞),v) and T = lfp Fs∗ in (P(Σ∗),⊆), where
Fs∗(T ) def= Σ ∪ T_τ .
As α∗ ◦ Fs∗ = Fs∗ ◦ α∗ and α∗(∅) = ∅, we can apply the fixpoint transfer theorem to
get α∗(T∞) = T .
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Trace semantics Abstracting maximal traces into partial traces

Prefix abstraction
Idea: complete maximal traces by adding (non-empty) prefixes.

We have a Galois connection:

(P(Σ∞ \ {ε}),⊆) −−−−→←−−−−
α�

γ�
(P(Σ∞ \ {ε}),⊆)

α�(T ) def= { t ∈ Σ∞ \ {ε} | ∃u ∈ T : t � u }
(set of all non-empty prefixes of traces in T )

γ�(T ) def= { t ∈ Σ∞ \ {ε} | ∀u ∈ Σ∞ \ {ε}: u � t =⇒ u ∈ T }
(traces with non-empty prefixes in T )

proof:
α� and γ� are monotonic.
(α� ◦ γ�)(T ) = { t ∈ T | ρp(t) ⊆ T } ⊆ T (prefix-closed trace sets).

(γ� ◦ α�)(T ) = ρp(T ) ⊇ T .
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Abstraction from maximal traces to partial traces

Finite and infinite partial traces T∞ are an abstraction
of maximal traces M∞: T∞ = α�(M∞).

proof:
Firstly, T∞ and α�(M∞) coincide on infinite traces. Indeed, T∞ ∩ Σω =M∞ ∩ Σω
and α� does not add infinite traces, so: T∞ ∩ Σω = α�(M∞) ∩ Σω .
We now prove that they also coincide on finite traces. Assume
σ0, . . . , σn ∈ α�(M∞), then ∀i < n:σi → σi+1, so, σ0, . . . , σn ∈ T∞.
Assume σ0, . . . , σn ∈ T∞, then it can be completed into a maximal trace, either finite
or infinite, and so, σ0, . . . , σn ∈ α�(M∞).

Note: no fixpoint transfer applies here.
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Trace semantics Abstracting maximal traces into partial traces

(Partial) hierarchy of semantics

R(I) C(F) states

Tp(I)

αp

OO

Ts(F)

αp

OO

anchored traces

T

αI

cc

αF

::

partial finite traces

T∞

α∗

OO

partial traces

M∞

α�

OO

maximal traces
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Trace properties
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Trace semantics Trace properties

Reminder: state properties

State property: P ∈ P(Σ).

Verification problem: R(I) ⊆ P.

(all the states reachable from I are in P)

Examples:

absence of blocking: P def= Σ \ B,
the variables remain in a safe range,
dangerous program locations cannot be reached.
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Trace semantics Trace properties

Trace properties

Trace property: P ∈ P(Σ∞)

Verification problem: M∞ ∩ (I · Σ∞) ⊆ P
(or, equivalently, as M∞ ⊆ P′ where P′ def= P ∪ ((Σ \ I) · Σ∞))

Examples:

termination: P def= Σ∗,
non-termination: P def= Σω,
any state property S ⊆ Σ: P def= S∞,
maximal execution time: P def= Σ≤k ,
minimal execution time: P def= Σ≥k ,
ordering, e.g.: P def= (Σ \ {b})∗ · a · Σ∗ · b · Σ∞.
(a and b occur, and a occurs before b)
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Trace semantics Trace properties

Safety properties for traces

Idea: a safety property P models that “nothing bad ever occurs”

P is provable by exhaustive testing;
(observe the prefix trace semantics: Tp(I) ⊆ P)

P is disprovable by finding a single finite execution not in P.

Examples:

any state property: P def= S∞ for S ⊆ Σ,

ordering: P def= Σ∞ \ ((Σ \ {a})∗ · b · Σ∞),
(no b can appear without an a before,
but we can have only a, or neither a nor b)
(not a state property)

but termination P def= Σ∗ is not a safety property.
(disproving requires exhibiting an infinite execution)
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Trace semantics Trace properties

Definition of safety properties

Reminder: finite prefix abstraction (simplified to allow ε)

(P(Σ∞),⊆) −−−−→←−−−−
α∗�

γ∗�
(P(Σ∗),⊆)

α∗�(T ) def= { t ∈ Σ∗ | ∃u ∈ T : t � u }
γ∗�(T ) def= { t ∈ Σ∞ | ∀u ∈ Σ∗: u � t =⇒ u ∈ T }

The associated upper closure ρ∗�
def= γ� ◦ α� is:

ρ∗� = lim ◦ρp where:
ρp(T ) def= { u ∈ Σ∞ | ∃t ∈ T : u � t },
lim(T ) def= T ∪ { t ∈ Σω | ∀u ∈ Σ∗: u � t =⇒ u ∈ T }.

Definition: P ∈ P(Σ∞) is a safety property if P = ρ∗�(P).
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Trace semantics Trace properties

Definition of safety properties (examples)

Definition: P ⊆ P(Σ∞) is a safety property if P = ρ∗�(P).

Examples and counter-examples:

state property P def= S∞ for S ⊆ Σ:
ρp(S∞) = lim(S∞) = S∞ =⇒ safety;

termination P def= Σ∗:
ρp(Σ∗) = Σ∗, but lim(Σ∗) = Σ∞ 6= Σ∗ =⇒ not safety;

even number of steps P def= (Σ2)∞:
ρp((Σ2)∞) = Σ∞ 6= (Σ2)∞ =⇒ not safety.
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Trace semantics Trace properties

Proving safety properties

Invariance proof method: find an inductive invariant I

set of finite traces I ⊆ Σ∗

I ⊆ I
(contains traces reduced to an initial state)

∀σ0, . . . , σn ∈ I:σn → σn+1 =⇒ σ0, . . . , σn, σn+1 ∈ I
(invariant by program transition)

and implies the desired property: I ⊆ P.

Link with the finite prefix trace semantics Tp(I):

An inductive invariant is a post-fixpoint of Fp: Fp(I) ⊆ I
where Fp(T ) def= I ∪ T_τ .
Tp(I) = lfp Fp is the tightest inductive invariant.
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Trace semantics Trace properties

Correctness of the invariant method for safety

Soundness:
if P is a safety property and an inductive invariant I exists
then: M∞ ∩ (I · Σ∞) ⊆ P

proof:
Using the Galois connection between M∞ and T , we get:
M∞ ∩ (I · Σ∞) ⊆ ρ∗�(M∞ ∩ (I · Σ∞)) = γ∗�(α∗�(M∞ ∩ (I · Σ∞))) =
γ∗�(α∗�(M∞) ∩ (I · Σ∗)) = γ∗�(T ∩ (I · Σ∗)) = γ∗�(Tp(I)).
Using the link between invariants and the finite prefix trace semantics, we have:
Tp(I) ⊆ I ⊆ P.
As P is a safety property, P = γ∗�(P), so, γ∗�(Tp(I)) ⊆ γ∗�(P) = P, and so,
M∞ ∩ (I · Σ∞) ⊆ P.

Completeness: an inductive invariant always exists

proof: Tp(I) provides an inductive invariant.
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Trace semantics Trace properties

Disproving safety properties

Proof method:
A safety property P can be disproved by constructing a finite prefix
of execution that does not satisfy the property:
M∞ ∩ (I · Σ∞) 6⊆ P =⇒ ∃t ∈ Tp(I): t /∈ P

proof:
By contradiction, assume that no such trace exists, i.e., Tp(I) ⊆ P.
We proved in the previous slide that this implies M∞ ∩ (I · Σ∞) ⊆ P.

Examples:

disproving a state property P def= S∞:
⇒ find a partial execution containing a state in Σ \ S;

disproving an order property P def= Σ∞ \ ((Σ \ {a})∗ · b · Σ∞)
⇒ find a partial execution where b appears and not a.
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Trace semantics Trace properties

Liveness properties

Idea: liveness property P ∈ P(Σ∞)
Liveness properties model that“something good eventually occurs”

P cannot be proved by testing
(if nothing good happens in a prefix execution,
it can still happen in the rest of the execution)

disproving P requires exhibiting an infinite execution not in P

Examples:

termination: P def= Σ∗,

inevitability: P def= Σ∗ · a · Σ∞,
(a eventually occurs in all executions)

state properties are not liveness properties.
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Trace semantics Trace properties

Definition of liveness properties

Definition: P ∈ P(Σ∞) is a liveness property if ρ∗�(P) = Σ∞.

Examples and counter-examples:

termination P def= Σ∗:
ρp(Σ∗) = Σ∗ and lim(Σ∗) = Σ∞ =⇒ liveness;

inevitability: P def= Σ∗ · a · Σ∞

ρp(P) = P ∪ Σ∗ and lim(P ∪ Σ∗) = Σ∞ =⇒ liveness;

state property P def= S∞ for S ⊆ Σ:
ρp(S∞) = lim(S∞) = S∞ 6= Σ∞ if S 6= Σ =⇒ not liveness;

maximal execution time P def= Σ≤k :
ρp(Σ≤k ) = lim(Σ≤k ) = Σ≤k 6= Σ∞ =⇒ not liveness;

the only property which is both safety and liveness is Σ∞.
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Proving liveness properties

Variance proof method: (informal definition)

Find a decreasing quantity until something good happens.

Example: termination proof

find f : Σ→ S where (S,v) is well-ordered;
(f is called a “ranking function”)

σ ∈ B =⇒ f = min S;
σ → σ′ =⇒ f (σ′) @ f (σ).

(f counts the number of steps remaining before termination)
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Trace semantics Trace properties

Disproving liveness properties

Property:
If P is a liveness property, then ∀t ∈ Σ∗:∃u ∈ P: t � u.

proof:
By definition of liveness, ρ∗�(P) = Σ∞, so t ∈ ρ∗�(P) = lim(αp(P)).
As t ∈ Σ∗ and lim only adds infinite traces, t ∈ αp(P).
By definition of αp , ∃u ∈ P: t � u.

Consequence:

liveness cannot be disproved by testing.
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Trace semantics Trace properties

Trace topology
A topology on a set can be defined as:
– either a family of open sets (closed under union)
– or family of closed sets (closed under intersection)

Trace topology: on sets of traces in Σ∞

the closed sets are: C def= {P ∈ P(Σ∞) |P is a safety property }

the open sets can be derived as O def= {Σ∞ \ c | c ∈ C }

Topological closure: ρ : P(X )→ P(X )

ρ(x) def= ∩ { c ∈ C | x ⊆ c } (upper closure operator in (P(X),⊆))

on our trace topology, ρ = ρ∗�.

Dense sets:
x ⊆ X is dense if ρ(x) = X ;
on our trace topology, dense sets are liveness properties.
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Trace semantics Trace properties

Decomposition theorem

Theorem: decomposition on a topological space
Any set x ⊆ X is the intersection of a closed set and a dense set.
proof:
We have x = ρ(x) ∩ (x ∪ (X \ ρ(x))). Indeed:
ρ(x)∩ (x ∪ (X \ ρ(x))) = (ρ(x)∩ x)∪ (ρ(x)∩ (X \ ρ(x))) = ρ(x)∩ x = x as x ⊆ ρ(x).

ρ(x) is closed
x ∪ (X \ ρ(x)) is dense because: ρ(x ∪ (X \ ρ(x))) ⊇ ρ(x) ∪ ρ(X \ ρ(x))

⊇ ρ(x) ∪ (X \ ρ(x))
= X

Consequence: on trace properties
Every trace property is the conjunction of
a safety property and a liveness property.
proving a trace property can be decomposed into
a soundness proof and a liveness proof
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Relational semantics
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Relational semantics Big-step semantics

Big-step semantics
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Relational semantics Big-step semantics

Finite big-step semantics

Pairs of states linked by a sequence of transitions in τ .

BS def= { (σ0, σn) ∈ Σ× Σ | n ≥ 0, ∃σ1, . . . , σn−1:∀i < n:σi → σi+1 }

(symmetric and transitive closure of τ)

Fixpoint form:

BS = lfp FB
where FB(R) def= id ∪ { (σ, σ′′) | ∃σ′: (σ, σ′) ∈ R, σ′ → σ′′ }.
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Relational semantics Big-step semantics

Relational abstraction

Relational abstraction: allows skipping intermediate steps.

We have a Galois embedding:

(P(Σ∗),⊆) −−−−→−→←−−−−−
αio

γio (P(Σ× Σ),⊆)

αio(T ) def= { (σ, σ′) | ∃σ0, . . . , σn ∈ T :σ = σ0, σ
′ = σn }

(first and last state of a trace in T )

γio(R) def= {σ0, . . . , σn ∈ Σ∗ | ∃(σ, σ′) ∈ R:σ = σ0, σ
′ = σn }

(traces respecting the first and last states from R)

proof sketch:
γio and αio are monotonic.
(γio ◦ αio)(T ) = {σ0, . . . , σn | ∃σ′0, . . . , σ

′
m ∈ T :σ0 = σ′0, σn = σ′m }.

(αio ◦ γio)(R) = R.
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Relational semantics Big-step semantics

Finite big-step semantics as an abstraction

The finite big-step semantics is an abstraction
of the finite trace semantics: BS = αio(T ).

proof sketch: by fixpoint transfer.

We have T = lfp Fp∗ where Fp∗(T ) def= Σ ∪ T_τ .
Moreover, FB(R) def= id ∪ { (σ, σ′′) | ∃σ′: (σ, σ′) ∈ R, σ′ → σ′′ }.
Then, αio ◦ Fp∗ = FB ◦ αio because αio(Σ) = id and
αio(T_τ) = { (σ, σ′′) | ∃σ′: (σ, σ′) ∈ αio(T ) ∧ σ′ → σ′′ }.
By fixpoint transfer: αio(T ) = lfp FB .

We have a similar result using Fs∗(T ) def= Σ ∪ τ_T and
F ′B(R) def= id ∪ { (σ, σ′′) | ∃σ′: (σ′, σ′′) ∈ R ∧ σ → σ′ }.
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Relational semantics Big-step semantics

Finite big-step semantics (example)

program

i ← [0,+∞];
while i > 0 do

i ← i − [0, 1];
done

Finite big-step semantics BS: { (ρ, ρ′) | 0 ≤ ρ′(i) ≤ ρ(i) }.
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Relational denotational semantics
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Relational semantics Relational denotational semantics

Denotational semantics (in relation form)
In the denotational semantics, we forget all the intermediate steps
and only keep the input / output relation:

(σ, σ′) ∈ Σ× B: finite execution starting in σ, stopping in σ′,
(σ,	): non-terminating execution starting in σ.

( 6= big-step semantics: we no longer include (σ, σ′) if σ′ is not blocking!)

Construction by abstraction: of the maximal trace semantics M∞.

(P(Σ∞),⊆) −−−→−→←−−−−
αd

γd (P(Σ× (Σ ∪ {	})),⊆)

αd (T ) def= αio(T ∩ Σ∗) ∪ { (σ,	) | ∃t ∈ Σω:σ · t ∈ T }

γd (R) def= γio(R ∩ (Σ× Σ)) ∪ {σ · t | (σ,	) ∈ R, t ∈ Σω }
(extension of (αio , γio) to infinite traces)

The denotational semantics is DS def= αd (M∞).
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Relational semantics Relational denotational semantics

Denotational fixpoint semantics

Idea: as M∞, separate terminating and non-terminating behaviors,
and use a fixpoint fusion theorem.

We have: DS = lfp Fd
in (P(Σ× (Σ ∪ {	})),v∗,t∗,u∗,⊥∗,>∗), where

⊥∗ def= { (σ,	) |σ ∈ Σ }
>∗ def= { (σ, σ′) |σ, σ′ ∈ Σ }
A v∗ B ⇐⇒ ((A∩>∗) ⊆ (B ∩>∗))∧ ((A∩⊥∗) ⊇ (B ∩⊥∗))
A t∗ B def= ((A ∩ >∗) ∪ (B ∩ >∗)) ∪ ((A ∩ ⊥∗) ∩ (B ∩ ⊥∗))
A u∗ B def= ((A ∩ >∗) ∩ (B ∩ >∗)) ∪ ((A ∩ ⊥∗) ∪ (B ∩ ⊥∗))
Fd (R) def= { (σ, σ) |σ ∈ B } ∪

{ (σ, σ′′) | ∃σ′:σ → σ′ ∧ (σ′, σ′′) ∈ R }
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Denotational fixpoint semantics (proof)

proof:
We cannot use directly a fixpoint transfer on M∞ = lfp Fs in (P(Σ∞),v) because
our Galois connection (αd , γd ) uses the ⊆ order, not v!
Instead, we use fixpoint transfer separately on finite and infinite executions, and then
apply fixpoint fusion.

Recall that M∞ ∩ Σ∗ = lfp Fs in (P(Σ∗),⊆) where Fs (T ) def= B ∪ τ_T
and M∞ ∩ Σω = gfp Gs in (P(Σω),⊆) where Gs (T ) def= ∪ τ_T .
For finite execution, we have αd ◦ Fs = Fd ◦ αd in P(Σ∗)→ P(Σ× Σ).
We can apply directly fixpoint transfer and get that: DS ∩ (Σ× Σ) = lfp Fd .

(proof continued on next slide)
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Denotational fixpoint semantics (proof cont.)

proof (continued): proof sketch for infinite executions

We have αd ◦ Gs = Gd ◦ αd in P(Σω)→ P(Σ× {	}), where
Gd (R) def= { (σ, σ′′) | ∃σ′:σ → σ′ ∧ (σ′, σ′′) ∈ R }.
A candidate proof would be to apply a fixpoint transfer theorem to
M∞ ∩ Σω = gfp Gs , in the dual, replacing lfp with gfp, and ∪ with ∩.
However, the proof of the theorem, which required α to be continous, would require α
to be co-continuous in the dual, i.e., αd (∩i∈I Si ) = ∩∈I αd (Si ).
This does not hold. Consider for example: I = N and Si = { anbω | n > i }:
∩i∈N Si = ∅, but ∀i :αd (Si ) = {(a,	)}.
We use instead a fixpoint transfer based on Tarksi’s theorem.
We have gfp Gs = ∪ {X |X ⊆ Gs (X) }.
Thus, αd (gfp Gs ) = αd (∪ {X |X ⊆ Gs (X) }) = ∪ {αd (X) |X ⊆ Gs (X) } as αd is a
complete ∪ morphism. The proof is finished by noting that the commutation
αd ◦ Gs = Gd ◦ αd and the Galois embedding (αd , γd ) imply that
{αd (X) |X ⊆ Gs (X) } = {αd (X) |αd (X) ⊆ Gd (αd (X)) } = {Y |Y ⊆ Gd (Y ) }.

(the complete proof can be found in [Cous02])
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Denotational semantics (example)

program

i ← [0,+∞];
while i > 0 do

i ← i − [0, 1];
done

Denotational semantics DS:
{ (ρ, ρ′) | ρ(i) ≥ 0 ∧ ρ′(i) = 0 } ∪ { (ρ,	) | ρ(i) ≥ 0 }.

(quite different from the big-step semantics)
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Denotational semantics (functional form)

Note: denotational semantics are often presented as functions,
not relations

This is possible using the following Galois isomorphism:

(P(Σ× (Σ ∪ {	})),v∗) −−−−→−→←←−−−−−
αdf

γdf (Σ→ P(Σ ∪ {	}), v̇∗)

αdf (R) def= λσ.{σ′ | (σ, σ′) ∈ R }
γdf (f ) def= { (σ, σ′) |σ′ ∈ f (σ) }
f v̇∗ f def⇐⇒ ∀σ: (f (σ) ∩ Σ ⊆ g(σ) ∩ Σ) ∧

(	∈ g(σ) =⇒ 	∈ f (σ))

We get that: αdf (DS) = lfp F ′d where
F ′d (f ) def= (αdf ◦ Fd ◦ γdf )(f ) = (λσ.{σ |σ ∈ B }) ∪̇ (f ◦ postτ ).
(proof by fixpoint transfer, as F ′d ◦ αdf = Fd ◦ αdf )
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Another part of the hierarchy of semantics

BS (big-step semantics)

(partial finite traces) T

αio

;;

τ (transition systems)

(partial traces) T∞

α∗

OO

αt

<<

DS (denotational semantics)

(maximal traces) M∞

α�

OO

αd

<<

See [Cou82] for more semantics in this diagram.
Note: we show transition systems as an abstraction of the partial trace semantics
this is left as exercise (see assignment).
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Beyond trace properties
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Beyond trace properties

Properties

We generalize the notion of properties and program verification.

General setting:

programs: prog ∈ Prog

semantics: J · K : Prog → D in some semantic domain D

property: the set of allowed program semantics P ∈ P(D)
⊆ gives an information order on properties
P ⊆ P′ means that P′ is weaker than P (allows more semantics)

verification problem: J prog K ∈ P
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Beyond trace properties

Collecting semantics

Collecting semantics: Col : Prog → P(D)

Col(prog) def= {J prog K }

Col(prog) is the strongest property of a program in P(D)
(relative to the choice of the semantic domain D and function J · K )

we can interpret program verification as property inclusion:
Col(prog) ⊆ P
P is weaker than Col(prog) in the information order of properties

generally, the collecting semantics cannot be computed;
we settle for a weaker property S] that

is sound: Col(prog) ⊆ S]
implies the desired property: S] ⊆ P
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Beyond trace properties

Retrieving state and trace properties

Reachability state semantics:

D def= P(Σ)
J · K def= R(I)

Trace semantics:

D def= P(Σ∞)
J · K def= M∞ ∩ (I · Σ∞)

State and trace properties: interpreted in P(D)

ρ↓(x) for some x ∈ D
where ρ↓(x) def= { y ∈ D | y ⊆ x } ∈ P(D)

(proof: A ⊆ B ⇐⇒ A ∈ ρ↓(B))
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Beyond trace properties

Non-trace properties

Note: expressing properties in P(D)
is more general than expressing properties in D

Example: non-interference for variable X

P def= {T ∈ P(Σ∗) | ∀σ0, . . . , σn ∈ T :∀σ′0:σ0 ≡ σ′0 =⇒
∃σ′0, . . . , σ′m ∈ T :σ′m ≡ σm }

where (`, ρ) ≡ (`′, ρ′) ⇐⇒ ` = `′ ∧ ∀V 6= X : ρ(V ) = ρ′(V )

(changing the initial value of X does not affect the set of final environments up to the
value of X)

There is no Q ⊆ Σ∞ such that P = ρ↓(Q).
=⇒ non-interference is not a trace property in P(Σ∞).
Reading assignment: hyperproperties.
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