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Introduction to program transformations

Program transformations and static analysis

Previous lectures: focus on static analysis techniques, i.e.

1 take one program as argument
2 compute some semantic properties of the program

e.g., compute an over-approximation of the reachable states
e.g., verify the absence of runtime errors

Today: we consider program transformations
functions that compute a program from another program
thus, we will consider not a single program but two
different set of issues

I abstract interpretation to reason about and verify the transformation
I static analysis to enable the transformation
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Introduction to program transformations

Compilation

Transforms programs in high level
languages (OCaml, C, Java) into
assembly
Verifies (e.g., types) and Optimizes

Source code:
int f( int a, int b ){

int x0 = a - b;
if( x0 > 0 )

return x0 * (a + b);
else return 0;

}

Compiled code:

.file "foo.c"

.text

.globl f

.type f, @function
f:
.LFB0:
.cfi_startproc
pushl %ebp
.cfi_def_cfa_offset 8
.cfi_offset 5, -8
movl %esp, %ebp
.cfi_def_cfa_register 5
subl $16, %esp

movl 12(%ebp), %eax
movl 8(%ebp), %edx
movl %edx, %ecx
subl %eax, %ecx
movl %ecx, %eax
movl %eax, -4(%ebp)
cmpl $0, -4(%ebp)
jle .L2
movl 12(%ebp), %eax
movl 8(%ebp), %edx
addl %edx, %eax
imull -4(%ebp), %eax
jmp .L3

.L2:
movl $0, %eax
.L3:
leave
.cfi_restore 5
.cfi_def_cfa 4, 4
ret
.cfi_endproc
.LFE0:
.size f, .-f
.ident
"GCC: (Gentoo 4.7.3-r1 p1.4, pie-0.5.5) 4.7.3"
.section
.note.GNU-stack,"",@progbits
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Introduction to program transformations

Compilation phases

Source code

parsing

typing

optim: loops

optim: common sub-ex

optim: schduling

code generation

Machine code

Parsing: can be considered a
static analysis

Typing: static analysis

Optimizations: enabled by static
analysis
e.g., code removed if proved dead
e.g., expressions shared if common

Code generation:
by induction on syntax...
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Introduction to program transformations

Slicing

Slice extraction
a slice S is a syntactic subset of a program P
it is usually extracted following a criterion
that describes an observation of the program that is under study
there are many definitions of slicing criteria: a specific statement, a
specific variable, the conjunction of both...

Applications:

program understanding:
you are given a program, and need to understand how it works...
program debugging:
a bug was identified, where x stores an unexpected value at line N...
program maintenance:
a legacy code needs to be extended; what will intended changes do ?
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Introduction to program transformations

Slicing

Example: slice to understand the value of a at line 5

1 : input(x);
2 : input(y);
3 : a = 4 ∗ x + 8;
4 : b = 3− 2 ∗ y + a;
5 : c = a + b;

→

1 : input(x);
2 : input(y);
3 : a = 4 ∗ x + 8;
4 : b = 3− 2 ∗ y + a;
5 : c = a + b;

Algorithm:

1 compute dependences: usually, a dependence graph
describes what x immediately depends on, at line N

2 extract a set of slice dependences from the slicing criterion
3 collect the corresponding statements and produce the slice

Effectively, 1 and 2 are a static analysis
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Introduction to program transformations

Partial evaluation

Specialization and optimization of programs
start from a very general program
+ possibly some assumptions on the input values
compute a program that behaves similarly on those programs that
satisfy the inputs
partial evaluation of all program statements that can be,
but may also involve unrolling of loop, duplication of functions...

Applications:

practical:
design a software for several products,
and specialize it for each product
theoretical: Futamura’s projections
compilation = specialization of an interpreter to a program
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Introduction to program transformations

Partial evaluation

while(c){
if(b){
x = 1;
}else{
x = f(x);
}
b = false;
}

hyp: b = true
−→

if(c){
x = 1;
while(c){
x = f(x);
}
}

1 unfolding of the loop for a number of iterations
2 propagation of the value of b through the loop
3 simplification of conditions and removal of b
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Introduction to program transformations

Questions about program transformations

Soundness:

in what sense can we say a transformation is sound ?

what properties should it preserves ?
what properties should it modify ?

how to semantically specify a transformation ?

Use of semantic information:

transformations often need semantic properties of programs, to
decide what code to generate...
e.g., for compiler optimizations, dependence information...

in some cases the transformation itself may be potentially non
terminating, and require a widening for convergence
e.g., partial evaluation
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Introduction to program transformations

Example: semantics of C volatile variables

From the ANSI C’99 / C’11 standards
For every read from or write to a volatile variable
that would be performed by a straightforward interpreter for C,
exactly one load or store from/to the memory location allocated to the
variable should be performed.

In other words:
volatile variables should be assumed to be modifiable by the external
world at any time (this is a worst case assumption)

multiple accesses to a single volatile variable should never be
optimized into a single read
(this is a very strong constraint on the optimizers)

Do compilers follow this semantics ? NO...
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Introduction to program transformations

Example: C compiler and volatile variables

Study by E. Eide and J. Regher, “Volatiles are Mis-compiled, and
What to Do about it” (EMSOFT’2008)

13 compilers tested
none of them is exempt of volatile bugs
possible consequences:

I incorrect computations
I more serious crashes, such as system hangs

one example on the next slide, more in the paper...

Since then, the CompCert compiler was tested free of volatile bugs using
the same technique...
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Introduction to program transformations

Example: C compiler and volatile variables

Compiler: LLVM GCC 2.2 (IA 32)

Buggy optimization:

volatile int a;
void foo(void){

int i;
for(i = 0; i < 3; i + +){

a+ = 7;
}

}

foo :
movl a, %eax
leal 7(%eax), %ecx
movl %ecx, a
leal 14(%eax), %ecx
movl %ecx, a
addl $21, %eax
movl %eax, a
ret

Only ONE load to a
loop unrolled three times
three stores (correct), but only one load (incorrect)
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Introduction to program transformations

Main points of the lecture

Formalize soundness of program transformations:

compare the semantics of two programs
select the semantics to be compared by abstraction

Consider some verification techniques:

invariant verification approach
local equivalence proof...

These are partly inspired from static analysis techniques
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Compilation correctness

Outline

1 Introduction to program transformations

2 Compilation correctness

3 Correctness of optimizing compilation

4 Application to the verification of compiled code

5 Application to certified compilation

6 Conclusion
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Compilation correctness

Formalizing correctness: assumptions

Source language: C like imperative language
very simplified: no procedure, library functions, etc

Assembly language: RISC style (similar to Power-PC)
registers: differentiated dep. on types (floating-point, integers)
memory access: direct, indirect, stack-based
condition register:
Tests and branchings are separate operations
Conditional branching: tests the value of the condition register

Compiler:
the lecture is not about showing a compiler...
we first assume no optimization and consider optimizations later
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Compilation correctness

Transition systems

We assume a (source or compiled) program is a transition system
S = (S,→,SI):

S = L×M is the set of states, where M = X→ V
→⊆ S× S is the transition relation
SI ⊆ S is the set of initial states

We consider their finite traces semantics:
JSK = {〈s0, . . . , sn〉 ∈ S? | s0 ∈ SI ∧ ∀i , si → si+1}
it can be defined as a least fix-point: JSK = lfpF

F : P(S?) −→ P(S?)
X 7−→ {〈s0〉 | s ∈ SI}

∪ {〈s0, . . . , sn, sn+1〉
| 〈s0, . . . , sn〉 ∈ X ∧ sn → sn+1}

(exercise)
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Compilation correctness

A very minimal imperative language

l ::= l-valules
| x (x ∈ X)

e ::= expressions
| c (c ∈ V)
| l (l-value)
| e⊕ e (arith operation, comparison)

s ::= statements
| l = e (assignment)
| s; . . . s; (sequence)
| if(e){s} (condition)
| while(e){s} (loop)

Other extensions, not considered at this stage:
functions
collection of arithmetic data types, structures, unions, pointers
compilation units...
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Compilation correctness

A basic, PPC-like assembly language: principles

We now consider a (very simplified) assembly language
machine integers: sequences of 32-bits (set: B32)
instructions are encoded over 32-bits (set: IMIPS)
and stored into the same space as data (i.e., IMIPS ⊆ B32)
loads and store instructions, with relative addressing instructions
conditional branching is indirect:
comparison instruction sets condition register cr (comparison flag)
conditional branching instruction reads cr and branches accordingly

Memory locations
program counter pc (current instruction address)
general purpose registers r0, . . . , r31

main memory (RAM) Addrs→ B32 where Addrs ⊆ B32

condition register cr

Then: Xc = {pc, cr, r0, . . . , r31} ] Addrs
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Compilation correctness

A basic, PPC-like assembly language: instruction set

Instruction encoded into 32-bits words:

Instruction set
v , dst, o ∈ B32, cr ∈ {LT,EQ,GT}
i ::= (∈ IMIPS)
| li rd , v load v ∈ B32

| add rd , rs0, rs1 addition
| addi rd , rs0, v add. v ∈ V′ ⊂ B32

| sub rd , rs0, rs1 subtraction
| cmp rs0, rs1 comparison
| b dst branch
| blt〈cr〉 dst cond. branch
| ld rd , o absolute load
| st rd , o absolute store
| ldx rd , o, rx relative load (aka indeXed load)
| stx rd , o, rx relative store (aka indeXed store)
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Compilation correctness

A basic, PPC-like assembly language: states

Definition: state
A state is a tuple s = (pc, ρ, cr , µ) which comprises:

a program counter value pc ∈ B32

a function mapping each general purpose register to its value
ρ : {0, . . . , 31} → B32

a condition register value cr ∈ {LT,EQ,GT}
a function mapping each memory cell to its value µ : Addrs→ B32

Equivalently, we can also write s = (l ,m), where
the control state l is the current pc value
the memory state m is the triple (ρ, cr , µ)
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Compilation correctness

A basic, PPC-like assembly language: instruction set

We assume a state s = (pc, (ρ, cr , µ)) and that µ(pc) = i .

Then:

if i = li rd , v , then:

s → (pc + 4, (ρ[d 7→ v ], cr , µ))

if i = add rd , rs0, rs1, then:

s → (pc + 4, (ρ[d 7→ (ρ(s0) + ρ(s1))], cr , µ))

if i = addi rd , rs0, v , then:

s → (pc + 4, (ρ[d 7→ (ρ(s0) + v)], cr , µ))

if i = sub rd , rs0, rs1, then:

s → (pc + 4, (ρ[d 7→ (ρ(s0)− ρ(s1))], cr , µ))
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Compilation correctness

A basic, PPC-like assembly language: instruction set

We assume a state s = (pc, (ρ, cr , µ)) and that µ(pc) = i .

Then:

if i = cmp rs0, rs1, then:

s →


(pc + 4, (ρ,LT, µ)) if ρ(s0) < ρ(s1)
(pc + 4, (ρ,EQ, µ)) if ρ(s0) = ρ(s1)
(pc + 4, (ρ,GT, µ)) if ρ(s0) > ρ(s1)

if i = blt〈cond〉 dst, then:

s →
{

(dst, (ρ, cr, µ)) if cr = cond
(pc + 4, (ρ, cr, µ)) otherwise

if i = b dst, then:
s → (dst, (ρ, cr , µ))
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Compilation correctness

A basic, PPC-like assembly language: instruction set

We assume a state s = (pc, (ρ, cr , µ)) and that µ(pc) = i .

Then:

if i = ldx rd , o, rx , then:

s →
{

(pc + 4, (ρ[d 7→ µ(ρ(x) + o)], cr, µ)) if µ(ρ(x) + o) is defined
Ω otherwise

if i = ld rd , o, then:

s →
{

(pc + 4, (ρ[d 7→ µ(o)], cr, µ)) if µ(o) is defined
Ω otherwise

if i = stx rd , o, rx , then:

s →
{

(pc + 4, (ρ, cr, µ[ρ(x) + o) 7→ ρ(d)])) if µ(ρ(x) + o) is defined
Ω otherwise

if i = ld rd , o, then effect can be deduced from the above cases
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Compilation correctness

Output of a non optimizing compiler

Assumptions and conventions:
t is an array of integers initialized to t = {0; 1; 4;−1}
i, x are integer variables
in the assembly, x denotes the address of x

source code compiled code
l s0 i := i + 1;

l s1 x := x + t[i];

l s2 . . .

l c0 ld r0, i
l c1 addi r0, r0, 1
l c2 st r0, i
l c3 ld r0, x
l c4 ld r1, i
l c5 ldx r2, t, r1
l c6 add r0, r0, r2
l c7 st r0, x
l c8 . . .

Is it sound ? What property does it preserve ?
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Compilation correctness

A source level execution

〈
l s0 ,

i 7→ 1;
x 7→ 1;
t[0] 7→ 0;
t[1] 7→ 1;
t[2] 7→ 4;
t[3] 7→ −1;

 ,

l s1 ,

i 7→ 2;
x 7→ 1;
t[0] 7→ 0;
t[1] 7→ 1;
t[2] 7→ 4;
t[3] 7→ −1;

 ,

l s2 ,

i 7→ 2;
x 7→ 5;
t[0] 7→ 0;
t[1] 7→ 1;
t[2] 7→ 4;
t[3] 7→ −1;

 ,

〉

Correctness of compilation:

we cannot find the same execution in the assembly:
as memory locations are not the same at all
thus, we expect a "similar" trace
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Compilation correctness

Corresponding assembly level execution

l c0 ld r0, i
l c1 addi r0, r0, 1
l c2 st r0, i
l c3 ld r0, x

l c4 ld r1, i
l c5 ldx r2, t, r1
l c6 add r0, r0, r2
l c7 st r0, x

We consider an assembly level trace starting from a similar state:
state sci sc0 sc1 sc2 sc3 sc4 sc5 sc6 sc7 sc8
control state pci l c0 l c1 l c2 l c3 l c4 l c5 l c6 l c7 l c8
register state ρi (0) 45 1 2 2 1 1 1 5 5
register state ρi (1) −5 −5 −5 −5 −5 2 2 2 2
register state ρi (2) 89 89 89 89 89 89 4 4 4
memory state µi (i) 1 1 1 2 2 2 2 2 2
memory state µi (x) 1 1 1 1 1 1 1 1 5
memory state µi (t + 0) 0 0 0 0 0 0 0 0 0
memory state µi (t + 1) 1 1 1 1 1 1 1 1 1
memory state µi (t + 2) 4 4 4 4 4 4 4 4 4
memory state µi (t + 3) −1 −1 −1 −1 −1 −1 −1 −1 −1
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Compilation correctness

Source and assembly executions compared

state ssi ss0 ss1 ss2
control state l si l s0 l s1 l s2
memory state ms

i (i) 1 2 2
memory state ms

i (x) 1 1 5
memory state ms

i (t[0]) 0 0 0
memory state ms

i (t[1]) 1 1 1
memory state ms

i (t[2]) 4 4 4
memory state ms

i (t[3]) −1 −1 −1

Much more information in
the assembly trace:

registers values
more control states

state sci sc0 sc1 sc2 sc3 sc4 sc5 sc6 sc7 sc8
control state pci l c0 l c1 l c2 l c3 l c4 l c5 l c6 l c7 l c8
register state ρi (0) 45 1 2 2 1 1 1 5 5
register state ρi (1) −5 −5 −5 −5 −5 2 2 2 2
register state ρi (2) 89 89 89 89 89 89 4 4 4
memory state µi (i) 1 1 1 2 2 2 2 2 2
memory state µi (x) 1 1 1 1 1 1 1 1 5
memory state µi (t + 0) 0 0 0 0 0 0 0 0 0
memory state µi (t + 1) 1 1 1 1 1 1 1 1 1
memory state µi (t + 2) 4 4 4 4 4 4 4 4 4
memory state µi (t + 3) −1 −1 −1 −1 −1 −1 −1 −1 −1
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Compilation correctness

An abstraction approach

state ssi ss0 ss1 ss2
control state l si l s0 l s1 l s2
memory state ms

i (i) 1 2 2
memory state ms

i (x) 1 1 5
memory state ms

i (t[0]) 0 0 0
memory state ms

i (t[1]) 1 1 1
memory state ms

i (t[2]) 4 4 4
memory state ms

i (t[3]) −1 −1 −1

state sci sc0 sc1 sc2 sc3 sc4 sc5 sc6 sc7 sc8
control state pci l c0 l c1 l c2 l c3 l c4 l c5 l c6 l c7 l c8
register state ρi (0) 45 1 2 2 1 1 1 5 5
register state ρi (1) −5 −5 −5 −5 −5 2 2 2 2
register state ρi (2) 89 89 89 89 89 89 4 4 4
memory state µi (i) 1 1 1 2 2 2 2 2 2
memory state µi (x) 1 1 1 1 1 1 1 1 5
memory state µi (t + 0) 0 0 0 0 0 0 0 0 0
memory state µi (t + 1) 1 1 1 1 1 1 1 1 1
memory state µi (t + 2) 4 4 4 4 4 4 4 4 4
memory state µi (t + 3) −1 −1 −1 −1 −1 −1 −1 −1 −1

We can abstract away intermediate control states
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Compilation correctness

An abstraction approach

state ssi ss0 ss1 ss2
control state l si l s0 l s1 l s2
memory state ms

i (i) 1 2 2
memory state ms

i (x) 1 1 5
memory state ms

i (t[0]) 0 0 0
memory state ms

i (t[1]) 1 1 1
memory state ms

i (t[2]) 4 4 4
memory state ms

i (t[3]) −1 −1 −1

state sci sc0 sc1 sc2 sc3 sc4 sc5 sc6 sc7 sc8
control state pci l c0 l c1 l c2 l c3 l c4 l c5 l c6 l c7 l c8
register state ρi (0) 45 1 2 2 1 1 1 5 5
register state ρi (1) −5 −5 −5 −5 −5 2 2 2 2
register state ρi (2) 89 89 89 89 89 89 4 4 4
memory state µi (i) 1 1 1 2 2 2 2 2 2
memory state µi (x) 1 1 1 1 1 1 1 1 5
memory state µi (t + 0) 0 0 0 0 0 0 0 0 0
memory state µi (t + 1) 1 1 1 1 1 1 1 1 1
memory state µi (t + 2) 4 4 4 4 4 4 4 4 4
memory state µi (t + 3) −1 −1 −1 −1 −1 −1 −1 −1 −1

Intermediate control states abstracted; we can forget registers
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Compilation correctness

An abstraction approach

state ssi ss0 ss1 ss2
control state l si l s0 l s1 l s2
memory state ms

i (i) 1 2 2
memory state ms

i (x) 1 1 5
memory state ms

i (t[0]) 0 0 0
memory state ms

i (t[1]) 1 1 1
memory state ms

i (t[2]) 4 4 4
memory state ms

i (t[3]) −1 −1 −1

state sci sc0 sc1 sc2 sc3 sc4 sc5 sc6 sc7 sc8
control state pci l c0 l c1 l c2 l c3 l c4 l c5 l c6 l c7 l c8
register state ρi (0) 45 1 2 2 1 1 1 5 5
register state ρi (1) −5 −5 −5 −5 −5 2 2 2 2
register state ρi (2) 89 89 89 89 89 89 4 4 4
memory state µi (i) 1 1 1 2 2 2 2 2 2
memory state µi (x) 1 1 1 1 1 1 1 1 5
memory state µi (t + 0) 0 0 0 0 0 0 0 0 0
memory state µi (t + 1) 1 1 1 1 1 1 1 1 1
memory state µi (t + 2) 4 4 4 4 4 4 4 4 4
memory state µi (t + 3) −1 −1 −1 −1 −1 −1 −1 −1 −1

Registers and intermediate control states removed
We get very similar traces !
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Compilation correctness

Syntactic relations

What we did remove:
intermediate control states
memory locations associated to registers

What we did preserve:
control states in correspondence:

l s0 ↔ l c0 l s1 ↔ l c3 l s2 ↔ l c8

memory location in correspondence:

i↔ i x↔ x i↔ i
t[0]↔ t + 0 t[1]↔ t + 1 t[2]↔ t + 2
t[3]↔ t + 3

Intuitively, we did apply an abstraction (to a single trace)

Xavier Rival (INRIA) Program Transformations Jan, 8th, 2019 29 / 96



Compilation correctness

Syntactic relations

Definition
We define two syntactic mappings:

Between control points: πl : L′s → L′c (where L′i ⊆ Li )
Between memory locations: πx : X′s → X′c (where X′i ⊆ Xi )

We consider only subsets X′, . . . of X, . . .. For instance:
Some variables in the source code may be removed
Registers in Pc may not correspond to variables of Ps

One statement in Ps corresponds to several instructions in Pc

In practice, πl, πx are provided by the compiler:
Linking information
Line table
Debugging information: Stabs, COFF...
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Compilation correctness

Syntactic relations

Definition
We define two syntactic mappings:

Between control points: πl : L′s → L′c (where L′i ⊆ Li )
Between memory locations: πx : X′s → X′c (where X′i ⊆ Xi )

For our example:
Control points:

I L′
s = {l s0 , l s1 , l s2} and L′

c = {lc0 , lc3 , lc8}
I πl : l s0 7→ lc0 ; l s1 7→ lc3 ; l s2 7→ lc8

Memory locations:
I X′

s = {i, x, t[0], t[1], t[2], t[3]} and X′
c = {i, x, t, t + 1, t + 2, t + 3}

I πx :

 i 7→ i
x 7→ x
t[n] 7→ t + n
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Compilation correctness

State observational abstraction

We now formalize the process to project out irrelevant behaviors:
in states
in traces
in the semantics

We consider the assembly level first:

Definition: state abstraction
We let the compiled code-level memory state abstraction Ψm

c be
defined by:

Ψm
c : (Xc → V) −→ (X′c → V)

m 7−→ λ(x ∈ X′c) · m(x)

Similar definition at the source level...
(though no variable needs to be abstracted at this point, we will make use
of that possibility further in this course)
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Compilation correctness

State observational abstraction: example

We recall that
X′s = {i, x, t[0], t[1], t[2], t[3]}
X′c = {i, x, t, t + 1, t + 2, t + 3

Then Ψm
c : (pc, (ρ, cr, µ)) 7−→ µ

So, in particular:

Ψm
c :



pc 7→ l c0
ρ : 0 7→ 45

1 7→ −5
2 7→ 4

µ : i 7→ 1
x 7→ 1
t + 0 7→ 0
t + 1 7→ 1
t + 2 7→ 4
t + 3 7→ −1


7−→



µ : i 7→ 1
x 7→ 1
t + 0 7→ 0
t + 1 7→ 1
t + 2 7→ 4
t + 3 7→ −1
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Compilation correctness

Trace observational abstraction

We can now lift the same abstraction principle to traces:

Definition: trace abstraction
We let the compiled code-level trace abstraction Ψtr

c be defined by:

Ψtr
c : (Lc × (Xc → V))? −→ (L′c × (X′c → V))?

〈(l0,m0), . . . , (ln,mn)〉 7−→ 〈(lk0 ,Ψ
m
c (mk0)), . . . , (lkm ,Ψ

m
c (mkm))〉

where:
{
{k0, . . . , km} = {k | 0 ≤ k ≤ n ∧ lk ∈ L′c}
k0 < . . . < km

Similar definition at the source level...
(though no control state / variable needs to be abstracted at this point, we
will make use of that possibility further in this course)
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Compilation correctness

Trace observational abstraction: example

Ψtr :

control state pci l c0 l c1 l c2 l c3 l c4 l c5 l c6 l c7 l c8
register state ρi (0) 45 1 2 2 1 1 1 5 5
register state ρi (1) −5 −5 −5 −5 −5 2 2 2 2
register state ρi (2) 89 89 89 89 89 89 4 4 4
memory state µi (i) 1 1 1 2 2 2 2 2 2
memory state µi (x) 1 1 1 1 1 1 1 1 5
memory state µi (t + 0) 0 0 0 0 0 0 0 0 0
memory state µi (t + 1) 1 1 1 1 1 1 1 1 1
memory state µi (t + 2) 4 4 4 4 4 4 4 4 4
memory state µi (t + 3) −1 −1 −1 −1 −1 −1 −1 −1 −1

7−→

control state pci l c0 l c3 l c8
memory state µi (i) 1 2 2
memory state µi (x) 1 1 5
memory state µi (t + 0) 0 0 0
memory state µi (t + 1) 1 1 1
memory state µi (t + 2) 4 4 4
memory state µi (t + 3) −1 −1 −1
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Compilation correctness

Observable behaviors inclusions

Applying this systematically to all traces results into an abstraction:

Result: compiled code observational abstraction
We let αr

c be the compiled code observational abstraction:

αr
c : P((Lc × (Xc → V))?) −→ P((L′c × (X′c → V))?)
E 7−→ {Ψtr

c (σ) | σ ∈ E}

It defines a Galois connection with an adjoint concretization γrc :

(P((Lc × (Xc → V))?),⊆) −−−→←−−−
αr
c

γrc
(P((L′c × (X′c → V))

?
),⊆)

αr
c is monotone and the concrete domain is a complete lattice; the

concretization function follows and is defined by
γrc(E ′) =

⋃
E{E | αr

c(E) ⊆ E ′} = {σ | Ψtr(σ) ∈ E ′}
The observational semantics is defined by: JPcKobs = αr

c(JPcK)
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Compilation correctness

Correctness by semantic equivalence

The same construction holds at the source level
The resulting traces are very similar, up-to a basic renaming
To define it, we assume the syntactic mappings πl, πx are bijective

Memory state renaming
We let the memory state renaming function be defined by:

πm : (X′s → V) −→ (X′c → V)
m 7−→ m ◦ π−1

x

Trace renaming
We let the trace renaming function be defined by:

πt : L′s × (X′s → V) −→ L′c × (X′c → V)
〈(l0,m0), . . . , (ln,mn)〉 7−→ 〈(πl(l0), πm(m0)), . . . , (πl(ln), πm(mn))〉
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Compilation correctness

Correctness by semantic equivalence

We can now state the compilation correctness definition

Definition: compilation correctness
Compilation of Ps into Pc is correct with respect to πl, πx if and only
if πt establishes a bijection between αr

s(JPsK) and αr
c(JPcK).

This definition can be illustrated by the diagram:

semantics

observation observation

semantics

Ps Pc

JPsK JPcK

αr
s(JPsK) αr

c(JPcK)

compilation

πt
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Compilation correctness

Correctness by semantic equivalence

This approach generalizes to other program transformations

This definition can be illustrated by the diagram:

semantics

observation observation

semantics

Pi Po

JPiK JPoK

αr
s(JPiK) αr

c(JPoK)

transformation

semantic
transformation
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Compilation correctness

Choice of another concrete semantics: consequences

New compilation correctness definition
∀ρ ∈M, JPcKrel ≡ JPsKrel modulo πl, πx

This new definition is much weaker:
Correctness assumes no relation about

I intermediate control states
I non terminating executions

More compilers are considered correct
Weaker relation between source and compiled programs
This new definition really misses something, and impedes verification

Ways to circumvent the limitation:
1 Include the whole trace into the final state!

Back to the previous definition, hard to formalize,
says nothing about ∞...

2 Better way: get it right first and choose the right semantics!
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Compilation correctness

Choice of another concrete semantics

We have built our definition of compilation correctness upon operational
(trace) semantics.
What if we abstracted into another observational semantics ?

Alternate choice: let us consider a more abstract semantics
For instance, relational semantics (equivalent to denotational semantics)

Notation forinitial (resp. final) control states: l` (resp. la)
Notation for non-termination written ∞;
Observational semantics: relations between M and M ∪ {∞}
Observational abstraction defined by collecting for all traces:

〈(l`, ρ), . . . , (la, ρ′)〉 7→ (ρ, ρ′)
σ = 〈(l`, ρ), . . .〉 7→ (ρ,∞) if σ infinite

Denotational semantics defined by:
JPKrel = {(ρ, ρ′) | . . .} ] {(ρ,∞) | . . .}
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Correctness of optimizing compilation

Outline

1 Introduction to program transformations

2 Compilation correctness

3 Correctness of optimizing compilation

4 Application to the verification of compiled code

5 Application to certified compilation

6 Conclusion
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Correctness of optimizing compilation

Optimizations

Until now we focused on non-optimizing compilation

In practice, compilers perform various optimizations
Elimination: dead code, dead variables...
Instruction scheduling: Instruction-Level-Parallelism...
Global transformations: Propagation of common expressions...
Structural transformations: Loop unrolling...

Consequences: πl, πx, L′i , X′i may not be defined

Framework extension:
Redefine the “most precise observation preserved by
compilation”
Would be more difficult with bissimulations
Next slides: consider a few optimizations...
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Correctness of optimizing compilation

Dead-code elimination definition

Principle
Do not compile statements of the source program

that provably never are executed

This saves space as smaller executables get generated
It also improves runtime as some tests may be removed
(when they always produce the same result)

Example:
source code compiled code

l s0 x := 4;

l s1 if(x < 0){
l s2 x = −x;
l s3 }
l s4 x = x + 1

l c0 li r0, 4
l c1 st r0, x

%% no code generated
%% no code generated
%% no code generated

l c2 ld r1, x
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Correctness of optimizing compilation

Dead-code elimination correctness

How to set up a formal definition of compilation, that considers
dead-code elimination correct ?

we have to abstract away all labels removed by the optimizations
this is trivial:
we should simply not include them in L′s
thus, our previous definition of compilation correctness already
accommodates dead-code elimination

Compilation correctness in presence of dead-code elimination
Same definition as before
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Correctness of optimizing compilation

Dead-variable elimination definition

Principle
Discard entirely the variables that are never used anymore
(the compiler may reuse cells of dead local variables as well)

This obviously both saves space and improves runtime
There is a caveat though: this may change the error semantics
indeed, expressions may be optimized away, so a program that normally
fails (e.g., on a division by zero) may not fail after optimization

. . .
x := y;
while(i < 10){

x := x + 1;
y := y− x− 1;
i := i + 1;

}
use(x);

x read after the loop, but not y
thus, y can be removed with no
observable change
the purple statement disappears
but y does not disappear
everywhere
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Correctness of optimizing compilation

Dead-variable elimination correctness

How to set up a formal definition of compilation, that considers
dead-variable elimination correct ?

variables may need be removed at certain program points
it is not possible to simply remove the dead variables from Xs

altogether: in the example, this would not be correct, as y would be
completely lost
thus, πx should be relational

Compilation correctness in presence of variable-code elimination
Similar definition as before, but with πx : L′s × X′s → X′c instead.

Exercise: formalize the new definition, inspired from the previous one,
and with πx : L′s × X′s → X′c instead
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Correctness of optimizing compilation

Path modifying optimizations

Some optimization deeply modify the control flow paths:
loop unrolling
loop exchange
loop tiling
loop interchange
flattening of conditions

Gains:
more efficient code, due to fewer conditions (unrolling, tiling)
enabling of other optimizations, e.g., vectorization (tiling,
interchange...)

In the next few slides, we consider the case of loop unrolling
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Correctness of optimizing compilation

Loop unrolling example

Assumption: a for loop run an even number of times
(loop unrolling may also apply to loops run a non statically known number
of times, but it is more complex in that case)

source code optimized code

l s0 i := 0;
l s1 while(i < 1000)
l s2 x := x ∗ y;
l s3 y := y− 1;
l s4 i := i + 1;
l s5 }

l o0 i := 0;
l o1 while(i < 1000)
l o2 x := x ∗ y;
l o3 y := y− 1;
l o4 x := x ∗ y;
l o5 y := y− 1;
l o6 i := i + 2;
l o7 }

Control state correspondence πl is clearly broken:

πl :

{
l s2 ↔ l o2
l s2 ↔ l o4
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Correctness of optimizing compilation

Loop unrolling source and assembly traces

We consider executions in the source and the optimized code, and only
display control states at the assignment to x and the values of i, y:

At the source code level:
control state l s2 l s2 l s2 l s2
value of i 0 1 2 3
value of y 1200 1199 1198 1197

At the compiled code level:
control state l o2 l o4 l o2 l o4
value of i 0 0 2 2
value of y 1200 1199 1198 1197

As expected:
the correlation between the values of i and the other variables is lost
the real correspondence is between values of other variables and
iterations even-ness
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Correctness of optimizing compilation

Loop unrolling observational abstractions

How to set up a formal definition of compilation, that accepts loop
unrolling as correct ?

the loop counter variable i should be excluded from Xs ,Xo

each control state in the source loop should be divided into a pair
of labels, that carry an even-ness tab:

l s2 7→ l s,e2 , l s,o2
l s3 7→ l s,e3 , l s,o3
. . . 7→ . . .

the trace abstraction function Ψtr
s should map each loop body state

into a state with a consistent iteration even-ness

This amounts to doing an even-ness based trace partitioning
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Correctness of optimizing compilation

Loop unrolling observational abstractions

We can consider the traces again:

source code control state l s2 l s2 l s2 l s2
value of i 0 1 2 3
value of y 1200 1199 1198 1197

source code, abstract control state l s,e2 l s,o2 l s,e2 l s,o2
value of i 0 1 2 3
value of y 1200 1199 1198 1197

optimized code control state l o2 l o4 l o2 l o4
value of i 0 0 2 2
value of y 1200 1199 1198 1197

We observe the following control state correspondence:

πl : l s,e2 7−→ l o2
l s,o2 7−→ l o4
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Correctness of optimizing compilation

Loop unrolling correctness

Then, the definition follows a very similar form as before:

Compilation correctness in presence of loop unrolling
Similar definition as before, but with:

trace partitioning αr
s abstraction

a mapping πl that preserves even-ness
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Correctness of optimizing compilation

Instruction scheduling: instruction level parallelism

We now consider optimizations that modify the code locally, and take
instruction scheduling as an example.

Instruction-level parallelism is a feature of modern processors:
one instruction = one or several cycles

I memory typically slow: load, store take several cycles
speed depends on the content of cache (hit/miss); can be 100 cycles!

I arithmetic operations are usually faster

Pipeline: run several instructions in parallel
Some instructions cannot be evaluated in parallel due to
dependences
Scheduling: re-ordering of instructions
so as to limit the number of stall cycles
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Correctness of optimizing compilation

Instruction level parallelism example

Assumptions:
arith. instructions: 1 cycle instruction decoding, 1 cycle op.
load/store instructions: 1 cycle instruction decoding, 3 cycle op.
CPU: can have at the same time, one instruction in decoding, one in
arithmetic stage, several doing memory read / write

We consider the code below:

ld r0, i

addi r0, r0, 1
st r0, i

cycles0 1 2 3 4 5 6 7 8

D Mem Mem Mem

D Op

D Mem Mem Mem

Then, we observe a two cycles stall after the load

Consequence of this observation: instruction scheduling
More efficient code is generated if there are more instructions
between load/store instruction and uses of the values loaded/stored
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Correctness of optimizing compilation

Instruction scheduling example

source code non optimized code optimized code
l s0 i := i + 1;

l s1 x := x + t[i];

l s2 . . .

l a0 ld r0, i
l a1 addi r0, r0, 1
l a2 st r0, i
l a3 ld r1, x
l a4 ldx r2, t, r0
l a5 add r1, r1, r2
l a6 st r1, x
l a7 . . .

l o0 ld r0, i
l o1 ld r1, x
l o2 addi r0, r0, 1
l o3 ldx r2, t, r0
l o4 st r0, i
l o5 add r1, r1, r2
l o6 st r1, x
l o7 . . .

Without optimization:
4 stall cycles, 14 cycles total

l s0 ↔ la0
l s1 ↔ la3
l s2 ↔ la7

Without optimization:
2 stall cycles, 12 cycles total

l s0 ↔ lo0
l s1 ↔ ???
l s2 ↔ lo7
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Correctness of optimizing compilation

Instruction scheduling observational abstractions

Issues to fix our definition:
Instructions execution order modified:
la1 → la2 and la2 → la3 are postponed
Mapping πl is broken:

I The intermediate state l s1 has no clear counterpart in the assembly
I For i, it corresponds to l o5
I For x, it corresponds to l o1
I In general: this happens for all control points!

(except for initial points, final points)

Thus, we need a relational mapping (πl, πx),
i.e., a single function taking care of both variables and control states:

Relational syntactic mapping
A relational syntactic mapping is defined by an injective function

πX×X : (L′s × X′s) −→ (Lc × Xc)
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Correctness of optimizing compilation

Instruction scheduling observational abstractions

Intuition
A source control state l s corresponds to a fictitious control state where
values of corresponding locations are gathered at different points in the
execution of the optimized, compiled code

source code optimized code
l s0 i := i + 1;

l s1 x := x + t[i];

l s2 . . .

l o0 ld r0, i
l o1 ld r1, x
l o2 addi r0, r0, 1
l o3 ldx r2, t, r0
l o4 st r0, i
l o5 add r1, r1, r2
l o6 st r1, x
l o7 . . .

We then have:

πX×X : (l s0 , i) 7→ (l o0 , i)
(l s0 , x) 7→ (l o0 , x)
(l s1 , i) 7→ (l o5 , i)
(l s1 , x) 7→ (l o1 , x)
(l s2 , i) 7→ (l o7 , i)
(l s2 , x) 7→ (l o7 , x)
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Correctness of optimizing compilation

Instruction scheduling correctness

The source level observational abstraction is unchanged.

Optimized level observational abstraction
Optimized code observational abstraction αr

s abstracts traces into
sequences of states observed at fictitious points

We now obtain:

Compilation correctness in presence of instruction scheduling
Similar definition as before, but with:

optimized code observational abstraction αr
s derived from πX×X

semantic mapping πt derived from πX×X
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Correctness of optimizing compilation

Compilation correctness

Definition: compilation correctness
Compilation of Ps into Pc is correct with respect to πl, πx (resp.,
πX×X) if and only if πt establishes a bijection between αr

s(JPsK) and
αr
c(JPcK).

semantics

observation observation

semantics

Ps Pc

JPsK JPcK

αr
s(JPsK) αr

c(JPcK)

compilation

πt

Main idea: optimizations handled as standard compilation, but with
more complex mappings, and observational abstractions
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Correctness of optimizing compilation

On the formalization of program transformations

Methodology:
1 Set up the standard semantics
2 Define the observation preserved by the transformation
3 Derive the corresponding abstractions
4 Establish the correctness at the abstract level

Advantages of this approach:
The framework can be extended (e.g., with more complex
abstractions)
Abstract Interpretation theorems apply (e.g., fix-point transfers)

Other extensions:
Define the transformation at the semantic level
Derive an implementation of the transformation, from the definition
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Application to the verification of compiled code

Outline

1 Introduction to program transformations

2 Compilation correctness

3 Correctness of optimizing compilation

4 Application to the verification of compiled code

5 Application to certified compilation

6 Conclusion
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Application to the verification of compiled code

Verifying compiled code

Kinds of properties:
safety (no runtime errors, no overflows, no NaN...)
security (no undesired information flow, in the sense of
non-interference)

Two benefits:
of course, verifying the generated code...
but also, that the compiler does not turn a correct (already
verified) program into an incorrect assembly one...

In the following, we consider safety properties and invariants
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Application to the verification of compiled code

The invariant translation approach

Process
1 Analyze the source program Ps and compute an invariant Is
2 Translate Is into assembly level candidate invariant It
3 Perform an assembly level check of It

Motivation:
inferring invariants is hard in general...
and even more so at the assembly level
due to an important loss of structure at compile time
(data-structures flattened, control flow more complex, additional steps
to perform an arithmetic assignment –with separate load and store– or
a test –with separate test and branching instructions)
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Application to the verification of compiled code

Example 1: Proof Carrying Codes (PCC)

Principle:
“Code producer”: provides code and proof annotations in binaries
(i.e., proof of correctness),
“Code consumer”: checks the safety of the code

1 consistence of annotations: very quick proof search, from invariants
2 annotations ⇒ the safety property we wish to enforce

Code producer

Correctness property
Proof (ELF)

Code
Invariants, hints

Code consumer

Code
Invariants, hints

Correctness property Proof search

Verification

RUN ABORT
OK KO

Context: execution of non-trusted code downloaded in the Internet
e.g., it could contain a security bug (information leak, buffer overflow)
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Application to the verification of compiled code

Example 2: TAL, compiled code certification by abstract
interpretation

Typed and type safe assembly language:
Java bytecode: interpreted (rather slow at runtime)
TALx86: annotations for an assembly language closed to Intel 80x86
Removing types ⇒ executable code
A specific compiler translate source level types

Advantages:
Ensure the safety of linkage thanks to types
Linkage of object files usually not sound
Improve the reliability of optimizations
Constraint: they should preserve types!
Compilation of type-safe versions of C (CCured, CClone)

Certification of assembly code
Principle similar to PCC and TAL
but computation of invariants by abstract interpretation
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Application to the verification of compiled code

Assembly level verification of invariants

l s0

l s1

x := x + 6;

l c0

l c1

l c2

l c3

ld r0, x

addi r0, r0, 6

st r0, x

0 ≤ x + y ≤ 9

6 ≤ x + y ≤ 15

Start with invariants on the source code
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Application to the verification of compiled code

Assembly level verification of invariants

l s0

l s1

x := x + 6;

l c0

l c1

l c2

l c3

ld r0, x

addi r0, r0, 6

st r0, x

0 ≤ x + y ≤ 9

6 ≤ x + y ≤ 15

0 ≤ x + y ≤ 9

6 ≤ x + y ≤ 15

Translates those invariants
but not all control states are decorated
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Application to the verification of compiled code

Assembly level verification of invariants

l s0

l s1

x := x + 6;

l c0

l c1

l c2

l c3

ld r0, x

addi r0, r0, 6

st r0, x

0 ≤ x + y ≤ 9

6 ≤ x + y ≤ 15

0 ≤ x + y ≤ 9

6 ≤ x + y ≤ 15

0 ≤ x + y ≤ 9 ∧ r0 = x

Propagates the invariants and computes refined local invariants
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Application to the verification of compiled code

Assembly level verification of invariants

l s0

l s1

x := x + 6;

l c0

l c1

l c2

l c3

ld r0, x

addi r0, r0, 6

st r0, x

0 ≤ x + y ≤ 9

6 ≤ x + y ≤ 15

0 ≤ x + y ≤ 9

6 ≤ x + y ≤ 15

0 ≤ x + y ≤ 9 ∧ r0 = x

0 ≤ x + y ≤ 9 ∧ r0 = x + 6

Propagates the invariants and computes refined local invariants
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Application to the verification of compiled code

Assembly level verification of invariants

l s0

l s1

x := x + 6;

l c0

l c1

l c2

l c3

ld r0, x

addi r0, r0, 6

st r0, x

0 ≤ x + y ≤ 9

6 ≤ x + y ≤ 15

0 ≤ x + y ≤ 9

6 ≤ x + y ≤ 15

0 ≤ x + y ≤ 9 ∧ r0 = x

0 ≤ x + y ≤ 9 ∧ r0 = x + 6

6 ≤ x + y ≤ 15 ∧ r0 = x

Propagates the invariants and computes refined local invariants
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Application to the verification of compiled code

Assembly level verification of invariants

l s0

l s1

x := x + 6;

l c0

l c1

l c2

l c3

ld r0, x

addi r0, r0, 6

st r0, x

0 ≤ x + y ≤ 9

6 ≤ x + y ≤ 15

0 ≤ x + y ≤ 9

6 ≤ x + y ≤ 15

0 ≤ x + y ≤ 9 ∧ r0 = x

0 ≤ x + y ≤ 9 ∧ r0 = x + 6

6 ≤ x + y ≤ 15 ∧ r0 = xw

Checks invariance at the end of the computation
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Application to the verification of compiled code

Source static analysis: assumptions

We assume an abstraction of sets of stores defined by an
abstraction function for sets of stores

αnum : (P(Ms),⊆)→ (D]num,v)

We derive an abstraction for sets of executions:

αi ,s : P(SP?) −→ Ls → D]num
X 7−→ (l ∈ Ls) 7→ αnum({m | 〈. . . , (l ,m), . . .〉 ∈ X})

We assume also a source code static analysis, that computes a
sound over-approximation of the behaviors of the program:

αi ,s(JPsK) v JPsK
]
i
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Application to the verification of compiled code

Abstract invariant translation

Two abstractions have been defined:
Abstraction for static analysis of Ps

Abstraction for defining compilation correctness

Ps Pc

JPsK JPsK

JPsK
]
i

αr
s(JPsK) αr

c(JPcK)

analysis

compilation

πt

Those abstractions are in general not comparable
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Application to the verification of compiled code

Abstract invariant translation

We can derive another abstraction, more abstract than both αr
s and αi ,s :

theoretical result: Galois-connections of a concrete domain form a
lattice
in practice, this common abstraction should abstract away all the
elements that are not in L′s ,X′s :
e.g., all dead variables, all unreachable control states...
e.g., in case of loop unrolling, it should perform the same trace
partitioning

Moreover, πl, πx induce a safe abstract invariant translation function
π] : (L′s → D]num)→ (L′c → D]num)

for each pair of control points in correspondence in πl

it maps numerical invariants among variables of Ps into numerical
invariants among variables of Pc
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Application to the verification of compiled code

Abstract invariant translation

Invariant translation process:

1 Apply π] to an abstract invariant JPsK
]
i computed for Ps

2 Result: a candidate invariant π](JPsK
]
i ) for Pc

Ps Pc

JPsK JPsK

JPsK
]
i

αr
s(JPsK) αr

c(JPcK)

(αr
s)](JPsK

]
i ) π] ◦ (αr

s)](JPsK
]
i )

analysis

abs. observable v

compilation

πt
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Application to the verification of compiled code

Invariant translation: soundness

Soundness lemma
If:

the compilation Ps → Pc is sound with respect to πl, πx;
the analysis of Ps computes a sound JPsK

]
i αi ,s(JPsK) v JPsK

]
i

Then, π]((αr
s)](JPsK

]
i )) is a sound approximation of JPcK:

αi ,r ,c(JPcK) v π]((αr
s)](JPsK

]
i ))

Consequence of the choice of another observational semantics for
compilation correctness:
If αr

s(JPsK), αr
c(JPcK) are weakened, then the invariants that can be

translated are also weakened
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Application to the verification of compiled code

Invariant translation: soundness

Proof summarized:

Ps Pc

JPsK JPsK

JPsK
]
i

αr
s(JPsK) αr

c(JPcK)

(αr
s)](JPsK

]
i ) π] ◦ (αr

s)](JPsK
]
i )

analysis

abs. observable v v

compilation

πt

Assumptions are very strong:
compilation, analysis, translation need to be correct

We need an independent verification of translated invariants
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Application to the verification of compiled code

Independent verification of translated invariants

Principle of invariant checking: post-fixpoint checking

Theorem: invariant verification
Using a concretization function γ,

The domain of the function F is a CPO,
The concrete function F is continuous,
F ◦ γ ⊆ γ ◦ F ],
F ](x) v x ,

Then, lfpF v γ(x)

Proof left as exercise
Only the verifier needs to be sound even if the assumptions of the
translation soundness lemma are not met
i.e., we can have an incorrect compiler, translate an incorrect
invariant, and still obtain and check a correct translated invariant !
In turn, invariant checking is incompleteXavier Rival (INRIA) Program Transformations Jan, 8th, 2019 73 / 96



Application to the verification of compiled code

Independent verification of translated invariants

Principle of invariant checking: post-fixpoint checking

Theorem: invariant verification
Using a concretization function γ,

The domain of the function F is a CPO,
The concrete function F is continuous,
F ◦ γ ⊆ γ ◦ F ],
F ](x) v x ,

Then, lfpF v γ(x)

Invariant checking refines abstract predicates:
this phase also produces more precise abstract properties about:

memory locations in Xc \ X′c
program points in Lc \ L′c

In practice, every cycle of the compiled code control flow graph
should contain an element of Xs
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Application to the verification of compiled code

Invariant checking and difficulties

We consider the verification of invariants around a condition test
Assumptions:

x ∈ [0, 12] at the entry point;
we wish to verify the assert in the compiled code;
we use a non relational abstract domain: intervals

Source code:

if(x ≤ 5){
assert(x ≤ 5);
. . .

}else{
. . .

}

Compiled code:

0 ld r0, x
4 li r1, 5
8 cmp r0, r1
12 blt〈GT〉 l # (jump point)
16 . . . # true branch contents
l : # false branch contents
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Application to the verification of compiled code

Invariant checking and difficulties
0 : x ∈ [0, 12]

ld r0, x
4 :

li r1, 5
8 :

cmp r0, r1
12 :

blt〈GT〉 l # (jump point)
16 :
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Application to the verification of compiled code

Invariant checking and difficulties
0 : x ∈ [0, 12]

ld r0, x
4 : x ∈ [0, 12] ∧ r0 ∈ [0, 12]

li r1, 5
8 :

cmp r0, r1
12 :

blt〈GT〉 l # (jump point)
16 :
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Application to the verification of compiled code

Invariant checking and difficulties
0 : x ∈ [0, 12]

ld r0, x
4 : x ∈ [0, 12] ∧ r0 ∈ [0, 12]

li r1, 5
8 : x ∈ [0, 12] ∧ r0 ∈ [0, 12] ∧ r1 ∈ [5, 5]

cmp r0, r1
12 :

blt〈GT〉 l # (jump point)
16 :
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Application to the verification of compiled code

Invariant checking and difficulties
0 : x ∈ [0, 12]

ld r0, x
4 : x ∈ [0, 12] ∧ r0 ∈ [0, 12]

li r1, 5
8 : x ∈ [0, 12] ∧ r0 ∈ [0, 12] ∧ r1 ∈ [5, 5]

cmp r0, r1
12 : x ∈ [0, 12] ∧ r0 ∈ [0, 12] ∧ r1 ∈ [5, 5] ∧ cr ∈ {LT,EQ,GT}

blt〈GT〉 l # (jump point)
16 :
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Application to the verification of compiled code

Invariant checking and difficulties
0 : x ∈ [0, 12]

ld r0, x
4 : x ∈ [0, 12] ∧ r0 ∈ [0, 12]

li r1, 5
8 : x ∈ [0, 12] ∧ r0 ∈ [0, 12] ∧ r1 ∈ [5, 5]

cmp r0, r1
12 : x ∈ [0, 12] ∧ r0 ∈ [0, 12] ∧ r1 ∈ [5, 5] ∧ cr ∈ {LT,EQ,GT}

blt〈GT〉 l # (jump point)
16 : x ∈ [0, 12] ∧ r0 ∈ [0, 12] ∧ r1 ∈ [5, 5] ∧ cr ∈ {LT,EQ}
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Application to the verification of compiled code

Invariant checking and difficulties
0 : x ∈ [0, 12]

ld r0, x
4 : x ∈ [0, 12] ∧ r0 ∈ [0, 12]

li r1, 5
8 : x ∈ [0, 12] ∧ r0 ∈ [0, 12] ∧ r1 ∈ [5, 5]

cmp r0, r1
12 : x ∈ [0, 12] ∧ r0 ∈ [0, 12] ∧ r1 ∈ [5, 5] ∧ cr ∈ {LT,EQ,GT}

blt〈GT〉 l # (jump point)
16 : x ∈ [0, 12] ∧ r0 ∈ [0, 12] ∧ r1 ∈ [5, 5] ∧ cr ∈ {LT,EQ}

The condition at the branch point is not precise
The range of x was not refined by the test:

the test and branching are independent
relations between test results and values need be tracked
the test is made on a copy of x
equalities between copies need be tracked by the verifier
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Application to the verification of compiled code

Refinement of the verifier

Relation between test and branching:
each value in {LT,EQ,GT} should be bound to the ranges of the
other location
this is obtained by a value partitioning, based on the value of cr:

γ : ({LT,EQ,GT} → D]num) −→ P(M)
φ] 7−→ {m | m ∈ γnum ◦ φ] ◦ m(cr)}

Equalities between copies, e.g., of x and r0:
an equality abstraction abstracts partitions of Xc

replacement of D]num with a reduced product of D]num and an
equality abstraction
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Application to the verification of compiled code

Invariant checking: fixed
0 : x ∈ [0, 12]

ld r0, x
4 :

li r1, 5
8 :

cmp r0, r1

12 :

blt〈GT〉 l # (jump point)

16 :

In general, invariant checking is incomplete...
It may require some refinement in the verifier
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Application to the verification of compiled code

Invariant checking: fixed
0 : x ∈ [0, 12]

ld r0, x
4 : x ∈ [0, 12] ∧ r0 ∈ [0, 12]∧ x = r0

li r1, 5
8 :

cmp r0, r1

12 :

blt〈GT〉 l # (jump point)

16 :

In general, invariant checking is incomplete...
It may require some refinement in the verifier

Xavier Rival (INRIA) Program Transformations Jan, 8th, 2019 76 / 96



Application to the verification of compiled code

Invariant checking: fixed
0 : x ∈ [0, 12]

ld r0, x
4 : x ∈ [0, 12] ∧ r0 ∈ [0, 12]∧ x = r0

li r1, 5
8 : x ∈ [0, 12] ∧ r0 ∈ [0, 12] ∧ r1 ∈ [5, 5]∧ x = r0

cmp r0, r1

12 :

blt〈GT〉 l # (jump point)

16 :

In general, invariant checking is incomplete...
It may require some refinement in the verifier
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Application to the verification of compiled code

Invariant checking: fixed
0 : x ∈ [0, 12]

ld r0, x
4 : x ∈ [0, 12] ∧ r0 ∈ [0, 12]∧ x = r0

li r1, 5
8 : x ∈ [0, 12] ∧ r0 ∈ [0, 12] ∧ r1 ∈ [5, 5]∧ x = r0

cmp r0, r1

12 :


cr = LT =⇒ x ∈ [0, 4] ∧ r0 ∈ [0, 4]∧ x = r0 ∧ r1 ∈ [5, 5]
cr = EQ =⇒ x ∈ [5, 5] ∧ r0 ∈ [5, 5]∧ x = r0 ∧ r1 ∈ [5, 5]
cr = GT =⇒ x ∈ [6, 12] ∧ r0 ∈ [6, 12]∧ x = r0 ∧ r1 ∈ [5, 5]

blt〈GT〉 l # (jump point)

16 :

In general, invariant checking is incomplete...
It may require some refinement in the verifier
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Application to the verification of compiled code

Invariant checking: fixed
0 : x ∈ [0, 12]

ld r0, x
4 : x ∈ [0, 12] ∧ r0 ∈ [0, 12]∧ x = r0

li r1, 5
8 : x ∈ [0, 12] ∧ r0 ∈ [0, 12] ∧ r1 ∈ [5, 5]∧ x = r0

cmp r0, r1

12 :


cr = LT =⇒ x ∈ [0, 4] ∧ r0 ∈ [0, 4]∧ x = r0 ∧ r1 ∈ [5, 5]
cr = EQ =⇒ x ∈ [5, 5] ∧ r0 ∈ [5, 5]∧ x = r0 ∧ r1 ∈ [5, 5]
cr = GT =⇒ x ∈ [6, 12] ∧ r0 ∈ [6, 12]∧ x = r0 ∧ r1 ∈ [5, 5]

blt〈GT〉 l # (jump point)

16 :


cr = LT =⇒ x ∈ [0, 4] ∧ r0 ∈ [0, 4]∧ x = r0 ∧ r1 ∈ [5, 5]
cr = EQ =⇒ x ∈ [5, 5] ∧ r0 ∈ [5, 5]∧ x = r0 ∧ r1 ∈ [5, 5]
cr = EQ =⇒ ⊥

In general, invariant checking is incomplete...
It may require some refinement in the verifier
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Application to certified compilation

Outline

1 Introduction to program transformations

2 Compilation correctness

3 Correctness of optimizing compilation

4 Application to the verification of compiled code

5 Application to certified compilation

6 Conclusion

Xavier Rival (INRIA) Program Transformations Jan, 8th, 2019 77 / 96



Application to certified compilation

Verifying a compiler result

Principle: verify the semantic equivalence between source and
compiled programs

Verification process: translation validation
1 Establish mappings πl, πx between source and compiled programs
2 Prove (with a specialized prover) the semantic equivalence of

each basic block

Process:

compiler

verifier

Ps Pc semantics

observation observation

semantics

Ps Pc

JPsK JPcK

αr
s(JPsK) αr

c(JPcK)

compilation

πt
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Application to certified compilation

A technique based on fixpoint transfer

Foundation: fixpoint transfer

Theorem
Let Fs : P(Ss?)→ P(Ss?) and Fc : P(Sc?)→ P(Sc?) and πt : Ss? → Sc?
(complete for join), such that:

Fs , Fc are monotone
πt(∅) = ∅ (∅ least element);
πt ◦ Fs = Fc ◦ πt

then both functions have a least fixpoint and:

lfpFc = πt(lfpFs)

Proof: exercise

But the theorem does not apply directly:
source and compiled executions are not correlated step-by-step
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Application to certified compilation

A technique based on fixpoint transfer

Equivalence of source and assembly traces:

source code trace

compiled code trace

π≡ π≡ π≡ π≡ π≡ π≡

standard semantics JPsK and JPcK are expressed as least fixpoints,
but not directly correlated by πx, πl

observational semantics αr
s(JPsK) and αr

c(JPcK) are directly
correlated by not expressed as least fixpoint

We need fixpoint definitions for αr
s(JPsK), αr

c(JPcK)
(e.g., each basic block in the assembly code should be one

computation step)
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Application to certified compilation

Symbolic transfer functions: definition

A language to describe the effect of a basic block
basic blocks usually contain series of assignment:
we flatten sequences of assignments into parallel assignments
a basic block may branch to several points (often two)
no loop: each cycle in the compiled code control flow graph is
associated to at least one control state in the source

Symbolic transfer functions
Symbolic transfer functions are defined by the grammar:

δ(∈ T) ::= � no transition (dead branch, error)
| b−→x ← −→e c parallel assignment
| bc ? δ0 | δ1c conditional

Intuitively, a symbolic transfer function is a store transformer
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Application to certified compilation

Symbolic transfer functions: semantics

Semantic domain:
⊥ corresponds to the absence of behavior (error, blocking)
JδK ∈M→M ∪ {⊥}

Denotational Semantics:
J�K(ρ) = ⊥
Jb~x ← ~ecK(ρ) = ρ[∀i , JxiK(ρ)← JeiK(ρ)]

if ∀i , JxiK(ρ) 6= error and ∀i , JeiK(ρ) 6= error
Jbx ← ecK(ρ) = ⊥ otherwise

Jbe ? δ0 | δ1cK(ρ) =


Jδ0K(ρ) if JeK(ρ) = true
Jδ1K(ρ) if JeK(ρ) = false
⊥ if JeK(ρ) = error

Note: observe the identity is described by ι = b· ← ·c (parallel assignment,
with empty support)
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Application to certified compilation

Symbolic transfer functions: example

Encoding of a few instructions:
“Addition” l0 : addi r0, r1, v ; l1 : . . .:

δl0,l1 = br0 ← r1 + vc

“Comparison” l0 : cmp r0, r1; l1 : . . .:

δl0,l1 = br0 < r1 ?
bcr← LTc
| br0 = r1 ? bcr← EQc | bcr← GTccc

“Conditional branching” l0 : blt〈LT〉 l1; l2 : . . .:

δl0,l1 = bcr = LT ? ι | �c
δl0,l2 = bcr = LT ? � | ιc
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Application to certified compilation

Symbolic transfer functions: example

Encoding of a few instructions:
“Load” l0 : ldx rd , o, rx ; l1 : . . .:

δl0,l1 = brd ← µ(o + rx)c

“Load” l0 : ld rd , o; l1 : . . .:

δl0,l1 = brd ← µ(o)c

“Store” l0 : stx rd , o, rx ; l1 : . . .:

δl0,l1 = bµ(o + rx)← rdc

The encoding of the source semantics is straightforward
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Application to certified compilation

Symbolic transfer functions: composition operation

Assumptions: memory locations are either equal or non-overlapping

Theorem
We can define a fully syntactic composition operation ⊗ : T× T→ T
such that:

Jδ0 ⊗ δ1K ' Jδ0K ◦ Jδ1K

Full proof left as exercise; we consider a few cases:
�⊗ δ = �
δ ⊗� = �
δ ⊗ bc ? δ0 | δ1c = bc ? δ ⊗ δ0 | δ ⊗ δ1c

bx0 ← e0c ⊗ bx1 ← e1c =


bx0 ← e0[x1 ← e1]c if x0 = x1⌊

x0 ← e0[x1 ← e1]
x1 ← e1

⌋
otherwise

when aliasing cannot be determined statically, use a symbolic
predicate is_alias(x , y), and return bis_alias(x , y) ? δ0 | δ1c
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Application to certified compilation

Symbolic transfer functions: composition operation

Example:
no aliasing between x , y , z
(i.e., locations x , y , z are disjoint pairwise)

δ0 =

⌊
x ← y + 4
y ← 3

⌋
δ1 = by ← z + 1c

Then:

δ0 ⊗ δ1 =

⌊
x ← z + 5
y ← 3

⌋
Note that y is overwritten, and the expression written into x takes into
account that assignment
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Application to certified compilation

Translation validation with symbolic transfer functions

Application of symbolic transfer functions:
Definition of a new program (labeled transition system) P ′c

Program Reduction
States: L′c
→ is defined by a table of symbolic transfer functions:
(l , ρ)→ (l ′, ρ′) ⇐⇒{
∃l0, . . . , ln ∈ Lc \ L′c ,
ρ′ = Jδln,l ′ ⊗ . . .⊗ δli ,li+1 ⊗ δli−1,li ⊗ . . .⊗ δl ,l0K(ρ)

Symbolic semantic abstraction
Semantics: JP ′cK = lfpF ′c where F r

c is derived from P ′c

Soundness property: αr
c(JPcK) = JP ′cK = lfpF ′c

Proof: by induction on the length of the traces of P ′c
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Application to certified compilation

Translation validation: example (condition test)

Source code:

if(x ≤ 5){
assert(x ≤ 5);
. . .

}else{
. . .

}

STF to the true branch:
δs = bx ≤ 5 ? ι | �c

Compiled code:

0 ld r0, x
4 li r1, 5
8 cmp r0, r1
12 blt〈GT〉 l # (jump point)
16 . . . # true branch contents
l : # false branch contents

STF to l :
δcl = bx < 5 ? r0 ← µ(x)

r1 ← 5
cr ← LT


| . . .c

STF in P ′c :
δcl = bx < 5 ? ι | bx = 5 ? ι | �cc
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Application to certified compilation

Translation validation and optimization: instruction
scheduling

source code optimized code
l s0 i := i + 1;

l s1 x := x + t[i];

l s2 . . .

l o0 ld r0, i
l o1 ld r1, x
l o2 addi r0, r0, 1
l o3 ldx r2, t, r0
l o4 st r0, i
l o5 add r1, r1, r2
l o6 st r1, x
l o7 . . .

Syntactic mappings:

πX×X : (l s0 , i) 7→ (l o0 , i)
(l s0 , x) 7→ (l o0 , x)
(l s1 , i) 7→ (l o5 , i)
(l s1 , x) 7→ (l o1 , x)
(l s2 , i) 7→ (l o7 , i)
(l s2 , x) 7→ (l o7 , x)

Thus, l of = i@l o5 ; x@l o1
Source level transfer functions:

δl s0 ,l
s
1

= bi← i + 1c δl s1 ,l
s
2

= bx← x + t[i]c

Optimized level transfer functions (registered not displayed):

δl o0 ,l
o
f

= bµ(i)← µ(i) + 1c δl of ,l
o
7

= bµ(x)← µ(x) + µ(t + µ(i))c
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Application to certified compilation

Translation validation and optimizations

Program reduction:
produces a set of symbolic transfer functions that encode the
transition relation of the program up-to observational abstraction
abstracts the effect of optimizations
as in the instruction scheduling example
loop unrolling would result into unrolling at the source level
(partitioning)

Translation validation:
based on a specialized prover, to establish equivalence of transfer
functions
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Conclusion
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Conclusion

Conclusion

Formalization of Compilation:
At the concrete level: independent from analysis
Very broad; works as well for

I other architectures
I optimizations (use of other abstractions)

Algorithms for certified compilation described in the abstract
interpretation frameworks:

Invariant translation
Invariant checking
Translation validation
Compiler formal certification

Symbolic transfer functions and use in static analysis and program
transformations.

This approach applies to other program transformations
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Conclusion

Semantics

Program transformations: P. Cousot and R. Cousot.
Systematic design of program transformation frameworks by abstract
interpretation.
In Conference Record of the 29th Symposium on Principles of Programming
Languages (POPL’02), pages 178–190, Portland, Oregon, January 2002.

Relation between types and static analysis:
P. Cousot,
Types as Abstract Interpretations.
In POPL’97, pages 316–331, Paris, January 1997.

Symbolic transfer functions:
C. Colby and P. Lee.
Trace-based program analysis.
In 23rd POPL, pages 195–207, St. Petersburg Beach, (Florida USA), 1996.
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Conclusion

Bibliography: Certified Compilation
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Conclusion

Bibliography: Certified Compilation
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Formal proof:
X. Leroy.
Formal certification of a compiler back-end, or: programming a
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In POPL’06, Charleston, january 2006.

A generic frameork:
X. Rival.
Symbolic-Transfer Function-Based Approaches to Compilation
Certification
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Conclusion

Assignment: proofs

Read the paper Systematic design of program transformation
frameworks by abstract interpretation, by Patrick Cousot and
Radhia Cousot

Proofs based on fixpoint techniques:
1 show the correctness of the invariant checking algorithm (slide 73)
2 show the correctness of the translation validation theorem (slide 79)
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