Static Analysis of Ethereum Smart Contracts
by Abstract Interpretation

Master 2 research internship proposal, 2018-2019

Supervisor: Antoine Miné (antoine.mine@lipé6. fr)

Internship location: APR team, LIP6
Sorbonne Université
Jussieu Campus, Paris, France

Duration: 4.5 to 6 months
Related project: Mopsa project
Relevant courses: — MPRI 2.6: Abstract interpretation: application to

verification and static analysis

— Master STL: Typage et analyse statique

Other internships are possible on the topic of static analysis and abstract interpretation.
Contact the internship supervisor for more information.

Motivation

The goal of the internship is to develop, prove correct, and implement novel static
analyses by Abstract Interpretation to verify the correctness of smart contracts.

The internship focuses on Ethereum [1], a cryptocurrency framework that em-
ploies blockchain techniques and supports the execution of smart contracts. Smart
contracts can be written in a variety of languages, which are compiled into bytecode
that is run on the Ethereum Virtual Machine (EVM). EVM provides a Turing-complete,
stack-based machine with a byte-array based memory and an associative storage (with
256-bit keys and values). The EVM is completely specified formally [1], giving it an un-
ambiguous semantics. Hence, the intership will focus on analyzing EVM bytecode.

Application of formal methods to smart contracts is a recent area of research, with
few results yet. Examples include preliminary analyses using type and effect systems
with F* [2], and using model-checking with Spin [4]. We are not aware of works based
on Abstract Interpretation.

Verifying Smart Contracts

Several causes of vulnerabilities in Ethereum smart contracts have been uncovered [3].
Given the novelty of the subject, a preliminary study must be performed to determine
precisely which vulnerabilities can be efficiently detected by static analysis, and which
properties must be inferred to detect them. Nevertheless, one promising direction is
to focus on vulnerabilities related to exceptional behaviors (i.e., run-time errors). The
intern may focus primarily on the following analyses:


antoine.mine@lip6.fr
https://www-apr.lip6.fr/web
https://www.lip6.fr/
https://www-apr.lip6.fr/~mine/mopsa

1. Checking exceptions.
Erroneous operations in the execution of a contract cause exceptions to be raised
and the contract to be terminated. Some exceptions, though, are propagated
back to the caller contract, while others result in return codes, which may not be
checked appropriately, causing vulnerabilities [3]. A static analysis could detect
that possible exceptions are correctly handled, even through calls to contracts.

2. Call stack depth.
The EVM stack depth is limited to 1024, and exceeding this limitation causes
an exception that may not be properly handled by a contract and be the base of
attacks [3]. A static stack depth analysis can alleviate this kind of errors.

3. Atomicity vulnerabilities.
Contracts do not operate atomically: a contract can call another contract, that
can access and exploit the intermediate state the calling contract is in for ill
effects. For instance, a reentrancy bug, where a contract is called again from
within its own execution, is the basis of the The DAO attack, which caused a 60
million US dollar loss in June 2016 [3].

4. Transaction fees.
Every operation in the EVM comes with a cost, measured in an abstract unit
called gas. The cost of a contract is specified up-front, and the execution stops
(with an exception) whenever this cost is exceeded. A cost analysis can check
statically whether a contract will meet its cost target. Such an analysis can
leverage the large body of literature on worst case execution time of binary pro-
grams.

The intern will leverage existing abstractions, such as numeric abstractions, and
develop new abstractions if needed. Most static analyses target source-level programs.
Analyzing bytecode-level programs poses additional challenges due to the very low-
level of instructions, and the tendency of fine-grained abstract transfer functions to
accumulate imprecision. Methods including developing specific relational domains or
high-level expression reconstruction may be required to reach the intended level of
precision.

Extension to checking other classes of vulnerabilities will be considered if time
permits. One possible direction is the verification of temporal properties, as proposed
in [4], but employing a direct abstract interpretation of the EVM bytecode instead of
model-checking hand-crafted models with Spin.

Expected Work

The intended work will include a theoretical side: developing abstract semantics and
proving formally their soundness. It will also include a practical side: implement-
ing the semantics in a static analyzer and validating their benefit experimentally on
sample smart contracts.

The host team is developing a static analysis platform, Mopsa, that includes several
ready-to-use abstractions, and a framework that allows easily extending the analyses
both to new abstractions, and to new languages. For experimental purposes, the
intern will thus write an EVM bytecode frontend for Mopsa, reuse existing Mopsa
abstractions, and add the necessary abstractions to carry the static analysis.



Requested Skills

The internship requires a strong knowledge of static analysis by abstract interpreta-
tion. The intern should have followed one of the following Master 2 courses: “Abstract
interpretation: application to verification and static analysis” from MPRI, “Typage et
analyse statique” from the STL Master at Sorbonne Université, or an equivalent course.
Basic knowledge of blockchain principles is a plus, but not a requirement.

Knowledge of the OCaml language is also required, for the implementation effort within
the Mopsa platform.

Context of the Internship

The internship will take place in the APR team, in the LIP6 laboratory, Jussieu Cam-
pus, Sorbonne Université, Paris. It is proposed in the scope of the Mopsa ERC re-
search project. If the internship is successful, the project may provide opportunities
for a funded PhD on a follow-up subject.

References

[1] Gavin Wood, Nick Savers et al. Ethereum Yellow Paper. https://github.com/
ethereum/yellowpaper

[2] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Golla-
mudi, Georges Gonthier, Nadim Kobeissi, Aseem Rastogi, Thomas Sibut-Pinote,
Nikhil Swamy, and Santiago Zanella-Béguelin. Formal Verification of Smart Con-
tracts: Short Paper. In Proc. PLAS’16, 91-96, Vienna, Austria, Oct. 2016. ACM
Press.

[3] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. Mak-
ing Smart Contracts Smarter. In Proc. CCS’'16, 254-269, Vienna, Austria, Pct.
2016. ACM Press.

[4] Xiaomin Bai, Zijing Cheng, Zhangbo Duan, and Kai Hu. Formal Modeling
and Verification of Smart Contracts. In Proc. ICSCA 2018, 322-326, Kuantan,
Malaysia, Feb. 2018. ACM Press.


https://github.com/ethereum/yellowpaper
https://github.com/ethereum/yellowpaper

