Order Theory

MPRI 2–6: Abstract Interpretation, application to verification and static analysis

Antoine Miné

Year 2019-2020

Course 01 11 September 2019

Partial orders

Given a set X, a relation $\sqsubseteq \in X \times X$ is a partial order if it is:

1 reflexive: $\forall x \in X, x \sqsubseteq x$

2 antisymmetric: $\forall x, y \in X, x \sqsubseteq y \land y \sqsubseteq x \implies x = y$

 $\textbf{ stransitive: } \forall x, y, z \in X, x \sqsubseteq y \land y \sqsubseteq z \implies x \sqsubseteq z.$

 (X, \sqsubseteq) is a poset (partially ordered set).

If we drop antisymmetry, we have a preorder instead.

Examples: partial orders

Partial orders:

- (\mathbb{Z}, \leq) (completely ordered)
- $(\mathcal{P}(X), \subseteq)$

(not completely ordered: $\set{1} \not\subseteq \set{2}, \, \set{2} \not\subseteq \set{1}$)

- (S, =) is a poset for any S
- (ℤ², ⊑), where (a, b) ⊑ (a', b') ⇔ a ≥ a' ∧ b ≤ b' (ordering of interval bounds that implies inclusion)

Examples: preorders

Preorders:

• $(\mathcal{P}(X), \sqsubseteq)$, where $a \sqsubseteq b \iff |a| \le |b|$

(ordered by cardinal)

• $(\mathbb{Z}^2, \sqsubseteq)$, where $(a, b) \sqsubseteq (a', b') \iff \{x \mid a \le x \le b\} \subseteq \{x \mid a' \le x \le b'\}$

(inclusion of intervals represented by pairs of bounds)

not antisymmetric: $[1,0] \neq [2,0]$ but $[1,0] \sqsubseteq [2,0] \sqsubseteq [1,0]$

Equivalence: \equiv

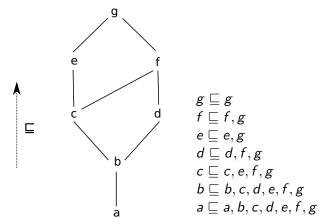
$$X \equiv Y \iff (X \sqsubseteq Y) \land (Y \sqsubseteq X)$$

We obtain a partial order by quotienting by \equiv .

Partial orders

Examples of posets (cont.)

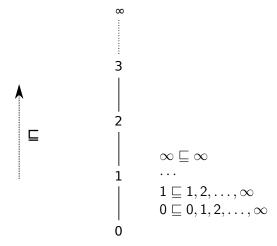
• Given by a Hasse diagram, e.g.:



Partial orders

Examples of posets (cont.)

• Infinite Hasse diagram for $(\mathbb{N} \cup \{\infty\}, \leq)$:



Use of posets (informally)

Posets are a very useful notion to discuss about:

- logic: ordered by implication \implies
- approximation: □ is an information order
 ("a □ b" means: "a caries more information than b")
- program verification: program semantics \sqsubseteq specification

(e.g.: behaviors of program \subseteq accepted behaviors)

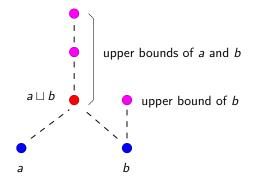
• iteration: fixpoint computation

(e.g., a computation is directed, with a limit: $X_1 \sqsubseteq X_2 \sqsubseteq \cdots \sqsubseteq X_n$)

Partial orders

(Least) Upper bounds

- c is an upper bound of a and b if: $a \sqsubseteq c$ and $b \sqsubseteq c$
- c is a least upper bound (lub or join) of a and b if
 - c is an upper bound of a and b
 - for every upper bound d of a and b, $c \sqsubseteq d$



Partial orders

(Least) Upper bounds

The lub is unique and denoted $a \sqcup b$.

(proof: assume that c and d are both lubs of a and b; by definition of lubs, $c \sqsubseteq d$ and $d \sqsubseteq c$; by antisymmetry of \sqsubseteq , c = d)

Generalized to upper bounds of arbitrary (even infinite) sets $\sqcup Y, Y \subseteq X$ (well-defined, as \sqcup is commutative and associative).

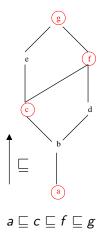
Similarly, we define greatest lower bounds (glb, meet) $a \sqcap b$, $\sqcap Y$. ($a \sqcap b \sqsubseteq a, b$ and $\forall c, c \sqsubseteq a, b \implies c \sqsubseteq a \sqcap b$)

Note: not all posets have lubs, glbs

(e.g.: $a \sqcup b$ not defined on $(\{a, b\}, =)$)

Chains

 $C \subseteq X$ is a chain in (X, \sqsubseteq) if it is totally ordered by \sqsubseteq : $\forall x, y \in C, x \sqsubseteq y \lor y \sqsubseteq x.$



Complete partial orders (CPO)

A poset (X, \sqsubseteq) is a complete partial order (CPO) if every chain *C* (including \emptyset) has a least upper bound $\sqcup C$.

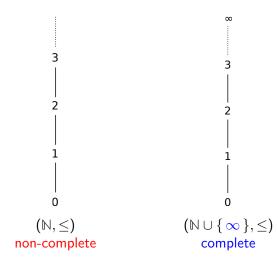
A CPO has a least element $\sqcup \emptyset$, denoted \bot .

Examples:

- (\mathbb{N}, \leq) is not complete, but $(\mathbb{N} \cup \{\infty\}, \leq)$ is complete.
- $(\{x \in \mathbb{Q} \mid 0 \le x \le 1\}, \le)$ is not complete, but $(\{x \in \mathbb{R} \mid 0 \le x \le 1\}, \le)$ is complete.
- $(\mathcal{P}(Y), \subseteq)$ is complete for any Y.
- (X, \sqsubseteq) is complete if X is finite.

Partial orders

Complete partial order examples



A lattice $(X, \sqsubseteq, \sqcup, \sqcap)$ is a poset with

- **1** a lub $a \sqcup b$ for every pair of elements a and b;
- **2** a glb $a \sqcap b$ for every pair of elements a and b.

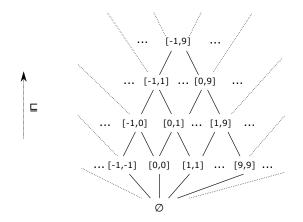
Examples:

- integers $(\mathbb{Z}, \leq, \max, \min)$
- integer intervals (presenter later)
- divisibility (presenter later)

If we drop one condition, we have a (join or meet) semilattice.

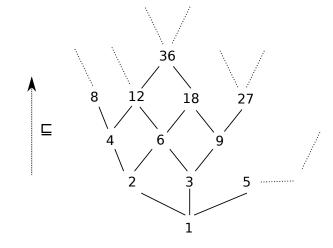
Reference on lattices: Birkhoff [Birk76].

Example: the interval lattice



Integer intervals: $(\{[a, b] | a, b \in \mathbb{Z}, a \le b\} \cup \{\emptyset\}, \subseteq, \sqcup, \cap)$ where $[a, b] \sqcup [a', b'] \stackrel{\text{def}}{=} [\min(a, a'), \max(b, b')].$

Example: the divisibility lattice



Divisibility (\mathbb{N}^* , |, lcm, gcd) where $x|y \iff \exists k \in \mathbb{N}, kx = y$

Example: the divisibility lattice (cont.)

Let $P \stackrel{\text{def}}{=} \{ p_1, p_2, \dots \}$ be the (infinite) set of prime numbers.

We have a correspondence ι between \mathbb{N}^* and $P \to \mathbb{N}$:

• $\alpha = \iota(x)$ is the (unique) decomposition of x into prime factors

•
$$\iota^{-1}(\alpha) \stackrel{\text{def}}{=} \prod_{a \in P} a^{\alpha(a)} = x$$

• ι is one-to-one on functions $P \to \mathbb{N}$ with finite support $(\alpha(a) = 0$ except for finitely many factors a)

We have a correspondence between $(\mathbb{N}^*, |, \mathsf{lcm}, \mathsf{gcd})$ and $(\mathbb{N}, \leq, \mathsf{max}, \mathsf{min})$.

Assume that $\alpha = \iota(x)$ and $\beta = \iota(y)$ are the decompositions of x and y, then:

•
$$\prod_{a \in P} a^{\max(\alpha(a), \beta(a))} = \operatorname{lcm}(\prod_{a \in P} a^{\alpha(a)}, \prod_{a \in P} a^{\beta(a)}) = \operatorname{lcm}(x, y)$$

•
$$\prod_{a \in P} a^{\min(\alpha(a), \beta(a))} = \operatorname{gcd}(\prod_{a \in P} a^{\alpha(a)}, \prod_{a \in P} a^{\beta(a)}) = \operatorname{gcd}(x, y)$$

•
$$(\forall a: \alpha(a) \leq \beta(a)) \iff (\prod_{a \in P} a^{\alpha(a)}) \mid (\prod_{a \in P} a^{\beta(a)}) \iff x \mid y$$

Complete lattices

A complete lattice $(X, \sqsubseteq, \sqcup, \sqcap, \bot, \top)$ is a poset with

- **1** a lub $\sqcup S$ for every set $S \subseteq X$
- **2** a glb $\sqcap S$ for every set $S \subseteq X$
- ${f 0}$ a least element ot
- (4) a greatest element \top

Notes:

- 1 implies 2 as □ *S* = ⊔ { *y* | ∀*x* ∈ *S*, *y* ⊑ *x* } (and 2 implies 1 as well),
- 1 and 2 imply 3 and 4: $\bot = \sqcup \emptyset = \sqcap X$, $\top = \sqcap \emptyset = \sqcup X$,
- a complete lattice is also a CPO.

Complete lattice examples

• real segment [0,1]: ({ $x \in \mathbb{R} \mid 0 \le x \le 1$ }, \le , max, min, 0, 1)

• powersets
$$(\mathcal{P}(S), \subseteq, \cup, \cap, \emptyset, S)$$

(next slide)

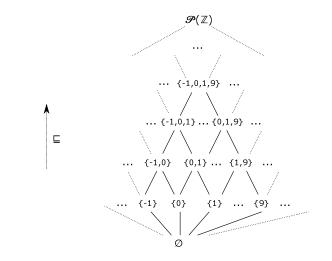
• any finite lattice

 $(\sqcup Y \text{ and } \sqcap Y \text{ for finite } Y \subseteq X \text{ are always defined})$

• integer intervals with finite and infinite bounds:

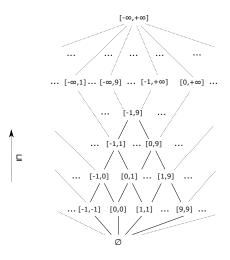
$$\begin{array}{l} (\{ [a, b] \mid a \in \mathbb{Z} \cup \{ -\infty \}, \ b \in \mathbb{Z} \cup \{ +\infty \}, \ a \leq b \} \cup \{ \emptyset \}, \\ \subseteq, \sqcup, \cap, \emptyset, \ [-\infty, +\infty]) \\ \text{with } \sqcup_{i \in I} [a_i, b_i] \stackrel{\text{def}}{=} [\min_{i \in I} a_i, \ \max_{i \in I} b_i]. \\ (\text{in two slides}) \end{array}$$

Example: the powerset complete lattice



Example: $(\mathcal{P}(\mathbb{Z}), \subseteq, \cup, \cap, \emptyset, \mathbb{Z})$

Example: the intervals complete lattice



The integer intervals with finite and infinite bounds: $(\{[a,b] | a \in \mathbb{Z} \cup \{-\infty\}, b \in \mathbb{Z} \cup \{+\infty\}, a \leq b\} \cup \{\emptyset\}, \subseteq, \sqcup, \cap, \emptyset, [-\infty, +\infty])$

Course 01

Order Theory

Derivation

Given a (complete) lattice or partial order $(X, \sqsubseteq, \sqcup, \sqcap, \bot, \top)$ we can derive new (complete) lattices or partial orders by:

- duality
 - $(X, \sqsupseteq, \sqcap, \sqcup, \top, \bot)$
 - $\bullet \ \sqsubseteq \text{ is reversed}$
 - $\bullet \ \sqcup \ \text{and} \ \sqcap \ \text{are switched}$
 - $\bullet \ \bot$ and \top are switched
- lifting (adding a smallest element) (X ∪ { ⊥' }, ⊑', ⊔', ⊓', ⊥', ⊤)
 a ⊑' b ⇔ a = ⊥' ∨ a ⊑ b
 ⊥' ⊔' a = a ⊔' ⊥' = a, and a ⊔' b = a ⊔ b if a, b ≠ ⊥'
 ⊥' ⊓' a = a ⊓' ⊥' = ⊥', and a ⊓' b = a ⊓ b if a, b ≠ ⊥'
 ⊥' replaces ⊥
 - \top is unchanged

Derivation (cont.)

Given (complete) lattices or partial orders: $(X_1, \sqsubseteq_1, \sqcup_1, \sqcap_1, \bot_1, \top_1)$ and $(X_2, \sqsubseteq_2, \sqcup_2, \sqcap_2, \bot_2, \top_2)$

We can combine them by:

• smashed product (coalescent product, merging \bot_1 and \bot_2) ((($X_1 \setminus \{ \bot_1 \}$) × ($X_2 \setminus \{ \bot_2 \}$)) $\cup \{ \bot \}$, \sqsubseteq , \sqcup , \sqcap , \bot , \top)

(as $X_1 \times X_2$, but all elements of the form (\perp_1, y) and (x, \perp_2) are identified to a unique \perp element)

Given a (complete) lattice or partial order $(X, \sqsubseteq, \sqcup, \sqcap, \bot, \top)$ and a set *S*:

• point-wise lifting (functions from
$$S$$
 to X)
($S \rightarrow X, \sqsubseteq', \sqcup', \sqcap', \bot', \top'$) where
• $x \sqsubseteq' y \iff \forall s \in S : x(s) \sqsubseteq y(s)$
• $\forall s \in S : (x \sqcup' y)(s) \stackrel{\text{def}}{=} x(s) \sqcup y(s)$
• $\forall s \in S : (x \sqcap' y)(s) \stackrel{\text{def}}{=} x(s) \sqcap y(s)$
• $\forall s \in S : \bot'(s) = \bot$
• $\forall s \in S : \top'(s) = \top$

Distributivity

A lattice $(X, \sqsubseteq, \sqcup, \sqcap)$ is distributive if:

•
$$a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c)$$
 and

•
$$a \sqcap (b \sqcup c) = (a \sqcap b) \sqcup (a \sqcap c)$$

Examples:

•
$$(\mathcal{P}(X), \subseteq, \cup, \cap)$$
 is distributive

intervals are not distributive
 ([0,0] ⊔ [2,2]) ⊓ [1,1] = [0,2] ⊓ [1,1] = [1,1] but
 ([0,0] ⊓ [1,1]) ⊔ ([2,2] ⊓ [1,1]) = Ø ⊔ Ø = Ø

(common cause of precision loss in static analyses)

Given a lattice $(X, \sqsubseteq, \sqcup, \sqcap)$ and $X' \subseteq X$ $(X', \sqsubseteq, \sqcup, \sqcap)$ is a sublattice of X if X' is closed under \sqcup and \sqcap

Examples:

- if $Y \subseteq X$, $(\mathcal{P}(Y), \subseteq, \cup, \cap, \emptyset, Y)$ is a sublattice of $(\mathcal{P}(X), \subseteq, \cup, \cap, \emptyset, X)$
- integer intervals are not a sublattice of $(\mathcal{P}(\mathbb{Z}), \subseteq, \cup, \cap, \emptyset, \mathbb{Z})$ $[\min(a, a'), \max(b, b')] \neq [a, b] \cup [a', b']$

(another common cause of precision loss in static analyses)

Functions

- A function $f: (X_1, \sqsubseteq_1, \sqcup_1, \bot_1) \rightarrow (X_2, \sqsubseteq_2, \sqcup_2, \bot_2)$ is
 - monotonic if

$$\forall x, x', x \sqsubseteq_1 x' \implies f(x) \sqsubseteq_2 f(x')$$

(aka: increasing, isotone, order-preserving, morphism)

• strict if $f(\perp_1) = \perp_2$

• continuous between CPO if $\forall C \text{ chain } \subseteq X_1, \{ f(c) | c \in C \}$ is a chain in X_2 and $f(\sqcup_1 C) = \sqcup_2 \{ f(c) | c \in C \}$

- a (complete) □-morphism between (complete) lattices if ∀S ⊆ X₁, f(□₁ S) = □₂ { f(s) | s ∈ S }
- extensive if $X_1 = X_2$ and $\forall x, x \sqsubseteq_1 f(x)$
- reductive if $X_1 = X_2$ and $\forall x, f(x) \sqsubseteq_1 x$

Fixpoints

Given $f: (X, \sqsubseteq) \to (X, \sqsubseteq)$

- x is a fixpoint of f if f(x) = x
- x is a pre-fixpoint of f if $x \sqsubseteq f(x)$
- x is a post-fixpoint of f if $f(x) \sqsubseteq x$

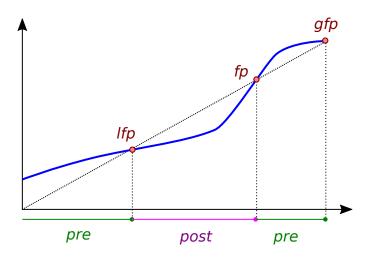
We may have several fixpoints (or none)

- $\operatorname{fp}(f) \stackrel{\text{def}}{=} \{ x \in X \mid f(x) = x \}$
- $\operatorname{lfp}_{x} f \stackrel{\text{def}}{=} \min_{\sqsubseteq} \{ y \in \operatorname{fp}(f) | x \sqsubseteq y \}$ if it exists (least fixpoint greater than x)
- If $f \stackrel{\text{def}}{=}$ If $p_{\perp} f$

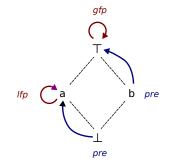
(least fixpoint)

• dually: $gfp_x f \stackrel{\text{def}}{=} max_{\sqsubseteq} \{ y \in fp(f) | y \sqsubseteq x \}$, $gfp f \stackrel{\text{def}}{=} gfp_{\top} f$ (greatest fixpoints)

Fixpoints: illustration

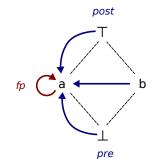


Fixpoints: example



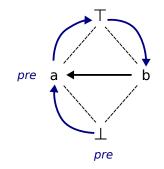
Monotonic function with two distinct fixpoints

Fixpoints: example



Monotonic function with a unique fixpoint

Fixpoints: example



Non-monotonic function with no fixpoint

Uses of fixpoints: examples

• Express solutions of mutually recursive equation systems

Example:

The solutions of
$$\left\{ \begin{array}{l} x_1 = f(x_1, x_2) \\ x_2 = g(x_1, x_2) \end{array}
ight.$$
 with x_1, x_2 in lattice X

are exactly the fixpoint of \vec{F} in lattice $X \times X$, where

$$\vec{F} \left(egin{array}{c} x_1, \ x_2 \end{array}
ight) = \left(egin{array}{c} f(x_1, x_2), \ g(x_1, x_2) \end{array}
ight)$$

The least solution of the system is lfp \vec{F} .

Uses of fixpoints: examples

• Close (complete) sets to satisfy a given property

Example: $r \subseteq X \times X$ is transitive if: $(a, b) \in r \land (b, c) \in r \implies (a, c) \in r$

The transitive closure of r is the smallest transitive relation containing r.

Let $f(s) = r \cup \{ (a, c) | (a, b) \in s \land (b, c) \in s \}$, then lfp f:

- Ifp f contains r
- Ifp f is transitive
- Ifp f is minimal

 \implies lfp f is the transitive closure of r.

Tarski's fixpoint theorem

Tarksi's theorem

If $f : X \to X$ is monotonic in a complete lattice X then fp(f) is a complete lattice.

Proved by Knaster and Tarski [Tars55].

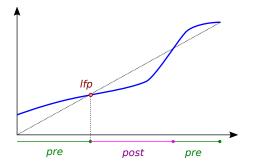
Tarski's fixpoint theorem

Tarksi's theorem

If $f : X \to X$ is monotonic in a complete lattice X then fp(f) is a complete lattice.

Proof:

We prove Ifp $f = \sqcap \{ x \mid f(x) \sqsubseteq x \}$ (meet of post-fixpoints).



Tarski's fixpoint theorem

Tarksi's theorem

If $f : X \to X$ is monotonic in a complete lattice X then fp(f) is a complete lattice.

Proof:

We prove Ifp $f = \Box \{ x | f(x) \sqsubseteq x \}$ (meet of post-fixpoints). Let $f^* = \{ x | f(x) \sqsubseteq x \}$ and $a = \Box f^*$.

 $\forall x \in f^*, a \sqsubseteq x \quad (by \text{ definition of } \sqcap)$ so $f(a) \sqsubseteq f(x) \quad (as f \text{ is monotonic})$ so $f(a) \sqsubseteq x \quad (as x \text{ is a post-fixpoint}).$ We deduce that $f(a) \sqsubseteq \sqcap f^*$, i.e. $f(a) \sqsubseteq a$.

Tarski's fixpoint theorem

Tarksi's theorem

If $f : X \to X$ is monotonic in a complete lattice X then fp(f) is a complete lattice.

Proof:

We prove Ifp $f = \Box \{ x | f(x) \sqsubseteq x \}$ (meet of post-fixpoints).

```
\begin{array}{l} f(a) \sqsubseteq a \\ \text{so } f(f(a)) \sqsubseteq f(a) \quad (\text{as } f \text{ is monotonic}) \\ \text{so } f(a) \in f^* \quad (\text{by definition of } f^*) \\ \text{so } a \sqsubseteq f(a). \\ \text{We deduce that } f(a) = a, \text{ so } a \in \operatorname{fp}(f). \end{array}
```

Note that
$$y \in fp(f)$$
 implies $y \in f^*$.
As $a = \sqcap f^*$, $a \sqsubseteq y$, and we deduce $a = \mathsf{lfp} f$.

Tarski's fixpoint theorem

Tarksi's theorem

If $f : X \to X$ is monotonic in a complete lattice X then fp(f) is a complete lattice.

Proof:

Given $S \subseteq fp(f)$, we prove that $|fp_{\sqcup S} f|$ exists.

Consider $X' = \{x \in X \mid \sqcup S \sqsubseteq x\}$. X' is a complete lattice. Moreover $\forall x' \in X', f(x') \in X'$. f can be restricted to a monotonic function f' on X'. We apply the preceding result, so that $\operatorname{lfp} f' = \operatorname{lfp}_{\sqcup S} f$ exists. By definition, $\operatorname{lfp}_{\sqcup S} f \in \operatorname{fp}(f)$ and is smaller than any fixpoint larger than all $s \in S$.

Tarski's fixpoint theorem

Tarksi's theorem

If $f : X \to X$ is monotonic in a complete lattice X then fp(f) is a complete lattice.

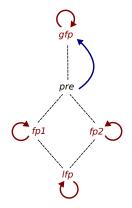
Proof:

By duality, we construct gfp f and gfp_{$\Box S$} f.

The complete lattice of fixpoints is: $(fp(f), \sqsubseteq, \lambda S.lfp_{\sqcup S} f, \lambda S.gfp_{\sqcap S} f, lfp f, gfp f).$

Not necessarily a sublattice of $(X, \sqsubseteq, \sqcup, \neg, \bot, \top)!$

Tarski's fixpoint theorem: example



Lattice: ({ lfp, fp1, fp2, pre, gfp }, \Box , \Box , lfp, gfp) Fixpoint lattice: ({ lfp, fp1, fp2, gfp }, \Box' , \Box' , lfp, gfp)

(not a sublattice as $fp1 \sqcup' fp2 = gfp$ while $fp1 \sqcup fp2 = pre$,

but gfp is the smallest fixpoint greater than pre)

Course 01

"Kleene" fixpoint theorem

"Kleene" fixpoint theorem

If $f : X \to X$ is continuous in a CPO X and $a \sqsubseteq f(a)$ then $lfp_a f$ exists.

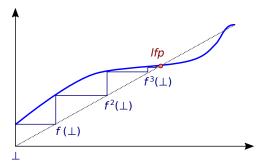
Inspired by Kleene [Klee52].

"Kleene" fixpoint theorem

"Kleene" fixpoint theorem

If $f : X \to X$ is continuous in a CPO X and $a \sqsubseteq f(a)$ then $lfp_a f$ exists.

We prove that $\{ f^n(a) \mid n \in \mathbb{N} \}$ is a chain and $lfp_a f = \sqcup \{ f^n(a) \mid n \in \mathbb{N} \}.$



"Kleene" fixpoint theorem

"Kleene" fixpoint theorem

If $f : X \to X$ is continuous in a CPO X and $a \sqsubseteq f(a)$ then $lfp_a f$ exists.

We prove that $\{ f^n(a) | n \in \mathbb{N} \}$ is a chain and $lfp_a f = \sqcup \{ f^n(a) | n \in \mathbb{N} \}.$

 $a \sqsubseteq f(a) \text{ by hypothesis.}$ $f(a) \sqsubseteq f(f(a)) \text{ by monotony of } f.$ (Note that any continuous function is monotonic. Indeed, $x \sqsubseteq y \implies x \sqcup y = y \implies f(x \sqcup y) = f(y);$ by continuity $f(x) \sqcup f(y) = f(x \sqcup y) = f(y)$, which implies $f(x) \sqsubseteq f(y).$) By recurrence $\forall n, f^n(a) \sqsubseteq f^{n+1}(a).$ Thus, $\{f^n(a) \mid n \in \mathbb{N}\}$ is a chain and $\sqcup \{f^n(a) \mid n \in \mathbb{N}\}$ exists.

"Kleene" fixpoint theorem

"Kleene" fixpoint theorem

If $f : X \to X$ is continuous in a CPO X and $a \sqsubseteq f(a)$ then $lfp_a f$ exists.

$$\begin{split} f\big(\sqcup \left\{ \begin{array}{c} f^n(a) \mid n \in \mathbb{N} \right\} \big) \\ &= \sqcup \left\{ \begin{array}{c} f^{n+1}(a) \mid n \in \mathbb{N} \right\} \big) \quad (\text{by continuity}) \\ &= a \sqcup \left(\sqcup \left\{ \begin{array}{c} f^{n+1}(a) \mid n \in \mathbb{N} \right\} \right) \text{ (as all } f^{n+1}(a) \text{ are greater than } a) \\ &= \sqcup \left\{ \begin{array}{c} f^n(a) \mid n \in \mathbb{N} \right\} . \\ &\text{So, } \sqcup \left\{ \begin{array}{c} f^n(a) \mid n \in \mathbb{N} \right\} \in \mathsf{fp}(f) \end{split} \end{split}$$

Moreover, any fixpoint greater than *a* must also be greater than all $f^n(a)$, $n \in \mathbb{N}$. So, $\sqcup \{ f^n(a) \mid n \in \mathbb{N} \} = \mathsf{lfp}_a f$.

Well-ordered sets

- (S, \sqsubseteq) is a well-ordered set if:
 - \sqsubseteq is a total order on S
 - every $X \subseteq S$ such that $X \neq \emptyset$ has a least element $\sqcap X \in X$

Consequences:

- any element x ∈ S has a successor x + 1 ^{def} = ⊓ { y | x ⊏ y } (except the greatest element, if it exists)
- if $\exists y, x = y + 1$, x is a limit and $x = \sqcup \{ y \mid y \sqsubset x \}$ (every bounded subset $X \subseteq S$ has a lub $\sqcup X = \sqcap \{ y \mid \forall x \in X, x \sqsubseteq y \}$)

Examples:

- (\mathbb{N}, \leq) and $(\mathbb{N} \cup \{\infty\}, \leq)$ are well-ordered
- (Z, \leq), (R, \leq), (R^+, \leq) are not well-ordered
- ordinals $0, 1, 2, \ldots, \omega, \omega + 1, \ldots$ are well-ordered (ω is a limit) well-ordered sets are ordinals up to order-isomorphism

(i.e., bijective functions f such that f and f^{-1} are monotonic)

Constructive Tarski theorem by transfinite iterations

Given a function $f : X \to X$ and $a \in X$, the transfinite iterates of f from a are:

$$\begin{cases} x_0 \stackrel{\text{def}}{=} a \\ x_n \stackrel{\text{def}}{=} f(x_{n-1}) & \text{if } n \text{ is a successor ordinal} \\ x_n \stackrel{\text{def}}{=} \sqcup \{ x_m \mid m < n \} & \text{if } n \text{ is a limit ordinal} \end{cases}$$

Constructive Tarski theorem

If $f : X \to X$ is monotonic in a CPO X and $a \sqsubseteq f(a)$, then $f_{a} f = x_{\delta}$ for some ordinal δ .

Generalisation of "Kleene" fixpoint theorem, from [Cous79].

Proof

 $f \text{ is monotonic in a CPO } X, \\ \begin{cases} x_0 \stackrel{\text{def}}{=} a \sqsubseteq f(a) \\ x_n \stackrel{\text{def}}{=} f(x_{n-1}) & \text{if } n \text{ is a successor ordinal} \\ x_n \stackrel{\text{def}}{=} \sqcup \{x_m \mid m < n\} & \text{if } n \text{ is a limit ordinal} \end{cases}$

Proof:

We prove that $\exists \delta, x_{\delta} = x_{\delta+1}$.

We note that $m \leq n \implies x_m \sqsubseteq x_n$. Assume by contradiction that $\exists \delta, x_\delta = x_{\delta+1}$. If *n* is a successor ordinal, then $x_{n-1} \sqsubset x_n$. If *n* is a limit ordinal, then $\forall m < n, x_m \sqsubset x_n$. Thus, all the x_n are distinct. By choosing n > |X|, we arrive at a contradiction. Thus δ exists.

Proof

 $\begin{array}{l} f \text{ is monotonic in a CPO } X, \\ \left\{ \begin{array}{l} x_0 \stackrel{\text{def}}{=} a \sqsubseteq f(a) \\ x_n \stackrel{\text{def}}{=} f(x_{n-1}) & \text{if } n \text{ is a successor ordinal} \\ x_n \stackrel{\text{def}}{=} \sqcup \left\{ x_m \, | \, m < n \right\} & \text{if } n \text{ is a limit ordinal} \end{array} \right.$

Proof:

Given δ such that $x_{\delta+1} = x_{\delta}$, we prove that $x_{\delta} = \mathsf{lfp}_a f$.

 $f(x_{\delta}) = x_{\delta+1} = x_{\delta}, \text{ so } x_{\delta} \in \text{fp}(f).$ Given any $y \in \text{fp}(f), y \sqsupseteq a$, we prove by transfinite induction that $\forall n, x_n \sqsubseteq y$. By definition $x_0 = a \sqsubseteq y$. If n is a successor ordinal, by monotony, $x_{n-1} \sqsubseteq y \implies f(x_{n-1}) \sqsubseteq f(y), \text{ i.e., } x_n \sqsubseteq y$. If n is a limit ordinal, $\forall m < n, x_m \sqsubseteq y$ implies $x_n = \sqcup \{x_m \mid m < n\} \sqsubseteq y$. Hence, $x_{\delta} \sqsubseteq y$ and $x_{\delta} = \text{lfp}_a f$.

Ascending chain condition (ACC)

An ascending chain C in (X, \sqsubseteq) is a sequence $c_i \in X$ such that $i \leq j \implies c_i \sqsubseteq c_j$.

A poset (X, \sqsubseteq) satisfies the ascending chain condition (ACC) iff for every ascending chain C, $\exists i \in \mathbb{N}, \forall j \ge i, c_i = c_j$.

Similarly, we can define the descending chain condition (DCC).

Examples:

- the powerset poset $(\mathcal{P}(X), \subseteq)$ is ACC when X is finite
- the pointed integer poset $(\mathbb{Z} \cup \{\bot\}, \sqsubseteq)$ where $x \sqsubseteq y \iff x = \bot \lor x = y$ is ACC and DCC
- the divisibility poset $(\mathbb{N}^*, |)$ is DCC but not ACC.

Kleene fixpoints in ACC posets

"Kleene" finite fixpoint theorem

If $f : X \to X$ is monotonic in an ACC poset X and $a \sqsubseteq f(a)$ then $lfp_a f$ exists.

Proof:

We prove $\exists n \in \mathbb{N}$, $\mathsf{lfp}_a f = f^n(a)$.

By monotony of f, the sequence $x_n = f^n(a)$ is an increasing chain. By definition of ACC, $\exists n \in \mathbb{N}, x_n = x_{n+1} = f(x_n)$. Thus, $x_n \in \text{fp}(f)$. Obviously, $a = x_0 \sqsubseteq f(x_n)$.

Moreover, if $y \in fp(f)$ and $y \supseteq a$, then $\forall i, y \supseteq f^i(a) = x_i$. Hence, $y \supseteq x_n$ and $x_n = lfp_a(f)$.

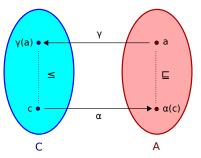
Comparison of fixpoint theorems

theorem	function	domain	fixpoint	method
Tarski	monotonic	complete	fp(f)	meet of
		lattice		post-fixpoints
Kleene	continuous	СРО	$lfp_a(f)$	countable iterations
constructive Tarski	monotonic	СРО	$lfp_a(f)$	transfinite iteration
ACC Kleene	monotonic	poset	$lfp_a(f)$	finite iteration

Given two posets (C, \leq) and (A, \sqsubseteq) , the pair $(\alpha : C \rightarrow A, \gamma : A \rightarrow C)$ is a Galois connection iff:

 $\forall a \in A, c \in C, \alpha(c) \sqsubseteq a \iff c \leq \gamma(a)$

which is noted $(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)$.



• α is the upper adjoint or abstraction; A is the abstract domain.

• γ is the lower adjoint or concretization; C is the concrete domain.

Antoine Miné

Galois connection example

Abstract domain of intervals of integers \mathbb{Z} represented as pairs of bounds (a, b).

We have:
$$(\mathcal{P}(\mathbb{Z}), \subseteq) \xrightarrow{\gamma}_{\alpha} (I, \sqsubseteq)$$

•
$$I \stackrel{\text{def}}{=} (\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{+\infty\})$$

•
$$(a,b) \sqsubseteq (a',b') \iff a \ge a' \land b \le b'$$

•
$$\gamma(a,b) \stackrel{\text{def}}{=} \{x \in \mathbb{Z} \mid a \leq x \leq b\}$$

•
$$\alpha(X) \stackrel{\text{def}}{=} (\min X, \max X)$$

proof:

Galois connection example

Abstract domain of intervals of integers \mathbb{Z} represented as pairs of bounds (a, b).

We have:
$$(\mathcal{P}(\mathbb{Z}), \subseteq) \xrightarrow{\gamma} (I, \sqsubseteq)$$

•
$$I \stackrel{\text{def}}{=} (\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{+\infty\})$$

•
$$(a,b) \sqsubseteq (a',b') \iff a \ge a' \land b \le b'$$

•
$$\gamma(a,b) \stackrel{\text{def}}{=} \{x \in \mathbb{Z} \mid a \leq x \leq b\}$$

•
$$\alpha(X) \stackrel{\text{\tiny def}}{=} (\min X, \max X)$$

proof:

$$\begin{array}{l} \alpha(X) \sqsubseteq (a,b) \\ \iff \min X \ge a \land \max X \le b \\ \iff \forall x \in X : a \le x \le b \\ \iff \forall x \in X : x \in \{ y \mid a \le y \le b \} \\ \iff \forall x \in X : x \in \gamma(a,b) \\ \iff X \subseteq \gamma(a,b) \end{array}$$

Properties of Galois connections

Assuming $\forall a, c, \alpha(c) \sqsubseteq a \iff c \leq \gamma(a)$, we have:

- $\gamma \circ \alpha$ is extensive: $\forall c, c \leq \gamma(\alpha(c))$ <u>proof:</u> $\alpha(c) \sqsubseteq \alpha(c) \Longrightarrow c \leq \gamma(\alpha(c))$
- **2** $\alpha \circ \gamma$ is reductive: $\forall a, \alpha(\gamma(a)) \sqsubseteq a$

 $\bigcirc \alpha$ is monotonic

 $\underline{\mathsf{proof:}} \ c \leq c' \implies c \leq \gamma(\alpha(c')) \implies \alpha(c) \sqsubseteq \alpha(c')$

 $\textcircled{O} \ \gamma \text{ is monotonic}$

$$\begin{array}{l} \bullet \quad \gamma \circ \alpha \circ \gamma = \gamma \\ \underline{\text{proof:}} \quad \alpha(\gamma(a)) \sqsubseteq \alpha(\gamma(a)) \implies \gamma(a) \leq \gamma(\alpha(\gamma(a))) \text{ and} \\ a \sqsupseteq \alpha(\gamma(a)) \implies \gamma(a) \geq \gamma(\alpha(\gamma(a))) \end{array}$$

() $\alpha \circ \gamma$ is idempotent: $\alpha \circ \gamma \circ \alpha \circ \gamma = \alpha \circ \gamma$

 $\textcircled{O} \ \gamma \circ \alpha \text{ is idempotent}$

Alternate characterization

If the pair ($\alpha: \mathcal{C} \rightarrow \mathcal{A}, \gamma: \mathcal{A} \rightarrow \mathcal{C}$) satisfies:

- $\textcircled{0} \ \gamma \text{ is monotonic,}$
- 2 α is monotonic,
- $\textcircled{O} \gamma \circ \alpha \text{ is extensive}$
- $\textcircled{O} \ \alpha \circ \gamma \text{ is reductive}$
- then (α, γ) is a Galois connection.

(proof left as exercise)

Uniqueness of the adjoint

Given $(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)$,

each adjoint can be uniquely defined in term of the other:

 $a(c) = \sqcap \{ a \mid c \le \gamma(a) \}$ $\gamma(a) = \lor \{ c \mid \alpha(c) \sqsubseteq a \}$

<u>Proof:</u> of 1 $\forall a, c \leq \gamma(a) \implies \alpha(c) \sqsubseteq a.$ Hence, $\alpha(c)$ is a lower bound of $\{ a \mid c \leq \gamma(a) \}.$ Assume that a' is another lower bound. Then, $\forall a, c \leq \gamma(a) \implies a' \sqsubseteq a.$ By Galois connection, we have then $\forall a, \alpha(c) \sqsubseteq a \implies a' \sqsubseteq a.$ This implies $a' \sqsubseteq \alpha(c).$ Hence, the greatest lower bound of $\{ a \mid c \leq \gamma(a) \}$ exists, and equals $\alpha(c).$

The proof of 2 is similar (by duality).

Properties of Galois connections (cont.)

If
$$(\alpha : C \rightarrow A, \gamma : A \rightarrow C)$$
, then:

 $\forall X \subseteq A, \text{ if } \Box X \text{ exists, then } \gamma(\Box X) = \land \{\gamma(x) \mid x \in X\}.$

Proof: of 1

By definition of lubs, $\forall x \in X, x \leq \lor X$. By monotony, $\forall x \in X, \alpha(x) \sqsubseteq \alpha(\lor X)$. Hence, $\alpha(\lor X)$ is an upper bound of $\{\alpha(x) | x \in X\}$. Assume that y is another upper bound of $\{\alpha(x) | x \in X\}$. Then, $\forall x \in X, \alpha(x) \sqsubseteq y$. By Galois connection $\forall x \in X, x \leq \gamma(y)$. By definition of lubs, $\lor X \leq \gamma(y)$. By Galois connection, $\alpha(\lor X) \sqsubseteq y$. Hence, $\{\alpha(x) | x \in X\}$ has a lub, which equals $\alpha(\lor X)$.

The proof of 2 is similar (by duality).

Deriving Galois connections

Given
$$(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)$$
, we have:

• duality:
$$(A, \sqsupseteq) \xleftarrow{\alpha}{\gamma} (C, \ge)$$

 $(\alpha(c) \sqsubseteq a \iff c \le \gamma(a) \text{ is exactly } \gamma(a) \ge c \iff a \sqsupseteq \alpha(c))$

• point-wise lifting by some set *S*:

$$(S \to C, \leq) \xleftarrow{\dot{\gamma}} (S \to A, \equiv)$$
 where
 $f \leq f' \iff \forall s, f(s) \leq f'(s), \quad (\dot{\gamma}(f))(s) = \gamma(f(s)),$
 $f \equiv f' \iff \forall s, f(s) \equiv f'(s), \quad (\dot{\alpha}(f))(s) = \alpha(f(s)).$

Given
$$(X_1, \sqsubseteq_1) \xleftarrow{\gamma_1}{\alpha_1} (X_2, \sqsubseteq_2) \xleftarrow{\gamma_2}{\alpha_2} (X_3, \sqsubseteq_3)$$
:
• composition: $(X_1, \sqsubseteq_1) \xleftarrow{\gamma_1 \circ \gamma_2}{\alpha_2 \circ \alpha_1} (X_3, \sqsubseteq_3)$
 $((\alpha_2 \circ \alpha_1)(c) \sqsubseteq_3 a \iff \alpha_1(c) \sqsubseteq_2 \gamma_2(a) \iff c \sqsubseteq_1 (\gamma_1 \circ \gamma_2)(a))$

- If $(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)$, the following properties are equivalent: ($\forall a \in A, \exists c \in C, \alpha(c) = a$) ($\forall a \in A, \exists c \in C, \alpha(c) = a$) ($\forall a, a' \in A, \gamma(a) = \gamma(a') \implies a = a'$) ($\forall a \in A, id(a) = a$) Such (α, α) is called a Calois embedding, which is noted
- Such (α, γ) is called a Galois embedding, which is noted $(C, \leq) \xleftarrow{\gamma}{\alpha} (A, \sqsubseteq)$

Proof:

- If $(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)$, the following properties are equivalent: ($\forall a \in A, \exists c \in C, \alpha(c) = a$) ($\forall a \circ \gamma = id$ ($\forall a \in A, \exists c \in C, \alpha(c) = a$) ($\forall a, a' \in A, \gamma(a) = \gamma(a') \implies a = a'$) ($\forall a \in A, id(a) = a$)
- Such (α, γ) is called a Galois embedding, which is noted $(C, \leq) \xleftarrow{\gamma}{\alpha} (A, \sqsubseteq)$

 $\underline{\mathsf{Proof:}} \ 1 \implies 2$

Assume that $\gamma(a) = \gamma(a')$. By surjectivity, take c, c' such that $a = \alpha(c), a' = \alpha(c')$. Then $\gamma(\alpha(c)) = \gamma(\alpha(c'))$. And $\alpha(\gamma(\alpha(c))) = \alpha(\gamma(\alpha(c')))$. As $\alpha \circ \gamma \circ \alpha = \alpha, \alpha(c) = \alpha(c')$. Hence a = a'.

- If $(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)$, the following properties are equivalent: ($\forall a \in A, \exists c \in C, \alpha(c) = a$) ($\forall a \in A, \exists c \in C, \alpha(c) = a$) ($\forall a, a' \in A, \gamma(a) = \gamma(a') \implies a = a'$) ($\forall a \in A, id(a) = a$)
- Such (α, γ) is called a Galois embedding, which is noted $(C, \leq) \xleftarrow{\gamma}{\alpha} (A, \sqsubseteq)$

<u>Proof:</u> 2 \implies 3

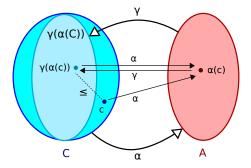
Given $a \in A$, we know that $\gamma(\alpha(\gamma(a))) = \gamma(a)$. By injectivity of γ , $\alpha(\gamma(a)) = a$.

- If $(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)$, the following properties are equivalent: ($\forall a \in A, \exists c \in C, \alpha(c) = a$) ($\forall a \in A, \exists c \in C, \alpha(c) = a$) ($\forall a, a' \in A, \gamma(a) = \gamma(a') \implies a = a'$) ($\forall a \in A, id(a) = a$)
- Such (α, γ) is called a Galois embedding, which is noted $(C, \leq) \xleftarrow{\gamma}{\alpha} (A, \sqsubseteq)$

<u>Proof:</u> 3 \implies 1 Given $a \in A$, we have $\alpha(\gamma(a)) = a$. Hence, $\exists c \in C, \ \alpha(c) = a$, using $c = \gamma(a)$.

Galois embeddings (cont.)

$$(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)$$



A Galois connection can be made into an embedding by quotienting A by the equivalence relation $a \equiv a' \iff \gamma(a) = \gamma(a')$.

Galois embedding example

Abstract domain of intervals of integers \mathbb{Z} represented as pairs of ordered bounds (a, b) or \bot .

We have:
$$(\mathcal{P}(\mathbb{Z}), \subseteq) \xrightarrow{\gamma} (I, \sqsubseteq)$$

• $I \stackrel{\text{def}}{=} \{(a, b) \mid a \in \mathbb{Z} \cup \{-\infty\}, b \in \mathbb{Z} \cup \{+\infty\}, a \leq b\} \cup \{\bot\}$
• $(a, b) \sqsubseteq (a', b') \iff a \geq a' \land b \leq b', \quad \forall x : \bot \sqsubseteq x$
• $\gamma(a, b) \stackrel{\text{def}}{=} \{x \in \mathbb{Z} \mid a \leq x \leq b\}, \quad \gamma(\bot) = \emptyset$
• $\alpha(X) \stackrel{\text{def}}{=} (\min X, \max X), \text{ or } \bot \text{ if } X = \emptyset$

proof:

Galois embedding example

Abstract domain of intervals of integers \mathbb{Z} represented as pairs of ordered bounds (a, b) or \bot .

We have:
$$(\mathcal{P}(\mathbb{Z}), \subseteq) \xrightarrow{\gamma} (I, \sqsubseteq)$$

• $I \stackrel{\text{def}}{=} \{ (a, b) \mid a \in \mathbb{Z} \cup \{-\infty\}, b \in \mathbb{Z} \cup \{+\infty\}, a \leq b \} \cup \{\bot\}$
• $(a, b) \sqsubseteq (a', b') \iff a \geq a' \land b \leq b', \quad \forall x : \bot \sqsubseteq x$
• $\gamma(a, b) \stackrel{\text{def}}{=} \{ x \in \mathbb{Z} \mid a \leq x \leq b \}, \quad \gamma(\bot) = \emptyset$
• $\alpha(X) \stackrel{\text{def}}{=} (\min X, \max X), \text{ or } \bot \text{ if } X = \emptyset$

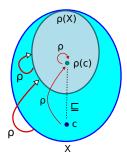
proof:

Quotient of the "pair of bounds" domain $(\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{+\infty\})$ by the relation $(a, b) \equiv (a', b') \iff \gamma(a, b) = \gamma(a', b')$ i.e., $(a \leq b \land a = a' \land b = b') \lor (a > b \land a' > b')$.

Upper closures

- $\rho: X \to X$ is an upper closure in the poset (X, \sqsubseteq) if it is:

 - **2** extensive: $x \sqsubseteq \rho(x)$, and
 - **3** idempotent: $\rho \circ \rho = \rho$.



Upper closures and Galois connections

Given
$$(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)$$
,
 $\gamma \circ \alpha$ is an upper closure on (C, \leq) .

Given an upper closure ρ on (X, \sqsubseteq) , we have a Galois embedding: $(X, \sqsubseteq) \xleftarrow{id}{\rho} (\rho(X), \sqsubseteq)$

 \Longrightarrow we can rephrase abstract interpretation using upper closures instead of Galois connections, but we lose:

• the notion of abstract representation

(a data-structure A representing elements in $\rho(X)$)

• the ability to have several distinct abstract representations for a single concrete object

(non-necessarily injective γ versus *id*)

Operator approximations

Abstractions in the concretization framework

Given a concrete (C, \leq) and an abstract (A, \sqsubseteq) poset and a monotonic concretization $\gamma : A \rightarrow C$

 $(\gamma(a) \text{ is the "meaning" of } a \text{ in } C; \text{ we use intervals in our examples})$

• $a \in A$ is a sound abstraction of $c \in C$ if $c \leq \gamma(a)$.

(e.g.: [0,10] is a sound abstraction of $\{0,1,2,5\}$ in the integer interval domain)

• $g: A \to A$ is a sound abstraction of $f: C \to C$ if $\forall a \in A: (f \circ \gamma)(a) \le (\gamma \circ g)(a)$.

(e.g.: $\lambda([a, b], [-\infty, +\infty])$ is a sound abstraction of $\lambda X \{ x + 1 | x \in X \}$ in the interval domain)

• $g : A \to A$ is an exact abstraction of $f : C \to C$ if $f \circ \gamma = \gamma \circ g$.

(e.g.: $\lambda([a, b] \cdot [a + 1, b + 1])$ is an exact abstraction of $\lambda X \cdot \{x + 1 \mid x \in X\}$ in the interval domain)

Operator approximations

Abstractions in the Galois connection framework

Assume now that
$$(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)$$
.

- sound abstractions
 - $c \leq \gamma(a)$ is equivalent to $\alpha(c) \sqsubseteq a$.
 - $(f \circ \gamma)(a) \leq (\gamma \circ g)(a)$ is equivalent to $(\alpha \circ f \circ \gamma)(a) \sqsubseteq g(a)$.
- Given $c \in C$, its best abstraction is $\alpha(c)$.

(proof: recall that $\alpha(c) = \sqcap \{ a \mid c \leq \gamma(a) \}$, so, $\alpha(c)$ is the smallest sound abstraction of c)

(e.g.: $\alpha(\{0,1,2,5\}) = [0,5]$ in the interval domain)

• Given $f: C \to C$, its best abstraction is $\alpha \circ f \circ \gamma$

(proof: g sound $\iff \forall a, (\alpha \circ f \circ \gamma)(a) \sqsubseteq g(a)$, so $\alpha \circ f \circ \gamma$ is the smallest sound abstraction of f)

(e.g.: g([a, b]) = [2a, 2b] is the best abstraction in the interval domain of $f(X) = \{ 2x \mid x \in X \}$; it is not an exact abstraction as $\gamma(g([0, 1])) = \{0, 1, 2\} \supseteq \{0, 2\} = f(\gamma([0, 1]))$

Order Theory

Antoine Miné

Operator approximations

Composition of sound, best, and exact abstractions

If g and g' soundly abstract respectively f and f' then:

- if f is monotonic, then g ∘ g' is a sound abstraction of f ∘ f', (proof: ∀a, (f ∘ f' ∘ γ)(a) ≤ (f ∘ γ ∘ g')(a) ≤ (γ ∘ g ∘ g')(a))
- if g, g' are exact abstractions of f and f', then g ∘ g' is an exact abstraction,
 (proof: f ∘ f' ∘ γ = f ∘ γ ∘ g' = γ ∘ g ∘ g')
- if g and g' are the best abstractions of f and f', then g ∘ g' is not always the best abstraction!
 (e.g.: g([a, b]) = [a, min(b, 1)] and g'([a, b]) = [2a, 2b] are the best abstractions of f(X) = { x ∈ X | x ≤ 1 } and f'(X) = { 2x | x ∈ X } in the interval domain, but g ∘ g' is not the best abstraction of f ∘ f' as (g ∘ g')([0, 1]) = [0, 1] while (α ∘ f ∘ f' ∘ γ)([0, 1]) = [0, 0])

Fixpoint approximations

Fixpoint transfer

If we have:

- a Galois connection $(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)$ between CPOs
- monotonic concrete and abstract functions $f: C \rightarrow C, f^{\sharp}: A \rightarrow A$
- a commutation condition $\alpha \circ f = f^{\sharp} \circ \alpha$
- an element *a* and its abstraction $a^{\sharp} = \alpha(a)$

then $\alpha(\operatorname{lfp}_a f) = \operatorname{lfp}_{a^{\sharp}} f^{\sharp}$.

(proof on next slide)

Fixpoint transfer (proof)

Proof:

By the constructive Tarksi theorem, $\operatorname{lfp}_a f$ is the limit of transfinite iterations: $a_0 \stackrel{\text{def}}{=} a, a_{n+1} \stackrel{\text{def}}{=} f(a_n)$, and $a_n \stackrel{\text{def}}{=} \bigvee \{ a_m \mid m < n \}$ for limit ordinals *n*. Likewise, $\operatorname{lfp}_{a^{\sharp}} f^{\sharp}$ is the limit of a transfinite iteration a_n^{\sharp} .

We prove by transfinite induction that $a_n^{\sharp} = \alpha(a_n)$ for all ordinals *n*:

•
$$a_0^{\sharp} = \alpha(a_0)$$
, by definition;

•
$$a_{n+1}^{\sharp} = f^{\sharp}(a_{n}^{\sharp}) = f^{\sharp}(\alpha(a_{n})) = \alpha(f(a_{n})) = \alpha(a_{n+1})$$
 for successor ordinals, by commutation;

•
$$a_n^{\sharp} = \bigsqcup \{ a_m^{\sharp} | m < n \} = \bigsqcup \{ \alpha(a_m) | m < n \} = \alpha(\bigvee \{ a_m | m < n \}) = \alpha(a_n)$$

for limit ordinals, because α is always continuous in Galois connections.

Hence, $\operatorname{lfp}_{a^{\sharp}} f^{\sharp} = \alpha(\operatorname{lfp}_{a} f).$

Fixpoint approximation

If we have:

- a complete lattice $(C, \leq, \lor, \land, \bot, \top)$
- a monotonic concrete function f
- a sound abstraction f[#]: A → A of f
 (∀x[#]: (f ∘ γ)(x[#]) ≤ (γ ∘ f[#])(x[#]))
- a post-fixpoint a^{\sharp} of f^{\sharp} $(f^{\sharp}(a^{\sharp}) \sqsubseteq a^{\sharp})$

then a^{\sharp} is a sound abstraction of lfp f: lfp $f \leq \gamma(a^{\sharp})$.

Proof:

By definition, $f^{\sharp}(a^{\sharp}) \sqsubseteq a^{\sharp}$. By monotony, $\gamma(f^{\sharp}(a^{\sharp})) \leq \gamma(a^{\sharp})$. By soundness, $f(\gamma(a^{\sharp})) \leq \gamma(a^{\sharp})$. By Tarski's theorem Ifp $f = \wedge \{x \mid f(x) \leq x\}$. Hence, Ifp $f \leq \gamma(a^{\sharp})$.

Other fixpoint transfer / approximation theorems can be constructed. . .

Course 01

Order Theory

Antoine Miné

Bibliography

Bibliography

[Birk76] G. Birkhoff. *Lattice theory*. In AMS Colloquium Pub. 25, 3rd ed., 1976.

[Cous78] **P. Cousot**. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes. In Thèse És Sc. Math., U. Joseph Fourier, Grenoble, 1978.

[Cous79] **P. Cousot & R. Cousot**. Constructive versions of Tarski's fixed point theorems. In Pacific J. of Math., 82(1):43–57, 1979.

[Cous92] **P. Cousot & R. Cousot**. Abstract interpretation frameworks. In J. of Logic and Comp., 2(4):511—547, 1992.

[Klee52] **S. C. Kleene**. *Introduction to metamathematics*. In North-Holland Pub. Co., 1952.

[Tars55] **A. Tarski**. A lattice theoretical fixpoint theorem and its applications. In Pacific J. of Math., 5:285–310, 1955.