MPRI

Some notions of information flow

Jérôme Feret
Laboratoire d'Informatique de l'École Normale Supérieure
INRIA, ÉNS, CNRS
http://www.di.ens.fr/~feret

Wednesday, the 23th of October, 2019

Syntax

Let $\mathcal{V} \triangleq\left\{\mathrm{V}, \mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots\right\}$ be a finite set of variables.
Let $\mathbb{Z} \triangleq\{\mathcal{Z}, \ldots\}$ be the set of relative numbers.
Expressions are polynomial of variables \mathcal{V}.

$$
\mathrm{E}::=z|\mathrm{~V}| \mathrm{E}+\mathrm{E} \mid \mathrm{E} \times \mathrm{E}
$$

Programs are given by the following grammar:

$$
\begin{aligned}
\mathrm{P}:= & \text { skip } \\
\mid & P ; P \\
& \mathrm{~V}:=\mathrm{E} \\
\mid & \text { if }(\mathrm{V} \geq 0)\{P\} \text { else }\{P\} \\
& \text { while }(\mathrm{V} \geq 0)\{P\}
\end{aligned}
$$

Semantics

We define the semantics $\llbracket \mathrm{P} \rrbracket \in \mathcal{F}((\mathcal{V} \rightarrow \mathbb{Z}) \cup \Omega)$ of a program P :

- \llbracket skip $\rrbracket(\rho)=\rho$,
- $\llbracket P_{1} ; P_{2} \rrbracket(\rho)= \begin{cases}\Omega & \text { if } \llbracket P_{1} \rrbracket(\rho)=\Omega \\ \llbracket P_{2} \rrbracket\left(\llbracket P_{1} \rrbracket(\rho)\right) & \text { otherwise }\end{cases}$
- $\llbracket V:=\mathrm{E} \rrbracket(\rho)= \begin{cases}\Omega & \text { if } \rho=\Omega \\ \rho[\mathrm{V} \mapsto \bar{\rho}(\mathrm{E})] & \text { otherwise }\end{cases}$
- \llbracket if $(V \geq 0)\left\{P_{1}\right\}$ else $\left\{P_{2}\right\} \rrbracket(\rho)= \begin{cases}\Omega & \text { if } \rho=\Omega \\ \llbracket P_{1} \rrbracket(\rho) & \text { if } \rho(V) \geq 0 \\ \llbracket P_{2} \rrbracket(\rho) & \text { otherwise }\end{cases}$
- \llbracket while $(V \geq 0)\{P\} \rrbracket(\rho)= \begin{cases}\Omega & \text { if } \rho=\Omega \\ \rho^{\prime} & \text { if }\left\{\rho^{\prime}\right\}=\left\{\rho^{\prime} \in \operatorname{Inv} \mid \rho^{\prime}(\mathbf{V})<0\right\} \\ \Omega & \text { otherwise }\end{cases}$ where $\operatorname{Inv}=\operatorname{Ifp}\left(X \mapsto\{\rho\} \cup\left\{\rho^{\prime \prime} \mid \exists \rho^{\prime} \in X, \rho^{\prime}(\mathrm{V}) \geq 0\right.\right.$ and $\left.\left.\rho^{\prime \prime} \in \llbracket \mathrm{P} \rrbracket\left(\rho^{\prime}\right)\right\}\right)$.

Flow of information

Given a program P, we say that the variable V_{1} flows into the variable V_{2} if, and only if, the final value of V_{2} depends on the initial value of V_{1}, which is written $V_{1} \Rightarrow{ }_{p} V_{2}$.

More formally,
$V_{1} \Rightarrow V_{p} V_{2}$ if and only if there exists $\rho \in \mathcal{V} \rightarrow \mathbb{Z}, z, z^{\prime} \in \mathbb{Z}$ such that one of the following three assertions is satisfied:

1. $\llbracket \mathrm{P} \rrbracket\left(\rho\left[\mathrm{V}_{1} \mapsto z\right]\right) \neq \Omega, \llbracket \mathrm{P} \rrbracket\left(\rho\left[\mathrm{V}_{1} \mapsto z^{\prime}\right]\right) \neq \Omega$, and $\llbracket \mathbb{P} \rrbracket\left(\rho\left[V_{1} \mapsto z\right]\right)\left(V_{2}\right) \neq \llbracket \mathrm{P} \rrbracket\left(\rho\left[V_{1} \mapsto z^{\prime}\right]\right)\left(V_{2}\right)$;
2. $\llbracket \mathrm{P} \rrbracket\left(\rho\left[\mathrm{V}_{1} \mapsto z\right]\right)=\Omega$ and $\llbracket \mathrm{P} \rrbracket\left(\rho\left[\mathrm{V}_{1} \mapsto z^{\prime}\right]\right) \neq \Omega$;
3. $\llbracket \mathbb{P} \rrbracket\left(\rho\left[\mathrm{V}_{1} \mapsto z\right]\right) \neq \Omega$ and $\llbracket \mathrm{P} \rrbracket\left(\rho\left[\mathrm{V}_{1} \mapsto z^{\prime}\right]\right)=\Omega$.

Syntactic approximation (tentative)

Let P be a program.

We define the following binary relation \rightarrow_{p} among variables in \mathcal{V} : $V_{1} \rightarrow_{p} V_{2}$ if and only if there is an assignement in P of the form $V_{2}:=E$ such that V_{1} occurs in E.

Does $\mathrm{V}_{1} \Rightarrow{ }_{\mathrm{p}} \mathrm{V}_{2}$ imply that $\mathrm{V}_{1} \rightarrow_{\mathrm{p}}^{*} \mathrm{~V}_{2}$?

Counter-example

We consider the following progrem P :

$$
\begin{array}{r}
\mathrm{P}::=\text { if }\left(\mathrm{V}_{1} \geq 0\right) \\
\left\{\mathrm{V}_{2}:=0\right\} \\
\text { else } \\
\left\{\mathrm{V}_{2}:=1\right\}
\end{array}
$$

For any $\rho \in \mathcal{V} \rightarrow \mathbb{Z}$, we have $\llbracket \mathrm{P} \rrbracket\left(\rho\left[V_{1} \mapsto 0\right]\right)\left(V_{2}\right)=0$; but, $\llbracket \mathrm{P} \rrbracket\left(\rho\left[\mathrm{V}_{1} \mapsto 1\right]\right)\left(\mathrm{V}_{2}\right)=1$; so $\mathrm{V}_{1} \Rightarrow \mathrm{p} \mathrm{V}_{2}$;
But $\mathrm{V}_{1} \rightarrow{ }^{*}{ }_{\mathrm{p}} \mathrm{V}_{2}$.

Syntactic approximation (tentative)

For each program point p in P,
we denote by test(p) the set of variables which occur in the guards of tests and while loops the scope of which contains the program point p.

We define the following binary relation \rightarrow among variables in \mathcal{V} :
$V_{1} \rightarrow_{p} V_{2}$ if and only if there is an assignement in P of the form $V_{2}:=E$ at program point p such that:

1. either V_{1} occurs in E;
2. or $\mathrm{V}_{1} \in \operatorname{test}(\mathrm{p})$.

Does $\mathrm{V}_{1} \Rightarrow{ }_{p} \mathrm{~V}_{2}$ imply that $\mathrm{V}_{1} \rightarrow_{\mathrm{p}}^{*} \mathrm{~V}_{2}$?

Counter-example

We consider the following progrem P :

$$
P::=\text { while }\left(\mathrm{V}_{1} \geq 0\right)\{\text { skip }\}
$$

For any $\rho \in \mathcal{V} \rightarrow \mathbb{Z}$, we have $\llbracket \mathbb{P} \rrbracket\left(\rho\left[\mathrm{V}_{1} \mapsto-1\right]\right) \neq \Omega$;
but, $\llbracket \mathbb{P} \rrbracket\left(\rho\left[\mathrm{V}_{1} \mapsto 0\right]\right)=\Omega$;
so $\mathrm{V}_{1} \Rightarrow \mathrm{p} \mathrm{V}_{2}$;
But $\mathrm{V}_{1} \nrightarrow{ }_{\mathrm{p}}^{*} \mathrm{~V}_{2}$.

Approximation of the information flow

So as to get a sound approximation of the information flow, we have to consider that a variable that is tested in the guard of a loop may flow in any variable.

We define the following binary relation \rightarrow_{p} among variables in \mathcal{V} :
$V_{1} \rightarrow V_{2}$ if and only if there is an assignement in P of the form $V_{2}:=E$ at program point p such that:

1. either V_{1} occurs in E;
2. or V_{1} is tested in the guard of a loop;
3. or $\mathrm{V}_{1} \in \operatorname{test}(\mathrm{p})$.

Theorem 1 If $\mathrm{V}_{1} \Rightarrow_{\mathrm{p}} \mathrm{V}_{2}$, then $\mathrm{V}_{1} \rightarrow_{\mathrm{p}}^{*} \mathrm{~V}_{2}$!

Limitations

The approximation is highly syntax-oriented.

- It is context-insensitive;
- It is very rough in the case of while loop,
\Longrightarrow we could show statically that some loops always terminate to avoid fictitious dependencies;
- we could detect some invariants to avoid fictitious dependencies.

Other forms of attacks could be modeled in the semantics: an attacker could observe:

- computation time;
- memory assumption;
- heating.
(attacks cannot be exhaustively specified).

