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An example with polymers

We denote by An a chain of n proteins.

We consider the following reactions (for i, j ≥ 1):

1. Ai + Aj → Ai+j k

2. Ai+j → Ai + Aj

{
kd when i = 1

kd + k′d when i > 1.
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(Infinite) system of ODEs

d[An]

dt
= t+1 (n) + t+2 (n) + t+3 (n)− t−1 (n)− t−2 (n)− t−3 (n)

where:
t+1 (n)

∆
= k ·

∑
i+j=n

[Ai] · [Aj];

t+2 (n)
∆
= 2 · kd ·

∑+∞
i=n+1

[Ai];

t+3 (n)
∆
=

{
k′d ·
∑+∞

i=3
[Ai] if n = 1,

k′d ·
∑+∞

i=n
([Ai+1] + [Ai+2]) if n ≥ 2;

t−1 (n)
∆
= 2·k·[An] ·

∑+∞
i=1

[Ai];

t−2 (n)
∆
= kd · (n− 1) · [An];

t−3 (n)
∆
=

{
k′d · (n− 2) · [An] if n ≥ 3,

0 otherwise.

with the side condition:
∑

n∈N n · [An] < +∞.
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Our goal:
Bound the concentration of A1

Obtained thanks to an ODEs of 18 variables.
(with parameters [A1]0 = 10000, k = 10−4, kd = 10−2, and k′d = 10−1).
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Our goal:
Bound the concentration of A1

Obtained thanks to an ODEs of 36 variables.
(with parameters [A1]0 = 10000, k = 10−4, kd = 10−2, and k′d = 10−1).
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Our goal:
Bound the concentration of A1

Obtained thanks to an ODEs of 54 variables.
(with parameters [A1]0 = 10000, k = 10−4, kd = 10−2, and k′d = 10−1).
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Our goal:
Bound the concentration of A1

Obtained thanks to an ODEs of 72 variables.
(with parameters [A1]0 = 10000, k = 10−4, kd = 10−2, and k′d = 10−1).

Jérôme Feret 5 Wednesday, the 23th of October, 2019



Our goal:
Bound the concentration of A1

Obtained thanks to an ODEs of 90 variables.
(with parameters [A1]0 = 10000, k = 10−4, kd = 10−2, and k′d = 10−1).
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Approach

1. Use a high level language to:

(a) describe the model;

(b) show the existence and unicity of the solution;

(c) reason symbolically about some (potentially infinite) differentiable sums
of variables:

• express their derivatives,

• infer inequalities among them;

2. Use box approximation to define a system of ODEs with two variables per sums
of variables of interest (one for the lower bound, one for the upper bound)

(error bounds are computed a posteriori).
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Definition

In a Banach space, a system defined as:

dX

dt
= F (X, t) + G(X, t)

where:

1. F is linear and induces a continuous semi-group

(always satisfied when F is triangular),

2. G is Lipschitz on every bounded set;

is called an evolution system.
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Cade study

• Define the norm of a state as
∑

n · |An|.
• Define F as the contribution of the reactions:

Ai+j → Ai + Aj

{
kd when i = 1

kd + k′d when i > 1
(for i, j ≥ 1).

• Define G as the contribution of the reactions:

Ai + Aj → Ai+j k (for i, j ≥ 1).

Jérôme Feret 9 Wednesday, the 23th of October, 2019



Properties

Evolutions systems:

• have exactely one maximal continuous solutions;

• maximal solutions are locally Lipschitz.

• whenever a maximal solution is not defined over R+, then the norm diverges;

• whenever G is C1 and its derivative is bounded on bounded sets, then maximal
solutions are also C1.

[Hundertmark et al., Operator Semigroups and Dispersive Equations, 16th Internet
Seminar on Evolution Equations 2013]
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Principle

Given a finite system of ODEs:

dX

dt
= F (X, t).

Box approximation:

1. approximates the state of the system by a (hyper)-box

(twice many variables as in the initial system)

2. associates to each (hyper)-face an expression that bounds conservatively the
partial derivative of the system with respect to the corresponding variable over
this (hyper)-face.

Sound whenever F is locally Lipschitz w.r.t to the state and continuous w.r.t time.

[M. Kirkilionis and S. Walcher, On comparison systems for ordinary differential equa-
tions, J. Math. Anal. Appl. 299 (2004)]
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Example: ODEs

Consider the following system of ODEs:
dx
dt = y · (2− cos(y))− x · (2− sin(y))
dy
dt = x · (2− cos(y))− y · (2− sin(y))

x(0) = y(0) = 1
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Example: Invariants

Consider the following system of ODEs:
dx
dt = y · (2− cos(y))− x · (2− sin(y))
dy
dt = x · (2− cos(y))− y · (2− sin(y))

x(0) = y(0) = 1

We have: {
y − 3 · x ≤ dx

dt ≤ 3 · y − x

x− 3 · y ≤ dy
dt ≤ 3 · x− y.
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Example: Box approximation

Thus, the following system of ODEs:
dx
dt = y · (2− cos(y))− x · (2− sin(y))
dy
dt = x · (2− cos(y))− y · (2− sin(y))

x(0) = y(0) = 1

can be safely approximated by the following one:

dx

dt = y − 3 · x
dx
dt = 3 · y − x
dy

dt = x− 3 · y
dy
dt = 3 · x− y

x = x = y = y = 1
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Example: Numerical results
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The model in Kappa
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Back to evolution systems

Let us consider both following definitions:

1. A rule is dispersive if it is unary and it splits its pattern into smaller ones.

2. A rule is locally Lipschitz if for every pattern P the number of embedding from
the patterns in the lhs of the rules and the pattern P is uniformly bounded.

Then: A finite set of Kappa rules such that every rule is either dispersive, or locally
Lipschitz (or both) induces an evolution system, for the norm defined as the overall
concentration of proteins.
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Connected patterns

Connected patterns have both an intensional and an extensional meaning.

A connected pattern may be seen:

1. as a connected graph:

PSfrag replaements
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2. as a linear (potentially infinite) sum of fully specified connected graphs:

[−A3a ] =
∑
n≥4

[ Àna ]
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List of connected patterns

• [ Àna ]: concentration of polymer of length n;

• [ Àn]: concentration of polymer of length at least n;

• [Ana ]: concentration of polymer of length at least n;

• [ Àn−]: concentration of polymer of length at least n + 1;

• [−Ana ]: concentration of polymer of length at least n + 1;

• [An] =
∑

i∈N(i + 1) · [ Àn+ia ];

• [An−] =
∑

i∈N(i + 1) · [ Àn+1+ia ];

• [−An] =
∑

i∈N(i + 1) · [ Àn+1+ia ];

• [−An−] =
∑

i∈N(i + 1) · [ Àn+2+ia ].
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Proper overlap between connected
patterns

There may be several overlaps between two patterns.

.

.
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To count properly, the common partern shall be taken maximal (pullback). The define
the gluing of two patterns, the unifying partern shall be taken minimal (pushout).
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Proper consumption

Which quantity of the pattern
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Proper consumption

Which quantity of the pattern

PSfrag replaements

A

AA

l

r

ll

is consumed due to the rule

PSfrag replaements

A

A

r

l

A

rr

AAAA

ll

kd

?

.

.

PSfrag replaements

A

r

A

l

A

A

r

l

A

A

l

r

l

r

A

A

r

l

A

AA AA

AA

AA

AA

l

r

ll l

ll

l

l

rr r

rr

r

r

.

.

PSfrag replaements

A

r

A

l

A

l

A

A

A

r

l

r

l

r

A

A

r

l

A

AA AA

AAA

A

AA

l

r

ll l

ll

l

l

rr r

rrr

r

kd·([−A2a ] + [A3a ]).
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Proper production

Which quantity of the pattern
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Proper production
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Exact derivatives

d[`An a ]

dt
= T +

1,1(n) + T +
1,2(n) + T +

1,3(n)− T −1,1(n)− T −1,2(n)− T −1,3(n)

where:
T +

1,1(n)
∆
= k ·

∑
i+j=n

[ Àia ] · [ Àja ];

T +
1,2(n)

∆
= kd · ([ Àn+1] + [An+1a ]);

T +
1,3(n)

∆
=

{
k′d · [−An+1a ] if n = 1

k′d · ([−An+1a ] + [ Àn+1]) if n ≥ 2;

T −1,1(n)
∆
= k · [ Àna ] · ([ À1] + [A1a ]);

T −1,2(n)
∆
= kd · (n− 1) · [ Àna ];

T −1,3(n)
∆
=

{
k′d · (n− 2) · [ Àna ] if n ≥ 3

0 otherwise.
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Orthogonal refinement
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Inequalities

1. [ Àna ] ≤
[A1]−

∑N

k=1,k 6=n
k·[ Àka ]

n
;

2. [An] ≤ [A1]−
∑n−1

k=1
k·[ Àka ];

3. [An−] ≤ [A1]−
∑n−1

k=1
k·[ Àka ];

4. [�lAna ] ≤
[A1]−

∑n−1

k=1
k·[ Àka ]

n− 1
∀�l ∈ {`,−, ε};

5. [ Àn�r] ≤
[A1]−

∑n−1

k=1
k·[ Àka ]

n− 1
∀�r ∈ {a ,−, ε};.
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Exact derivatives

d[`A1−]

dt
= T +

2,1 + T +
2,2 + T +

2,3 − T
−

2,1 − T
−

2,2 − T
−

2,3

where:
T +

2,1

∆
= k · ([ À1a ]·[ À1]);

T +
2,2

∆
= kd · [A2−];

T +
2,3

∆
= k′d · [−A2−];

T −2,1
∆
= k · [ À1−] · [A1a ];

T −2,2
∆
= kd·[ À2];

T −2,3
∆
= 0.
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The ODEs

d[ À1−]

dt
= t+2,1 + t+2,2 + t+2,3 − t−2,1 − t−2,2 − t−2,3,

where:

t+2,1
∆
= k ·max(0, [ À1a ]) · (max(0, [ À1a ]) + max(0, [ À1−]));

t+2,2
∆
= kd ·max(0, [−A1−]);

t+2,3
∆
= k′d ·max(0, [−A2−]);

t−2,1
∆
= k ·max(0, [ À1−]) ·

(
min

(
[ À1−], [A1]−

N∑
n=2

n · [ Àna ]

)
+min

(
[−A1a ], [A1]−

N∑
n=2

n · [ Àna ]

))
;

t−2,2
∆
= kd ·max(0, [ À1−]);

t−2,3
∆
= 0.
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Numerical results

(with parameters [A1]0 = 10000, k = 10−4, kd = 10−2, and k′d = 10−1).
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Conclusion

• We can deal models of polymers that:

1. are finitely branching;

2. and locally defined.

• High-level languages enable to denote some infinite sums of variables and to
handle them symbolically

(Prove that they are differentiable, express their derivative, compare them).

• Box approximation can be used to derive time-dependent bounds on the values
of some observables

(Safe numerical bounds are computed a posteriori )
(Approximation locally adapts to the state of the system)
(Partial derivatives are considered only on the corresponding (hyper)-faces).
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