
Memory abstraction 1
MPRI — Cours 2.6 “Interprétation abstraite :

application à la vérification et à l’analyse statique”

Xavier Rival

INRIA, ENS, CNRS

Oct, 30th. 2019

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 1 / 108

Overview of the lecture

So far, we have shown numerical abstract domains
non relational: intervals, congruences...
relational: polyhedra, octagons, ellipsoids...

How to deal with non purely numerical states ?
How to reason about complex data-structures ?

⇒ a very broad topic, and two lectures:

This lecture
overview memory models and memory properties
abstraction of pointer structures and separation logic based shape
analysis

Next lecture: arrays, shape/numerical abstraction, composition of shape
abstractions
Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 2 / 108

Memory models Towards memory properties

Outline

1 Memory models
Towards memory properties
Formalizing concrete memory states
Treatment of errors
Language semantics

2 Pointer Abstractions

3 Separation Logic

4 A shape abstract domain relying on separation

5 Standard static analysis algorithms

6 Conclusion

7 Internships

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 3 / 108

Memory models Towards memory properties

Assumptions for the two lectures on memory abstraction

Imperative programs viewed as transition systems:

set of control states: L (program points)

set of variables: X (all assumed globals)

set of values: V (so far: V consists of integers (or floats) only)

set of memory states: M (so far: M = X→ V)

error state: Ω

states: S
S = L×M

SΩ = S] {Ω}
transition relation:

(→) ⊆ S× SΩ

Abstraction of sets of states
abstract domain D]

concretization γ : (D],v]) −→ (P(S),⊆)

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 4 / 108

Memory models Towards memory properties

Assumptions: syntax of programs

We start from the same language syntax and will extend l-values:

l ::= l-values
| x (x ∈ X)
| . . . we will add other kinds of l-values

pointers, array dereference...
e ::= expressions

| c (c ∈ V)
| l (lvalue)
| e⊕ e (arith operation, comparison)

s ::= statements
| l = e (assignment)
| s; . . . s; (sequence)
| if(e){s} (condition)
| while(e){s} (loop)

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 5 / 108

Memory models Towards memory properties

Assumptions: semantics of programs

We assume classical definitions for:
l-values: JlK : M→ X
expressions: JeK : M→ V
programs and statements:

I we assume a label before each statement
I each statement defines a set of transitions (→)

In this course, we rely on the usual reachable states semantics

Reachable states semantics
The reachable states are computed as JSKR = lfpF where

F : P(S) −→ P(S)
X 7−→ SI ∪ {s ∈ S | ∃s ′ ∈ X , s ′ → s}

and SI denotes the set of initial states.

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 6 / 108

Memory models Towards memory properties

Assumptions: general form of the abstraction

We assume an abstraction for sets of memory states:
memory abstract domain D]mem

concretization function γmem : D]mem → P(M)

Reachable states abstraction
We construct D] = L→ D]mem and:

γ : D] −→ P(S)
X] 7−→ {(l ,m) ∈ S | m ∈ γmem(X](l))}

The whole question is how do we choose D]mem, γmem...

previous lectures:
X is fixed and finite and, V is scalars (integers or floats), thus, M ≡ Vn

today:
we will extend the language thus, also need to extend D]mem, γmem

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 7 / 108

Memory models Towards memory properties

Abstraction of purely numeric memory states

Purely numeric case
V is a set of values of the same kind
e.g., integers (Z), machine integers (Z ∩ [−263, 263 − 1])...
If the set of variables is fixed, we can use any abstraction for VN

Example: N = 2, X = {x , y}

concrete set

x

y

interval domain

x

y

octagon domain

x

y

polyedra domain

x

y

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 8 / 108

Memory models Towards memory properties

Heterogeneous memory states

In real life languages, there are many kinds of values:
scalars (integers of various sizes, boolean, floating-point values)...
pointers, arrays...

Heterogeneous memory states and non relational abstraction
types t0, t1, . . . and values V = Vt0] Vt1] . . .
finitely many variables; each has a fixed type: X = Xt0] Xt1] . . .
memory states: M = Xt0 → Vt0 × Xt1 → Vt1 . . .

Principle: compose abstractions for sets of memory states of each type

Non relational abstraction of heterogeneous memory states
M ≡M0 ×M1 × . . . where Mi = Xi → Vi

Concretization function (case with two types)
γnr : P(M0)× P(M1) −→ P(M)

(m]0,m]1) 7−→ {(m0,m1) | ∀i , mi ∈ γi (m]i)}

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 9 / 108

Memory models Towards memory properties

Memory structures

Common structures (non exhaustive list)
Structures, records, tuples:
sequences of cells accessed with fields

Arrays:
similar to structures; indexes are integers in [0, n − 1]

Pointers:
numerical values corresponding to the address of a memory cell

Strings and buffers:
blocks with a sequence of elements and a terminating element (e.g., 0x0)

Closures (functional languages):
pointer to function code and (partial) list of arguments)

To describe memories, the definition M = X→ V is too restrictive

Generally, non relational, heterogeneous abstraction cannot handle many
such structures all at once: relations are needed!

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 10 / 108

Memory models Towards memory properties

Specific properties to verify

Memory safety
Absence of memory errors (crashes, or undefined behaviors)

Pointer errors:
Dereference of a null pointer / of an invalid pointer

Access errors:
Out of bounds array access, buffer overruns (often used for attacks)

Invariance properties
Data should not become corrupted (values or structures...)

Examples:
Preservation of structures, e.g., lists should remain connected
Preservation of invariants, e.g., of balanced trees

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 11 / 108

Memory models Towards memory properties

Properties to verify: examples

A program closing a list of file
descriptors

// l points to a list
c = l;
while(c 6= NULL){
close(c→ FD);
c = c→ next;
}

Correctness properties
1 memory safety
2 l is supposed to store all file

descriptors at all times
will its structure be preserved ?
yes, no breakage of a next link

3 closure of all the descriptors

Examples of structure preservation properties

Algorithms manipulating trees, lists...

Libraries of algorithms on balanced trees

Not guaranteed by the language !
e.g., the balancing of Maps in the OCaml standard library was incorrect for
years (performance bug)

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 12 / 108

Memory models Formalizing concrete memory states

A more realistic model

No one-to-one relation between memory cells and program variables
a variable may indirectly reference several cells (structures...)
dynamically allocated cells correspond to no variable at all...

Environment + Heap
Addresses are values: Vaddr ⊆ V
Environments e ∈ E map variables into their addresses
Heaps (h ∈ H) map addresses into values

E = X→ Vaddr
H = Vaddr → V

h is actually only a partial function
Memory states (or memories): M = E×H

Note: Avoid confusion between heap (function from addresses to values)
and dynamic allocation space (often referred to as “heap”)

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 13 / 108

Memory models Formalizing concrete memory states

Example of a concrete memory state (variables)

Example setup:
x and z are two list elements containing values 64 and 88, and where the
former points to the latter
y stores a pointer to z

Memory layout
(pointer values underlined)

address

&x = 300
304

&y = 308

&z = 312
316 0x0

88
312
312
64

e : x 7→ 300
y 7→ 308
z 7→ 312

h : 300 7→ 64
304 7→ 312
308 7→ 312
312 7→ 88
316 7→ 0

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 14 / 108

Memory models Formalizing concrete memory states

Example of a concrete memory state (variables + dyn. cell)

Example setup:
same configuration
+ second field of z points to a dynamically allocated list element (in purple)

Memory layout

address

&x = 300
304

&y = 308

&z = 312
316

508
512 0x0

25

508
88
312
312
64

e : x 7→ 300
y 7→ 308
z 7→ 312

h : 300 7→ 64
304 7→ 312
308 7→ 312
312 7→ 88
316 7→ 508
508 7→ 25
512 7→ 0

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 15 / 108

Memory models Formalizing concrete memory states

Extending the semantic domains

Some slight modifications to the semantics of the initial language:

Addresses are values: Vaddr ⊆ V

L-values evaluate into addresses: JlK : M→ Vaddr

JxK(e, h) = e(x)

Semantics of expressions JeK : M→ V, mostly unchanged

JlK(e, h) = h(JlK(e, h))

Semantics of assignment l0 : l := e; l1 : . . .:
(l0, e, h0) −→ (l1, e, h1)

where
h1 = h0[JlK(e, h0)← JeK(e, h0)

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 16 / 108

Memory models Formalizing concrete memory states

Realistic definitions of memory states

Our model is still not very accurate for most languages
Memory cells do not all have the same size
Memory management algorithms usually do not treat cells one by one,
e.g., malloc returns a pointer to a block
applying free to that pointer will dispose the whole block

Other refined models
Partition of the memory in blocks with a base address and a size
Partition of blocks into cells with a size
Description of fields with an offset
Description of pointer values with a base address and an offset...

For a very formal description of such concrete memory states:
see CompCert project source files (Coq formalization)

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 17 / 108

Memory models Treatment of errors

Language semantics: program crash

In an abnormal situation, we assume that the program will crash
advantage: very clear semantics
disadvantage (for the compiler designer): dynamic checks are required

Error state
Ω denotes an error configuration
Ω is a blocking: (→) ⊆ S× ({Ω}] S)

OCaml:
out-of-bound array access:
Exception: Invalid_argument "index out of bounds".

no notion of a null pointer
Java:

exception in case of out-of-bound array access, null dereference:
java.lang.ArrayIndexOutOfBoundsException

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 18 / 108

Memory models Treatment of errors

Language semantics: undefined behaviors

Alternate choice: leave the behavior of the program unspecified when an
abnormal situation is encountered

advantage: easy implementation (often architecture driven)
disadvantage: unintuitive semantics, errors hard to reproduce
different compilers may make different choices...
or in fact, make no choice at all (= let the program evaluate even when
performing invalid actions)

Modeling of undefined behavior
Very hard to capture what a program operation may modify
Abnormal situation at (l0,m0) such that ∀m1 ∈M, (l0,m0)→ (l1,m1)

In C:
array out-of-bound accesses and dangling pointer dereferences lead to
undefined behavior (and potentially, memory corruption) whereas a
null-pointer dereference always result into a crash

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 19 / 108

Memory models Language semantics

Composite objects

How are contiguous blocks of information organized ?

Java objects, OCaml struct types
sets of fields
each field has a type
no assumption on physical storage, no pointer arithmetics

C composite structures and unions
physical mapping defined by the norm
each field has a specified size and a specified alignment
union types / casts:
implementations may allow several views

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 20 / 108

Memory models Language semantics

Pointers and records / structures / objects

Many languages provide pointers or references and allow to manipulate
addresses, but with different levels of expressiveness

What kind of objects can be referred to by a pointer ?

Pointers only to records / structures / objects
Java: only pointers to objects
OCaml: only pointers to records, structures...

Pointers to fields
C: pointers to any valid cell...

struct {int a; int b} x;
int ∗ y = &(x · b);

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 21 / 108

Memory models Language semantics

Pointer arithmetics

What kind of operations can be performed on a pointer ?

Classical pointer operations
Pointer dereference:
∗p returns the contents of the cell of address p
“Address of” operator: &x returns the address of variable x
Can be analyzed with a rather coarse pointer model
e.g., symbolic base + symbolic field

Arithmetics on pointers, requiring a more precise model
Addition of a numeric constant:
p + n: address contained in p + n times the size of the type of p
Interaction with pointer casts...
Pointer subtraction: returns a numeric offset

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 22 / 108

Memory models Language semantics

Manual memory management

Allocation of unbounded memory space
How are new memory blocks created by the program ?
How do old memory blocks get freed ?

OCaml memory management
implicit allocation
when declaring a new object
garbage collection: purely
automatic process, that frees
unreachable blocks

C memory management
manual allocation: malloc
operation returns a pointer to a
new block
manual de-allocation: free
operation (block base address)

Manual memory management is not safe:
memory leaks: growing unreachable memory region; memory exhaustion
dangling pointers if freeing a block that is still referred to

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 23 / 108

Memory models Language semantics

Summary on the memory model

Language dependent items
Clear error cases or undefined behaviors
for analysis, a semantics with clear error cases is preferable

Composite objects: structure fully exposed or not

Pointers to object fields: allowed or not

Pointer arithmetic: allowed or not
i.e., are pointer values symbolic values or numeric values

Memory management: automatic or manual

In this course, we start with a simple model, and study specific features one by
one and in isolation from the others

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 24 / 108

Memory models Language semantics

Rest of the course

Structures for which we introduce abstractions:

pointers and dynamically allocated pointer structures (today)
arrays (in a few weeks)
combinations of structures (in a few weeks)

Abstract operations:

post-condition for the reading of a cell defined by an l-value
e.g., x = a[i] or x = ∗p
post-condition for the writing of a heap cell
e.g., a[i] = p or p -> f = x

abstract join, that approximates unions of concrete states

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 25 / 108

Pointer Abstractions

Outline

1 Memory models

2 Pointer Abstractions

3 Separation Logic

4 A shape abstract domain relying on separation

5 Standard static analysis algorithms

6 Conclusion

7 Internships

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 26 / 108

Pointer Abstractions

Programs with pointers: syntax

Syntax extension: we add pointer operations

l ::= l-values
| x (x ∈ X)
| . . .
| ∗e pointer dereference
| l · f field read

e ::= expressions
| l
| . . .
| &l "address of" operator

s ::= statements
| . . .
| x = malloc(c) allocation of c bytes
| free(x) deallocation of the block pointed to by x

We do not consider pointer arithmetics here

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 27 / 108

Pointer Abstractions

Programs with pointers: semantics

Case of l-values:

JxK(e, h) = e(x)

J∗eK(e, h) =

{
h(JeK(e, h)) if JeK(e, h) 6= 0 ∧ JeK(e, h) ∈ Dom(h)
Ω otherwise

Jl · fK(e, h) = JlK(e, h) + offset(f) (numeric offset)

Case of expressions:

JlK(e, h) = h(JlK(e, h)) (evaluates into the contents)
J&lK(e, h) = JlK(e, h) (evaluates into the address)

Case of statements:
memory allocation x = malloc(c): (e, h)→ (e, h ′) where
h ′ = h[e(x)← k]] {k 7→ vk , k + 1 7→ vk+1, . . . , k + c − 1 7→ vk+c−1} and
k, . . . , k + c − 1 are fresh and unused in h
memory deallocation free(x): (e, h)→ (e, h ′) where k = e(x) and
h = h ′] {k 7→ vk , k + 1 7→ vk+1, . . . , k + c − 1 7→ vk+c−1}

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 28 / 108

Pointer Abstractions

Pointer non relational abstractions

We rely on the non relational abstraction of heterogeneous states that was
introduced earlier, with a few changes:

we let V = Vaddr] Vint and X = Xaddr] Xint

concrete memory cells now include structure fields, and fields of
dynamically allocated regions
abstract cells C] finitely summarize concrete cells
we apply a non relational abstraction:

Non relational pointer abstraction

Set of pointer abstract values D]ptr

Concretization γptr : D]ptr → P(Vaddr) into pointer sets

We will see several instances of this kind of abstraction

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 29 / 108

Pointer Abstractions

Pointer non relational abstraction: null pointers

The dereference of a null pointer will cause a crash

To establish safety: compute which pointers may be null

Null pointer analysis
Abstract domain for addresses:

γptr(⊥) = ∅
γptr(>) = Vaddr

γptr(6= NULL) = Vaddr \ {0} ⊥

6= NULL

>

we may also use a lattice with a fourth element = NULL
exercise: what do we gain using this lattice ?
very lightweight, can typically resolve rather trivial cases
useful for C, but also for Java

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 30 / 108

Pointer Abstractions

Pointer non relational abstraction: dangling pointers

The dereferece of a null pointer will cause a crash

To establish safety: compute which pointers may be dangling

Null pointer analysis
Abstract domain for addresses:

γptr(⊥) = ∅
γptr(>) = Vaddr ×H
γptr(Not dangling) = {(v , h) | h ∈ H ∧ v ∈
Dom(h)} ⊥

Not dangling

>

very lightweight, can typically resolve rather trivial cases
useful for C, useless for Java (initialization requirement + GC)

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 31 / 108

Pointer Abstractions

Pointer non relational abstraction: points-to sets

Determine where a pointer may store a reference to

1 : int x, y;
2 : int ∗ p;
3 : y = 9;
4 : p = &x;
5 : ∗p = 0;

what is the final value for x ?
0, since it is modified at line 5...
what is the final value for y ?
9, since it is not modified at line 5...

Basic pointer abstraction
We assume a set of abstract memory locations A] is fixed:

A] = {&x, &y, . . . , &t, a0, a1, . . . , aN}
Concrete addresses are abstracted into A] by φA : A→ A]] {>}
A pointer value is abstracted by the abstraction of the addresses it may point
to, i.e., D]ptr = P(A])
and γptr(a

]) = {a ∈ A | φA(a) = a]}

example: p may point to {&x}
Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 32 / 108

Pointer Abstractions

Points-to sets computation example

Example code:

1 : int x, y;
2 : int ∗ p;
3 : y = 9;
4 : p = &x;
5 : ∗p = 0;
6 : . . .

Abstract locations: {&x, &y, &p}
Analysis results:

&x &y &p
1 > > >
2 > > >
3 > > >
4 > [9, 9] >
5 > [9, 9] {&x}
6 [0, 0] [9, 9] {&x}

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 33 / 108

Pointer Abstractions

Points-to sets computation and imprecision

x ∈ [−10,−5]; y ∈ [5, 10]
1 : int ∗ p;
2 : if(?){
3 : p = &x;
4 : } else {
5 : p = &y;
6 : }
7 : ∗p = 0;
8 : . . .

&x &y &p
1 [−10,−5] [5, 10] >
2 [−10,−5] [5, 10] >
3 [−10,−5] [5, 10] >
4 [−10,−5] [5, 10] {&x}
5 [−10,−5] [5, 10] >
6 [−10,−5] [5, 10] {&y}
7 [−10,−5] [5, 10] {&x, &y}
8 [−10, 0] [0, 10] {&x, &y}

What is the final range for x ?
What is the final range for y ?

Abstract locations: {&x, &y, &p}

Imprecise results
The abstract information about
both x and y are weakened
The fact that x 6= y is lost

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 34 / 108

Pointer Abstractions

Weak-updates

We can formalize this imprecision a bit more:

Weak updates
The modified concrete cell cannot be uniquely mapped into a well
identified abstract cell that describes only it
The resulting abstract information is obtained by joining the new value and
the old information

Effect in pointer analysis, in the case of an assignment:
if the points-to set contains exactly one element, the analysis can perform
a strong update
as in the first example: p Z⇒ {&x}

if the points-to set may contain more than one element, the analysis needs
to perform a weak-update
as in the second example: p Z⇒ {&x, &y}

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 35 / 108

Pointer Abstractions

Pointer aliasing based on equivalence on access paths

Aliasing relation
Given m = (e, h), pointers p and q are aliases iff h(e(p)) = h(e(q))

Abstraction to infer pointer aliasing properties
An access path describes a sequence of dereferences to resolve an l-value
(i.e., an address); e.g.:

a ::= x | a · f | ∗ a
An abstraction for aliasing is an over-approximation for equivalence
relations over access paths

Examples of aliasing abstractions:
set abstractions: map from access paths to their equivalence class
(ex: {{p0, p1, &x}, {p2, p3}, . . .})
numerical relations, to describe aliasing among paths of the form x(->n)k

(ex: {{x(->n)k, &(x(->n)k+1) | k ∈ N})

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 36 / 108

Pointer Abstractions

Limitation of basic pointer analyses seen so far

Weak updates:
imprecision in updates that spread out as soon as points-to set contain
several elements
impact client analyses severely (e.g., low precision on numerical)

Unsatisfactory abstraction of unbounded memory:
common assumption that C] be finite
programs using dynamic allocations often perform unbounded numbers of
malloc calls (e.g., allocation of a list)

Unable to express well structural invariants:
for instance, that a structure should be a list, a tree...
very indirect abstraction in numeric / path equivalence abstration

A common solution:
shape abstraction

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 37 / 108

Separation Logic

Outline

1 Memory models

2 Pointer Abstractions

3 Separation Logic

4 A shape abstract domain relying on separation

5 Standard static analysis algorithms

6 Conclusion

7 Internships

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 38 / 108

Separation Logic

Separation logic principle: avoid weak updates

How to deal with weak updates ?
Avoid them !

Always materialize exactly the cell that needs be modified
Can be very costly to achieve, and not always feasible

Notion of property that holds over a memory region:
special separating conjunction operator ∗

Local reasoning:
powerful principle, which allows to consider only part of the memory

Separation logic has been used in many contexts, including manual
verification, static analysis, etc...

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 39 / 108

Separation Logic

Separation logic

Two kinds of formulas:
pure formulas behave like formulas in first-order logic
i.e., are not attached to a memory region
spatial formulas describe properties attached to a memory region

Pure formulas denote value properties

e ::= n (n ∈ N) constants
| l l-value
| e0 + e1 binary operations
| . . .

P ::= e0 = e1 | P′ ∨ P′′ | P′ ∧ P′′ . . . pure predicates

Pure formulas semantics: γ(P) ⊆ E×M

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 40 / 108

Separation Logic

Separation logic: points-to predicates

The next slides introduce the main separation logic formulas F ::= . . .

We start with the most basic predicate, that describes a single cell:

Points-to predicate
Predicate:

F ::= . . . | a 7→ v where a is an address and v is a value

Concretization:

(e, h) ∈ γ(l 7→ v) if and only if h = [JlK(e, h) 7→ v]

Example:

F = &x 7→ 18 &x = 308 18

We also note l 7→ e, as an l-value l denotes an address

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 41 / 108

Separation Logic

Separation logic: separating conjunction

Merge of concrete heaps: let h0, h1 ∈ (Vaddr → V), such that
dom(h0) ∩ dom(h1) = ∅; then, we let h0 � h1 be defined by:

h0 � h1 : dom(h0) ∪ dom(h1) −→ V
x ∈ dom(h0) 7−→ h0(x)
x ∈ dom(h1) 7−→ h1(x)

Separating conjunction
Predicate:

F ::= . . . | F0 ∗ F1

Concretization:

γ(F0 ∗ F1) = {(e, h0 � h1) | (e, h0) ∈ γ(F0) ∧ (e, h1) ∈ γ(F1)}

F0 ∗ F1
F0

F1

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 42 / 108

Separation Logic

An example

Concrete memory layout
(pointer values underlined)

address

&x = 300
304

&y = 308

&z = 312
316 0x0

88
312
312
64

e : x 7→ 300
y 7→ 308
z 7→ 312

h : 300 7→ 64
304 7→ 312
308 7→ 312
312 7→ 88
316 7→ 0

A formula that abstracts away the addresses:

&x 7→ 〈64, &z〉 ∗ &y 7→ &z ∗ &z 7→ 〈88, 0〉

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 43 / 108

Separation Logic

Separation logic: non separating conjunction

We can also add the conventional conjunction operator, with its usual
concretization:

Non separating conjunction
Predicate:

F ::= . . . | F0 ∧ F1

Concretization:
γ(F0 ∧ F1) = γ(F0) ∩ γ(F1)

Exercise: describe and compare the concretizations of
&a 7→ &b ∧ &b 7→ &a

&a 7→ &b ∗ &b 7→ &a

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 44 / 108

Separation Logic

Separating conjunction vs non separating conjunction

Classical conjunction: properties for the same memory region
Separating conjunction: properties for disjoint memory regions

&a 7→ &b ∧ &b 7→ &a
the same heap verifies &a 7→ &b
and &b 7→ &a

there can be only one cell
thus a = b

&a 7→ &b ∗ &b 7→ &a
two separate sub-heaps
respectively satisfy &a 7→ &b and
&b 7→ &a

thus a 6= b

Separating conjunction and non-separating conjunction have very different
properties
Both express very different properties
e.g., no ambiguity on weak / strong updates

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 45 / 108

Separation Logic

Separating and non separating conjunction

Logic rules of the two conjunction operators of SL:

Separating conjunction:

(e, h0) ∈ γ(F0) (e, h1) ∈ γ(F1)

(e, h0 � h1) ∈ γ(F0 ∗ F1)

Non separating conjunction:

(e, h) ∈ γ(F0) (e, h) ∈ γ(F1)

(e, h) ∈ γ(F0 ∧ F1)

Reminiscent of Linear Logic [Girard87]:
resource aware / non resource aware conjunction operators

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 46 / 108

Separation Logic

Separation logic: empty store

Empty store
Predicate:

F ::= . . . | emp

Concretization:

γ(emp) = {(e, []) | e ∈ E} = E× {[]}

where [] denotes the empty store

emp is the neutral element for ∗
(monoid structure induced by ∗)
by contrast the neutral element for ∧ is TRUE, with concretization:

γ(TRUE) = E×H

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 47 / 108

Separation Logic

Separation logic: other connectors

Disjunction:
F ::= . . . | F0 ∨ F1

concretization:
γ(F0 ∨ F1) = γ(F0) ∪ γ(F1)

Spatial implication (aka, magic wand):
F ::= . . . | F0 −∗ F1

concretization:

γ(F0 −∗ F1) =
{(e, h) | ∀h0 ∈ H, (e, h0) ∈ γ(F0) =⇒ (e, h � h0) ∈ γ(F1)}

very powerful connector to describe structure segments,
used in complex SL proofs

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 48 / 108

Separation Logic

Separation logic

Summary of the main separation logic constructions seen so far:

Separation logic main connectors
γ(emp) = E× {[]}
γ(TRUE) = E×H
γ(l 7→ v) = {(e, [JlK(e, h) 7→ v]) | e ∈ E}
γ(F0 ∗ F1) = {(e, h0 � h1) | (e, h0) ∈ γ(F0) ∧ (e, h1) ∈ γ(F1)}
γ(F0 ∧ F1) = γ(F0) ∩ γ(F1)
γ(F0 −∗ F1) = {(e, h) | ∀h0 ∈ H, (e, h0) ∈ γ(F0) =⇒ (e, h � h0) ∈ γ(F1)}

Concretization of pure formulas is standard

How does this help for program reasoning ?

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 49 / 108

Separation Logic

Separation logic triple

Program proofs based on Hoare triples
Notation: {F}p{F′} if and only if:

∀s, s ′ ∈ S, s ∈ γ(F) ∧ s ′ ∈ JpK(s) =⇒ s ′ ∈ γ(F′)

Application: formalize proofs of programs

A few rules (straightforward proofs):

F0 =⇒ F′0 {F′0}b{F′1} F′1 =⇒ F1

{F0}b{F1}
consequence

{&x 7→?}x := e{&x 7→ e} mutation

x does not appear in F
{&x 7→? ∗ F}x := e{&x 7→ e ∗ F} mutation-2

(we assume that e does not allocate memory)

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 50 / 108

Separation Logic

The frame rule

What about the resemblance between rules “mutation” and “mutation-2” ?

Theorem: the frame rule
{F0}b{F1} freevar(F) ∩ write(b) = ∅

{F0 ∗ F}b{F1 ∗ F} frame

Proof by induction on the logical rules on program statements, i.e.,
essentially a large case analysis
(see biblio for a more complete set of rules)
Rules are proved by case analysis on the program syntax

The frame rule allows to reason locally about programs

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 51 / 108

Separation Logic

Application of the frame rule

A program with intermittent invariants, derived using the frame rule, since
each step impacts a disjoint region:

int i;
int ∗ x;
int ∗ y;
{&i 7→? ∗ &x 7→? ∗ &y 7→?}
x = &i;
{&i 7→? ∗ &x 7→ &i ∗ &y 7→?}
y = &i;
{&i 7→? ∗ &x 7→ &i ∗ &y 7→ &i}
∗ x = 42;
{&i 7→ 42 ∗ &x 7→ &i ∗ &y 7→ &i}

Many other program proofs done using separation logic
e.g., verification of the Deutsch-Shorr-Waite algorithm (biblio)

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 52 / 108

Separation Logic

Summarization and inductive definitions

What do we still miss ?
So far, formulas denote fixed sets of cells
Thus, no summarization of unbounded regions...

Example all lists pointed to by x, such as:
&x 0x0

&x 0x0

&x 0x0

&x 0x0

How to precisely abstract these stores with a single formula
i.e., no infinite disjunction ?

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 53 / 108

Separation Logic

Inductive definitions in separation logic

List definition
α · list := α = 0 ∧ emp

∨ α 6= 0 ∧ α · next 7→ δ ∗ α · data 7→ β ∗ δ · list

Formula abstracting our set of structures:
&x 7→ α ∗ α · list

Summarization:
this formula is finite and describe infinitely many heaps
Concretization: next slide...

Practical implementation in verification/analysis tools
Verification: hand-written definitions
Analysis: either built-in or user-supplied, or partly inferred

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 54 / 108

Separation Logic

Concretization by unfolding

Intuitive semantics of inductive predicates
Inductive predicates can be unfolded, by unrolling their definitions
Syntactic unfolding is noted U−→
A formula F with inductive predicates describes all stores described by all
formulas F′ such that F U−→ F′

Example:
Let us start with x 7→ α0 ∗ α0 · list; we can unfold it as follows:
&x 7→ α0 ∗ α0 · list

U−→ &x 7→ α0 ∗ α0 · next 7→ α1 ∗ α0 · data 7→ β1 ∗ α1 · list
U−→ &x 7→ α0 ∗ α0 · next 7→ α1 ∗ α0 · data 7→ β1 ∗ emp ∧ α1 = 0x0

We get the concrete state below:
&x 0x0

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 55 / 108

Separation Logic

Example: tree

Example:

0x0
0x0

0x0
0x0

Inductive definition
Two recursive calls instead of one:

α · tree := α = 0 ∧ emp
∨ α 6= 0 ∧ α · left 7→ β ∗ α · right 7→ δ

∗ β · tree ∗ δ · tree

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 56 / 108

Separation Logic

Example: doubly linked list

Example:
0x0

0x0

Inductive definition
We need to propagate the prev pointer as an additional parameter:

α · dll(δ) := α = 0 ∧ emp
∨ α 6= 0 ∧ α · next 7→ β ∗ α · prev 7→ δ

∗ β · dll(α)

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 57 / 108

Separation Logic

Example: sortedness

Example: sorted list

&x
8 9 33

0x0

Inductive definition
Each element should be greater than the previous one
The first element simply needs be greater than −∞...
We need to propagate the lower bound, using a scalar parameter

α · lsortaux(n) := α = 0 ∧ emp
∨ α 6= 0 ∧ n ≤ β ∧ α · next 7→ δ

∗ α · data 7→ β ∗ δ · lsortaux(β)

α · lsort() := α · lsortaux(−∞)

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 58 / 108

A shape abstract domain relying on separation

Outline

1 Memory models

2 Pointer Abstractions

3 Separation Logic

4 A shape abstract domain relying on separation

5 Standard static analysis algorithms

6 Conclusion

7 Internships

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 59 / 108

A shape abstract domain relying on separation

Design of an abstract domain

A lot of things are missing to turn SL into an abstract domain

Set of logical predicates:
separation logic formulas are very expressive
e.g., arbitrary alternations of ∧ and ∗
such expressiveness is not necessarily required in static analysis

Representation:
unstructured formulas can be represented as ASTs,
but this representation is not easy to manipulate efficiently
intuition over memory states typically involves graphs

Analysis algorithms:
inference of “optimal” invariants in SL, with numerical predicates obviously
not computable

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 60 / 108

A shape abstract domain relying on separation

Basic abstraction: structures and their contents (1/2)

Concrete memory states

I very low level description
numeric offsets / field names

I pointers, numeric values:
raw sequences of bits

&(x · n) = 0x...a0
&(x · d) = 0x...a4

&(y · n) = 0x...b0
&(y · d) = 0x...b4 0x0

17

0x...b0
17

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 61 / 108

A shape abstract domain relying on separation

Basic abstraction: structures and their contents (1/2)

Concrete memory states

Abstraction of values into symbolic variables (nodes)

α0

α1

α2

α3

α4

0x...a0

0x...b0
0x0
17

0x...b0
17 ν(α0) = 0x...a0

ν(α1) = 17
ν(α2) = 0x...b0
ν(α3) = 17
ν(α4) = 0x0

I characterized by valuation ν
I ν maps symbolic variables into concrete addresses

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 61 / 108

A shape abstract domain relying on separation

Basic abstraction: structures and their contents (1/2)

Concrete memory states

Abstraction of values into symbolic variables / nodes

Abstraction of regions into points-to edges

α0

α1

α2

α3

α4

+0

+4
+0

+4

0x...a0

0x...b0
0x0
17

0x...b0
17 ν(α0) = 0x...a0

ν(α1) = 17
ν(α2) = 0x...b0
ν(α3) = 17
ν(α4) = 0x0

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 61 / 108

A shape abstract domain relying on separation

Basic abstraction: structures and their contents (1/2)

Concrete memory states

Abstraction of values into symbolic variables / nodes

Abstraction of regions into points-to edges

α0

α1

α2

α3

α4

+0

+4
+0

+4

0x...a0

0x...b0
0x0
17

0x...b0
17 ν(α0) = 0x...a0

ν(α1) = 17
ν(α2) = 0x...b0
ν(α3) = 17
ν(α4) = 0x0

Shape graph concretization

γsh(G) = {(h , ν) | . . .}
valuation ν plays an important role to combine abstraction...

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 61 / 108

A shape abstract domain relying on separation

Structure of shape graphs

Valuations bridge the gap between nodes and values

Symbolic variables / nodes and intuitively abstract concrete values:

Symbolic variables
We let V] denote a countable set of symbolic variables; we usually let them be
denoted by Greek letters in the following: V] = {α, β, δ, . . .}

When concretizing a shape graph, we need to characterize how the concrete
instance evaluates each symbolic variable, which is the purpose of the
valuation functions:

Valuations
A valuation is a function from symbolic variables into concrete values (and is
often denoted by ν): Val = V] −→ V

Note that valuations treat in the same way addresses and raw values

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 62 / 108

A shape abstract domain relying on separation

Structure of shape graphs

Distinct edges describe separate regions

In particular, if we split a graph into two parts:

Separating conjunction

γsh(S]0 ∗ S]1) = {(h0 � h1, ν) | (h0, ν) ∈ γsh(S]0) ∧ (h1, ν) ∈ γsh(S]1)}

S]0 S]1

γ(S]0) γ(S]1)

γ γ

Similarly, when considering the empty set of edges, we get the empty heap
(where V] is the set of nodes):

γsh(emp) = {(∅, ν) | ν : V] → V}

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 63 / 108

A shape abstract domain relying on separation

Abstraction of contiguous regions

A single points-to edge represents one heap cell

A points-to edge encodes basic points to predicate in separation logic:

Points-to edges
Syntax

Graph edge Separation logic formula Concrete view

α β
f α · f 7→ β

ν(α)

offset(f) ν(β)

Concretization:
γsh(α · f 7→ β) =
{([ν(α) + offset(f) 7→ ν(β)], ν) | ν : {α, β, . . .} → N}

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 64 / 108

A shape abstract domain relying on separation

Abstraction of contiguous regions

Contiguous regions are described by adjacent points-to edges

To describe blocks containing series of cells (e.g., in a C structure), shape
graphs utilize several outgoing edges from the node representing the base address
of the block

Field splitting model
Separation impacts edges / fields, not pointers

Shape graph
α

β0

β1

f

g accounts for both abstract states below:

ν(α)

offset(f)

offset(g)

ν(β0)

ν(β1)

ν(α)

offset(f)

offset(g)

ν(β0) = ν(β1)

In other words, in a field splitting model, separation:
asserts addresses are distinct
says nothing about contents

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 65 / 108

A shape abstract domain relying on separation

Abstraction of the environment

Environments bind variables to their (concrete / abstract) address

&x = &(x · n) = 0x...a0
&(x · d) = 0x...a4

&y = &(y · n) = 0x...b0
&(y · d) = 0x...b4 0x0

17

0x...b0
17

&x
α0

α1

&y
α2

α3

α4

+0

+4

+0

+4

ν : α0 7→ 0x...a0
α2 7→ 0x...b0
. . . 7→ . . .

e] : x 7→ α0 (
ν7→ 0x...a0)

y 7→ α2 (
ν7→ 0x...b0)

Abstract environments
An abstract environment is a function e] from variables to symbolic nodes
The concretization extends as follows:

γmem(e],S]) = {(e, h , ν) | (h , ν) ∈ γsh(S]) ∧ e = ν ◦ e]}

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 66 / 108

A shape abstract domain relying on separation

Basic abstraction: summarization

Set of all lists of any length:

&x 0x0 &x 0x...

0x0
. . .

&x 0x...

0x...
. . .

0x0
. . .

Well-founded list inductive def.
α · list :=

(emp ∧ α = 0x0)
∨ (α · d 7→ β0 ∗ α · n 7→ β1

∗ β1 · list ∧ α 6= 0x0)
well-founded predicate

Inductive summary predicates

&x α β
list

Concretization based on unfolding and least-fixpoint:
U−→ replaces an α · list predicate with one of its premises

γ(S], F) =
⋃
{γ(S]u, Fu) | (S], F)

U−→ (S]u, Fu)}

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 67 / 108

A shape abstract domain relying on separation

Inductive structures: a few instances

As before, many interesting inductive predicates encode nicely into graph
inductive definitions:

More complex shapes: trees

α
tree U−→ι α

β0

β1

left

right

tree

tree

Relations among pointers: doubly-linked lists

α
dll(δ) U−→ι α

β

δ

next

prev

dll(α)

Relations between pointers and numerical: sorted lists

α
lsort(δ) U−→ι

α

β0

β1

next

data

lsort(β1)

δ ≤ β1

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 68 / 108

A shape abstract domain relying on separation

Inductive segments

A frequent pattern:

&x

&y

0x0

A first attempt:
x points to a list, so &x 7→ α ∗ α · list holds
y points to a list, so &y 7→ β ∗ β · list holds

However, the following does not hold

&x 7→ α ∗ α · list ∗ &y 7→ β ∗ β · list

Why ? violation of separation!

A second attempt:

(&x 7→ α ∗ α · list ∗ TRUE) ∧ (&y 7→ β ∗ β · list ∗ TRUE)

Why is it still not all that good ? relation lost!
Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 69 / 108

A shape abstract domain relying on separation

Inductive segments

A frequent pattern:

&x

&y

0x0

Could be expressed directly as an inductive with a parameter:

α · list_endp(π) ::= (emp, α = π)
| (α · next 7→ β0 ∗ α · data 7→ β1

∗ β0 · list_endp(π), α 6= 0)

This definition straightforwardly derives from list
Thus, we make segments part of the fundamental predicates of the domain

&x

&y

list

list

list

Multi-segments: possible, but harder for analysis
Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 70 / 108

A shape abstract domain relying on separation

Shape graphs and separation logic

Semantic preserving translation Π of graphs into separation logic formulas:

Graph S] ∈ D]sh Translated formula Π(S])
α β

f α · f 7→ β

S]0 S]1 Π(S]0) ∗ Π(S]1)

α
list

α · list
α δ

list

list
α · list_endp(δ)

other inductives and segments similar

Note that:
shape graphs can be encoded into separation logic formula
the opposite is usually not true

Value information:
discussed in the next course
intuitively, assume we maintain numerical information next to shape graphs

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 71 / 108

Standard static analysis algorithms Overview of the analysis

Outline

1 Memory models

2 Pointer Abstractions

3 Separation Logic

4 A shape abstract domain relying on separation

5 Standard static analysis algorithms
Overview of the analysis
Post-conditions and unfolding
Folding: widening and inclusion checking
Abstract interpretation framework: assumptions and results

6 Conclusion

7 Internships

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 72 / 108

Standard static analysis algorithms Overview of the analysis

Static analysis overview

A list insertion function:

list ? l assumed to point to a list
list ? t assumed to point to a list element
list ? c = l;
while(c != NULL && c -> next != NULL && (. . .)){

c = c -> next;
}
t -> next = c -> next;
c -> next = t;

list inductive structure def.
Abstract precondition:

&l

&c

&t

next

data

list

Result of the (interprocedural) analysis
Over-approximations of reachable concrete states
e.g., after the insertion:

&l

&c

&t

next

data

listlist next

data

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 73 / 108

Standard static analysis algorithms Overview of the analysis

Transfer functions

Abstract interpreter design
Follows the semantics of the language under consideration
The abstract domain should provide sound transfer functions

Transfer functions:
Assignment: x→ f = y→ g or x→ f = earith

Test: analysis of conditions (if, while)
Variable creation and removal
Memory management: malloc, free

Abstract operators:
Join and widening: over-approximation
Inclusion checking: check stabilization of abstract iterates

Should be sound i.e., not forget any concrete behavior

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 74 / 108

Standard static analysis algorithms Overview of the analysis

Abstract operations

Denotational style abstract interpreter
Concrete denotational semantics JbK : S −→ P(S)

Abstract post-condition JbK](S), computed by the analysis:
s ∈ γ(S) =⇒ JbK(s) ⊆ γ(JbK](S))

Analysis by induction on the syntax using domain operators

Jb0; b1K](S) = Jb1K] ◦ Jb0K](S)
Jl = eK](S) = assign(l, e,S)

Jl = malloc(n)K](S) = alloc(l, n,S)
Jfree(l)K](S) = free(l, n,S)

Jif(e) bt else bfK](S) =

{
join(JbtK](test(e,S)),

JbfK](test(e = false,S)))

Jwhile(e)bK](S) = test(e = false, lfp]SF])
where, F] : S0 7→ JbK](test(e,S0))

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 75 / 108

Standard static analysis algorithms Overview of the analysis

The algorithms underlying the transfer functions

Unfolding: cases analysis on summaries

x y
list list =⇒

x y
list next

data

list
∨

x y

0x0
list

Abstract postconditions, on “exact” regions, e.g. insertion

x y

0x0

list next

data

list

next

data

=⇒
x y

list
next

data

listnext

data

Widening: builds summaries and ensures termination

x y
list list O

x y
list

next

data

list

=⇒
x y

list list

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 76 / 108

Standard static analysis algorithms Post-conditions and unfolding

Outline

1 Memory models

2 Pointer Abstractions

3 Separation Logic

4 A shape abstract domain relying on separation

5 Standard static analysis algorithms
Overview of the analysis
Post-conditions and unfolding
Folding: widening and inclusion checking
Abstract interpretation framework: assumptions and results

6 Conclusion

7 Internships

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 77 / 108

Standard static analysis algorithms Post-conditions and unfolding

Analysis of an assignment in the graph domain

Steps for analyzing x = y -> next (local reasoning)
1 Evaluate l-value x into points-to edge α 7→ β

2 Evaluate r-value y -> next into node β′

3 Replace points-to edge α 7→ β with points-to edge α 7→ β′

With pre-condition:
&x α0 β0

&y α1 β1 β2
next

Step 1 produces α0 7→ β0

Step 2 produces β2

End result:
&x α0 β0

&y α1 β1 β2next

With pre-condition:
&x α0 β0

&y α1 β1
list

Step 1 produces α0 7→ β0

Step 2 fails

Abstract state too abstract
We need to refine it

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 78 / 108

Standard static analysis algorithms Post-conditions and unfolding

Unfolding as a local case analysis

Unfolding principle
Case analysis, based on the inductive definition
Generates symbolic disjunctions (analysis performed in a disjunction
domain, e.g., trace partitioning)

Example, for lists:

α
list U−→ α = 0

α

α
list U−→ α 6= 0

α α′

β

next

data

list

Numeric predicates: next course on shape + value abstraction

Soundness: by definition of the concretization of inductive structures

γsh(S]) ⊆
⋃
{γsh(S]0) | S] U−→ S]0}

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 79 / 108

Standard static analysis algorithms Post-conditions and unfolding

Analysis of an assignment, with unfolding

Principle

We have γsh(α · ι) =
⋃
{γsh(S]) | α · ι U−→ S]}

Replace α · ι with a finite number of disjuncts and continue

Disjunct 1:

&x α0 β0

&y α1
= 0

β1

Step 1 produces α0 7→ β0

Step 2 fails: Null pointer !
In a correct program, would be
ruled out by a condition y 6= 0
i.e., β1 6= 0 in D]num

Disjunct 2:

&x α0 β0

&y α1 β1

β2

β3

next

data

list

Step 1 produces α0 7→ β0

Step 2 produces β2

End result:

&x α0 β0

&y α1 β1

β2

β3

next

data

list

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 80 / 108

Standard static analysis algorithms Post-conditions and unfolding

Unfolding and degenerated cases

assume(l points to a dll)
c = l;
¬ while(c 6= NULL && condition)

c = c -> next;
 if(c 6= 0 && c -> prev 6= 0)

c = c -> prev→ prev;

at ¬: l, c

α0
dll(δ1)

at :
l

α0

c
α1

dll(δ0)

dll(δ1)

dll(δ1)

⇒ non trivial unfolding

Materialization of c -> prev:
α0 α1

α-1

dll(. . .)

dll(α−1)

next

prev

dll(α0)

Segment splitting lemma: basis for segment unfolding

α0 α2
ι i + j

ι′ describes the same set of stores as α0 α1 α2
ι i

ι′′

ι′′ j

ι′

Materialization of c -> prev -> prev:
α-1 α0 α1

α-2

dll(. . .)

dll(α−2)

nextnext

prev

prev

dll(α0)

Implementation issue: discover which inductive edge to unfold
very hard !

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 81 / 108

Standard static analysis algorithms Folding: widening and inclusion checking

Outline

1 Memory models

2 Pointer Abstractions

3 Separation Logic

4 A shape abstract domain relying on separation

5 Standard static analysis algorithms
Overview of the analysis
Post-conditions and unfolding
Folding: widening and inclusion checking
Abstract interpretation framework: assumptions and results

6 Conclusion

7 Internships

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 82 / 108

Standard static analysis algorithms Folding: widening and inclusion checking

Need for a folding operation

Back to the list traversal example:

First iterates in the loop:
at iteration 0 (before entering the loop):

l, c
α0

list

at iteration 1:
l c

β1

next

data

list

at iteration 2:
l
α0 α1

c
α2

β1 β2

next

data

next

data

list

assume(l points to a list)
c = l;
while(c 6= NULL){
c = c→ next;
}

The analysis unfolds, but
never folds:

S0

S0,u S1

S1,u S2 . . .

unfold
f

unfold
f

How to guarantee termination of the analysis ?
How to introduce segment edges / perform abstraction ?

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 83 / 108

Standard static analysis algorithms Folding: widening and inclusion checking

Widening

The lattice of shape abstract values has infinite height
Thus iteration sequences may not terminate

Definition of a widening operator O
Over-approximates join:{

γ(X]) ⊆ γ(X]OY])
γ(Y]) ⊆ γ(X] OY])

Enforces termination: for all sequence (X]
n)n∈N, the sequence (Y]

n)n∈N
defined below is ultimately stationary{

Y]
0 = X]

0
∀n ∈ N, Y]

n+1 = Y]
n OX]

n+1

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 84 / 108

Standard static analysis algorithms Folding: widening and inclusion checking

Canonicalization

Upper closure operator

ρ : D] −→ D]can ⊆ D] is an upper closure operator (uco) iff it is monotone,
extensive and idempotent.

Canonicalization
Disjunctive completion: D]∨ = finite disjunctions over D]

Canonicalization operator ρ∨ defined by ρ∨ : D]∨ −→ D]can∨ and
ρ∨(X]) = {ρ(x]) | x] ∈ X]} where ρ is an uco and D]can is finite

Canonicalization is used in many shape analysis tools
Easier to compute but less powerful than widening: does not exploit
history of computation

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 85 / 108

Standard static analysis algorithms Folding: widening and inclusion checking

Weakening: definition

To design inclusion test, join and widening algorithms, we first study a more
general notion of weakening:

Weakening

We say that S]0 can be weakened into S]1 if and only if

∀(h , ν) ∈ γsh(S]0), ∃ν′ ∈ Val, (h , ν′) ∈ γsh(S]1)

We then note S]0 4 S]1

Applications:
inclusion test (comparison) inputs S]0,S

]
1; if returns true S]0 4 S]1

canonicalization (unary weakening) inputs S]0 and returns ρ(S]0) such that
S]0 4 ρ(S]0)

widening / join (binary weakening ensuring termination or not) inputs S]0,S
]
1

and returns S]up such that S]i 4 S]up

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 86 / 108

Standard static analysis algorithms Folding: widening and inclusion checking

Weakening: example

We consider S]0 defined by:

&x

α0 α1 α2

α2

next

data

list

and S]1 defined by:

&x
β0 β1

list

Then, we have the weakening S]0 4 S]1 up-to a renaming in S]1:

Ψ : β0 7−→ α0
β1 7−→ α1

weakening up-to renaming is generally required as graphs do not have the
same name space
formalized a bit later...

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 87 / 108

Standard static analysis algorithms Folding: widening and inclusion checking

Local weakening: separating conjunction rule

We can apply the local reasoning principle to weakening

If S]0 4 S]0,weak and S]1 4 S]1,weak then:

S]0 S]1α0 α1 α2 4 S]0,weak S]1,weakα0 α1 α2

Separating conjunction rule (4∗)
Let us assume that

S]0 and S]1 have distinct set of source nodes

we can weaken S]0 into S]0,weak

we can weaken S]1 into S]1,weak

then:

we can weaken S]0 ∗ S]1 into S]0,weak ∗ S]1,weak

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 88 / 108

Standard static analysis algorithms Folding: widening and inclusion checking

Local weakening: unfolding rule, identity rule

Weakening unfolded region (4U)

Let us assume that S]0
U−→ S]1. Then, by definition of the concretization of

unfolding

we can weaken S]1 into S]0

the proof follows from the definition of unfolding
it can be applied locally, on graph regions that differ due to unfolding of
inductive definitions

Identity weakening (4Id)

we can weaken S] into S]

the proof is trivial:
γsh(S]) ⊆ γsh(S])

on itself, this principle is not very useful, but it can be applied locally, and
combined with (4U) on graph regions that are not equal

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 89 / 108

Standard static analysis algorithms Folding: widening and inclusion checking

Local weakening: example

By rule (4Id):

α1 α2

α3

next

data

list
4

α1 α2

α3

next

data

list

Thus, by rule (4U):

α1 α2

α3

next

data

list
4

α1
list

Additionally, by rule (4Id):

&l

α0 α1
4

&l

α0 α1

Thus, by rule (4∗):

&l

α0 α1 α2

α3

next

data

list
4

&l

α0 α1
list

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 90 / 108

Standard static analysis algorithms Folding: widening and inclusion checking

Inclusion checking rules in the shape domain

Graphs to compare have distinct sets of nodes, thus inclusion check should carry
out a valuation transformer Ψ : V](S]1) −→ V](S]0) (important when dealing
also with content values)

Using (and extending) the weakening principles, we obtain the following rules
(considering only inductive definition list, though these rules would extend to
other definitions straightforwardly):

Identity rules:
∀i , Ψ(βi) = αi =⇒ α0 · f 7→ α1 v]Ψ β0 · f 7→ β1

Ψ(β) = α =⇒ α · list v]Ψ β · list
∀i , Ψ(βi) = αi =⇒ α0 · list_endp(α1) v]Ψ β0 · list_endp(β1)

Rules on inductives:
∀i , Ψ(βi) = α =⇒ emp v]Ψ β0 · list_endp(β1)

S]0 v]Ψ S]1 ∧ β · ι
U−→ S]1 =⇒ S]0 v]Ψ β · ι

if β1 fresh ,Ψ′ = Ψ[β1 7→ α1] and Ψ(β0) = α0 then,
S]0 v]Ψ′ β1 · list =⇒ α0 · list_endp(α1) ∗ S]0 v]Ψ β0 · ι

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 91 / 108

Standard static analysis algorithms Folding: widening and inclusion checking

Inclusion checking algorithm

Comparison of (e]0, S
]
0) and (e]1, S

]
1)

1 start with Ψ defined by Ψ(β) = α if and only if there exists a variable x such
that e]0(x) = α ∧ e]1(x) = β

2 iteratively apply local rules, and extend Ψ when needed
3 return true when both shape graphs become empty

the first step ensures both environments are consistent

This algorithm is sound:

Soundness
(e]0,S

]
0) v] (e]1,S

]
1) =⇒ γ(e]0,S

]
0) ⊆ γ(e]1,S

]
1)

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 92 / 108

Standard static analysis algorithms Folding: widening and inclusion checking

Over-approximation of union

The principle of join and widening algorithm is similar to that of v]:
It can be computed region by region, as for weakening in general:
If ∀i ∈ {0, 1}, ∀s ∈ {lft, rgh}, S]i,s 4 S]s ,

S]0,lft S]1,lftα0 α1 α2

S]0,rgh S]1,rghβ0 β1 β2

Ψ Ψ Ψ 4 S]0 S]1γ0 γ1 γ2

The partitioning of inputs / different nodes sets requires a node
correspondence function

Ψ : V](S]lft)× V](S]rgh) −→ V](S])

The computation of the shape join progresses by the application of local join
rules, that produce a new (output) shape graph, that weakens both
inputs

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 93 / 108

Standard static analysis algorithms Folding: widening and inclusion checking

Over-approximation of union: syntactic identity rules

In the next few slides, we focus on O
though the abstract union would be defined similarly in the shape domain

Several rules derive from (4Id):

If S]lft = α0 · f 7→ α1

and S]lft = β0 · f 7→ β1
and Ψ(α0, β0) = δ0, Ψ(α1, β1) = δ1, then:

S]lft OS]rgh = δ0 · f 7→ δ1

If S]lft = α0 · list
and S]lft = β0 · list1
and Ψ(α0, β0) = δ0, then:

S]lft O S]rgh = δ0 · list

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 94 / 108

Standard static analysis algorithms Folding: widening and inclusion checking

Over-approximation of union: segment introduction rule

Rule

if
S]rgh

α

β0 β1 β0 β1
list

Ψ Ψ

S]lft

v
then

S]lft O S]rgh = δ0 δ1

list

(α, β0)
Ψ←→ δ0

(α, β1)
Ψ←→ δ1

Application to list traversal, at the end of iteration 1:
before iteration 0:

l, c

α0
list

end of iteration 0:

l
β0

c
β1

β2

next

data

list

join, before iteration 1:

l
δ0

c
δ1

list

list

list
{

Ψ(α0, β0) = δ0
Ψ(α0, β1) = δ1

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 95 / 108

Standard static analysis algorithms Folding: widening and inclusion checking

Over-approximation of union: segment extension rule

Rule

if
S]rgh

α0 α1

β0 β1 β0 β1

list

list
Ψ Ψ

S]lft

v
then

S]lft OS]rgh = δ0 δ1

list

(α0, β0)
Ψ←→ δ0

(α1, β1)
Ψ←→ δ1

Application to list traversal, at the end of iteration 1:
previous invariant before iteration 1:

l

α0

c
α1

list

list

list

end of iteration 1:

l
β0

c
β1 β2

β3

list

list
next

data

list

join, before iteration 1:

l
δ0

c
δ1

list

list

list
{

Ψ(α0, β0) = δ0
Ψ(α1, β2) = δ1

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 96 / 108

Standard static analysis algorithms Folding: widening and inclusion checking

Over-approximation of union: rewrite system properties

Comparison, canonicalization and widening algorithms can be considered
rewriting systems over tuples of graphs
Success configuration: weakening applies on all components,
i.e., the inputs are fully “consumed” in the weakening process
Failure configuration: some components cannot be weakened
i.e., the algorithm should return the conservative answer (i.e., >)

Termination
The systems are terminating
This ensures comparison, canonicalization, widening are computable

Non confluence !
The results depends on the order of application of the rules
Implementation requires the choice of an adequate strategy

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 97 / 108

Standard static analysis algorithms Folding: widening and inclusion checking

Over-approximation of union in the combined domain

Widening of (e]0, S
]
0) and (e]1, S

]
1)

1 define Ψ, e by Ψ(α, β) = e(x) = δ (where δ is a fresh node) if and only if
e]0(x) = α ∧ e]1(x) = β

2 iteratively apply join local rules, and extend Ψ when new relations are
inferred (for instance for points-to edges)

3 return the result obtained when all regions of both inputs are approximated in
the output graph

This algorithm is sound:

Soundness
γ(e]0,S

]
0) ∪ γ(e]1,S

]
1) ⊆ γ(e],S])

Widening also enforces termination (it only introduces segments, and the growth
induced by the introduction of segments is bounded)

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 98 / 108

Standard static analysis algorithms Abstract interpretation framework: assumptions and results

Outline

1 Memory models

2 Pointer Abstractions

3 Separation Logic

4 A shape abstract domain relying on separation

5 Standard static analysis algorithms
Overview of the analysis
Post-conditions and unfolding
Folding: widening and inclusion checking
Abstract interpretation framework: assumptions and results

6 Conclusion

7 Internships

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 99 / 108

Standard static analysis algorithms Abstract interpretation framework: assumptions and results

Assumptions

What assumptions do we make ?
How do we prove soundness of the analysis of a loop ?

Assumptions in the concrete level, and for block b:

(P(M),⊆) is a complete lattice, hence a CPO
F : P(M)→ P(M) is the concrete semantic (“post”) function of b

thus, the concrete semantics writes down as JbK = lfp∅F

Assumptions in the abstract level:

M] set of abstract elements, no order a priori
m] ::= (e],S])

γmem : M] → P(M) concretization
F] : M] →M] sound abstract semantic function

i.e., such that F ◦ γmem ⊆ γmem ◦ F]
O : M] ×M] →M] widening operator, terminates, and such that

γmem(m]0) ∪ γmem(m]1) ⊆ γmem(m]0 Om]1)

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 100 / 108

Standard static analysis algorithms Abstract interpretation framework: assumptions and results

Computing a loop abstract post-condition

Loop abstract semantics
The abstract semantics of loop while(rand()){b} is calculated as the limit of the
sequence of abstract iterates below:{

m]0 = ⊥
m]n+1 = m]n OF](m]n)

Soundness proof:
by induction over n,

⋃
k≤n F

k(∅) ⊆ γmem(m]n)

by the property of widening, the abstract sequence converges at a rank N:
∀k ≥ N, m]k = m]N , thus

lfp∅F =
⋃
k

F k(∅) ⊆ γmem(m]N)

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 101 / 108

Standard static analysis algorithms Abstract interpretation framework: assumptions and results

Discussion on the abstract ordering

How about the abstract ordering ? We assumed NONE so far...

Logical ordering, induced by concretization, used for proofs

m]0 v m]1 ::= ”γmem(m]0) ⊆ γmem(m]1)”

Approximation of the logical ordering, implemented as a function
is_le : M] ×M] → {true,>}, used to test the convergence of abstract
iterates

is_le(m]0,m]1) = true =⇒ γmem(m]0) ⊆ γmem(m]1)

Abstract semantics is not assumed (and is actually most likely NOT)
monotone with respect to either of these orders...

Also, computational ordering would be used for proving widening
termination

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 102 / 108

Conclusion

Outline

1 Memory models

2 Pointer Abstractions

3 Separation Logic

4 A shape abstract domain relying on separation

5 Standard static analysis algorithms

6 Conclusion

7 Internships

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 103 / 108

Conclusion

Updates and summarization

Weak updates cause significant precision loss...
Separation logic makes updates strong

Separation logic
Separating conjunction combines properties on disjoint stores

Fundamental idea: ∗ forces to identify what is modified
Before an update (or a read) takes place, memory cells need to be
materialized
Local reasoning: properties on unmodified cells pertain

Summaries
Inductive predicates describe unbounded memory regions

Last lecture: array segments and transitive closure (TVLA)

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 104 / 108

Conclusion

Bibliography

[JR]: Separation Logic: A Logic for Shared Mutable Data Structures.
John C. Reynolds.
In LICS’02, pages 55–74, 2002.

[DHY]: A Local Shape Analysis Based on Separation Logic.
Dino Distefano, Peter W. O’Hearn and Hongseok Yang.
In TACAS’06, pages 287–302.

[CR]: Relational inductive shape analysis.
Bor-Yuh Evan Chang and Xavier Rival.
In POPL’08, pages 247–260, 2008.

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 105 / 108

Conclusion

Assignment and paper reading

The Frame rule:

formalize the Hoare logic rules for a language with pointer assignments and
condition tests
prove the Frame rule by induction over the syntax of programs

Reading:

Separation Logic: A Logic for Shared Mutable Data Structures.
John C. Reynolds.
In LICS’02, pages 55–74, 2002.

Formalizes the Frame rule, among others

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 106 / 108

Internships

Outline

1 Memory models

2 Pointer Abstractions

3 Separation Logic

4 A shape abstract domain relying on separation

5 Standard static analysis algorithms

6 Conclusion

7 Internships

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 107 / 108

Internships

Internships on memory abstraction

Summarization based on universal quantification:
memory abstractions use summaries
today, we consider inductive linked structures; we will also see arrays...
another form of summarization based on an unbounded set E

∗{P(x) | x ∈ E}

requires the definition of fold / unfold, analysis operations...
towards a parametric abstract domain:

I generic dictionary abstraction
I arrays (generalization of existing)
I union finds and DAGs

Other topics:
application to the verification of Operating System components

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 30th. 2019 108 / 108

	Memory models
	Towards memory properties
	Formalizing concrete memory states
	Treatment of errors
	Language semantics

	Pointer Abstractions
	Separation Logic
	A shape abstract domain relying on separation
	Standard static analysis algorithms
	Overview of the analysis
	Post-conditions and unfolding
	Folding: widening and inclusion checking
	Abstract interpretation framework: assumptions and results

	Conclusion
	Internships

