Memory abstraction 1 MPRI — Cours 2.6 "Interprétation abstraite : application à la vérification et à l'analyse statique"

Xavier Rival

INRIA, ENS, CNRS

Oct, 30th. 2019

## Overview of the lecture

So far, we have shown numerical abstract domains

- non relational: intervals, congruences...
- relational: polyhedra, octagons, ellipsoids...

• How to deal with non purely numerical states ?

• How to reason about complex data-structures ?

#### $\Rightarrow$ a very broad topic, and two lectures:

#### This lecture

- overview memory models and memory properties
- abstraction of **pointer structures** and **separation logic based shape analysis**

**Next lecture:** arrays, shape/numerical abstraction, composition of shape abstractions

Xavier Rival (INRIA, ENS, CNRS)

Memory abstraction

## Outline

#### Memory models

- Towards memory properties
- Formalizing concrete memory states
- Treatment of errors
- Language semantics

#### 2 Pointer Abstractions

- 3 Separation Logic
- 4 A shape abstract domain relying on separation
- 5 Standard static analysis algorithms

#### 6 Conclusion

#### Internships

## Assumptions for the two lectures on memory abstraction

Imperative programs viewed as transition systems:

- set of control states: L (program points)
- set of variables: X (all assumed globals)
- set of values: V (so far: V consists of integers (or floats) only)
- set of memory states:  $\mathbb{M}$  (so far:  $\mathbb{M} = \mathbb{X} \to \mathbb{V}$ )
- error state:  $\Omega$
- states: S

| S                     | = | $\mathbb{L}\times\mathbb{M}$ |
|-----------------------|---|------------------------------|
| $\mathbb{S}_{\Omega}$ | = | S⊎{Ω}                        |

• transition relation:

 $(
ightarrow)\subseteq \mathbb{S} imes \mathbb{S}_\Omega$ 

Abstraction of sets of states

- abstract domain  $\mathbb{D}^{\sharp}$
- concretization  $\gamma : (\mathbb{D}^{\sharp}, \sqsubseteq^{\sharp}) \longrightarrow (\mathcal{P}(\mathbb{S}), \subseteq)$

## Assumptions: syntax of programs

We start from the same language syntax and will extend l-values:

| 1 | ::= | I-values                       |                                                                    |
|---|-----|--------------------------------|--------------------------------------------------------------------|
|   |     | x                              | $(\mathrm{x} \in \mathbb{X})$                                      |
|   |     |                                | we will add other kinds of l-values<br>pointers, array dereference |
| е | ::= | expressions                    |                                                                    |
|   |     | С                              | $(c \in \mathbb{V})$                                               |
|   | Í   | 1                              | (lvalue)                                                           |
|   | Í   | $\mathbf{e} \oplus \mathbf{e}$ | (arith operation, comparison)                                      |
| s | ::= | statements                     |                                                                    |
|   |     | l = e                          | (assignment)                                                       |
|   |     | s;s;                           | (sequence)                                                         |
|   | ĺ   | if(e){s}                       | (condition)                                                        |
|   | İ   | while(e){s}                    | (loop)                                                             |

## Assumptions: semantics of programs

We assume classical definitions for:

- I-values:  $\llbracket l \rrbracket : \mathbb{M} \to \mathbb{X}$
- expressions:  $\llbracket e \rrbracket : \mathbb{M} \to \mathbb{V}$
- programs and statements:
  - we assume a label before each statement
  - ► each statement defines a set of transitions (→)

In this course, we rely on the usual reachable states semantics

#### Reachable states semantics

The reachable states are computed as  $[\![\mathcal{S}]\!]_{\mathcal{R}} = I\!fpF$  where

$$\begin{array}{rccc} F: & \mathcal{P}(\mathbb{S}) & \longrightarrow & \mathcal{P}(\mathbb{S}) \\ & X & \longmapsto & \mathbb{S}_{\mathcal{I}} \cup \{s \in \mathbb{S} \mid \exists s' \in X, \ s' \to s\} \end{array}$$

and  $\mathbb{S}_{\mathcal{I}}$  denotes the set of initial states.

## Assumptions: general form of the abstraction

We assume an abstraction for sets of memory states:

- $\bullet\,$  memory abstract domain  $\mathbb{D}_{\rm mem}^{\sharp}$
- concretization function  $\gamma_{mem}: \mathbb{D}_{mem}^{\sharp} \to \mathcal{P}(\mathbb{M})$

# $\label{eq:Reachable states abstraction} \ensuremath{\mathsf{We construct}} \ \mathbb{D}^{\sharp} = \mathbb{L} \to \mathbb{D}^{\sharp}_{\mathrm{mem}} \ \mbox{and}:$

$$egin{array}{rcl} \gamma:&\mathbb{D}^{\sharp}&\longrightarrow&\mathcal{P}(\mathbb{S})\ &X^{\sharp}&\longmapsto&\{(\ell,m)\in\mathbb{S}\mid m\in\gamma_{ ext{mem}}(X^{\sharp}(\ell))\} \end{array}$$

#### The whole question is how do we choose $\mathbb{D}^{\sharp}_{\mathrm{mem}}, \gamma_{\mathrm{mem}}...$

• previous lectures:

 $\mathbb X$  is fixed and finite and,  $\mathbb V$  is scalars (integers or floats), thus,  $\mathbb M\equiv\mathbb V^n$ 

• today:

we will extend the language thus, also need to extend  $\mathbb{D}_{mem}^{\sharp}, \gamma_{mem}$ 

## Abstraction of purely numeric memory states

#### Purely numeric case

- $\bullet~\mathbb{V}$  is a set of values of the same kind
- e.g., integers ( $\mathbb{Z}$ ), machine integers ( $\mathbb{Z} \cap [-2^{63}, 2^{63} 1]$ )...
- If the set of variables is fixed, we can use any abstraction for  $\mathbb{V}^N$



## Heterogeneous memory states

In real life languages, there are many kinds of values:

- scalars (integers of various sizes, boolean, floating-point values)...
- pointers, arrays...

Heterogeneous memory states and non relational abstraction

- types  $t_0, t_1, \ldots$  and values  $\mathbb{V} = \mathbb{V}_{t_0} \uplus \mathbb{V}_{t_1} \uplus \ldots$
- finitely many variables; each has a fixed type:  $\mathbb{X} = \mathbb{X}_{t_0} \uplus \mathbb{X}_{t_1} \uplus \dots$
- memory states:  $\mathbb{M} = \mathbb{X}_{t_0} \to \mathbb{V}_{t_0} \times \mathbb{X}_{t_1} \to \mathbb{V}_{t_1} \dots$

Principle: compose abstractions for sets of memory states of each type

Non relational abstraction of heterogeneous memory states

•  $\mathbb{M} \equiv \mathbb{M}_0 \times \mathbb{M}_1 \times \ldots$  where  $\mathbb{M}_i = \mathbb{X}_i \to \mathbb{V}_i$ 

• Concretization function (case with two types)

$$\mathcal{P}(\mathbb{M}_0) imes \mathcal{P}(\mathbb{M}_1) \longrightarrow \mathcal{P}(\mathbb{M}) \ (m_0^{\sharp}, m_1^{\sharp}) \longmapsto \{(m_0, m_1) \mid \forall i, \ m_i \in \gamma_i(m_i^{\sharp})\}$$

 $\gamma_{\rm r}$ 

## Memory structures

#### Common structures (non exhaustive list)

• Structures, records, tuples:

sequences of cells accessed with fields

• Arrays:

similar to structures; indexes are integers in [0, n-1]

• Pointers:

numerical values corresponding to the address of a memory cell

#### • Strings and buffers:

blocks with a sequence of elements and a terminating element (e.g., 0x0)

• Closures (functional languages):

pointer to function code and (partial) list of arguments)

To describe memories, the definition  $\mathbb{M}=\mathbb{X}\to\mathbb{V}$  is too restrictive

Generally, non relational, heterogeneous abstraction cannot handle many such structures all at once: relations are needed!

Xavier Rival (INRIA, ENS, CNRS)

Memory abstraction

## Specific properties to verify

Memory safety

Absence of memory errors (crashes, or undefined behaviors)

#### **Pointer errors:**

• Dereference of a null pointer / of an invalid pointer

#### Access errors:

• Out of bounds array access, buffer overruns (often used for attacks)

#### Invariance properties

Data should not become corrupted (values or structures...)

#### **Examples:**

- Preservation of structures, e.g., lists should remain connected
- Preservation of invariants, e.g., of balanced trees

## Properties to verify: examples

## A program closing a list of file descriptors

```
\label{eq:linear_state} \begin{array}{l} //1 \text{ points to a list} \\ \mathsf{c} = \mathsf{l}; \\ \textbf{while}(\mathsf{c} \neq \texttt{NULL}) \{ \\ \texttt{close}(\mathsf{c} \rightarrow \texttt{FD}); \\ \mathsf{c} = \mathsf{c} \rightarrow \texttt{next}; \\ \} \end{array}
```

#### Correctness properties

- memory safety
- 1 is supposed to store all file descriptors at all times will its structure be preserved ? yes, no breakage of a next link
- O closure of all the descriptors

#### Examples of structure preservation properties

- Algorithms manipulating trees, lists...
- Libraries of algorithms on balanced trees
- Not guaranteed by the language !

e.g., the balancing of Maps in the OCaml standard library was **incorrect** for years (performance bug)

## A more realistic model

No one-to-one relation between memory cells and program variables

- a variable may indirectly reference several cells (structures...)
- dynamically allocated cells correspond to no variable at all...

#### Environment + Heap

- Addresses are values:  $\mathbb{V}_{\mathrm{addr}} \subseteq \mathbb{V}$
- Environments  $e \in \mathbb{E}$  map variables into their addresses
- Heaps ( $h \in \mathbb{H}$ ) map addresses into values

| $\mathbb{E}$ | = | $\mathbb{X} \to \mathbb{V}_{\mathrm{addr}}$ |
|--------------|---|---------------------------------------------|
| $\mathbb{H}$ | = | $\mathbb{V}_{\mathrm{addr}} \to \mathbb{V}$ |

h is actually only a partial function

• Memory states (or memories):  $\mathbb{M} = \mathbb{E} \times \mathbb{H}$ 

Note: Avoid confusion between heap (function from addresses to values) and dynamic allocation space (often referred to as "heap")

Xavier Rival (INRIA, ENS, CNRS)

Memory abstraction

## Example of a concrete memory state (variables)

#### Example setup:

- $\bullet\,$  x and z are two list elements containing values 64 and 88, and where the former points to the latter
- y stores a pointer to z

#### Memory layout

(pointer values underlined)



| e : | x   | $\mapsto$ | 300 |  |
|-----|-----|-----------|-----|--|
|     | у   | $\mapsto$ | 308 |  |
|     | z   | $\mapsto$ | 312 |  |
|     |     |           |     |  |
| h : | 300 | $\mapsto$ | 64  |  |
|     | 304 | $\mapsto$ | 312 |  |
|     | 308 | $\mapsto$ | 312 |  |
|     | 312 | $\mapsto$ | 88  |  |
|     | 316 | $\mapsto$ | 0   |  |
|     |     |           |     |  |

## Example of a concrete memory state (variables + dyn. cell)

#### Example setup:

- same configuration
- + second field of z points to a dynamically allocated list element (in purple)

#### Memory layout

|          |            |            |   | e : | x   | $\mapsto$ | 300 |
|----------|------------|------------|---|-----|-----|-----------|-----|
| address  |            |            |   |     | у   | $\mapsto$ | 308 |
| &x = 300 | 64         |            |   |     | z   | $\mapsto$ | 312 |
| 304      | <u>312</u> |            |   |     |     |           |     |
| &y = 308 | <u>312</u> |            |   | h : | 300 | $\mapsto$ | 64  |
| &z = 312 | 88         | <u>ل</u> ظ |   |     | 304 | $\mapsto$ | 312 |
| 316      | <u>508</u> |            |   |     | 308 | $\mapsto$ | 312 |
|          |            |            |   |     | 312 | $\mapsto$ | 88  |
| 508      | 25         | <u>к</u>   |   |     | 316 | $\mapsto$ | 508 |
| 512      | 0x0        |            |   |     | 508 | $\mapsto$ | 25  |
| 011      |            |            |   |     | 512 | $\mapsto$ | 0   |
|          | 1          | 1          | _ | _   |     |           |     |

## Extending the semantic domains

Some slight modifications to the semantics of the initial language:

- Addresses are values:  $\mathbb{V}_{\mathrm{addr}} \subseteq \mathbb{V}$
- $\bullet$  L-values evaluate into addresses:  $[\![1]\!]:\mathbb{M}\to\mathbb{V}_{\mathrm{addr}}$

$$\llbracket x \rrbracket (e, h) = e(x)$$

 $\bullet$  Semantics of expressions  $[\![e]\!]:\mathbb{M}\to\mathbb{V},$  mostly unchanged

$$[1](e, h) = h([1](e, h))$$

• Semantics of assignment  $l_0 : 1 := e; l_1 : \ldots$ :

$$(l_0, e, h_0) \longrightarrow (l_1, e, h_1)$$

where

$$h_1 = h_0[\llbracket \texttt{l} \rrbracket(e, h_0) \leftarrow \llbracket \texttt{e} \rrbracket(e, h_0)$$

## Realistic definitions of memory states

#### Our model is still not very accurate for most languages

- Memory cells do not all have the same size
- Memory management algorithms usually do not treat cells one by one, e.g., malloc returns a pointer to a block applying free to that pointer will dispose the whole block

#### Other refined models

- Partition of the memory in blocks with a base address and a size
- Partition of blocks into cells with a size
- Description of fields with an offset
- Description of pointer values with a base address and an offset...

For a **very formal** description of such concrete memory states: see **CompCert** project source files (Coq formalization)

## Language semantics: program crash

In an abnormal situation, we assume that the program will crash

- advantage: very clear semantics
- disadvantage (for the compiler designer): dynamic checks are required

#### Error state

- $\Omega$  denotes an error configuration
- $\Omega$  is a **blocking**:  $(\rightarrow) \subseteq \mathbb{S} \times ({\Omega} \uplus \mathbb{S})$

#### OCaml:

- out-of-bound array access:
  - Exception: Invalid\_argument "index out of bounds".
- no notion of a null pointer

#### Java:

• exception in case of out-of-bound array access, null dereference: java.lang.ArrayIndexOutOfBoundsException

## Language semantics: undefined behaviors

**Alternate choice:** leave the behavior of the program **unspecified** when an abnormal situation is encountered

- advantage: easy implementation (often architecture driven)
- disadvantage: unintuitive semantics, errors hard to reproduce different compilers may make different choices... or in fact, make no choice at all (= let the program evaluate even when performing invalid actions)

## Modeling of undefined behavior

- Very hard to capture what a program operation may modify
- Abnormal situation at ( $\ell_0, m_0$ ) such that  $\forall m_1 \in \mathbb{M}, \ (\ell_0, m_0) \to (\ell_1, m_1)$

#### • In C:

array out-of-bound accesses and dangling pointer dereferences lead to undefined behavior (and potentially, memory corruption) whereas a null-pointer dereference always result into a crash

## Composite objects

How are contiguous blocks of information organized ?

#### Java objects, OCaml struct types

- sets of fields
- each field has a type
- no assumption on physical storage, no pointer arithmetics

#### C composite structures and unions

- physical mapping defined by the norm
- each field has a specified size and a specified alignment
- union types / casts: implementations may allow several views

## Pointers and records / structures / objects

Many languages provide **pointers** or **references** and allow to manipulate **addresses**, but with different levels of expressiveness

What kind of objects can be referred to by a pointer ?

Pointers only to records / structures / objects

- Java: only pointers to objects
- OCaml: only pointers to records, structures...

#### Pointers to fields

C: pointers to any valid cell...
 struct {int a; int b} x;
 int \* y = &(x · b);

## Pointer arithmetics

#### What kind of operations can be performed on a pointer ?

#### Classical pointer operations

- Pointer dereference:
  - \*p returns the contents of the cell of address p
- "Address of" operator: &x returns the address of variable x
- Can be analyzed with a **rather coarse pointer model** *e.g.*, symbolic base + symbolic field

#### Arithmetics on pointers, requiring a more precise model

• Addition of a numeric constant:

p + n: address contained in p + n times the size of the type of p Interaction with pointer casts...

• **Pointer subtraction**: returns a numeric offset

## Manual memory management

#### Allocation of unbounded memory space

- How are new memory blocks created by the program ?
- How do old memory blocks get freed ?

#### OCaml memory management

- implicit allocation when declaring a new object
- garbage collection: purely automatic process, that frees unreachable blocks

#### C memory management

- manual allocation: malloc operation returns a pointer to a new block
- manual de-allocation: free operation (block base address)

#### Manual memory management is not safe:

- memory leaks: growing unreachable memory region; memory exhaustion
- dangling pointers if freeing a block that is still referred to

## Summary on the memory model

#### Language dependent items

- Clear error cases or undefined behaviors for analysis, a semantics with clear error cases is preferable
- Composite objects: structure fully exposed or not
- Pointers to object fields: allowed or not
- **Pointer arithmetic**: allowed or not *i.e.*, are pointer values symbolic values or numeric values
- Memory management: automatic or manual

In this course, we start with a simple model, and study specific features one by one and in isolation from the others

## Rest of the course

Structures for which we introduce abstractions:

- pointers and dynamically allocated pointer structures (today)
- arrays (in a few weeks)
- combinations of structures (in a few weeks)

#### Abstract operations:

- post-condition for the reading of a cell defined by an l-value e.g., x=a[i] or x=\*p
- post-condition for the writing of a heap cell
   e.g., a[i] = p or p -> f = x
- abstract join, that approximates unions of concrete states

## Outline

#### Memory models

#### Pointer Abstractions

- 3 Separation Logic
- 4 A shape abstract domain relying on separation
- 5 Standard static analysis algorithms
- 6 Conclusion

#### 7 Internships

**Pointer Abstractions** 

Programs with pointers: syntax

Syntax extension: we add pointer operations



We do not consider pointer arithmetics here

## Programs with pointers: semantics

#### Case of I-values:

$$\begin{split} \llbracket \mathbf{x} \rrbracket(e, h) &= e(\mathbf{x}) \\ \llbracket * \mathbf{e} \rrbracket(e, h) &= \begin{cases} h(\llbracket \mathbf{e} \rrbracket(e, h)) & \text{if } \llbracket \mathbf{e} \rrbracket(e, h) \neq \mathbf{0} \land \llbracket \mathbf{e} \rrbracket(e, h) \in \mathbf{Dom}(h) \\ \Omega & \text{otherwise} \\ \llbracket \mathbf{l} \cdot \mathbf{f} \rrbracket(e, h) &= \llbracket \mathbf{l} \rrbracket(e, h) + \mathbf{offset}(\mathbf{f}) \text{ (numeric offset)} \end{split}$$

#### Case of expressions:

$$\llbracket 1 \rrbracket (e, h) = h(\llbracket 1 \rrbracket (e, h))$$
 (evaluates into the contents)  
$$\llbracket k1 \rrbracket (e, h) = \llbracket 1 \rrbracket (e, h)$$
 (evaluates into the address)

#### Case of statements:

- memory allocation x = malloc(c):  $(e, h) \rightarrow (e, h')$  where  $h' = h[e(x) \leftarrow k] \uplus \{k \mapsto v_k, k+1 \mapsto v_{k+1}, \dots, k+c-1 \mapsto v_{k+c-1}\}$  and  $k, \dots, k+c-1$  are fresh and unused in h
- memory deallocation free(x):  $(e, h) \rightarrow (e, h')$  where k = e(x) and  $h = h' \uplus \{k \mapsto v_k, k+1 \mapsto v_{k+1}, \dots, k+c-1 \mapsto v_{k+c-1}\}$

## Pointer non relational abstractions

We rely on the **non relational abstraction of heterogeneous states** that was introduced earlier, with a few changes:

- $\bullet$  we let  $\mathbb{V}=\mathbb{V}_{\rm addr} \uplus \mathbb{V}_{\rm int}$  and  $\mathbb{X}=\mathbb{X}_{\rm addr} \uplus \mathbb{X}_{\rm int}$
- concrete memory cells now include structure fields, and fields of dynamically allocated regions
- $\bullet$  abstract cells  $\mathbb{C}^{\sharp}$  finitely summarize concrete cells
- we apply a non relational abstraction:

#### Non relational pointer abstraction

- Set of pointer abstract values  $\mathbb{D}_{ptr}^{\sharp}$
- Concretization  $\gamma_{ptr} : \mathbb{D}_{ptr}^{\sharp} \to \mathcal{P}(\mathbb{V}_{addr})$  into pointer sets

We will see several instances of this kind of abstraction

## Pointer non relational abstraction: null pointers

The dereference of a null pointer will cause a crash

To establish safety: compute which pointers may be null



- we may also use a lattice with a fourth element = NULL exercise: what do we gain using this lattice ?
- very lightweight, can typically resolve rather trivial cases
- useful for C, but also for Java

## Pointer non relational abstraction: dangling pointers

The dereferece of a null pointer will cause a crash

To establish safety: compute which pointers may be dangling



- very lightweight, can typically resolve rather trivial cases
- useful for C, useless for Java (initialization requirement + GC)

## Pointer non relational abstraction: points-to sets

#### Determine where a pointer may store a reference to

1: int x, y; 2: int \* p; 3: y = 9;4: p = &x;5: \*p = 0;

- what is the final value for x ?
   0, since it is modified at line 5...
- what is the final value for y ?
  9, since it is not modified at line 5...

#### Basic pointer abstraction

 $\bullet$  We assume a set of abstract memory locations  $\mathbb{A}^{\sharp}$  is fixed:

$$\mathbb{A}^{\sharp} = \{\texttt{\&x},\texttt{\&y},\ldots,\texttt{\&t},a_0,a_1,\ldots,a_N\}$$

- Concrete addresses are abstracted into  $\mathbb{A}^{\sharp}$  by  $\phi_{\mathbb{A}} : \mathbb{A} \to \mathbb{A}^{\sharp} \uplus \{\top\}$
- A pointer value is abstracted by the abstraction of the addresses it may point to, *i.e.*, D<sup>#</sup><sub>ptr</sub> = P(A<sup>#</sup>) and γ<sub>ptr</sub>(a<sup>#</sup>) = {a ∈ A | φ<sub>A</sub>(a) = a<sup>#</sup>}

#### • example: p may point to {&x}

## Points-to sets computation example

#### Example code:



Abstract locations: {&x, &y, &p} Analysis results:

|   | &x     | &y     | %р       |
|---|--------|--------|----------|
| 1 | Т      | Т      | Т        |
| 2 | Т      | Т      | Т        |
| 3 | Т      | Т      | Т        |
| 4 | Т      | [9, 9] | Т        |
| 5 | Т      | [9, 9] | {&x}     |
| 6 | [0, 0] | [9,9]  | $\{xs\}$ |

## Points-to sets computation and imprecision

|   | x%        | &y      | %р            |
|---|-----------|---------|---------------|
| 1 | [-10, -5] | [5, 10] | Т             |
| 2 | [-10, -5] | [5, 10] | Т             |
| 3 | [-10, -5] | [5, 10] | Т             |
| 4 | [-10, -5] | [5, 10] | {&x}          |
| 5 | [-10, -5] | [5, 10] | Т             |
| 6 | [-10, -5] | [5, 10] | {&y}          |
| 7 | [-10, -5] | [5, 10] | {&x, &y}      |
| 8 | [-10, 0]  | [0, 10] | $\{\&x,\&y\}$ |

What is the final range for x ?
What is the final range for y ?
Abstract locations: {&x,&y,&p}

#### Imprecise results

- The abstract information about both x and y are weakened
- The fact that  $x \neq y$  is lost

## Weak-updates

We can formalize this imprecision a bit more:

Weak updates

- The modified concrete cell cannot be uniquely mapped into a well identified abstract cell that describes only it
- The resulting abstract information is obtained by joining the new value and the old information

#### Effect in pointer analysis, in the case of an assignment:

- if the points-to set contains exactly one element, the analysis can perform a strong update as in the first example: p ⇒ {&x}
- if the points-to set may contain more than one element, the analysis needs to perform a weak-update
   as in the second example: p ⇒ {&x, &y}

## Pointer aliasing based on equivalence on access paths

Aliasing relation Given m = (e, h), pointers p and q are aliases iff h(e(p)) = h(e(q))

#### Abstraction to infer pointer aliasing properties

• An access path describes a sequence of dereferences to resolve an I-value (*i.e.*, an address); *e.g.*:

$$a ::= x \mid a \cdot f \mid * a$$

• An abstraction for aliasing is an over-approximation for equivalence relations over access paths

#### Examples of aliasing abstractions:

- set abstractions: map from access paths to their equivalence class (ex: {{ $p_0, p_1, \&x$ }, { $p_2, p_3$ }, ...})
- numerical relations, to describe aliasing among paths of the form x(->n)<sup>k</sup> (ex: {{x(->n)<sup>k</sup>, &(x(->n)<sup>k+1</sup>) | k ∈ ℕ})
## Limitation of basic pointer analyses seen so far

#### Weak updates:

- imprecision in updates that spread out as soon as points-to set contain several elements
- impact client analyses severely (e.g., low precision on numerical)

#### Unsatisfactory abstraction of unbounded memory:

- common assumption that  $\mathbb{C}^{\sharp}$  be finite
- programs using **dynamic allocations** often perform **unbounded** numbers of **malloc** calls (*e.g.*, allocation of a list)

#### Unable to express well structural invariants:

- for instance, that a structure should be a list, a tree...
- very indirect abstraction in numeric / path equivalence abstration

## A common solution: shape abstraction

Xavier Rival (INRIA, ENS, CNRS)

Memory abstraction

## Outline

- Memory models
- 2 Pointer Abstractions
- 3 Separation Logic
  - 4 A shape abstract domain relying on separation
- 5 Standard static analysis algorithms
- 6 Conclusion

#### Internships

## Separation logic principle: avoid weak updates

How to deal with weak updates ?

#### Avoid them !

- Always materialize exactly the cell that needs be modified
- Can be very costly to achieve, and not always feasible
- Notion of property that holds over a memory region: special separating conjunction operator \*
- Local reasoning:

powerful principle, which allows to consider only part of the memory

• Separation logic has been used in many contexts, including manual verification, static analysis, etc...

## Separation logic

#### Two kinds of formulas:

• **pure formulas** behave like formulas in first-order logic *i.e.*, are not attached to a memory region

• spatial formulas describe properties attached to a memory region

Pure formulas denote value properties

Pure formulas semantics:  $\gamma(P) \subseteq \mathbb{E} \times \mathbb{M}$ 

## Separation logic: points-to predicates

The next slides introduce the main separation logic formulas  $F ::= \dots$ 

We start with the most basic predicate, that describes a single cell:



#### • Example:

$$F = \&x \mapsto 18$$
  $\&x = 308$  18

 $\bullet$  We also note  $\texttt{l}\mapsto \texttt{e},$  as an l-value <code>l</code> denotes an address

#### Separation Logic

## Separation logic: separating conjunction

**Merge of concrete heaps:** let  $h_0, h_1 \in (\mathbb{V}_{addr} \to \mathbb{V})$ , such that  $\operatorname{dom}(h_0) \cap \operatorname{dom}(h_1) = \emptyset$ ; then, we let  $h_0 \circledast h_1$  be defined by:

$$\begin{array}{rrrr} \hbar_0 \circledast \hbar_1 : & \mathsf{dom}(\hbar_0) \cup \mathsf{dom}(\hbar_1) & \longrightarrow & \mathbb{V} \\ & & x \in \mathsf{dom}(\hbar_0) & \longmapsto & \hbar_0(x) \\ & & x \in \mathsf{dom}(\hbar_1) & \longmapsto & \hbar_1(x) \end{array}$$

#### Separating conjunction

• Predicate:

$$F ::= \ldots \mid F_0 \ast F_1$$

• Concretization:

~

$$\gamma(\mathsf{F}_0 * \mathsf{F}_1) = \{(e, h_0 \circledast h_1) \mid (e, h_0) \in \gamma(\mathsf{F}_0) \land (e, h_1) \in \gamma(\mathsf{F}_1)\}$$

$$F_0 * F_1$$



## An example

#### **Concrete memory layout**



A formula that abstracts away the addresses:

 $\&x \mapsto \langle 64, \&z \rangle * \&y \mapsto \&z * \&z \mapsto \langle 88, 0 \rangle$ 

## Separation logic: non separating conjunction

We can also add the **conventional conjunction operator**, with its **usual concretization**:

- Non separating conjunction
  - Predicate:

 $F::=\ldots \mid F_0 \wedge F_1$ 

• Concretization:

$$\gamma(\mathtt{F}_0 \wedge \mathtt{F}_1) = \gamma(\mathtt{F}_0) \cap \gamma(\mathtt{F}_1)$$

#### Exercise: describe and compare the concretizations of

- $a \mapsto b \land b \mapsto a$
- $\&a \mapsto \&b * \&b \mapsto \&a$

## Separating conjunction vs non separating conjunction

- Classical conjunction: properties for the same memory region
- Separating conjunction: properties for disjoint memory regions

```
\&a \mapsto \&b \land \&b \mapsto \&a
```

- the same heap verifies  $\&a \mapsto \&b$ and  $\&b \mapsto \&a$
- there can be only one cell

• thus a = b

```
\&a \mapsto \&b * \&b \mapsto \&a
```

- two separate sub-heaps respectively satisfy &a → &b and &b → &a
- thus  $a \neq b$
- Separating conjunction and non-separating conjunction have very different properties
- Both express very different properties *e.g.*, no ambiguity on weak / strong updates

#### Separation Logic

## Separating and non separating conjunction

Logic rules of the two conjunction operators of SL:

• Separating conjunction:

$$\frac{(e,h_0)\in\gamma(\mathsf{F}_0) \quad (e,h_1)\in\gamma(\mathsf{F}_1)}{(e,h_0\circledast h_1)\in\gamma(\mathsf{F}_0*\mathsf{F}_1)}$$

• Non separating conjunction:

$$\frac{(e, h) \in \gamma(F_0) \quad (e, h) \in \gamma(F_1)}{(e, h) \in \gamma(F_0 \wedge F_1)}$$

# Reminiscent of Linear Logic [Girard87]: resource aware / non resource aware conjunction operators

## Separation logic: empty store

#### Empty store

• Predicate:

 $F ::= \dots | emp$ 

• Concretization:

$$\gamma(\mathsf{emp}) = \{(e, []) \mid e \in \mathbb{E}\} = \mathbb{E} \times \{[]\}$$

where [] denotes the empty store

- emp is the neutral element for \* (monoid structure induced by \*)
- by contrast the **neutral element for**  $\land$  is TRUE, with concretization:

$$\gamma(\mathtt{TRUE}) = \mathbb{E} imes \mathbb{H}$$

## Separation logic: other connectors

#### **Disjunction:**

- $F ::= \ldots \mid F_0 \lor F_1$
- concretization:

$$\gamma(\mathtt{F}_{\mathsf{0}} \lor \mathtt{F}_{\mathsf{1}}) = \gamma(\mathtt{F}_{\mathsf{0}}) \cup \gamma(\mathtt{F}_{\mathsf{1}})$$

#### Spatial implication (aka, magic wand):

- $F ::= \ldots \mid F_0 \twoheadrightarrow F_1$
- concretization:

$$\begin{array}{l} \gamma(\mathsf{F}_0 \twoheadrightarrow \mathsf{F}_1) = \\ \{(e, h) \mid \forall h_0 \in \mathbb{H}, \ (e, h_0) \in \gamma(\mathsf{F}_0) \Longrightarrow (e, h \circledast h_0) \in \gamma(\mathsf{F}_1) \} \end{array}$$

• very powerful connector to describe structure segments, used in complex SL proofs

## Separation logic

Summary of the main separation logic constructions seen so far:

# Separation logic main connectors $$\begin{split} \gamma(\mathbf{emp}) &= \mathbb{E} \times \{[]\} \\ \gamma(\mathrm{TRUE}) &= \mathbb{E} \times \mathbb{H} \\ \gamma(1 \mapsto v) &= \{(e, [[1]](e, \hbar) \mapsto v]) \mid e \in \mathbb{E}\} \\ \gamma(F_0 * F_1) &= \{(e, \hbar_0 \circledast \hbar_1) \mid (e, \hbar_0) \in \gamma(F_0) \land (e, \hbar_1) \in \gamma(F_1)\} \\ \gamma(F_0 \land F_1) &= \gamma(F_0) \cap \gamma(F_1) \\ \gamma(F_0 - * F_1) &= \{(e, \hbar) \mid \forall \hbar_0 \in \mathbb{H}, (e, \hbar_0) \in \gamma(F_0) \Longrightarrow (e, \hbar \circledast \hbar_0) \in \gamma(F_1)\} \end{split}$$

Concretization of pure formulas is standard

#### How does this help for program reasoning ?

## Separation logic triple

## Program proofs based on Hoare triples

• Notation:  $\{F\}p\{F'\}$  if and only if:

$$orall s, s' \in \mathbb{S}, \; s \in \gamma(\mathtt{F}) \wedge s' \in \llbracket p 
rbracket(s) \Longrightarrow s' \in \gamma(\mathtt{F}')$$

• Application: formalize proofs of programs

A few rules (straightforward proofs):

$$\begin{array}{ccc} F_0 \Longrightarrow F_0' & \{F_0'\}b\{F_1'\} & F_1' \Longrightarrow F_1 \\ \hline & \{F_0\}b\{F_1\} \\ \hline & \hline \\ \hline & \{\&x \mapsto ?\}x := e\{\&x \mapsto e\} \end{array} \text{ mutation} \\ \hline & x \text{ does not appear in } F \\ \hline & \{\&x \mapsto ? \ast F\}x := e\{\&x \mapsto e \ast F\} \end{array} \text{ mutation-2} \end{array}$$

(we assume that e does not allocate memory)

## The frame rule

What about the resemblance between rules "mutation" and "mutation-2" ?



- Proof by induction on the logical rules on program statements, *i.e.*, essentially a large case analysis (see biblio for a more complete set of rules)
- Rules are proved by case analysis on the program syntax

#### The frame rule allows to reason locally about programs

## Application of the frame rule

A program with intermittent invariants, derived using the frame rule, since each step impacts a disjoint region:

Many other program proofs done using separation logic *e.g.*, verification of the Deutsch-Shorr-Waite algorithm (biblio)

## Summarization and inductive definitions

#### What do we still miss ?

So far, formulas denote **fixed sets of cells** Thus, no summarization of unbounded regions...

• Example all lists pointed to by x, such as:



• How to precisely abstract these stores with a single formula *i.e.*, no infinite disjunction ?

## Inductive definitions in separation logic

## List definition

$$\begin{array}{lll} \alpha \cdot {\sf list} & := & \alpha = {\sf 0} \, \wedge \, {\sf emp} \\ & \lor & \alpha \neq {\sf 0} \, \wedge \, \alpha \cdot {\sf next} \mapsto \delta \ast \alpha \cdot {\sf data} \mapsto \beta \ast \delta \cdot {\sf list} \end{array}$$

• Formula abstracting our set of structures:

 $\mathtt{\&x} \mapsto \alpha \ast \alpha \cdot \mathbf{list}$ 

#### • Summarization:

this formula is finite and describe infinitely many heaps

• Concretization: next slide...

#### Practical implementation in verification/analysis tools

- Verification: hand-written definitions
- Analysis: either built-in or user-supplied, or partly inferred

## Concretization by unfolding

#### Intuitive semantics of inductive predicates

- Inductive predicates can be **unfolded**, by **unrolling their definitions** Syntactic unfolding is noted  $\xrightarrow{\mathcal{U}}$
- A formula F with inductive predicates describes all stores described by all formulas F' such that F  $\stackrel{\mathcal{U}}{\longrightarrow}$  F'

#### Example:

• Let us start with  $\mathbf{x} \mapsto \alpha_0 * \alpha_0 \cdot \mathbf{list}$ ; we can unfold it as follows:

$$\begin{array}{ll} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

• We get the concrete state below:



## Example: tree

#### • Example:



## Inductive definition

• Two recursive calls instead of one:

## Example: doubly linked list

#### • Example:



#### Inductive definition

• We need to propagate the prev pointer as an additional parameter:

$$\begin{array}{lll} \alpha \cdot \mathbf{dll}(\delta) & := & \alpha = \mathbf{0} \land \mathbf{emp} \\ & \lor & \alpha \neq \mathbf{0} \land \alpha \cdot \mathbf{next} \mapsto \beta \ast \alpha \cdot \mathbf{prev} \mapsto \delta \\ & \ast \beta \cdot \mathbf{dll}(\alpha) \end{array}$$

## Example: sortedness

• Example: sorted list



## Inductive definition

- Each element should be greater than the previous one
- The first element simply needs be greater than  $-\infty...$
- We need to propagate the lower bound, using a scalar parameter

 $\begin{array}{lll} \alpha \cdot \mathsf{lsort}_{\mathrm{aux}}(n) & := & \alpha = 0 \land \mathsf{emp} \\ & \lor & \alpha \neq 0 \land n \leq \beta \land \alpha \cdot \mathsf{next} \mapsto \delta \\ & \ast \alpha \cdot \mathsf{data} \mapsto \beta \ast \delta \cdot \mathsf{lsort}_{\mathrm{aux}}(\beta) \end{array}$ 

 $\alpha \cdot \text{lsort}() := \alpha \cdot \text{lsort}_{aux}(-\infty)$ 

## Outline

- Memory models
- 2 Pointer Abstractions
- 3 Separation Logic
- 4 A shape abstract domain relying on separation
- 5 Standard static analysis algorithms
- 6 Conclusion

#### Internships

## Design of an abstract domain

#### A lot of things are missing to turn SL into an abstract domain

#### Set of logical predicates:

- separation logic formulas are very expressive
  - e.g., arbitrary alternations of  $\wedge$  and \*
- such expressiveness is not necessarily required in static analysis

#### **Representation:**

- unstructured formulas can be represented as ASTs, but this representation is not easy to manipulate efficiently
- intuition over memory states typically involves graphs

#### Analysis algorithms:

• inference of "optimal" invariants in SL, with numerical predicates obviously **not computable** 

#### • Concrete memory states

- very low level description numeric offsets / field names
- pointers, numeric values: raw sequences of bits



- Concrete memory states
- Abstraction of values into symbolic variables (nodes)



- characterized by valuation v
- ν maps symbolic variables into concrete addresses

- Concrete memory states
- Abstraction of values into symbolic variables / nodes
- Abstraction of regions into points-to edges





- Concrete memory states
- Abstraction of values into symbolic variables / nodes
- Abstraction of regions into points-to edges





• Shape graph concretization

$$\gamma_{\mathsf{sh}}(\mathsf{G}) = \{(h,\nu) \mid \ldots\}$$

valuation  $\nu$  plays an important role to combine abstraction...

## Structure of shape graphs

#### Valuations bridge the gap between nodes and values

Symbolic variables / nodes and intuitively abstract concrete values:

#### Symbolic variables

We let  $\mathbb{V}^{\sharp}$  denote a countable set of **symbolic variables**; we usually let them be denoted by Greek letters in the following:  $\mathbb{V}^{\sharp} = \{\alpha, \beta, \delta, \ldots\}$ 

When concretizing a shape graph, we need to **characterize how the concrete instance evaluates each symbolic variable**, which is the purpose of the **valuation functions**:

#### Valuations

A valuation is a function from symbolic variables into concrete values (and is often denoted by  $\nu$ ): Val =  $\mathbb{V}^{\sharp} \longrightarrow \mathbb{V}$ 

Note that valuations treat in the same way addresses and raw values

## Structure of shape graphs

Distinct edges describe separate regions

In particular, if we split a graph into two parts:



Similarly, when considering the **empty set of edges**, we get the empty heap (where  $\mathbb{V}^{\sharp}$  is the set of nodes):

$$\gamma_{\mathsf{sh}}(\mathsf{emp}) = \{(\emptyset, \nu) \mid \nu : \mathbb{V}^{\sharp} \to \mathbb{V}\}$$

## Abstraction of contiguous regions

A single points-to edge represents one heap cell

A points-to edge encodes basic points to predicate in separation logic:



## Abstraction of contiguous regions

#### Contiguous regions are described by adjacent points-to edges

To describe **blocks** containing series of **cells** (*e.g.*, in a **C structure**), shape graphs utilize several outgoing edges from the node representing the base address of the block

# Field splitting model • Separation impacts edges / fields, not pointers • Shape graph $u^{(\alpha)}$ accounts for both abstract states below: $v^{(\alpha)}$ $v^{(\beta_0)}$ $u^{(\beta_0)}$ $u^{(\beta_0)}$ $u^{(\beta_0)} = v^{(\beta_1)}$

In other words, in a field splitting model, separation:

- asserts addresses are distinct
- says nothing about contents

## Abstraction of the environment

#### Environments bind variables to their (concrete / abstract) address



#### Abstract environments

- An abstract environment is a function  $e^{\sharp}$  from variables to symbolic nodes
- The concretization extends as follows:

$$\gamma_{\mathsf{mem}}(e^{\sharp},S^{\sharp}) = \{(e, \hbar, 
u) \mid (\hbar, 
u) \in \gamma_{\mathsf{sh}}(S^{\sharp}) \land e = 
u \circ e^{\sharp}\}$$

## Basic abstraction: summarization



Concretization based on unfolding and least-fixpoint:

- $\xrightarrow{\mathcal{U}}$  replaces an  $\alpha$  · list predicate with one of its premises
- $\gamma(S^{\sharp}, \mathbf{F}) = \bigcup \{ \gamma(S_{u}^{\sharp}, \mathbf{F}_{u}) \mid (S^{\sharp}, \mathbf{F}) \xrightarrow{\mathcal{U}} (S_{u}^{\sharp}, \mathbf{F}_{u}) \}$

## Inductive structures: a few instances

As before, **many interesting inductive predicates** encode nicely into graph inductive definitions:

• More complex shapes: trees



• Relations among pointers: doubly-linked lists



• Relations between pointers and numerical: sorted lists



## Inductive segments

#### A frequent pattern:



#### A first attempt:

- x points to a list, so &x  $\mapsto \alpha * \alpha \cdot \mathbf{list}$  holds
- y points to a list, so &y  $\mapsto \beta * \beta \cdot \mathbf{list}$  holds

However, the following does not hold

&x 
$$\mapsto lpha st lpha \cdot \mathsf{list} st \mathsf{\&y} \mapsto eta st eta \cdot \mathsf{list}$$

#### Why ? violation of separation!

A second attempt:

$$(\&x \mapsto \alpha * \alpha \cdot \mathsf{list} * \mathsf{TRUE}) \land (\&y \mapsto \beta * \beta \cdot \mathsf{list} * \mathsf{TRUE})$$

Why is it still not all that good ? relation lost!
# Inductive segments

#### A frequent pattern:



Could be expressed directly as an inductive with a parameter:

$$\begin{array}{rcl} \alpha \cdot \mathsf{list\_endp}(\pi) & ::= & (\mathsf{emp}, \alpha = \pi) \\ & | & (\alpha \cdot \mathsf{next} \mapsto \beta_0 * \alpha \cdot \mathsf{data} \mapsto \beta_1 \\ & * \beta_0 \cdot \mathsf{list\_endp}(\pi), \alpha \neq 0 \end{array}$$

This definition **straightforwardly derives** from **list** Thus, we make **segments** part of the **fundamental predicates of the domain** 



Multi-segments: possible, but harder for analysis

# Shape graphs and separation logic

**Semantic preserving translation**  $\Pi$  of graphs into separation logic formulas:



Note that:

- shape graphs can be encoded into separation logic formula
- the opposite is usually not true

#### Value information:

- discussed in the next course
- intuitively, assume we maintain numerical information next to shape graphs

# Outline

- Memory models
- 2 Pointer Abstractions
- 3 Separation Logic

4 A shape abstract domain relying on separation

#### 5 Standard static analysis algorithms

- Overview of the analysis
- Post-conditions and unfolding
- Folding: widening and inclusion checking
- Abstract interpretation framework: assumptions and results

#### 6 Conclusion

#### Internships

### Static analysis overview

#### A list insertion function:

```
list * 1 assumed to point to a list
list * t assumed to point to a list element
list * c = 1;
while(c != NULL && c -> next != NULL && (...)){
    c = c -> next;
}
t -> next = c -> next;
c -> next = t;
```

- list inductive structure def.
- Abstract precondition:



### Result of the (interprocedural) analysis

• **Over-approximations** of reachable concrete states *e.g.*, after the insertion:



# Transfer functions

### Abstract interpreter design

- Follows the semantics of the language under consideration
- The abstract domain should provide sound transfer functions

#### **Transfer functions:**

- Assignment:  $x \to f = y \to g$  or  $x \to f = e_{arith}$
- Test: analysis of conditions (if, while)
- Variable creation and removal
- Memory management: malloc, free

#### Abstract operators:

- Join and widening: over-approximation
- Inclusion checking: check stabilization of abstract iterates

Should be **sound** *i.e.*, not forget any concrete behavior

### Abstract operations

#### Denotational style abstract interpreter

- Concrete denotational semantics  $[\![b]\!]:\mathbb{S}\longrightarrow \mathcal{P}(\mathbb{S})$
- Abstract post-condition  $\llbracket b \rrbracket^{\sharp}(S)$ , computed by the analysis:

 $s \in \gamma(\mathsf{S}) \Longrightarrow \llbracket \mathtt{b} \rrbracket(s) \subseteq \gamma(\llbracket \mathtt{b} \rrbracket^{\sharp}(\mathsf{S}))$ 

#### Analysis by induction on the syntax using domain operators

$$\begin{split} & \begin{bmatrix} b_0; b_1 \end{bmatrix}^{\sharp}(\mathsf{S}) &= & \begin{bmatrix} b_1 \end{bmatrix}^{\sharp} \circ & \begin{bmatrix} b_0 \end{bmatrix}^{\sharp}(\mathsf{S}) \\ & & \begin{bmatrix} 1 = e \end{bmatrix}^{\sharp}(\mathsf{S}) &= & assign(1, e, \mathsf{S}) \\ & & \begin{bmatrix} 1 = \mathsf{malloc}(n) \end{bmatrix}^{\sharp}(\mathsf{S}) &= & alloc(1, n, \mathsf{S}) \\ & & & \llbracket \mathsf{free}(1) \end{bmatrix}^{\sharp}(\mathsf{S}) &= & free(1, n, \mathsf{S}) \\ & & & \begin{bmatrix} \mathsf{free}(1) \end{bmatrix}^{\sharp}(\mathsf{S}) &= & \begin{cases} & join(\llbracket b_t \end{bmatrix}^{\sharp}(\mathsf{test}(e, \mathsf{S})), \\ & & & & \llbracket b_f \end{bmatrix}^{\sharp}(\mathsf{S}) \\ & & & & \begin{bmatrix} \mathsf{b}_t \end{bmatrix}^{\sharp}(\mathsf{test}(e, \mathsf{S})), \\ & & & & \\ & & & & \end{bmatrix}^{\sharp}(\mathsf{b}_t) \end{bmatrix}^{\sharp}(\mathsf{S}) &= & test(e = \mathsf{false}, \mathsf{Ifp}^{\sharp}_{\mathsf{S}}\mathsf{F}^{\sharp}) \\ & & & & \text{where, } \mathsf{F}^{\sharp}:\mathsf{S}_0 \mapsto \llbracket b \rrbracket^{\sharp}(\mathsf{test}(e, \mathsf{S}_0)) \end{split}$$

## The algorithms underlying the transfer functions

• Unfolding: cases analysis on summaries



• Abstract postconditions, on "exact" regions, e.g. insertion



• Widening: builds summaries and ensures termination



# Outline

- Memory models
- 2 Pointer Abstractions
- 3 Separation Logic

4 A shape abstract domain relying on separation

#### 5 Standard static analysis algorithms

- Overview of the analysis
- Post-conditions and unfolding
- Folding: widening and inclusion checking
- Abstract interpretation framework: assumptions and results

#### 6 Conclusion

#### Internships

# Analysis of an assignment in the graph domain

Steps for analyzing  $x = y \rightarrow next$  (local reasoning)

- **(**) Evaluate **I-value** x into **points-to edge**  $\alpha \mapsto \beta$
- 2 Evaluate r-value y -> next into node  $\beta'$
- $\textbf{O} \ \text{Replace points-to edge } \alpha \mapsto \beta \text{ with points-to edge } \alpha \mapsto \beta'$

#### With pre-condition:



- Step 1 produces  $\alpha_0 \mapsto \beta_0$
- Step 2 produces  $\beta_2$
- End result:



### With pre-condition:



- Step 1 produces  $\alpha_0 \mapsto \beta_0$
- Step 2 fails
- Abstract state too abstract
- We need to refine it

# Unfolding as a local case analysis

### Unfolding principle

- Case analysis, based on the inductive definition
- Generates symbolic disjunctions (analysis performed in a disjunction domain, *e.g.*, trace partitioning)
- Example, for lists:



• Numeric predicates: next course on shape + value abstraction

Soundness: by definition of the concretization of inductive structures

$$\gamma_{\mathsf{sh}}(S^{\sharp}) \subseteq \bigcup \{ \gamma_{\mathsf{sh}}(S_0^{\sharp}) \mid S^{\sharp} \stackrel{\mathcal{U}}{\longrightarrow} S_0^{\sharp} \}$$

# Analysis of an assignment, with unfolding

### Principle

- We have  $\gamma_{\mathsf{sh}}(\alpha \cdot \iota) = \bigcup \{ \gamma_{\mathsf{sh}}(S^{\sharp}) \mid \alpha \cdot \iota \xrightarrow{\mathcal{U}} S^{\sharp} \}$
- $\bullet\,$  Replace  $\alpha\cdot\iota$  with a finite number of disjuncts and continue

### Disjunct 1:

$$\begin{array}{c} & \& \mathbf{x} & \widehat{(\alpha_0)} \longrightarrow & \widehat{(\beta_0)} \\ & \& \mathbf{y} & \widehat{(\alpha_1)} \longrightarrow & \widehat{(\beta_1)} \\ & = \mathbf{0} \end{array}$$

- Step 1 produces  $\alpha_0 \mapsto \beta_0$
- Step 2 fails: Null pointer !
- In a correct program, would be ruled out by a condition y ≠ 0 *i.e.*, β<sub>1</sub> ≠ 0 in D<sup>#</sup><sub>num</sub>

### Disjunct 2:



- Step 1 produces  $\alpha_0 \mapsto \beta_0$
- Step 2 produces  $\beta_2$
- End result:



# Unfolding and degenerated cases

```
assume(1 points to a dll)
c = 1

    while(c ≠ NULL && condition)

     c = c \rightarrow next:
② if(c ≠ 0 && c -> prev ≠ 0)
     c = c \rightarrow prev \rightarrow prev;
```



• Materialization of c -> prev:



Segment splitting lemma: basis for segment unfolding

 $\frac{i}{i} + j \rightarrow 0$  describes the same set of stores as  $\frac{i}{i} + \frac{i}{i} \rightarrow 0$  describes  $\frac{i}{i} + \frac{i}{i} \rightarrow 0$ 



• Materialization of c -> prev -> prev:



Implementation issue: discover which inductive edge to unfold very hard !

# Outline

- Memory models
- 2 Pointer Abstractions
- 3 Separation Logic

4 A shape abstract domain relying on separation

#### 5 Standard static analysis algorithms

- Overview of the analysis
- Post-conditions and unfolding
- Folding: widening and inclusion checking
- Abstract interpretation framework: assumptions and results

#### 6 Conclusion

#### Internships

# Need for a folding operation

Back to the list traversal example:

First iterates in the loop:

• at iteration 0 (before entering the loop):



• at iteration 1:



• at iteration 2:



assume(1 points to a list) c = 1;while ( $c \neq NULL$ ){  $c = c \rightarrow next$ :

The analysis **unfolds**, but **never folds**:



- How to guarantee termination of the analysis ?
- How to introduce segment edges / perform abstraction ?

# Widening

- The lattice of shape abstract values has infinite height
- Thus iteration sequences may not terminate

### Definition of a widening operator $\bigtriangledown$

• Over-approximates join:

$$\left\{ \begin{array}{ll} \gamma(X^{\sharp}) &\subseteq & \gamma(X^{\sharp} \triangledown Y^{\sharp}) \\ \gamma(Y^{\sharp}) &\subseteq & \gamma(X^{\sharp} \triangledown Y^{\sharp}) \end{array} \right.$$

Enforces termination: for all sequence (X<sup>♯</sup><sub>n</sub>)<sub>n∈N</sub>, the sequence (Y<sup>♯</sup><sub>n</sub>)<sub>n∈N</sub> defined below is ultimately stationary

$$\begin{cases} Y_0^{\sharp} &= X_0^{\sharp} \\ \forall n \in \mathbb{N}, \ Y_{n+1}^{\sharp} &= Y_n^{\sharp} \triangledown X_{n+1}^{\sharp} \end{cases}$$

# Canonicalization

#### Upper closure operator

 $\rho: \mathbb{D}^{\sharp} \longrightarrow \mathbb{D}_{can}^{\sharp} \subseteq \mathbb{D}^{\sharp}$  is an **upper closure operator** (uco) iff it is monotone, extensive and idempotent.

### Canonicalization

- Disjunctive completion:  $\mathbb{D}^{\sharp}_{\vee} =$  finite disjunctions over  $\mathbb{D}^{\sharp}$
- Canonicalization operator  $\rho_{\vee}$  defined by  $\rho_{\vee} : \mathbb{D}^{\sharp}_{\vee} \longrightarrow \mathbb{D}^{\sharp}_{\operatorname{can}}$  and  $\rho_{\vee}(X^{\sharp}) = \{\rho(x^{\sharp}) \mid x^{\sharp} \in X^{\sharp}\}$  where  $\rho$  is an uco and  $\mathbb{D}^{\sharp}_{\operatorname{can}}$  is finite
- Canonicalization is used in many shape analysis tools
- Easier to compute but less powerful than widening: does not exploit history of computation

# Weakening: definition

To design **inclusion test**, **join** and **widening** algorithms, we first study a more general notion of **weakening**:

### Weakening

We say that  $S_0^{\sharp}$  can be weakened into  $S_1^{\sharp}$  if and only if

$$\forall (\hbar,\nu) \in \gamma_{\mathsf{sh}}(S_0^{\sharp}), \; \exists \nu' \in \mathsf{Val}, \; (\hbar,\nu') \in \gamma_{\mathsf{sh}}(S_1^{\sharp})$$

We then note  $S_0^{\sharp} \preccurlyeq S_1^{\sharp}$ 

#### Applications:

- inclusion test (comparison) inputs  $S_0^{\sharp}, S_1^{\sharp}$ ; if returns true  $S_0^{\sharp} \preccurlyeq S_1^{\sharp}$
- canonicalization (unary weakening) inputs  $S_0^{\sharp}$  and returns  $\rho(S_0^{\sharp})$  such that  $S_0^{\sharp} \preccurlyeq \rho(S_0^{\sharp})$
- widening / join (binary weakening ensuring termination or not) inputs  $S_0^{\sharp}, S_1^{\sharp}$ and returns  $S_{up}^{\sharp}$  such that  $S_i^{\sharp} \preccurlyeq S_{up}^{\sharp}$

# Weakening: example

We consider  $S_0^{\sharp}$  defined by:



and  $S_1^{\sharp}$  defined by:



Then, we have the weakening  $S_0^{\sharp} \preccurlyeq S_1^{\sharp}$  up-to a renaming in  $S_1^{\sharp}$ :

 weakening up-to renaming is generally required as graphs do not have the same name space

• formalized a bit later...

## Local weakening: separating conjunction rule

We can apply the local reasoning principle to weakening

If 
$$S_0^{\sharp} \preccurlyeq S_{0,\text{weak}}^{\sharp}$$
 and  $S_1^{\sharp} \preccurlyeq S_{1,\text{weak}}^{\sharp}$  then:

### Separating conjunction rule $(\preccurlyeq_*)$

Let us assume that

- $S_0^{\sharp}$  and  $S_1^{\sharp}$  have distinct set of source nodes
- we can weaken  $S_0^{\sharp}$  into  $S_{0,\text{weak}}^{\sharp}$
- we can weaken  $S_1^{\sharp}$  into  $S_{1,\text{weak}}^{\sharp}$

then:

we can weaken 
$$S_0^{\sharp} * S_1^{\sharp}$$
 into  $S_{0,\text{weak}}^{\sharp} * S_{1,\text{weak}}^{\sharp}$ 

# Local weakening: unfolding rule, identity rule

### Weakening unfolded region $(\preccurlyeq_{\mathcal{U}})$

Let us assume that  $S_0^{\sharp} \xrightarrow{\mathcal{U}} S_1^{\sharp}$ . Then, by definition of the concretization of unfolding

we can weaken  $S_1^{\sharp}$  into  $S_0^{\sharp}$ 

- the proof follows from the definition of unfolding
- it can be applied locally, on graph regions that differ due to unfolding of inductive definitions

### Identity weakening $(\preccurlyeq_{Id})$

we can weaken  $S^{\sharp}$  into  $S^{\sharp}$ 

• the proof is trivial:

$$\gamma_{\mathsf{sh}}(S^{\sharp}) \subseteq \gamma_{\mathsf{sh}}(S^{\sharp})$$

• on itself, this principle is not very useful, but it can be applied locally, and combined with  $(\prec_{\mathcal{U}})$  on graph regions that are not equal

Xavier Rival (INRIA, ENS, CNRS)

Memory abstraction

# Local weakening: example

By rule  $(\preccurlyeq_{Id})$ :



Thus, by **rule**  $(\prec_{\mathcal{U}})$ :



Additionally, by **rule**  $(\preccurlyeq_{Id})$ :



Thus, by **rule**  $(\preccurlyeq_*)$ :



### Inclusion checking rules in the shape domain

Graphs to compare have distinct sets of nodes, thus inclusion check should carry out a valuation transformer  $\Psi : \mathbb{V}^{\sharp}(S_1^{\sharp}) \longrightarrow \mathbb{V}^{\sharp}(S_0^{\sharp})$  (important when dealing also with content values)

Using (and extending) the weakening principles, we obtain the following rules (considering only inductive definition **list**, though these rules would extend to other definitions straightforwardly):

#### • Identity rules:

$$\begin{array}{rcl} \forall i, \ \Psi(\beta_i) = \alpha_i & \Longrightarrow & \alpha_0 \cdot \mathbf{f} \mapsto \alpha_1 & \sqsubseteq^{\sharp}_{\Psi} & \beta_0 \cdot \mathbf{f} \mapsto \beta_1 \\ \Psi(\beta) = \alpha & \Longrightarrow & \alpha \cdot \mathsf{list} & \sqsubseteq^{\sharp}_{\Psi} & \beta \cdot \mathsf{list} \\ \forall i, \ \Psi(\beta_i) = \alpha_i & \Longrightarrow & \alpha_0 \cdot \mathsf{list\_endp}(\alpha_1) & \sqsubseteq^{\sharp}_{\Psi} & \beta_0 \cdot \mathsf{list\_endp}(\beta_1) \end{array}$$

#### • Rules on inductives:

$$\begin{array}{cccc} \forall i, \ \Psi(\beta_i) = \alpha & \Longrightarrow & \mathsf{emp} & \sqsubseteq^{\sharp}_{\Psi} & \beta_0 \cdot \mathsf{list\_endp}(\beta_1) \\ S^{\sharp}_0 \sqsubseteq^{\sharp}_{\Psi} & S^{\sharp}_1 \land \beta \cdot \iota \xrightarrow{\mathcal{U}} S^{\sharp}_1 & \Longrightarrow & S^{\sharp}_0 & \sqsubseteq^{\sharp}_{\Psi} & \beta \cdot \iota \\ \mathsf{if} \ \beta_1 \ \mathsf{fresh} \ , \Psi' = \Psi[\beta_1 \mapsto \alpha_1] \ \mathsf{and} \ \Psi(\beta_0) = \alpha_0 \ \mathsf{then}, \\ S^{\sharp}_0 \sqsubseteq^{\sharp}_{\Psi'} \ \beta_1 \cdot \mathsf{list} & \Longrightarrow & \alpha_0 \cdot \mathsf{list\_endp}(\alpha_1) \ast S^{\sharp}_0 & \sqsubseteq^{\sharp}_{\Psi} & \beta_0 \cdot \iota \end{array}$$

# Inclusion checking algorithm

# Comparison of $(e_0^{\sharp}, S_0^{\sharp})$ and $(e_1^{\sharp}, S_1^{\sharp})$

- start with Ψ defined by Ψ(β) = α if and only if there exists a variable x such that e<sup>#</sup><sub>0</sub>(x) = α ∧ e<sup>#</sup><sub>1</sub>(x) = β
- (2) iteratively apply local rules, and extend  $\Psi$  when needed
- return true when both shape graphs become empty
  - the first step ensures both environments are consistent

This algorithm is sound:

#### Soundness

$$(e_0^{\sharp}, S_0^{\sharp}) \sqsubseteq^{\sharp} (e_1^{\sharp}, S_1^{\sharp}) \Longrightarrow \gamma(e_0^{\sharp}, S_0^{\sharp}) \subseteq \gamma(e_1^{\sharp}, S_1^{\sharp})$$

# Over-approximation of union

The principle of join and widening algorithm is similar to that of  $\Box^{\sharp}$ :

• It can be computed region by region, as for weakening in general: If  $\forall i \in \{0, 1\}, \forall s \in \{\text{lft}, \text{rgh}\}, S_{i,s}^{\sharp} \preccurlyeq S_{s}^{\sharp}$ ,



The partitioning of inputs / different nodes sets requires a **node** correspondence function

$$\Psi: \mathbb{V}^{\sharp}(S^{\sharp}_{\mathrm{lft}}) \times \mathbb{V}^{\sharp}(S^{\sharp}_{\mathrm{rgh}}) \longrightarrow \mathbb{V}^{\sharp}(S^{\sharp})$$

• The computation of the shape join progresses by the application of local join rules, that produce a new (output) shape graph, that weakens both inputs

Folding: widening and inclusion checking

# Over-approximation of union: syntactic identity rules

In the next few slides, we focus on  $\bigtriangledown$  though the abstract union would be defined similarly in the shape domain

Several rules derive from  $(\preccurlyeq_{Id})$ :

• If 
$$S_{lft}^{\sharp} = \alpha_0 \cdot \mathbf{f} \mapsto \alpha_1$$
  
and  $S_{lft}^{\sharp} = \beta_0 \cdot \mathbf{f} \mapsto \beta_1$   
and  $\Psi(\alpha_0, \beta_0) = \delta_0$ ,  $\Psi(\alpha_1, \beta_1) = \delta_1$ , then:

$$S_{\mathrm{lft}}^{\sharp} \triangledown S_{\mathrm{rgh}}^{\sharp} = \delta_0 \cdot \mathbf{f} \mapsto \delta_1$$

• If  $S_{\text{lft}}^{\sharp} = \alpha_0 \cdot \text{list}$ and  $S_{\text{lft}}^{\sharp} = \beta_0 \cdot \text{list}_1$ and  $\Psi(\alpha_0, \beta_0) = \delta_0$ , then:

$$S_{\mathrm{lft}}^{\sharp} \triangledown S_{\mathrm{rgh}}^{\sharp} = \delta_0 \cdot \mathsf{list}$$

# Over-approximation of union: segment introduction rule



Application to list traversal, at the end of iteration 1:

• before iteration 0:



• end of iteration 0:



• join, before iteration 1:



Xavier Rival (INRIA, ENS, CNRS)

 $\begin{array}{l} \Psi(\alpha_0,\beta_0) = o_0 \\ \Psi(\alpha_0,\beta_1) = \delta_1 \end{array}$ 

### Over-approximation of union: segment extension rule



Application to list traversal, at the end of iteration 1:

• previous invariant before iteration 1:



• end of iteration 1:



• join, before iteration 1:



### Over-approximation of union: rewrite system properties

- Comparison, canonicalization and widening algorithms can be considered rewriting systems over tuples of graphs
- Success configuration: weakening applies on all components, *i.e.*, the inputs are fully "consumed" in the weakening process
- Failure configuration: some components cannot be weakened *i.e.*, the algorithm should return the conservative answer  $(i.e., \top)$

### Termination

- The systems are terminating
- This ensures comparison, canonicalization, widening are computable

### Non confluence !

- The results depends on the order of application of the rules
- Implementation requires the choice of an adequate strategy

# Over-approximation of union in the combined domain

# Widening of $(e_0^{\sharp}, S_0^{\sharp})$ and $(e_1^{\sharp}, S_1^{\sharp})$

- define  $\Psi$ , e by  $\Psi(\alpha, \beta) = e(\mathbf{x}) = \delta$  (where  $\delta$  is a fresh node) if and only if  $e_0^{\sharp}(\mathbf{x}) = \alpha \wedge e_1^{\sharp}(\mathbf{x}) = \beta$
- iteratively apply join local rules, and extend Ψ when new relations are inferred (for instance for points-to edges)
- return the result obtained when all regions of both inputs are approximated in the output graph

This algorithm is sound:

#### Soundness

$$\gamma(e_0^{\sharp}, S_0^{\sharp}) \cup \gamma(e_1^{\sharp}, S_1^{\sharp}) \subseteq \gamma(e^{\sharp}, S^{\sharp})$$

Widening also enforces **termination** (it only introduces segments, and the growth induced by the introduction of segments is bounded)

# Outline

- Memory models
- 2 Pointer Abstractions
- 3 Separation Logic

4 A shape abstract domain relying on separation

#### 5 Standard static analysis algorithms

- Overview of the analysis
- Post-conditions and unfolding
- Folding: widening and inclusion checking
- Abstract interpretation framework: assumptions and results

#### 6) Conclusion

#### Internships

### Assumptions

What assumptions do we make ? How do we prove soundness of the analysis of a loop ?

#### • Assumptions in the concrete level, and for block b:

 $(\mathcal{P}(\mathbb{M}), \subseteq)$  is a complete lattice, hence a CPO  $F : \mathcal{P}(\mathbb{M}) \to \mathcal{P}(\mathbb{M})$  is the concrete semantic ("post") function of b

thus, the concrete semantics writes down as  $[\![\mathbf{b}]\!] = \mathbf{lfp}_{\emptyset} F$ 

#### • Assumptions in the abstract level:

$$\begin{split} \mathbb{M}^{\sharp} & \text{set of abstract elements, no order a priori} \\ m^{\sharp} ::= (e^{\sharp}, S^{\sharp}) \\ \gamma_{\text{mem}} : \mathbb{M}^{\sharp} \to \mathcal{P}(\mathbb{M}) & \text{concretization} \\ F^{\sharp} : \mathbb{M}^{\sharp} \to \mathbb{M}^{\sharp} & \text{sound abstract semantic function} \\ i.e., \text{ such that } F \circ \gamma_{\text{mem}} \subseteq \gamma_{\text{mem}} \circ F^{\sharp} \\ \nabla : \mathbb{M}^{\sharp} \times \mathbb{M}^{\sharp} \to \mathbb{M}^{\sharp} & \text{widening operator, terminates, and such that} \\ \gamma_{\text{mem}}(m^{\sharp}_{0}) \cup \gamma_{\text{mem}}(m^{\sharp}_{1}) \subseteq \gamma_{\text{mem}}(m^{\sharp}_{0} \triangledown m^{\sharp}_{1}) \end{split}$$

# Computing a loop abstract post-condition

#### Loop abstract semantics

The abstract semantics of loop while(rand()){b} is calculated as the limit of the sequence of abstract iterates below:

$$\begin{cases} m_0^{\sharp} = \bot \\ m_{n+1}^{\sharp} = m_n^{\sharp} \triangledown F^{\sharp}(m_n^{\sharp}) \end{cases}$$

#### Soundness proof:

- by induction over n,  $\bigcup_{k\leq n} F^k(\emptyset) \subseteq \gamma_{\mathrm{mem}}(\mathit{m}_n^\sharp)$
- by the property of widening, the abstract sequence converges at a rank N:  $\forall k \geq N, \ m_k^{\sharp} = m_N^{\sharp}$ , thus

$$\mathsf{lfp}_{\emptyset} \mathsf{F} = \bigcup_k \mathsf{F}^k(\emptyset) \subseteq \gamma_{\mathrm{mem}}(\mathsf{m}_N^{\sharp})$$

### Discussion on the abstract ordering

How about the abstract ordering ? We assumed NONE so far...

• Logical ordering, induced by concretization, used for proofs

$$m_0^{\sharp} \sqsubseteq m_1^{\sharp} \quad ::= \quad "\gamma_{\mathrm{mem}}(m_0^{\sharp}) \subseteq \gamma_{\mathrm{mem}}(m_1^{\sharp})"$$

• Approximation of the logical ordering, implemented as a function is\_le :  $\mathbb{M}^{\sharp} \times \mathbb{M}^{\sharp} \to \{ true, \top \}$ , used to test the convergence of abstract iterates

$$\mathsf{is\_le}(\mathit{m}_0^\sharp,\mathit{m}_1^\sharp) = \mathsf{true} \quad \Longrightarrow \quad \gamma_{\mathrm{mem}}(\mathit{m}_0^\sharp) \subseteq \gamma_{\mathrm{mem}}(\mathit{m}_1^\sharp)$$

Abstract semantics is not assumed (and is actually most likely NOT) monotone with respect to either of these orders...

# • Also, computational ordering would be used for proving widening termination

# Outline

- Memory models
- 2 Pointer Abstractions
- 3 Separation Logic
- 4 A shape abstract domain relying on separation
- 5 Standard static analysis algorithms



#### Internships

# Updates and summarization

Weak updates cause significant precision loss... Separation logic makes updates strong

Separation logic

Separating conjunction combines properties on disjoint stores

- Fundamental idea: \* forces to identify what is modified
- Before an **update** (or a **read**) takes place, memory cells need to be **materialized**
- Local reasoning: properties on unmodified cells pertain

### **Summaries**

Inductive predicates describe unbounded memory regions

• Last lecture: array segments and transitive closure (TVLA)

# Bibliography

- [JR]: Separation Logic: A Logic for Shared Mutable Data Structures. John C. Reynolds. In LICS'02, pages 55–74, 2002.
- [DHY]: A Local Shape Analysis Based on Separation Logic. Dino Distefano, Peter W. O'Hearn and Hongseok Yang. In TACAS'06, pages 287–302.
- [CR]: Relational inductive shape analysis. Bor-Yuh Evan Chang and Xavier Rival. In POPL'08, pages 247–260, 2008.
# Assignment and paper reading

### The Frame rule:

- formalize the Hoare logic rules for a language with pointer assignments and condition tests
- prove the Frame rule by induction over the syntax of programs

## Reading:

Separation Logic: A Logic for Shared Mutable Data Structures. John C. Reynolds. In LICS'02, pages 55–74, 2002.

Formalizes the Frame rule, among others

## Outline

- Memory models
- 2 Pointer Abstractions
- 3 Separation Logic
- 4 A shape abstract domain relying on separation
- 5 Standard static analysis algorithms
- 6 Conclusion



#### Internships

# Internships on memory abstraction

## Summarization based on universal quantification:

- memory abstractions use summaries today, we consider inductive linked structures; we will also see arrays...
- another form of summarization based on an unbounded set E

 ${\boldsymbol{\ast}}\{P(x)\mid x\in E\}$ 

requires the definition of fold / unfold, analysis operations...

- towards a parametric abstract domain:
  - generic dictionary abstraction
  - arrays (generalization of existing)
  - union finds and DAGs

## Other topics:

application to the verification of Operating System components

Xavier Rival (INRIA, ENS, CNRS)