
MPRI

Static Analysis of Digital Filters
ESOP 2004, NSAD 2005

Jérôme Feret
Laboratoire d’Informatique de l’École Normale Supérieure

INRIA, ÉNS, CNRS
http://www.di.ens.fr/∼ feret

6 novembre 2019.

Overview

1. Introduction

2. Case studies

3. Concrete semantics

4. Generic aproximation

5. Filter domains

6. Post fixpoint inference of contracting function in floating-point arithmetics

7. Basic simplified filters

8. Higher order simplified filters

9. Bounded expansion

10. Filter detection

11. Conclusion

Context

We want to prove run time error absence, in critical embedded software.
Filter behaviour is implemented at the software level, using hardware floating
point numbers.

Full certification requires special care about these filters.

Issues

• Detection: to locate filter resets and filter iterations.

• Invariant inference: we are not interested in functional properties.
We seek precise bounds on the output, using information inferred about
the input.
(Linear invariants do not yield accurate bounds).

• To take into account floating-point rounding:

-- in the semantics,
-- when implementing the abstract domain.

Overview

1. Introduction

2. Case studies

3. Concrete semantics

4. Generic aproximation

5. Filter domains

6. Post fixpoint inference of contracting function in floating-point arithmetics

7. Basic simplified filters

8. Higher order simplified filters

9. Bounded expansion

10. Filter detection

11. Conclusion

The high band-pass filter

V ∈ R;

E1 := 0; S := 0;

while (V ≥ 0) {
V ∈ R; T ∈ R;

E0 ∈ [−1;1];

if (T ≥ 0) {S := 0}
else {S := 0.999× S + E0 − E1}
E1 := E0;

}

Interval approximation (simplified)

The analyzer infers the following sound counterpart F♯:

F
♯ (X

)

= {0.999s + e0 + e1 | s ∈ X, e0, e1 ∈ [−1; 1]}
to the loop body.

Abstract iteration

1. The analyzer starts iterating F
♯:

F
♯({0}) = [−2; 2],

F
♯([−2; 2]) = [−3.998; 3.998],

. . . ;

2. then it widens the iterates:
F
♯([−10; 10]) 6⊆ [−10; 10],

F
♯([−100; 100]) 6⊆ [−100; 100],

. . . ;

3. until it discovers a stable threshold:
F
♯([−10000; 10000]) = [−9992; 9992];

4. finally, it keeps iterating to refine the solution:
F
♯([−9992; 9992]) = [−9984.008; 9984.008].

Driving the analysis

Theorem 1 (High band-pass filter (history-insensitive))

Let D ≥ 0, m ≥ 0, a, X and Z be real numbers such that:

1. |X| ≤ D;

2. aX −m ≤ Z ≤ aX +m;

then we have:

1. |Z| ≤ |a|D +m;

2.

[

|a| < 1 and D ≥ m

1−|a|

]

=⇒ |Z| ≤ D. �

Theorem 1 implies that 2000 can be used as a widening threshold.

History sensitive approximation

Theorem 2 (High band-pass filter (history-sensitive version))

Let α ∈ [12; 1[, i and m > 0 be real numbers.

Let En be a real number sequence, such that ∀k ∈ N, Ek ∈ [−m;m].
Let Sn be the following sequence:

{

S0 = i

Sn+1 = αSn + En+1 − En.

We have:

1. Sn = αni + En − αnE0 +
∑n−1

l=1
(α− 1)αl−1En−l

2. |Sn| ≤ |α|n|i| + (1 + |α|n + |1− αn−1|)m;

3. |Sn| ≤ 2m + |i|. �

Theorem 2 implies that 2 is a sound bound on |S|.

The second order filter

V ∈ R;

E1 := 0; E2 := 0; S0 := 0; S1 := 0; S2 := 0;

while (V ≥ 0) {
V ∈ R; T ∈ R;

E0 ∈ [−1; 1];

if (T ≥ 0) {S0 := E0; S1 := E0; E1 := E0}
else {S0 := 1.5× S1 − 0.7× S2

+ 0.5× E0 − 0.7× E1 + 0.4× E2};
E2 := E1; E1 := E0;

S2 := S1; S1 := S0
}

Quadratic constraints

Theorem 3 (second order filter (history insensitive))

Let a, b, K ≥ 0, m ≥ 0, X, Y , Z be real numbers such that:

1. a2 + 4b < 0,

2. X2 − aXY − bY 2 ≤ K,

3. aX + bY −m ≤ Z ≤ aX + bY +m.

We have:

1. Z2 − aZX − bX2 ≤
(√

−bK +m
)2

;

2.







√
−b < 1

K ≥
(

m

1−
√
−b

)2
=⇒ Z2 − aZX − bX2 ≤ K.

Proof

We define Q(X, Y)
∆
= X2 − aXY − bY 2 and Z

∆
= aX + bY + e.

We have:

Q(Z,X) = (aX + bY + e)2 − a(aX + bY + e)X − bX2

Q(Z,X) = −b(X2 − aXY − bY 2) + e(aX + 2bY + e)
Q(Z,X) = −bQ(X, Y) + e(aX + 2bY + e)
Q(Z,X) ≤ −bQ(X, Y) +m|aX + 2bY | +m2 since |e| ≤ m

(aX + 2bY)2 = −4b(a2

−4bX
2 − aXY − bY 2)

(aX + 2bY)2 ≤ −4bQ(X, Y) since a2 + 4b < 0

|aX + 2bY | ≤ 2
√

−bQ(X, Y)

Q(Z,X) ≤
(

√

−bQ(X, Y) +m

)2

Linear versus quadratic invariants

X U F(X)

X
F(X)

F(X)
X

X U F(X)

Second order filter approximation

1. without relational domain,
we cannot limit |S2|;

2. with quadratic constraints (history insensitive abstraction),
we can infer that |S2| < 22.111;

3. by formally expanding the output as a sum of all previous inputs,
we can prove that |S2| < 1.41824;

Overview

1. Introduction

2. Case studies

3. Concrete semantics

4. Generic aproximation

5. Filter domains

6. Post fixpoint inference of contracting function in floating-point arithmetics

7. Basic simplified filters

8. Higher order simplified filters

9. Bounded expansion

10. Filter detection

11. Conclusion

Syntax

Let V be a finite set of variables.
Let I be the set of real intervals (including R).
Expressions E are affine forms of variables V with real interval coefficients:

E::=I +
∑

j∈J

Ij.Vj

Programs are given by the following grammar:

P :== skip
| P ;P
| V := E

| if (V ≥ 0) {P} else {P}
| while (V ≥ 0) {P}

Semantics

We define the semantics of a program P :

JP K : (V → R) → ℘(V → R)

by induction over the syntax of P :

JskipK(ρ) = {ρ},

JP1;P2K(ρ) = {ρ′′ | ∃ρ′ ∈ JP1K(ρ), ρ
′′ ∈ JP2K(ρ

′)},

JV := I +
∑

j∈J Ij.VjK(ρ) =
{

ρ
[

V 7→ i +
∑

j∈J ij.ρ(Vj)
] ∣

∣ i ∈ I, ∀j ∈ J, ij ∈ Ij
}

,

Jif (V ≥ 0) {P1} else {P2}K(ρ) =
{

JP1K(ρ) if ρ(V) ≥ 0

JP2K(ρ) otherwise,

Jwhile (V ≥ 0) {P}K(ρ) = {ρ′ ∈ Inv | ρ′(V) < 0}
where Inv = lfp (X 7→ {ρ} ∪ {ρ′′ | ∃ρ′ ∈ X, ρ′(V) ≥ 0 and ρ′′ ∈ JP K(ρ′)}).

Overview

1. Introduction

2. Case studies

3. Concrete semantics

4. Generic aproximation

5. Filter domains

6. Post fixpoint inference of contracting function in floating-point arithmetics

7. Basic simplified filters

8. Higher order simplified filters

9. Bounded expansion

10. Filter detection

11. Conclusion

Abstract domain

An abstract domain ENV♯ is a set of environment properties.

A concretization map γ relates each property to the set of its solutions:

γ : ENV♯ → ℘(V → R).

Some primitives simulate concrete computation steps in the abstract:

• an abstract control path merge ⊔;

• an abstract guard GUARD and an abstract assignment ASSIGN;

• an abstract least fixpoint lfp♯ operator, which maps sound counterpart
f ♯ to monotonic function f , to an abstraction of the least fixpoint of f .
lfp♯ is defined using extrapolation operators (⊥,▽,△).
Soundness follows from the monotony of the concrete semantics.

Abstract semantics

JskipK♯(a) = a

JP1;P2K
♯(ρ♯) = JP2K

♯(JP1K
♯(ρ♯))

JV := EK♯(a) = ASSIGN(V,E, a)

Jif (V ≥ 0) {P1} else {P2}K♯(a) = a1⊔a2,

with

{

a1 = JP1K
♯(GUARD(V, [0; +∞[, a))

a2 = JP2K
♯(GUARD(V,]−∞; 0[, a))

Jwhile (V ≥ 0) {P}K♯(a) = GUARD(V,]−∞; 0[, Inv♯)

where Inv♯ = lfp♯
(

X 7→ a⊔JP K♯(GUARD(V, [0; +∞[, X))
)

Soundness

We prove by induction over the syntax:

Theorem 4 (Soundness) For any program P , environment ρ, abstract ele-

ment a, we have:

ρ ∈ γ(a) =⇒ JP K(ρ) ⊆ γ
(

JP K♯(a)
)

.

�

Extrapolation operators

• iteration basis: ⊥ ∈ ENV♯

• a widening operator ▽ such that:

1. ▽ ∈ (ENV♯ × ENV♯) → ENV♯,
2. ∀a, b ∈ ENV♯, γ(a) ∪ γ(b) ⊆ γ(a▽b),
3. ∀ (ai) ∈ (ENV♯)N, the sequence (a▽i) defined by:

a▽0 = a0 and a▽n+1 = a▽n▽an+1

is eventually stationary;

• a narrowing operator △ such that:

1. △ ∈ (ENV♯ × ENV♯) → ENV♯,
2. ∀a, b ∈ ENV♯, γ(a) ∩ γ(b) ⊆ γ(a△b),
3. (ai) ∈ (ENV♯)N, the sequence (a△i) defined by:

a△0 = a0 and a△n+1 = a△n△an+1

is eventually stationary;

Abstract iterations

Let f ♯ be a map in ENV♯ → ENV♯.

Abstract upward-iterates:

{

C▽

0 = ⊥,

C▽

n+1 = C▽
n ▽f

♯(C▽
n),

is eventually stationary: We denote by C▽
ω its limit.

Abstract downward-iterates:
{

D△

0 = C▽
ω ,

D△

n+1 = D△
n△f

♯(D△
n),

is eventually stationary: We define lfp♯(f ♯) as this limit.

Soundness

Let f be a ∪-complete morphism such that:

∀a ∈ ENV♯, f (γ(a)) ⊆ γ(f ♯(a)).

We want to prove that lfp(f) ⊆ γ(lfp♯(f ♯)).

We know that (kleenean iteration):

∀a ∈ ℘(V → R), f (a) ⊆ a =⇒ lfp(f) ⊆ a.

So, we only have to prove that:

∃b ∈ ℘(V → R), f (b) ⊆ b and b ⊆ γ(lfp♯(f ♯)).

Soundness proof (continued)

1. f (γ(C▽
ω)) ⊆ γ(C▽

ω) since:
f (γ(C▽

ω)) ⊆ γ(f ♯(C▽
ω)), (soundness of f ♯)

γ(f ♯(C▽
ω)) ⊆ γ(C▽

ω▽f
♯(C▽

ω)), (soundness of ▽)
C▽

ω▽f
♯(C▽

ω) = C▽
ω , (C▽

ω is a limit)

2. ∀n ∈ N, ∃a ∈ ℘(V → R) such that f (a) ⊆ a and a ⊆ γ(D△
n):

(a) γ(D△

0) = γ(C▽
ω) and f (γ(C▽

ω)) ⊆ γ(C▽
ω);

(b) let a ∈ ℘(V → R) such that f (a) ⊆ a and a ⊆ γ(D△
n),

then
• f (f (a)) ⊆ f (a) (f is monotonic),
f (a) ⊆ f (γ(D△

n)) ⊆ γ(f ♯(D△
n)),

• f (a ∩ f (a)) ⊆ f (a) ∩ f (f (a)) ⊆ a ∩ f (a),
a ∩ f (a) ⊆ γ(D△

n) ∩ γ(f ♯(D△
n)) ⊆ γ(D△

n△f
♯(D△

n)) ⊆ γ(D△

n+1)

Approximated reduced product

Domains are refined by simple constraints computed in other domains:

Extract

Domain

Refine

Extract

simple constraints

Domain

Refine

Interface with other domains

We only use two kinds of simple constraints:

• γ= :

{

℘(V2) → ℘(V → R)

R 7→ {ρ | (X, Y) ∈ R =⇒ ρ(X) = ρ(Y)};

• γI :

{

(V → I) → ℘(V → R)

ρ♯ 7→ {ρ | ∀X ∈ V , ρ(X) ∈ ρ♯(X)}.
We can get such constraints by weakening of abstract properties:

1. EQU : ENV♯ → ℘(V2)

∀a ∈ ENV♯, γ(a) ⊆ γ=(EQU(a));

2. RANGE : ENV♯ → (V → I):
∀a ∈ ENV♯, γ(a) ⊆ γI(RANGE(a)).

We refine abstract properties by weakening range constraints:

• REDUCE : ((V → I)× ENV♯) → ENV♯

∀a ∈ ENV♯, ρ♯ ∈ (V → I), γ(a) ∩ γI(ρ♯) ⊆ γ(REDUCE(ρ♯, a)),

Reduction policy

We will refine abstract properties when it is necessary:

• after assignments

• after guards

• after extrapolation steps

To ensure termination, we forbid cyclic reductions after extrapolation steps:
domains are ordered by the relation “is used to refine”.

Extrapolation (revisited)

We also require that:

• ∀k ∈ N, ρ1, ..., ρk ∈ (V → I), (ai) ∈ (ENV♯)N,
the sequence

(

a▽i

)

defined by:

a▽0 = ρ(a0) and a▽n+1 = ρ(a▽n▽an+1)

with ρ = [X 7→ REDUCE(ρk, X)] ◦ ... ◦ [X 7→ REDUCE(ρ1, X)],

is eventually stationary;

• ∀k ∈ N, ρ1, ..., ρk ∈ (V → I), (ai) ∈ (ENV♯)N,
the sequence

(

a△i

)

defined by:

a△0 = ρ(a0) and a△n+1 = ρ(a△n△an+1),

with ρ = [X 7→ REDUCE(ρk, X)] ◦ ... ◦ [X 7→ REDUCE(ρ1, X)],

is eventually stationary.

Overview

1. Introduction

2. Case studies

3. Concrete semantics

4. Generic aproximation

5. Filter domains

6. Post fixpoint inference of contracting function in floating-point arithmetics

7. Basic simplified filters

8. Higher order simplified filters

9. Bounded expansion

10. Filter detection

11. Conclusion

Filter family

A filter class is given by:

• the number p of outputs and the number q of inputs involved in the com-
putation of the next output;

• a (generic/symbolic) description of F with parameters;

• some conditions over these parameters

In the case of the second order filter:

• p = 2, q = 3;

• F (V,W,X, Y, Z) = a× V + b×W + c×X + d× Y + e× Z;

• a2 + 4b < 0.

Filter domain

A filter constraint is a couple in T × B where:

• T ∈ ℘finite(Vm × R
n) with:

-- m, the number of variables that are involved in the computation of
the next output. m depends on the abstraction;

-- n, the number of filter parameters;

• B is an abstract domain encoding some “ranges”.

A constraint (t, d) is related to a set of environments:

γB : T × B → ℘(V → R).

An approximation of second order filter may consist in relating:

• the last two outputs and the first two coefficients of the filter (a and b)

• to the ‘radius’ of an ellipsis.

Iterations

~Y = F (~X)

~X = ~Y

Iterations

⇐ BUILD

~X = ~Y

~Y = F (~X)

~X

Iterations

~Y = F (~X)

~X = ~Y

~Y

Iterations

~X = ~Y

~Y = F (~X)
~X

Iterations

~X = ~Y

~Y = F (~X)

⇐ BUILD~X

~X

Iterations

~X = ~Y

~Y = F (~X)

⇐ ⊔~X

Iterations

~Y = F (~X)

~X = ~Y

~Y

Iterations

~X = ~Y

~Y = F (~X)
~X

Iterations

~X = ~Y

~Y = F (~X)

⇐ BUILD~X

~X

Merging computation paths

~X = ~Y

~Y = F (~X)

~X = ~I

Merging computation paths

~X = ~Y

~X = ~I

~Y = F (~X)

~X

Merging computation paths

~X = ~Y

~X = ~I

~Y = F (~X)

~X

~X

~X

Merging computation paths

~X = ~Y

~Y = F (~X)

~X = ~I

~X

~Y

Merging computation paths

~X = ~Y

~X = ~I

~Y = F (~X)

~X

~X

Merging computation paths

~X = ~Y

~X = ~I

~Y = F (~X)

⇐ BUILD
~X

~X

~X

Merging computation paths

~X = ~Y

~X = ~I

~Y = F (~X)

⇐ ⊔~X

Overview

1. Introduction

2. Case studies

3. Concrete semantics

4. Generic aproximation

5. Filter domains

6. Post fixpoint inference of contracting function in floating-point arithmetics

7. Basic simplified filters

8. Higher order simplified filters

9. Bounded expansion

10. Filter detection

11. Conclusion

Floating point domain

Let:

• F be a finite subset of R closed upon opposite,

• L is a finite subset of F;

• q, r two natural parameters for setting extrapolation strategy.

We define Fq,r as follows:

• Fq,r = F = F ∪ {−∞; +∞};

• γ
F
:







F 7→ ℘(R)

a →
{

[−a; a] if a ∈ F

R otherwise;

• ⌈_⌉ :
{

R → F

r → min({f ∈ F | f ≥ r});
• a▽

F
b = min({l ∈ L ∪ {a; +∞} | l ≥ b}).

Extrapolation strategy

• Delayed widening:

(a1, k1)▽Fq,r(a2, k2) =







(a1, k1) if a1 ≥ a2

(a2, k1 + 1) if a2 > a1 and k1 < q

(a1▽F
a2, 0) otherwise;

Constraints are only widened when they have been unstable (not nec-
essarily successively) q times, since their last widening.

• Bounded narrowing:

(a1, k1)△Fq,r(a2, k2) =

{

(a1, k1) if a1 ≤ a2 or k1 ≤ (−r)

(a2,min(k1, 0)− 1) if a2 < a1 and k1 > (−r);

Constraints are only narrowed r times.

Approximating contracting functions

When analyzing filter, we iterate functions f such that:

• f : I × F → F

• ∀i ∈ I, the map [x → f (i, x)] is contracting;

• we can compute fl : I → F such that ∀i ∈ I, f (i, fl(i)) ≤ fl(i);

where I is a set of inputs.

Since [x → f (i, x)] is contracting, we have:

• ∀i ∈ I, ∀x ≥ fl(i), f (i, x) ≤ x.

Our goal

We want to find a iterating strategy which ensures:

• soundness (even if fl is unsound)

• accuracy (if fl is sound):

-- do not jump directly at the limit fl: (to analyze not iterated filter,
loop unrolling. . .)

-- do not jump higher than the limit when the input is constant;
-- do not jump higher than the limit in most cases.

• termination (even if the input depend on the output).

Reduced product

We use an approximation of the reduced product of two domains:
Let q,r be two natural parameters.

1. the first domain iterates f in F0,r

=⇒ widened at each step;

2. the second domain iterates [(i, x) → max(f (i, x), fl(i))] in Fq,0

=⇒ soundness does not depend on fl

=⇒ not widened at each step to wait until input are stables.

We use the reduction:

ρ :

{

F0,r ×Fq,0 7→ F0,r ×Fq,0

(x0,m0), (x1,m1) → (min(x0, x1),m0), (x1,m1)

after each computation step.
=⇒ The second domain is used to reduce the first one, when it is not

accurate.

Unstable filters

In case the iterated function is not contracting, filters are very likely to diverge.
In case of linear filters, the iterated function is linear.
We may use the arithmetic-geometric progression domain [VMCAI’2005].
We require an external clock to relate the divergence to the value of the clock.

Overview

1. Introduction

2. Case studies

3. Concrete semantics

4. Generic aproximation

5. Filter domains

6. Post fixpoint inference of contracting function in floating-point arithmetics

7. Basic simplified filters

8. Higher order simplified filters

9. Bounded expansion

10. Filter detection

11. Conclusion

Simplified second order filter

Theorem 5 (Including rounding errors)

Let a, b, εa ≥ 0, εb ≥ 0, K ≥ 0, m ≥ 0, X, Y , Z be real numbers, such that:

1. a2 + 4b < 0,

2. X2 − aXY − bY 2 ≤ K,

3. aX + bY − (m + εa|X| + εb|Y |) ≤ Z ≤ aX + bY + (m + εa|X| + εb|Y |).
We have

1. Z2 − aZX − bX2 ≤
(

(
√
−b + δ)

√
K +m

)2
;

2.







√
−b + δ < 1

K ≥
(

m

1−
√
−b−δ

)2
=⇒ Z2 − aZX − bX2 ≤ K,

where δ = 2
εb+εa

√
−b√

−(a2+4b)
.

�

Domain

• The domain relates the variables describing the last two outputs and the
four filter parameters to the square root of the ellipsis ’radius’:
γB1((X, Y, a, εa, b, εb), k) is given by the set of environments ρ that satisfy:

(ρ(X))2 − aρ(X)ρ(Y)− b(ρ(Y))2 ≤ k2;

• in order to interpret assignment Z = E under range constraints ρ♯, we
test whether E matches:

[a− εa; a + εa]×X + [b− εb; b + εb]× Y + E ′

with a2 + 4b < 0,
and capture:

-- filter parameters: (a, εa, b, εb);
-- variables tied before (X, Y) and after the iteration (Z,X),
-- an approximation of the current input: EVAL♯(E ′, ρ♯).

Approximated reduced product

y

x

Initial conditions

y

x

Output refinement

Overview

1. Introduction

2. Case studies

3. Concrete semantics

4. Generic aproximation

5. Filter domains

6. Post fixpoint inference of contracting function in floating-point arithmetics

7. Basic simplified filters

8. Higher order simplified filters

9. Bounded expansion

10. Filter detection

11. Conclusion

Higher order simplified filters

A simplified filter of class (k, l) is defined as a sequence:

Sn+p = a1Sn + . . . + apSn+p−1 + En+p,

where the polynomial P = Xp − apX
p−1 − . . .− a1X

0 has no multiple roots (in
C) and can be factored into the product of k second order irreducible polyno-
mials X2 − αi.X − βi and l first order polynomials X − δj.
Then, there exists sequences (xin)n∈N and (yjn)n∈N such that:











Sn =

(

∑k

i=1
xin

)

+

(

∑l

j=1
y
j
n

)

xin+2 = αi.x
i
n+1 + βi.x

i
n + F i(En+2, En+1)

y
j
n+1 = δj.y

j
n +Gj(En+1).

The initial outputs (xi0, xi1, y
j
0) and filter inputs F i, Gj are given by solving

symbolic linear systems, they only depend on the roots of P .

Higher order simplified filters

Whenever we meet an assignment Vn+p = En+p +
∑p

k=1
Ik × Vn+k−1,

1. we consider the characteristic polynomial P = Xp −
∑p

k=1
Ik.X

p−k,

2. we take a polynomial Q of the form
∏k

i=1
(X2 − AiX − Bi)

∏l

j=1
(X −Dj)

with 2k + l = p + 1.

3. we expand Q into Xp −
∑p

k=1
Jk.X

p−k.

4. we bound the expression |
∑p

k=1
(Ik − Jk)× Vn+k−1| ≤ err(Vn, . . . , Vn+p−1);

5. we take the following assignment:

Vn+p = En+p + [−err(Vn, . . . , Vn+p−1),+err(Vn, . . . , Vn+p−1)] +

p
∑

k=1

Jk × Vn+k−1

instead.

A sound factoring algorithm is not required !

Overview

1. Introduction

2. Case studies

3. Concrete semantics

4. Generic aproximation

5. Filter domains

6. Post fixpoint inference of contracting function in floating-point arithmetics

7. Basic simplified filters

8. Higher order simplified filters

9. Bounded expansion

10. Filter detection

11. Conclusion

Other filters

We consider sequences of the following form:

{

Sk = ik, 0 ≤ k < p

Sn+p = F (Sn, . . . , Sn+p−1) + G(En+p+1−q, . . . , En+p)

Having bounds:

• on the input sequence (En),

• and on the initial outputs (ik)0≤k<p;

we want to infer a bound on the output sequence (Sn).

Splitting Sn

We split the output sequence Sn = Rn + εn into

• the contribution of the errors (εn);

{

εk = 0, 0 ≤ k < p;

εn+p = F (εn, . . . , εn+p−1) + errn+p

• the ideal sequence (Rn) (in the real field);

{

Rk = ik, 0 ≤ k < p

Rn+p = F (Rn, . . . , Rn+p−1) +G(En+p+1−q, . . . , En+p)

Bounding Rn

To refine the output, we need to bound the sequence Rn:

1. We isolate the contribution of the N last inputs:

Rn = lastNn (En, . . . , En+1−N) + resNn .

2. Since the filter is linear, we have, for n > N + p:

• lastNn (X1, . . . , XN) = lastNN+p(X1, . . . , XN);

• resNn satisfies:

resNn+p = F (resNn , . . . , resNn+p−1) +G′
[F,G](En+p−N+1−q, . . . , En+p−N)

Abstract gain with respect to N

5

10

15

20

25

0 10 20 30 40 50

1.42

1.43

1.44

1.45

1.46

1.47

25 30 35 40 45

Overview

1. Introduction

2. Case studies

3. Concrete semantics

4. Generic aproximation

5. Filter domains

6. Post fixpoint inference of contracting function in floating-point arithmetics

7. Basic simplified filters

8. Higher order simplified filters

9. Bounded expansion

10. Filter detection

11. Conclusion

Patterns

We use patterns to detect filter iterations:

P
∆
= (P ⊕ P) | (P ⊖ P) | (P ⊗ P) | (⊖P) | c ∈ Varcste | V ∈ Varvar

Patterns are seen up to the following congruence relation:

(P1 ⊙ P2) ≡P (P2 ⊙ P1) for ⊙ ∈ {⊕,⊗}
((P1 ⊙ P2)⊙ P3) ≡P (P1 ⊙ (P2 ⊙ P3)) for ⊙ ∈ {⊕,⊗}

P1 ≡P (⊖(⊖P1))
(P1 ⊖ P2) ≡P (P1 ⊕ (⊖P2))

⊖(P1 ⊙ P2) ≡P ((⊖P1)⊙ (⊖P2)) for ⊙ ∈ {⊕,⊖}
⊖(P1 ⊗ P2) ≡P ((⊖P1)⊗ P2)
⊖(P1 ⊗ P2) ≡P (P1 ⊗ (⊖P2))

Expressions

We consider:

1. interval constraints:
ρI : V → Interval

2. symbolic constraints [Miné: VMCAI’06]:

ρC : V → Expression ∪ {⊤}

Expressions in assignments are seen up the following congruence:

E ≡E ρ̃I(E)
V ≡E ρC(V) if ρC(V) 6= ⊥

Pattern matching

Given ρI : V → Interval and ρC : V → Expression ∪ {⊤},
we define the relation |=ρcste,ρvar by induction as follows:

If: E1 |=ρcste,ρvar P1 and E2 |=ρcste,ρvar P2

then:
(E1+E2) |=ρcste,ρvar (P1 ⊕ P2)
(E1−E2) |=ρcste,ρvar (P1 ⊖ P2)
(E1×E1) |=ρcste,ρvar (P1 ⊗ P2)

E |=ρcste,ρvar c if ρcste(c) = ρ̃I(E)
E |=ρcste,ρvar (⊖c) if ρcste(c) = ρ̃I(−E)
X |=ρcste,ρvar V if ρvar(V) = X

When E |=ρcste,ρvar P , we say that the expression E matches the pattern P

under the environments ρI and ρc.

Abstract pattern matching

Given an expression E and a pattern P ,
find a set of tuples (E ′, P ′, ρcste, ρvar) such that:

1. E ≡E E ′;

2. P ≡P P ′;

3. E |=ρcste,ρvar P .

We explore E and P in parallel, when necessary:

1. we reorder terms and factors in P ;

2. we introduce unary negations in P ;

3. we push negations toward the leaves of P ;

4. we replace variables in E with their symbolic constraint;

Memoization / Certificate

Exploration is costly (exponential in the size of P).
We use memoization to amortize this cost.

1. After each exploration, we memoize:

• successful tuples (just E ′ and P ′ indead);
(they can be used as certificate for a posteriori checks)

• symbolic constraints that have been used;

2. At next iterations:

• when these symbolic constraints have changed,
we redo the exploration;

• otherwise we check which tuples are still valid.

We deal with rounding errors the usual way.

Overview

1. Introduction

2. Case studies

3. Concrete semantics

4. Generic aproximation

5. Filter domains

6. Post fixpoint inference of contracting function in floating-point arithmetics

7. Basic simplified filters

8. Higher order simplified filters

9. Bounded expansion

10. Filter detection

11. Conclusion

Benchmarks

We analyze three programs in the same family on a AMD Opteron 248, 8 Gb
of RAM (analyses use only 2 Gb of RAM).

lines of C 70,000 216,000 379,000
global variables 13,400 7,500 9,000
iterations 72 41 37 161 75 53 151 187 74
time/iteration 52s 1mn18s 1mn16s 3mn07s 5mn08s 4mn40s 4mn35s 9mn25s 8mn17s
analysis time 1h02mn 53mn 47mn 8h23mn 6h25mn 4h08mn 11h34mn 30h26mn 10h14mn
false alarms 574 3 0 207 0 0 790 0 0

1. without filter domains;

2. with simplified filter domains;

3. with expanded filter domains.

Conclusion

• a highly generic framework to analyze programs with digital filtering:
a technical knowledge of used filters allows the design of the adequate
abstract domain;

• the case of linear filters is fully handled:
we need to solve a symbolic linear system for each filter family;
we need an (not necessarily sound) polynomial reduction algorithm for
each filter instance.

• filters are detected up to:

-- term recombination
-- and some laws of the real fields;

This framework has been used and was necessary in the full certification of
the absence of run-time error in industrial critical embedded software.

http://www.astree.ens.fr

