Shape analysis abstractions MPRI — Cours 2.6 "Interprétation abstraite : application à la vérification et à l'analyse statique"

Xavier Rival

INRIA

Dec, 18th, 2019

Shape analyses aim at discovering structural invariants of programs that manipulate complex unbounded data-structures

Applications:

- establish memory safety
- verify the preservation of **structural properties** *e.g.*, list, doubly-linked lists, trees, ...
- reason about programs that manipulate unbounded memory states

Previous course: separation logic based shape analyses

- separating conjunction connector *: ties properties that characterize disjoint memory regions
- also many other connectors: disjunctions, classical conjunctions, separating implication...
- can be turned into an abstract domain

Properties to verify: examples

A program closing a list of file descriptors

```
\label{eq:linear_state} \begin{array}{l} //1 \text{ points to a list} \\ c = 1; \\ \textbf{while}(c \neq \texttt{NULL}) \{ \\ \texttt{close}(c \rightarrow \texttt{FD}); \\ c = c \rightarrow \texttt{next}; \\ \end{array} \\ \end{array}
```

Correctness properties

- memory safety
- 1 is supposed to store all file descriptors at all times will its structure be preserved ? yes, no breakage of a next link
- O closure of all the descriptors

Examples of structure preservation properties

- algorithms manipulating trees, lists...
- libraries of algorithms on balanced trees
- not guaranteed by the language !

e.g., the balancing of Maps in the OCaml standard library was **incorrect** for years (performance bug)

Introduction

On today's agenda

Another important family of shape analysis abstractions:

- three valued logic based abstraction maps predicates into "true", "false", "maybe" logical values
- can describe **memory states** (in this course) but also **other objects** (not in this course)
- useful comparison with separation logic based abstraction

Combination with value abstraction:

- so far, we have considered pointer information only
- real states also include **numerical** and **boolean values**, but also **strings** and others...
- **issue 1**: shape abstractions are very **dynamic** *e.g.*, the scope of summaries varies during the analysis
- issue 2: exchange information between shape and value

Outline

2 Setup (reminder)

- Syntax and semantics
- Basic pointer abstractions

3 Shape analysis in Three-Valued Logic (TVL)

4 Combining shape and value abstractions

5 Conclusion

Assumptions: syntax of programs

1	::= 	l-valules x *e l · f	$(x \in X)$ pointer dereference field read pointers, array dereference
е	::=	expressions	
		С	$(c\in\mathbb{V})$
	i	1	(l-value)
	i	$\mathbf{e} \oplus \mathbf{e}$	(arith operation, comparison)
	i	&l	"address of" operator
s	::=	statements	
		l = e	(assignment)
	Í	s;s;	(sequence)
	Í	if(e){s}	(condition)
	i	while(e){s}	(loop)
	i	$\mathbf{x} = malloc(c)$	allocation of <i>c</i> bytes
	İ	free(x)	deallocation of the block pointed to by

Semantic domains

No one-to-one relation betwee memory cells and program variables

- a variable may correspond to several cells (structures...)
- dynamically allocated cells correspond to no variable at all...

Thus, we distinguish memory contents and variable addresses:

Environment + Heap

- \bullet Addresses are values: $\mathbb{V}_{\mathrm{addr}} \subseteq \mathbb{V}$
- Environments $e \in \mathbb{E}$ map variables into their addresses
- Heaps $(h \in \mathbb{H})$ map addresses into values

$$\begin{array}{rcl} \mathbb{E} & = & \mathbb{X} \to \mathbb{V}_{\mathrm{addr}} \\ \mathbb{H} & = & \mathbb{V}_{\mathrm{addr}} \to \mathbb{V} \end{array}$$

h is actually only a partial function

• Memory states (or memories): $\mathbb{M} = \mathbb{E} \times \mathbb{H}$

Note: Avoid confusion between heap (function from addresses to values) and dynamic allocation space (often referred to as "heap")

Xavier Rival (INRIA)

Example of a concrete memory state (variables)

- $\bullet\,$ x and z are two list elements containing values 64 and 88, and where the former points to the latter
- y stores a pointer to z

Memory layout

(pointer values underlined)

e :	x y z		300 308 312
<i>h</i> :	300 304 308 312 316	$ \begin{array}{c} $	312 312 88

Example of a concrete memory state (variables + dyn. cell)

- same configuration
- + z points to a dynamically allocated list element (in purple)

Memory layout

e :	x y z	$\begin{array}{c} \mapsto \\ \mapsto \\ \mapsto \end{array}$	300 308 312	
ĥ :	300 304 308 312 316 508 512	$\begin{array}{c} \uparrow \\ \uparrow $	64 312 312 88 508 25 0	

Semantics of the pointer operations

Case of I-values: $\llbracket \texttt{1} \rrbracket : \mathbb{M} \to \mathbb{V}_{\mathrm{addr}}$

$$\begin{split} \llbracket \mathbf{x} \rrbracket(e, h) &= e(\mathbf{x}) \\ \llbracket \mathbf{*e} \rrbracket(e, h) &= \begin{cases} h(\llbracket \mathbf{e} \rrbracket(e, h)) & \text{if } \llbracket \mathbf{e} \rrbracket(e, h) \neq \mathbf{0} \land \llbracket \mathbf{e} \rrbracket(e, h) \in \mathbf{Dom}(h) \\ \Omega & \text{otherwise} \\ 1 \cdot \mathbf{f} \rrbracket(e, h) &= \llbracket \mathbf{1} \rrbracket(e, h) + \mathbf{offset}(\mathbf{f}) \text{ (numeric offset)} \end{split}$$

Case of expressions: $\llbracket e \rrbracket : \mathbb{M} \to \mathbb{V}$, mostly unchanged

$$\llbracket 1 \rrbracket (e, h) = h(\llbracket 1 \rrbracket (e, h))$$
 (evaluates into the contents)
$$\llbracket \& 1 \rrbracket (e, h) = \llbracket 1 \rrbracket (e, h)$$
 (evaluates into the address)

Case of statements that are specific to memory operations:

- memory allocation x = malloc(c): $(e, h) \rightarrow (e, h')$ where $h' = h[e(x) \leftarrow k] \uplus \{k \mapsto v_k, k+1 \mapsto v_{k+1}, \dots, k+c-1 \mapsto v_{k+c-1}\}$ and $k, \dots, k+c-1$ are fresh and unused in h
- memory deallocation free(x): $(e, h) \rightarrow (e, h')$ where k = e(x) and $h = h' \uplus \{k \mapsto v_k, k+1 \mapsto v_{k+1}, \dots, k+c-1 \mapsto v_{k+c-1}\}$

Xavier Rival (INRIA)

Outline

2 Setup (reminder)

- Syntax and semantics
- Basic pointer abstractions
- 3 Shape analysis in Three-Valued Logic (TVL)
- 4 Combining shape and value abstractions

5 Conclusion

Pointer non relational abstractions

Assumption on the set of values:

- $\bullet \ \mathbb{V} = \mathbb{V}_{\mathrm{addr}} \uplus \dots \text{ and } \mathbb{X} = \mathbb{X}_{\mathrm{addr}} \uplus \dots$
- \bullet pointer values $(\mathbb{V}_{\mathrm{addr}})$ describe (either symbolic or numerical) memory addresses
- base values may include integers and other base types
- abstract cells \mathbb{C}^{\sharp} finitely summarize concrete cells, through a fixed

$$\phi: \mathbb{V}_{\mathrm{addr}} \longrightarrow \mathbb{C}^{\sharp}$$

• we apply a non relational abstraction:

Non relational pointer abstraction

- Set of pointer abstract values $\mathbb{D}_{ptr}^{\sharp}$
- Concretization $\gamma_{ptr} : \mathbb{D}_{ptr}^{\sharp} \to \mathcal{P}(\mathbb{V}_{addr})$ into pointer sets
- Abstract memory states of the form $\mathbb{C}^{\sharp} \to \mathbb{D}_{ptr}^{\sharp}$ with $\gamma(m^{\sharp}) = \{(e, h) \mid \forall p \in \mathbb{X}_{addr}, h(e(p)) \in \gamma_{ptr} \circ m^{\sharp} \circ \phi(e(p))))\}$

Pointer non relational abstraction: null pointers

The dereference of a null pointer will cause a crash

To establish safety: compute which pointers may be null

Null pointer analysis

Abstract domain for addresses:

• $\gamma_{\rm ptr}(\perp) = \emptyset$

•
$$\gamma_{\text{ptr}}(\top) = \mathbb{V}_{\text{addr}}$$

•
$$\gamma_{\mathrm{ptr}} (\neq \mathtt{NULL}) = \mathbb{V}_{\mathrm{addr}} \setminus \{ \mathtt{0} \}$$

- we may also use a lattice with a fourth element = NULL exercise: what do we gain using this lattice ?
- very lightweight, can typically resolve rather trivial cases
- useful for C, but also for Java
- we can define very similar abstractions to deal with dangling or invalid pointers

Xavier Rival (INRIA)

 \neq NULL

Pointer non relational abstraction: points-to sets

Determine where a pointer may store a reference to

1: int x, y; 2: int * p; 3: y = 9;4: p = &x;

5 : *p = 0;

- what is the final value for x ?
 0, since it is modified at line 5...
- what is the final value for y ?
 9, since it is not modified at line 5...

Basic pointer abstraction

• We assume a set of abstract memory locations \mathbb{A}^{\sharp} is fixed:

$$\mathbb{A}^{\sharp} = \{ \& x, \& y, \dots, \& t, a_0, a_1, \dots, a_N \}$$

- Concrete addresses are abstracted into \mathbb{A}^{\sharp} by $\phi_{\mathbb{A}} : \mathbb{A} \to \mathbb{A}^{\sharp} \uplus \{\top\}$
- A pointer value is abstracted by the abstraction of the addresses it may point to, *i.e.*, D[#]_{ptr} = P(A[#]) and γ_{ptr}(a[#]) = {a ∈ A | φ_A(a) = a[#]}

• example: p may point to {&x}

Points-to sets computation example

Example code:

Abstract locations: {&x, &y, &p} Analysis results:

	&x	&y	&p	
1	Т	Т	Т	
2	Т	Т	Т	
3	Т	Т	Т	
4	Т	[9, 9]	Т	
5	Т	[9, 9]	{&x}	
6	[0, 0]	[9, 9]	$\{\&x\}$	

Points-to sets computation and imprecision

	x%	&у	&р
1	[-10, -5]	[5, 10]	Т
2	[-10, -5]	[5, 10]	Т
3	[-10, -5]	[5, 10]	Т
4	[-10, -5]	[5, 10]	{&x}
5	[-10, -5]	[5, 10]	Т
6	[-10, -5]	[5, 10]	{&y}
7	[-10, -5]	[5, 10]	{&x, &y}
8	[-10, 0]	[0, 10]	$\{\&x,\&y\}$

What is the final range for x ?
What is the final range for y ?
Abstract locations: {&x,&y,&p}

Imprecise results

- The abstract information about both x and y are weakened
- The fact that $x \neq y$ is lost

Weak-updates

As in array analysis, we encounter:

Weak updates

- The modified concrete cell cannot be uniquely mapped into a well identified abstract cell that describes only it
- The resulting abstract information is obtained by joining the new value and the old information

Effect in pointer analysis, in the case of an assignment:

- if the points-to set contains **exactly one element**, the analysis can perform a **strong update**
- if the points-to set may contain **more than one element**, the analysis needs to perform a **weak-update**

Consequence: weak updates cause severe losses in precision

Previous course about memory abstraction: separation logic

Key idea:

Avoid weak updates by localizing memory accesses (read or write) in a very precise manner, and with no ambiguity

Logical items:

- separating conjunction connector: logically, splits the memory into two disjoint regions
- basic predicates, to describe individual cells
- inductive summary predicates, that describe unbouned memory regions

Main algorithms:

- unfolding: to refine summary predicates
- folding: to synthesize summary predicates

Today: compare separation logic with another shape abstraction and augment shape analysis to describe value properties

Xavier Rival (INRIA)

Outline

Introduction

2 Setup (reminder)

3 Shape analysis in Three-Valued Logic (TVL)

- Principles of Three-Valued Logic based abstraction
- Comparing and concretizing Three-Valued Logic abstractions
- Weakening Three-Valued Logic abstractions
- Transfer functions
- Focusing
- Comparing Separation Logic and Three-Valued logic abstractions

4 Combining shape and value abstractions

5 Conclusion

Representation of memory states: memory graphs

Observation: representation of memory states by graphs

- Nodes (aka, atoms) denote variables, memory locations
- Edges denote properties of addresses / pointers, such as:
 - "field f of location u points to v"
 - "variable x is stored at location u"
- This representation is also relevant in the case of **separation logic** based shape abstraction

A couple of examples:

Two alias pointers:

A list of length 2 or 3:

Memory graphs and predicates: variables

Before we apply some abstraction, we **formalize memory graphs** using some **predicates**, such as:

"Variable content" predicate

We note x(u) = 1 if node *u* represents the contents of x.

Examples:

• Two alias pointers:

Then, we have $x(u_0) = 1$ and $y(u_1) = 1$, and x(u) = 0 (*resp.*, y(u) = 0) in all the other cases

• A list of length 2:

Then, we have $x(u_0) = 1$ and x(u) = 0 in all the other cases

Memory graphs and predicates: (field) pointers

"Field content pointer" predicate

- We note n(u, v) if the field n of u stores a pointer to v
- We note $\underline{O}(u, v)$ if u stores a pointer to v (base address field is at offset 0)

Examples:

• Two alias pointers:

Then, we have $\underline{0}(u_0, u_2) = 1$ and $\underline{0}(u_1, u_2) = 1$, and $\underline{0}(u, v) = 0$ in all the other cases

• A list of length 2:

Then, we have $n(u_0, u_1) = 1$ and $n(u_1, u_2) = 1$, and n(u, v) = 0 in all the other cases

2-structures and conretization

We can represent the memory graphs using tables of predicate values:

Two-structures and concretization

We assume a set $\mathcal{P} = \{p_0, p_1, \dots, p_n\}$ of **predicates** (we write k_i for the arity of predicate p_i). A formal representation of a memory graph is a **2-structure** $(\mathcal{U}, \phi) \in \mathbb{D}_2^{\sharp}$ defined by:

- a set $\mathcal{U} = \{u_0, u_1, \dots, u_m\}$ of atoms
- a **truth table** ϕ such that $\phi(p_i, u_{l_1}, \ldots, u_{l_{k_i}})$ denotes the truth value of p_i for $u_{l_1}, \ldots, u_{l_{k_i}}$

Then, $\gamma_2(\mathcal{U}, \phi)$ is the set of (e, \hbar, ν) where $\nu : \mathcal{U} \to \mathbb{V}_{addr}$ and that satisfy exactly the truth tables defined by ϕ :

- (e, h, ν) satisfies x(u) iff $e(x) = \nu(u)$
- (e, h, ν) satisfies f(u, v) iff $h(\nu(u), f) = \nu(v)$
- the name "two-structure" will become clear (very) soon
- the set of two-structures is parameterized by the data of a set of predicates $x(.), y(.), \underline{0}(.,.), n(.,.)$ (additional predicates will be added soon...)

Xavier Rival (INRIA)

Examples of two-structures

Two alias pointers:

	х	у	\mapsto	<i>u</i> ₀	<i>u</i> ₁	<i>u</i> ₂
u ₀	1	0	u ₀	0	0	1
<i>u</i> ₁	0	1	u_1	0	0	1
<i>u</i> ₂	0	0	<i>u</i> ₂	0	0	0

A list of length 2:

A list of length 2:

	x	у	$\cdot n \mapsto$	<i>u</i> 0	<i>u</i> ₁	<i>u</i> ₂
<i>u</i> ₀	1	0	u ₀	0	1	0
<i>u</i> ₁	0	1	<i>u</i> ₁	0	0	1
<i>u</i> ₂	0	0	<i>u</i> ₂	0	0	0

Lists of arbitrary length ? More on this later

Unknown value: three valued logic

How to abstract away some information ?

i.e., how to abstract several graphs into one ? **Example**: pointer variable p alias with x or y

- Graph representation: dotted edges
- Abstract graph:

Summary nodes

At this point, we cannot talk about **unbounded memory states** with **finitely many** nodes, since one node represents at most one memory cell

An idea

- Choose a node to represent several concrete nodes
- Similar to smashing of arrays using segments

Definition: summary node

A summary node is an atom that may denote several concrete atoms

intuition: we are using a non injective function φ_A : A → A[‡]
 representation: double circled nodes

Lists of lengths 1, 2, 3:

Attempt at a summary graph:

• Edges to u_1 are dotted

Xavier Rival (INRIA)

Additional graph predicate: sharing

We now define a few **higher level predicates** based on the previously seen **atomic predicates** describing the graphs.

Example: a cell is shared if and only if there exists several distinct pointers to it

"Is shared" predicate The predicate sh(u) holds if and only if

$$\exists v_0, v_1, \begin{cases} v_0 \neq v_1 \\ \land \quad \mathbf{n}(v_0, u) \\ \land \quad \mathbf{n}(v_1, u) \end{cases}$$

(for concision, we assume only n pointers)

•
$$\underline{\mathrm{sh}}(u_0) = \underline{\mathrm{sh}}(u_1) = \underline{\mathrm{sh}}(u_3) = 0$$

• $\underline{\mathrm{sh}}(u_2) = 1$

Xavier Rival (INRIA)

Additional graph predicate: reachability

We can also define higher level predicates using induction:

For instance, a cell is **reachable** from u if and only it is u or it is reachable from a cell pointed to by u.

"Reachability" predicate

The predicate $\underline{\mathbf{r}}(u, v)$ holds if and only if:

$$\begin{array}{l} u = v \\ \forall \quad \exists u_0, \ \mathbf{n}(u, u_0) \wedge \underline{\mathbf{r}}(u_0, v) \end{array}$$

(for concision, we assume only n pointers)

$$\underbrace{\mathbf{r}}_{\mathbf{u}_{0}} \underbrace{\mathbf{r}}_{(u_{1}, u_{0})} = \underline{\mathbf{r}}(u_{2}, u_{0}) = \underline{\mathbf{r}}(u_{3}, u_{1}) = 0$$

$$\underbrace{\mathbf{r}}_{(u_{0}, u_{0})} = \underline{\mathbf{r}}(u_{0}, u_{0}) = \underline{\mathbf{r}}(u_{0}, u_{2}) = \underline{\mathbf{r}}(u_{0}, u_{3}) = 1$$

"Acyclicity" predicate

The predicate acy(u) holds if and only if $\underline{r}(u, u)$ does not hold

Xavier Rival (INRIA)

Three structures

As for 2-structures, we assume a set $\mathcal{P} = \{p_0, p_1, \dots, p_n\}$ of **predicates** fixed and write k_i for the arity of predicate p_i .

Definition: 3-structures

A **3-structure** is a tuple (\mathcal{U}, ϕ) defined by:

- a set $\mathcal{U} = \{u_0, u_1, \dots, u_m\}$ of atoms
- a truth table ϕ such that $\phi(p_i, u_{l_1}, \dots, u_{l_{k_i}})$ denotes the truth value of p_i for $u_{l_1}, \dots, u_{l_{k_i}}$

note: truth values are elements of the lattice $\{0, \frac{1}{2}, 1\}$

We write \mathbb{D}_3^{\sharp} for the set of three-structures.

$$\mathbf{x} \longrightarrow \mathcal{U}_{0} \overset{\mathbf{n}}{\longrightarrow} \overset{\mathbf{n}}{\longleftarrow} \begin{cases} \mathcal{U} = \{u_{0}, u_{1}\} \\ \mathcal{P} = \{\mathbf{x}(\cdot), \mathbf{n}(\cdot, \cdot), \underline{\operatorname{sum}}(\cdot)\} \end{cases}$$

	x	sum	n	u ₀	<i>u</i> ₁
u ₀	1	0	u ₀	0	1
<i>u</i> 1	0	$\frac{1}{2}$	<i>u</i> ₁	0	0

In the following we build up an abstract domain of 3-structures (but a bit more work is need for the definition of the concretization)

Main predicates and concretization

We have already seen:

- x(u): variable x contains the address of u
- n(u, v): field of u points to v
- $\underline{sum}(u)$: whether u is a summary node (convention: either 0 or $\frac{1}{2}$)
- $\underline{sh}(u)$: whether there exists several distinct pointers to u
- $\underline{\mathbf{r}}(u, v)$: whether v is reachable starting from u
- acy(v): v may not be on a cycle

Concretization for 2 structures:

$$(e, h, \nu) \in \gamma_2(\mathcal{U}, \phi) \quad \iff \quad \bigwedge_{p \in \mathcal{P}} (\mathit{env}, h, \nu) \text{ evaluates } p \text{ as specified in } \phi$$

Concretization for 3 structures:

- predicates with value $\frac{1}{2}$ may concretize either to true or to false
- but the concretization of summary nodes is still unclear...

Outline

Introduction

2 Setup (reminder)

3 Shape analysis in Three-Valued Logic (TVL)

- Principles of Three-Valued Logic based abstraction
- Comparing and concretizing Three-Valued Logic abstractions
- Weakening Three-Valued Logic abstractions
- Transfer functions
- Focusing
- Comparing Separation Logic and Three-Valued logic abstractions

4 Combining shape and value abstractions

5 Conclusion

Embedding

Reasons why we need to set up a relation among structures:

- learn how to compare two 3-structures
- describe the concretization of 3-structures into 2-structures

The embedding principle

Let $S_0 = (\mathcal{U}_0, \phi_0)$ and $S_1 = (\mathcal{U}_1, \phi_1)$ be two three structures, with the same sets of predicates \mathcal{P} . Let $f : \mathcal{U}_0 \to \mathcal{U}_1$, surjective.

We say that f embeds S_0 into S_1 iff

for all predicate $p \in \mathcal{P}$ of arity k, for all $u_{l_1}, \ldots, u_{l_{k_i}} \in \mathcal{U}_0$, $\phi_0(u_{l_1}, \ldots, u_{l_{k_i}}) \sqsubseteq \phi_1(f(u_{l_1}), \ldots, f(u_{l_{k_i}}))$

Then, we write $S_0 \sqsubseteq^f S_1$

- Note: we use the order \sqsubseteq of the lattice $\{0, \frac{1}{2}, 1\}$
- Intuition: embedding defines an abstract pre-order *i.e.*, when $S_0 \sqsubseteq^f S_1$, any property that is satsfied by S_0 is also satisfied by S_1

Embedding examples

A few examples of the embedding relation:

where $f : u_0 \mapsto u_0; u_1 \mapsto u_1; u_2 \mapsto u_1$

The last example shows summary nodes are not enough to capture just lists:

- reachability would be necessary to constrain it be a list
- alternatively: list cells should not be shared

Concretization of three-structures

Intuitions:

- concrete memory states correspond to 2-structures
- embedding applies uniformally to 2-structures and 3-structures (in fact, 2-structures are a subset of 3-structures)
- 2-structures can be embedded into 3-structures, that abstract them

This suggests a concretization of 3-structures in two steps:

- **1** turn it into a set of 2-structures that can be embedded into it
- e concretize these 2-structures

Concretization of 3-structures

Let \mathcal{S} be a 3-structure. Then:

```
\gamma_{3}(\mathcal{S}) = \bigcup \{ \gamma_{2}(\mathcal{S}') \mid \mathcal{S}' \text{ 2-structure s.t. } \exists f, \mathcal{S}' \sqsubseteq^{f} \mathcal{S} \}
```

Concretization examples

Without reachability:

where $f: u_0 \mapsto u_0; u_1 \mapsto u_1; u_2 \mapsto u_1; u_3 \mapsto u_1$

With reachability:

$$\mathbf{x} \longrightarrow (u_0)^n \longrightarrow (u_1)^n \rightarrow (u_2) \qquad \sqsubseteq^f \qquad \mathbf{x} \longrightarrow (u_0)^n \rightarrow (u_1)^n \qquad \underline{\mathbf{r}}(u_0, u_1)$$

where $f : u_0 \mapsto u_0; u_1 \mapsto u_1; u_2 \mapsto u_1$

Disjunctive completion

- Do 3-structures allow for a sufficient level of precision ?
- How to over-approximate a set of 2-structures ?

After the if statement: abstracting would be imprecise

Abstraction based on disjunctive completion

- In the following, we use partial disjunctive completion *i.e.*, TVLA manipulates finite disjunctions of 3-structures We write $\mathbb{D}_{\mathcal{P}(\mathbf{3})}^{\sharp}$ for the abstract domain made of finite sets of 3-structures in $\mathbb{D}_{\mathbf{3}}^{\sharp}$
- How to ensure disjunctions will not grow infinite ? the set of atoms is unbounded, so it is not necessarily true!

Outline

Introduction

2 Setup (reminder)

3 Shape analysis in Three-Valued Logic (TVL)

- Principles of Three-Valued Logic based abstraction
- Comparing and concretizing Three-Valued Logic abstractions
- Weakening Three-Valued Logic abstractions
- Transfer functions
- Focusing
- Comparing Separation Logic and Three-Valued logic abstractions

4 Combining shape and value abstractions

5 Conclusion

Canonical abstraction

To prevent disjunctions from growing infinite, we propose to normalize (in a precision losing manner) abstract states:

- the analysis may use all 3-structures at most points
- at selected points (including loop heads), only 3-structures in a finite set $\mathbb{D}_{\mathsf{can(3)}}^\sharp$ are allowed
- there is a function to coarsen 3-structures into elements of $\mathbb{D}_{can(3)}^{\sharp}$

Canonicalization function

Let \mathcal{L} be a lattice, $\mathcal{L}' \subseteq \mathcal{L}$ be a finite sub-lattice and **can** : $\mathcal{L} \to \mathcal{L}'$:

- operator can is called canonicalization if and only if it defines an upper closure operator
- then it extends into a canonicalization operator can : P(L) → P(L') for the disjunctive completion domain:
 can(E) = {can(x) | x ∈ E}

proof of the extension two disjunctive completion domains: left as an exercise
to make the powerset domain work, we simply need a can over 3-structures

Xavier Rival (INRIA)

Canonical abstraction

Definition of a finite lattice $\mathbb{D}_{can(3)}^{\sharp}$

We partition the set of predicates \mathcal{P} into two subsets \mathcal{P}_a and \mathcal{P}_o :

- \mathcal{P}_a and defines **abstraction predicates** and should contains only unary predicates and have a finite truth table whatever the number of atoms
- \mathcal{P}_o denotes **non-abstraction predicates**, and may define truth tables of unbounded size

Then, we let $\mathbb{D}_{can(3)}^{\sharp}$ be the set of 3-structures such that no pair of atoms have the same value of the \mathcal{P}_a predicates. It defines a finite set of 3-structures.

This sub-lattice defines a clear "canonicalization" algorithm:

Canonical abstraction by truth blurring

- **Identify** nodes that have different abstraction predicates
- When several nodes have the same abstraction predicate introduce a summary node
- Compute new predicate values by doing a join over truth values

Xavier Rival (INRIA)

Shape analysis abstractions

Canonical abstraction examples

Most common TVLA instantiation:

- ae assume there are n variables x₁,..., x_n
 thus the number of unary predicates is finite, and provides a good choice for P_a
- sub-lattice: structures with atoms distinguished by the values of the unary predicates x₁,..., x_n

Examples:

Elements not merge	d: Elements merged:	
	Lists of lengths 1, 2, 3:	Abstract into:
$y \longrightarrow u_1$ $y \longrightarrow u_1$	$x \longrightarrow u_0^n \longrightarrow u_1$	$x \longrightarrow u_0^n \longrightarrow u_1$
p p	$x \longrightarrow u_0^n \longrightarrow u_1^n \longrightarrow u_2$	
$x \longrightarrow u_0$ $x \longrightarrow u_0$	$x \longrightarrow (u_0)^n \longrightarrow (u_1)^n \longrightarrow (u_2)^n \longrightarrow (u_3)$	$\begin{bmatrix} 1 \\ x \\ \underline{r}(x) \end{bmatrix}$

Outline

Introduction

2 Setup (reminder)

3 Shape analysis in Three-Valued Logic (TVL)

- Principles of Three-Valued Logic based abstraction
- Comparing and concretizing Three-Valued Logic abstractions
- Weakening Three-Valued Logic abstractions
- Transfer functions
- Focusing
- Comparing Separation Logic and Three-Valued logic abstractions

4 Combining shape and value abstractions

5 Conclusion

Principle for the design of sound transfer functions

- Intuitively, concrete states correspond to 2-structures
- The analysis should track 3-structures, thus the analysis and its soundness proof need to rely on the embedding relation

Embedding theorem

We assume that

- $\mathcal{S}_0 = (\mathcal{U}_0, \phi_0)$ and $\mathcal{S}_1 = (\mathcal{U}_1, \phi_1)$ define a pair of 3-structures
- $f: \mathcal{U}_0 \to \mathcal{U}_1$, is such that $\mathcal{S}_0 \sqsubseteq^f \mathcal{S}_1$ (embedding)
- Ψ is a logical formula, with variables in X
- $g:X
 ightarrow\mathcal{U}_0$ is an assignment for the variables of Ψ

Then, the semantics (evaluation) of logical formulae is such that

 $\llbracket \Psi_{|g} \rrbracket (\mathcal{S}_0) \sqsubseteq \llbracket \Psi_{|f \circ g} \rrbracket (\mathcal{S}_1)$

Intuition: this theorem ties the evaluation of conditions in the concrete and in the abstract in a general manner

Xavier Rival (INRIA)

Principle for the design of sound transfer functions

Transfer functions for static analysis

- Semantics of concrete statements is encoded into boolean formulas
- Evaluation in the abstract is sound (embedding theorem)

Example: analysis of an assignment y := x

- $\textcircled{O} \quad \text{let } y' \text{ be a new predicate that denotes the } new \text{ value of } y$
- then we can add the constraint y'(u) = x(u)
 (using the embedding theorem to prove soundness)
- rename y' into y

Advantages:

- abstract transfer functions derive directly from the concrete transfer functions (intuition: $\alpha \circ f \circ \gamma$...)
- the same solution works for weakest pre-conditions

Disadvantage: precision will require some care, more on this later!

Xavier Rival (INRIA)

Shape analysis abstractions

Assignment: a simple case

Statement $l_0 : y = y \rightarrow n; l_1 : ...$ **Pre-condition** \mathcal{S} $x, y \rightarrow (u_0^n \rightarrow (u_1^n \rightarrow (u_2^n \rightarrow (u_1^n \rightarrow (u_2^n \rightarrow (u$

Transfer function computation:

- it should produce an over-approximation of $\{m_1 \in \mathbb{M} \mid (l_0, m_0) \rightarrow (l_1, m_1)\}$
- **encoding** using **"primed predicates"** to denote predicates **after** the evaluation of the assignment, to evaluate them in the same structure (non primed variables are removed afterwards and primed variables renamed):

$$\begin{array}{rcl} \mathbf{x}'(u) &=& \mathbf{x}(u) \\ \mathbf{y}'(u) &=& \exists v, \ \mathbf{y}(v) \wedge \mathbf{n}(v, u) \\ \mathbf{n}'(u, v) &=& \mathbf{n}(u, v) \end{array}$$

• resulting structure:

$$(u_0^{\underline{n}} \xrightarrow{u_1} (u_1)^{\underline{n}} \xrightarrow{u_2})$$

This is exactly the expected result

Outline

Introduction

2 Setup (reminder)

3 Shape analysis in Three-Valued Logic (TVL)

- Principles of Three-Valued Logic based abstraction
- Comparing and concretizing Three-Valued Logic abstractions
- Weakening Three-Valued Logic abstractions
- Transfer functions
- Focusing
- Comparing Separation Logic and Three-Valued logic abstractions

4 Combining shape and value abstractions

5 Conclusion

Assignment: a more involved case

• Let us try to resolve the update in the same way as before:

$$egin{array}{rll} \mathbf{x}'(u) &=& \mathbf{x}(u) \ \mathbf{y}'(u) &=& \exists v, \ \mathbf{y}(v) \wedge \mathbf{n}(v,u) \ \mathbf{n}'(u,v) &=& \mathbf{n}(u,v) \end{array}$$

• We cannot resolve y':

$$\begin{cases} y'(u_0) = 0\\ y'(u_1) = \frac{1}{2} \end{cases}$$

Imprecision: after the statement, y may point to anywhere in the list, save for the first element...

- The assignment transfer function cannot be computed immediately
- We need to refine the 3-structure first

Xavier Rival (INRIA)

Shape analysis abstractions

Focus

Focusing on a formula

We assume a 3-structure S and a boolean formula f are given, we call a **focusing** S on f the generation of a set \hat{S} of 3-structures such that:

- f evaluates to 0 or 1 on all elements of $\hat{\mathcal{S}}$
- precision was gained: $\forall S' \in \hat{S}, S' \sqsubseteq S$ (embedding)
- soundness is preserved: $\gamma(S) = \bigcup \{ \gamma(S') \mid S' \in \hat{S} \}$
- Details of focusing algorithms are rather complex: not detailed here
- They involve splitting of summary nodes, solving of boolean constraints

Focus and coerce

Some of the 3-structures generated by focus are not precise

 u_1 is reachable from x, but there is no sequence of n fields: this structure has **empty concretization** u_0 has an n-field to u_1 so u_1 denotes a unique atom and cannot be a summary node

Coerce operation

It **enforces logical constraints** among predicates and discards 3-structures with an empty concretization

Result: one case removed (bottom), two possibly summary nodes non summary

valueu Logie (1 v L)

Focus, transfer, abstract...

Soundness proof steps:

- sound encoding of the semantics of program statements into formulas (typically, no loss of precision at this stage)
- **6** focusing produces a refined over-approximation (disjunction)
- **③** canonicalization over-approximates graphs (truth blurring)

A common picture in shape analysis

Xavier Rival (INRIA)

Shape analysis abstractions

Shape analysis with three valued logic

Abstract states; two abstract domains are used:

- infinite domain $\mathbb{D}_{\mathcal{P}(3)}^{\sharp}$: finite disjunctions of 3-structures in \mathbb{D}_{3}^{\sharp} for general abstract computations
- finite domain $\mathbb{D}_{\mathcal{P}(\mathsf{can}(3))}^{\sharp}$: disjunctions of finite domain $\mathbb{D}_{\mathsf{can}(3)}^{\sharp}$ to simplify abstract states and for loop iteration
- concretization via \mathbb{D}_2^{\sharp}

Abstract post-conditions:

- start from $\mathbb{D}_{\mathcal{P}(3)}^{\sharp}$ or $\mathbb{D}_{\mathsf{can}(3)}^{\sharp}$
- e focus and coerce when needed
- apply the concrete transformation
- apply can to weaken abstract states; result in $\mathbb{D}_{\mathcal{P}(can(3))}^{\sharp}$

Analysis of loops:

 \bullet iterations in $\mathbb{D}_{\mathcal{P}(\text{can}(3))}^{\sharp}$ terminate, as it is finite

Outline

Introduction

2 Setup (reminder)

3 Shape analysis in Three-Valued Logic (TVL)

- Principles of Three-Valued Logic based abstraction
- Comparing and concretizing Three-Valued Logic abstractions
- Weakening Three-Valued Logic abstractions
- Transfer functions
- Focusing
- Comparing Separation Logic and Three-Valued logic abstractions

4 Combining shape and value abstractions

5 Conclusion

Separation logic

Separation logic formulas	(main connectors only)
---------------------------	------------------------

 $\begin{array}{ccccc} F & ::= & emp \\ & | & TRUE \\ & | & 1 \mapsto 1 \\ & | & F_0 * F_1 \\ & | & F_0 \wedge F_1 \\ & | & F_0 - * F_1 \end{array}$

Concretization:

 γ

$$\begin{array}{lll} \gamma(\operatorname{emp}) &=& \mathbb{E} \times \{[]\} \\ \gamma(\operatorname{TRUE}) &=& \mathbb{E} \times \mathbb{H} \\ \gamma(1 \mapsto \mathtt{v}) &=& \{(e, [\llbracket 1 \rrbracket (e, \hbar) \mapsto \mathtt{v}]) \mid e \in \mathbb{E}\} \\ \gamma(\operatorname{F}_0 * \operatorname{F}_1) &=& \{(e, h_0 \circledast h_1) \mid (e, h_0) \in \gamma(\operatorname{F}_0) \land (e, h_1) \in \gamma(\operatorname{F}_1)\} \\ \gamma(\operatorname{F}_0 \land \operatorname{F}_1) &=& \gamma(\operatorname{F}_0) \cap \gamma(\operatorname{F}_1) \\ \gamma(\operatorname{F}_0 - \ast \operatorname{F}_1) &=& \operatorname{exercise} \end{array}$$

Program reasoning: frame rule and strong updates

Shape graphs and separation logic

Shape graphs: provide an efficient data-structure to describe a **subset** of separation logic predicates, and do static analysis with them.

Important addition: inductive predicates.

Semantic preserving translation Π of graphs into separation logic formulas:

Note that:

- shape graphs can be encoded into separation logic formula
- the opposite is usually not true

Xavier Rival (INRIA)

Comparing the structure of abstract formulae

Separation logic:

 $F_0 * F_1 * ... * F_n$

- first the heap is partitioned
- each region is described separately
- some of the F_i components may be summary predicates, describing unbounded regions
- reachability is implicit
- allows local reasoning

Three valued logic:

 $p_0 \wedge p_1 \wedge \ldots \wedge p_n$

- first a conjunction of properties
- each predicate p_i may talk about any heap region
- no direct heap partitioning
- reachability can be expressed (natively)
- no local reasoning

Two very different sets of predicates

- one allows local reasoning, the other not
- the other way for reachability predicates

Summarization: one abstract cell, many concrete cells

Large / unbounded numbers of concrete cells need to be abstracted

- **Dynamic structures** (lists, trees) have an unknown and unbounded number of cells, hence require summarization
- We also needed summaries to deal with arrays

Summary

A summary predicate allows to describe an unbounded number of memory locations using a fixed, finite set of predicates

Principles underlying summarization:

• in separation logic:

using inductive definitions for lists, trees... unbounded size of the summarized region is hidden in the **recursion**

• in three-valued logic:

summary nodes + high level predicates (such as reachability) one summary node **carries the properties** of an unbounded number of cells

Xavier Rival (INRIA)

Concretize partially, update, abstract

For precise analysis, summaries need to be (temporarily) refined Separation logic:

Outline

Introduction

2 Setup (reminder)

3 Shape analysis in Three-Valued Logic (TVL)

4 Combining shape and value abstractions

- Shape and value properties
- Combined abstraction with cofibered abstract domain
- Combined analysis algorithms

5 Conclusion

Shape and value properties

Common data-structures require to reason both about shape and data:

- hybrid stores: data stored next to inductive structures
- list of even elements:

- list with a length constraint
- tries: binary trees with paths labelled with sequences of "0" and "1"
- balanced trees: red-black, AVL...

This part of the course:

- how to express both shape and numerical properties ?
- how to extend shape analysis algorithms

Description of a sorted list

Inductive definition

- Each element should be greater than the previous one
- The first element simply needs be greater than $-\infty...$
- We need to propagate the lower bound, using a scalar parameter

 $\begin{array}{lll} \alpha \cdot \mathsf{lsort}_{\mathrm{aux}}(n) & := & \alpha = 0 \land \mathsf{emp} \\ & \lor & \alpha \neq 0 \land n \leq \beta \land \alpha \cdot \mathsf{next} \mapsto \delta \\ & \ast \alpha \cdot \mathsf{data} \mapsto \beta \ast \delta \cdot \mathsf{lsort}_{\mathrm{aux}}(\beta) \end{array}$

 $\alpha \cdot \operatorname{lsort}() := \alpha \cdot \operatorname{lsort}_{\operatorname{aux}}(-\infty)$

Adding value information (here, numeric)

Concrete numeric values appear in the valuation thus the abstracting contents boils down to abstracting ν !

Example: all lists of length 2, sorted in the increasing order of data fields

Abstraction of valuations: $\nu(\alpha_1) < \nu(\alpha_3)$, can be described by the constraint $\alpha_1 < \alpha_3$

A first step towards a combined domain

Domains and their concretization:

• shape abstract domain \mathbb{D}_{sh}^{\sharp} of graphs

abstract stores together with a physical mapping of nodes

$$\gamma_{\mathsf{sh}}:\mathbb{D}^{\sharp}_{\mathsf{sh}} o\mathcal{P}((\mathbb{D}^{\sharp}_{\mathsf{sh}} o\mathbb{M}) imes(\mathbb{V}^{\sharp} o\mathbb{V}))$$

• numerical abstract domain $\mathbb{D}_{num}^{\sharp}$, abstracts physical mapping of nodes $\gamma_{num} : \mathbb{D}_{num}^{\sharp} \to \mathcal{P}(\mathbb{V}^{\sharp} \to \mathbb{V})$

Combined domain [CR]

- \bullet Set of abstract values: $\mathbb{D}^{\sharp}=\mathbb{D}^{\sharp}_{sh}\times\mathbb{D}^{\sharp}_{num}$
- Concretization:

$$\gamma(S^{\sharp}, \mathsf{N}^{\sharp}) = \{(\mathfrak{h}, \nu) \in \mathbb{M} \mid \nu \in \gamma_{\mathsf{num}}(\mathsf{N}^{\sharp}) \land (\mathfrak{h}, \nu) \in \gamma_{\mathsf{sh}}(S^{\sharp})\}$$

Can it be described as a reduced product ?

- product abstraction: $\mathbb{D}^{\sharp} = \mathbb{D}_{0}^{\sharp} \times \mathbb{D}_{1}^{\sharp}$ (componentwise ordering)
- concretization: $\gamma(x_0, x_1) = \gamma(x_0) \cap \gamma(x_1)$
- reduction: $\mathbb{D}_{\mu}^{\sharp}$ is the quotient of \mathbb{D}^{\sharp} by the equivalence relation \equiv defined by $(x_0, x_1) \equiv (x'_0, x'_1) \iff \gamma(x_0, x_1) = \gamma(x'_0, x'_1)$ Xavier Rival (INRIA) Shape analysis abstractions Dec. 18th, 2019 61/80

Formalizing the product domain

The use of a simple reduced product raises several issues

Elements without a clear meaning:

- this element exists in the reduced product domain (independent components)
- but, ... what is α_3 ?

Unclear comparison:

How can we compare the two elements below ?

- in the reduced product domain, they are **not comparable**: nodes do not match, so componentwise comparison does not make sense
- when concretizing them, there is clear inclusion

Xavier Rival (INRIA)

Shape analysis abstractions

Towards a more adapted combination operator

Reason why the reduced product construction does not work well:

- the set of nodes / symbolic variables is not fixed
- the set of dimensions in the numerical domain depends on the shape abstraction

\Rightarrow thus the product is not symmetric

however, the reduced product construction is symmetric

Intuitions

- Graphs form a shape domain \mathbb{D}_{sh}^{\sharp}
- For each graph $S^{\sharp} \in \mathbb{D}^{\sharp}_{sh}$, we have a numerical lattice $\mathbb{D}^{\sharp}_{\mathsf{num}\langle S^{\sharp} \rangle}$
 - example: if graph S^{\sharp} contains nodes $\alpha_0, \alpha_1, \alpha_2, \mathbb{D}^{\sharp}_{\mathsf{num}\langle S^{\sharp}\rangle}$ should abstract $\{\alpha_0, \alpha_1, \alpha_2\} \to \mathbb{V}$
- An abstract value is a pair (S^{\sharp}, N^{\sharp}) , such that $N^{\sharp} \in \mathbb{D}_{num(N^{\sharp})}^{\sharp}$

Outline

Introduction

2 Setup (reminder)

3 Shape analysis in Three-Valued Logic (TVL)

4 Combining shape and value abstractions

- Shape and value properties
- Combined abstraction with cofibered abstract domain
- Combined analysis algorithms

5 Conclusion

Combined abstraction with cofibered abstract domain

Cofibered domain

Definition, for shape + num

- **Basis:** abstract domain $(\mathbb{D}_{sh}^{\sharp}, \sqsubseteq^{\sharp})$, with concretization $\gamma_{sh} : \mathbb{D}_{sh}^{\sharp} \to \mathbb{D}$
- Function: $\phi : \mathbb{D}_{sh}^{\sharp} \to \mathcal{D}$, where each element of \mathcal{D} is an abstract domain instance $(\mathbb{D}_{num}^{\sharp}, \sqsubseteq_{num}^{\sharp})$, with a concretization $\gamma_{num} : \mathbb{D}_{num}^{\sharp} \to \mathbb{D}$ (tied to a shape graph)
- Domain \mathbb{D}^{\sharp} : set of pairs (S^{\sharp}, N^{\sharp}) where $N^{\sharp} \in \phi(S^{\sharp})$
- Concretization: $\gamma(S^{\sharp}, N^{\sharp}) = \gamma(S^{\sharp}) \cap \gamma(N^{\sharp})$
- Lift functions: $\forall S_0^{\sharp}, S_1^{\sharp} \in \mathbb{D}_{sh}^{\sharp}$, such that $S_0^{\sharp} \sqsubseteq^{\sharp} S_1^{\sharp}$, there exists a function $\prod_{S_0^{\sharp}, S_1^{\sharp}} : \phi(S_0^{\sharp}) \to \phi(S_1^{\sharp})$, that is monotone for $\gamma_{S_0^{\sharp}}$ and $\gamma_{S_1^{\sharp}}$

- General construction presented in [AV](Arnaud Venet)
- Intuition: a dependent domain product

Xavier Rival (INRIA)

Overall abstract domain structure

Implementation exploiting the modular structure

- Each layer accounts for one aspect of the concrete states
- Each layer boils down to a module or functor in ML

How about operations, transfer functions ? Also to be modularly defined

Xavier Rival (INRIA)

Domain operations

The cofibered structure allows to define standard domain operations:

- ift functions allow to switch domain when needed
- computations first done in the basis, then in the numerical domains, after lifting, when needed

Comparison of
$$(S_0^{\sharp}, N_0^{\sharp})$$
 and $(S_1^{\sharp}, N_1^{\sharp})$

• First, compare
$$S_0^{\sharp}$$
 and S_1^{\sharp} in \mathbb{D}_{sh}^{\sharp}
• If $S_0^{\sharp} \sqsubseteq^{\sharp} S_1^{\sharp}$, compare $\prod_{S_n^{\sharp}, S_n^{\sharp}} (N_0^{\sharp})$ and N_1^{\sharp}

Widening of $(S_0^{\sharp}, N_0^{\sharp})$ and $(S_1^{\sharp}, N_1^{\sharp})$

- First, compute the widening in the basis $S^{\sharp} = S_0^{\sharp} \bigtriangledown S_1^{\sharp}$
- **3** Then move to $\phi(S^{\sharp})$, by computing $N_{0c}^{\sharp} = \prod_{S_0^{\sharp}, S^{\sharp}} (N_0^{\sharp})$ and $N_{1c}^{\sharp} = \prod_{S_1^{\sharp}, S^{\sharp}} (N_1^{\sharp})$
- Solution Last widen in $\phi(S^{\sharp})$: $N^{\sharp} = N_{0c}^{\sharp} \nabla_{S^{\sharp}} N_{1c}^{\sharp}$

③ Return
$$(S_0^{\sharp}, N_0^{\sharp}) \triangledown (S_{\mathcal{A}}^{\sharp}, N_1^{\sharp}) = (S^{\sharp}, N^{\sharp})$$

Outline

1 Introduction

2 Setup (reminder)

3 Shape analysis in Three-Valued Logic (TVL)

4 Combining shape and value abstractions

- Shape and value properties
- Combined abstraction with cofibered abstract domain
- Combined analysis algorithms

5 Conclusion

Domain operations and transfer functions

Abstract assignments, condition tests:

- need to modify both the shape abstraction and the value abstraction
- both modification are interdependent

Typical process to compute abstract post-conditions

- compute the post in the shape abstract domain and update the basis
- update the value abstraction (numerics) to model dimensions additions and removals
- Occupies the post in the value abstract domain

Proofs of soundness of transfer functions rely on:

- the soundness of the lift functions
- the soundness of both domain transfer functions

Analysis of an assignment in the graph domain

Steps for analyzing $x = y \rightarrow next$ (local reasoning)

- **(**) Evaluate **I-value** x into **points-to edge** $\alpha \mapsto \beta$
- 2 Evaluate r-value y -> next into node β'
- **③** Replace points-to edge $\alpha \mapsto \beta$ with **points-to edge** $\alpha \mapsto \beta'$

With pre-condition:

- Step 1 produces $\alpha_0 \mapsto \beta_0$
- Step 2 produces β_2
- End result:

With pre-condition:

- Step 1 produces $\alpha_0 \mapsto \beta_0$
- Step 2 can succeed only after unfolding is performed

Analysis of an assignment in the combined domain

 $v \to d = x + 1$

Abstract post-condition ?

Analysis of an assignment in the combined domain

$$\begin{array}{l} &\& \mathbf{x} (\alpha_0) \longrightarrow (\alpha_1) \\ &\& \mathbf{y} (\alpha_2) \longrightarrow (\alpha_3) & & \\ & N^{\sharp} = \alpha_1 \ge \mathbf{0} \land \alpha_3 \neq \mathbf{0} \mathbf{x} \mathbf{0} \\ &\mathbf{d} = \mathbf{x} + \mathbf{1} \quad \Rightarrow \quad (*\alpha_2) \cdot \mathbf{d} = (*\alpha_0) + \mathbf{1} \end{array}$$

Abstract post-condition ?

Stage 1: environment resolution • replaces x with $*e^{\sharp}(x)$

Stage 2: propagate into the shape + numerics domain

only symbolic nodes appear

Stage 3: resolve cells in the shape graph abstract domain

- $*\alpha_0$ evaluates to α_1 ; $*\alpha_2$ evaluates to α_3
- $(*\alpha_2) \cdot d$ fails to evaluate: no points-to out of α_3

Stage 4 (a): unfolding triggered

- the analysis needs to locally materialize $\alpha_3 \cdot \mathbf{lpos}...$
- thus, unfolding starts at symbolic variable α_3

Stage 4 (b): unfolding, shape part

- unfolding of the memory predicate part
- numerical predicates still need be taken into account

Stage 4 (c): unfolding, numeric part

- numerical predicates taken into account
- I-value $\alpha_3 \cdot d$ now evaluates into edge $\alpha_3 \cdot d \mapsto \alpha_4$

Stage 5: create a new node

• new node α_6 denotes a new value will store the new value

Stage 6: perform numeric assignment

 numeric assignment completely ignores pointer structures to the new node

- classic strong update in a pointer aware domain
- symbolic node α_4 becomes redundant and can be removed

Shape graph weakening: definition (reminder)

To design **inclusion test**, **join** and **widening** algorithms, we first study a more general notion of **weakening**:

Weakening

We say that S_0^{\sharp} can be weakened into S_1^{\sharp} if and only if

 $\forall (\hbar, \nu) \in \gamma_{\mathsf{sh}}(S_0^{\sharp}), \; \exists \nu' \in \mathsf{Val}, \; (\hbar, \nu') \in \gamma_{\mathsf{sh}}(S_1^{\sharp})$

We then note $S_0^{\sharp} \preccurlyeq S_1^{\sharp}$

Applications:

- inclusion test (comparison) inputs $S_0^{\sharp}, S_1^{\sharp}$; if returns true $S_0^{\sharp} \preccurlyeq S_1^{\sharp}$
- canonicalization (unary weakening) inputs S_0^{\sharp} and returns $\rho(S_0^{\sharp})$ such that $S_0^{\sharp} \preccurlyeq \rho(S_0^{\sharp})$
- widening / join (binary weakening ensuring termination or not) inputs $S_0^{\sharp}, S_1^{\sharp}$ and returns S_{up}^{\sharp} such that $S_i^{\sharp} \preccurlyeq S_{up}^{\sharp}$

Shape graph weakening weakening based on local rules (reminder)

By rule (\preccurlyeq_{Id}) :

Thus, by **rule** $(\prec_{\mathcal{U}})$:

Additionally, by rule (\preccurlyeq_{Id}) :

Thus, by **rule** (\preccurlyeq_*) :

73 / 80

Shpae graph abstract union

The principle of join and widening algorithm is similar to that of \sqsubseteq^{\sharp} :

• It can be computed **region by region**, as for weakening in general: If $\forall i \in \{0, 1\}, \forall s \in \{\text{lft}, \text{rgh}\}, S_{i,s}^{\sharp} \preccurlyeq S_{s}^{\sharp}$,

The partitioning of inputs / different nodes sets requires a **node correspondence function**

$$\Psi: \mathbb{V}^{\sharp}(S^{\sharp}_{\mathrm{lft}}) \times \mathbb{V}^{\sharp}(S^{\sharp}_{\mathrm{rgh}}) \longrightarrow \mathbb{V}^{\sharp}(S^{\sharp})$$

• The computation of the shape join progresses by the application of local join rules, that produce a new (output) shape graph, that weakens both inputs

• rename other nodes

Outline

Introduction

- 2 Setup (reminder)
- 3 Shape analysis in Three-Valued Logic (TVL)
- 4 Combining shape and value abstractions
- 5 Conclusion

Shape analysis and summarization

Summaries:

- describe **unbounded** memory regions, with general predicates *e.g.*, list or tree structures, local and global sharing (doubly-linked lists)
- summary nodes + associated predicates in TVLA, inductive predicates in separation logic

Local refinement (concretization):

- focus in TVLA, unfolding in separation logic based aanlysis
- required to analyze precisely post-conditions that touch summaries

Global abstraction:

- ensure termination despite unbounded, infinite domain
- in TVLA, canonical abstraction into a finite domain

In all cases, analysis algorithms aim at avoiding **weak updates** (that would cause a severe precision loss over the whole memory)

Xavier Rival (INRIA)

Shape analysis abstractions

Shape analysis and value abstraction

Main issue: the support of the shape abstraction is always changing

- summaries appear at canonicalization/widening points
- new atoms/nodes appear at focus/materialization points

- the shape abstraction "controls" the value abstraction
- information can still be exchanged in both directions (reduction)
- slightly more complex lattice structure but standard definitions for widening, inclusion test...

Bibliography

- [SRW]: Parametric Shape Analysis via 3-Valued Logic. Shmuel Sagiv, Thomas W. Reps et Reinhard Wilhelm. In POPL'99, pages 105–118, 1999.
- [AV]: Abstract Cofibered Domains: Application to the Alias Analysis of Untyped Programs.
 Arnaud Venet

In SAS'96, pages 366-382.

• [CR]: Relational inductive shape analysis. Bor-Yuh Evan Chang et Xavier Rival. In POPL'08, pages 247–260, 2008.

Assignment: formalization and paper reading

Formalization of the concretization of 2-structures:

- describe the concretization formula, assuming that we consider the predicates discussed in the course
- run it on the list abstraction example (from the 3-structure to a few select 2-structures, and down to memory states)
- prove the correctness and termination of the widening of the cofibered abstract domain

Reading:

Parametric Shape Analysis via 3-Valued Logic. Shmuel Sagiv, Thomas W. Reps et Reinhard Wilhelm. In POPL'99, pages 105–118, 1999.