
Introduction
MPRI 2–6: Abstract Interpretation,

application to verification and static analysis

Antoine Miné

Year 2020–2021

Course 00
18 September 2020

Course 00 Introduction Antoine Miné p. 1 / 34

Formal Verification: Motivation

Formal Verification: Motivation

Course 00 Introduction Antoine Miné p. 2 / 34

Formal Verification: Motivation

The cost of software failure

Patriot MIM-104 failure, 25 February 1991
(death of 28 soldiers1)

Ariane 5 failure, 4 June 1996
(cost estimated at more than 370 000 000 US$2)

Toyota electronic throttle control system failure, 2005
(at least 89 death3)

Heartbleed bug in OpenSSL, April 2014

the economic cost of software bugs is tremendous4

. . .

1R. Skeel. ”Roundoff Error and the Patriot Missile”. SIAM News, volume 25, nr 4.
2M. Dowson. ”The Ariane 5 Software Failure”. Software Engineering Notes 22 (2): 84, March 1997.
3CBSNews. Toyota ”Unintended Acceleration” Has Killed 89. 20 March 2014.
4NIST. Software errors cost U.S. economy $59.5 billion annually. Tech. report, NIST Planning Report, 2002.

Course 00 Introduction Antoine Miné p. 3 / 34

Formal Verification: Motivation

A classic example: Ariane 5, Flight 501

Cause: software error5

arithmetic overflow in unprotected data conversion
from 64-bit float to 16-bit integer types6

P M DERIVE(T ALG.E BH) :=
UC 16S EN 16NS (TDB.T ENTIER 16S

((1.0/C M LSB BH) * G M INFO DERIVE(T ALG.E BH)));

software exception not caught
=⇒ computer switched off
all backup computers run the same software
=⇒ all computers switched off, no guidance
=⇒ rocket self-destructs

A “simple” error. . .

5J.-L. Lions et al., Ariane 501 Inquiry Board report.
6J.-J. Levy. Un petit bogue, un grand boum. Séminaire du Département d’informatique de l’ENS, 2010.

Course 00 Introduction Antoine Miné p. 4 / 34

Formal Verification: Motivation

How can we avoid such failures?

Choose a safe programming language.
C (low level) / Ada, Java, OCaml (high level)
yet, Ariane 5 software is written in Ada

Carefully design the software.
many software development methods exist
yet, critical embedded software follow strict development processes

Test the software extensively.
yet, the erroneous code was well tested. . . on Ariane 4

=⇒ not sufficient!

We should use formal methods.
provide rigorous, mathematical insurance of correctness
may not prove everything, but give a precise notion of what is proved

This case triggered the first large scale static code analysis
(PolySpace Verifier, using abstract interpretation)

Course 00 Introduction Antoine Miné p. 5 / 34

Formal Verification: Motivation

How can we avoid such failures?

Choose a safe programming language.
C (low level) / Ada, Java, OCaml (high level)
yet, Ariane 5 software is written in Ada

Carefully design the software.
many software development methods exist
yet, critical embedded software follow strict development processes

Test the software extensively.
yet, the erroneous code was well tested. . . on Ariane 4

=⇒ not sufficient!

We should use formal methods.
provide rigorous, mathematical insurance of correctness
may not prove everything, but give a precise notion of what is proved

This case triggered the first large scale static code analysis
(PolySpace Verifier, using abstract interpretation)

Course 00 Introduction Antoine Miné p. 5 / 34

Formal Verification: Motivation

Verification: compromises
Undecidability: correctness properties are undecidable!
cannot build a program that automatically and precisely separates all correct programs
from all incorrect ones

Compromises:
lose automation, completeness, soundness, or generality

Test: complete and automatic, but unsound
Theorem proving

proof essentially manual, but checked automatically
powerful, but very steep learning curve

Deductive methods
automated proofs for some logic fragments (SAT, SMT)
still requires program annotations (contracts, invariants)

Model checking
check a (often hand-crafted) model of the program
finite or regular models, expressive properties (LTL)
automatic and complete (wrt. model)

Static analysis (next slide)
Course 00 Introduction Antoine Miné p. 6 / 34

Formal Verification: Motivation

Verification by static analysis

source
int search(int* t, int n) {

int i;
for (i=0; i<n; i++) {

if (t[i]) break;
}
return t[i];

}

=⇒

analysis result

int search(int* t, int n) {
int i;
for (i=0; i<n; i++) {

// 0 ≤ i < n
if (t[i]) break; 3

}
// 0 ≤ i ≤ n ∨ n < 0
return t[i]; 7

}

work directly on the source code
infer properties on program executions
automatically (cost effective)
construct dynamically a semantic abstraction of the program
deduce program correctness or raise alarms
(implicit specification: absence of RTE; or user-defined properties: contracts)
with approximations (incomplete: efficient, but possible false alarms)
soundly (no false positive)

Course 00 Introduction Antoine Miné p. 7 / 34

Formal Verification: Motivation

Verification in practice: The example of avionics software
Critical avionics software is subject to certification:

more than half the development cost
regulated by international standards (DO-178B, DO-178C)

mostly based on massive test campaigns & intellectual reviews

Current trend:
use of formal methods now acknowledged (DO-178C, DO-333)

at the binary level, to replace testing
at the source level, to replace intellectual reviews
at the source level, to replace testing
provided the correspondence with the binary is also certified

=⇒ formal methods can improve cost-effectiveness!

Caveat: soundness is required by DO
Course 00 Introduction Antoine Miné p. 8 / 34

Formal Verification: Motivation

Verification in practice: Formal verification at Airbus
Program proofs: deductive methods

functional properties of small sequential C codes
replace unit testing
not fully automatic
Caveat / Frama-C tool (CEA)

Sound static analysis:
fully automated on large applications, non functional properties
worst-case execution time and stack usage, on binary
aiT, StackAnalyzer (AbsInt)
absence of run-time error, on sequential C code
Astrée analyzer (AbsInt)

Certified compilation:
allows source-level analysis to certify sequential binary code
CompCert C compiler, certified in Coq (INRIA)

Course 00 Introduction Antoine Miné p. 9 / 34

Overview of abstract interpretation

Overview of abstract interpretation

Course 00 Introduction Antoine Miné p. 10 / 34

Overview of abstract interpretation

Abstract interpretation

Patrick Cousot7

General theory of the approximation and comparison
of program semantics:

unifies existing semantics

guides the design of static analyses
that are correct by construction

7P. Cousot. ”Méthodes itératives de construction et d’approximation de points fixes d’opérateurs monotones
sur un treillis, analyse sémantique des programmes.” Thèse És Sciences Mathématiques, 1978.

Course 00 Introduction Antoine Miné p. 11 / 34

Overview of abstract interpretation

Concrete collecting semantics
(S0)
assume X in [0,1000];
(S1)
I := 0;
(S2)
while (S3) I < X do

(S4)
I := I + 2;
(S5)

(S6)
program

Course 00 Introduction Antoine Miné p. 12 / 34

Overview of abstract interpretation

Concrete collecting semantics
(S0)
assume X in [0,1000];
(S1)
I := 0;
(S2)
while (S3) I < X do

(S4)
I := I + 2;
(S5)

(S6)

Si ∈ D = P({I, X} → Z)
S0 = { (i , x) | i , x ∈ Z } = >
S1 = { (i , x) ∈ S0 | x ∈ [0, 1000] } = F1(S0)
S2 = { (0, x) | ∃i , (i , x) ∈ S1 } = F2(S1)
S3 = S2 ∪ S5
S4 = { (i , x) ∈ S3 | i < x } = F4(S3)
S5 = { (i + 2, x) | (i , x) ∈ S4 } = F5(S4)
S6 = { (i , x) ∈ S3 | i ≥ x } = F6(S3)

program semantics

Concrete semantics Si ∈ D = P({I, X} → Z):
strongest program properties (inductive invariants)

set of reachable environments, at each program point
smallest solution of a system of equations
well-defined solution, but not computable in general

Course 00 Introduction Antoine Miné p. 12 / 34

Overview of abstract interpretation

Abstracting
Principle: be tractable by reasoning at an abstract level

concrete executions : {(0, 3), (5.5, 0), (12, 7), . . .} (not computable)
box domain : X ∈ [0, 12] ∧ Y ∈ [0, 8] (linear cost)
polyhedra domain : 6X + 11Y ≥ 33 ∧ · · · (exponential cost)

many abstractions: trade-off cost vs. precision and expressiveness

Course 00 Introduction Antoine Miné p. 13 / 34

Overview of abstract interpretation

Abstracting
Principle: be tractable by reasoning at an abstract level

concrete executions : {(0, 3), (5.5, 0), (12, 7), . . .} (not computable)

box domain : X ∈ [0, 12] ∧ Y ∈ [0, 8] (linear cost)
polyhedra domain : 6X + 11Y ≥ 33 ∧ · · · (exponential cost)

many abstractions: trade-off cost vs. precision and expressiveness

Course 00 Introduction Antoine Miné p. 13 / 34

Overview of abstract interpretation

Abstracting
Principle: be tractable by reasoning at an abstract level

concrete executions : {(0, 3), (5.5, 0), (12, 7), . . .} (not computable)
box domain : X ∈ [0, 12] ∧ Y ∈ [0, 8] (linear cost)

polyhedra domain : 6X + 11Y ≥ 33 ∧ · · · (exponential cost)

many abstractions: trade-off cost vs. precision and expressiveness

Course 00 Introduction Antoine Miné p. 13 / 34

Overview of abstract interpretation

Abstracting
Principle: be tractable by reasoning at an abstract level

concrete executions : {(0, 3), (5.5, 0), (12, 7), . . .} (not computable)
box domain : X ∈ [0, 12] ∧ Y ∈ [0, 8] (linear cost)
polyhedra domain : 6X + 11Y ≥ 33 ∧ · · · (exponential cost)

many abstractions: trade-off cost vs. precision and expressiveness

Course 00 Introduction Antoine Miné p. 13 / 34

Overview of abstract interpretation

From concrete to abstract semantics
(S0)
assume X in [0,1000];
(S1)
I := 0;
(S2)
while (S3) I < X do

(S4)
I := I + 2;
(S5)

(S6)

Si ∈ D
def= P({I, X} → Z)

S0 = { (i , x) | i , x ∈ Z }
S1 = J X ∈ [0, 1000] K (S0)
S2 = J I ← 0 K (S1)
S3 = S2 ∪ S5
S4 = J I < X K (S3)
S5 = J I ← I + 2 K (S4)
S6 = J I ≥ X K (S3)

program concrete semantics

Concrete semantics Si ∈ D = P({I, X} → Z):
J X ∈ [0, 1000] K , J I ← 0 K , etc. are transfer functions
strongest program properties
set of reachable environments, at each program point
not computable in general

Course 00 Introduction Antoine Miné p. 14 / 34

Overview of abstract interpretation

From concrete to abstract semantics
(S0)
assume X in [0,1000];
(S1)
I := 0;
(S2)
while (S3) I < X do

(S4)
I := I + 2;
(S5)

(S6)

S]
i ∈ D]

S]
0 = >]

S]
1 = J X ∈ [0, 1000] K](S]

0)
S]

2 = J I ← 0 K](S]
1)

S]
3 = S]

2 ∪] S]
5

S]
4 = J I < X K](S]

3)
S]

5 = J I ← I + 2 K](S]
4)

S]
6 = J I ≥ X K](S]

3)

program abstract semantics

Abstract semantics S]i ∈ D]:
D] is a subset of properties of interest
semantic choice + a machine representation

F] : D] → D] over-approximates the effect of F : D → D in D]
with effective algorithms

Course 00 Introduction Antoine Miné p. 14 / 34

Overview of abstract interpretation

Abstract operator examples

In the polyhedra domain:

• Abstract assignment
J X ← X + 1 K]

translation (exact)

• Abstract union
∪]
convex hull (approximate)

• Solving the equation system
by iteration
using extrapolation to terminate

Course 00 Introduction Antoine Miné p. 15 / 34

Overview of abstract interpretation

Soundness and false alarms

⇐=
S

P

A

P ⊆ S A ⊆ S
program proved

Goal : prove that a program P satisfies its specification S
We collect the reachable states P and compare to S
A polyhedral abstraction A can prove the correctness

A box abstraction cannot prove the correctness
=⇒ false alarm
(especially since the analysis may not output the tightest box / polyhedron!)

The analaysis is sound: no false negative reported!

Course 00 Introduction Antoine Miné p. 16 / 34

Overview of abstract interpretation

Soundness and false alarms

6⇐=
S

P

A

P ⊆ S A 6⊆ S
false alarm

Goal : prove that a program P satisfies its specification S
We collect the reachable states P and compare to S
A polyhedral abstraction A can prove the correctness
A box abstraction cannot prove the correctness
=⇒ false alarm
(especially since the analysis may not output the tightest box / polyhedron!)

The analaysis is sound: no false negative reported!

Course 00 Introduction Antoine Miné p. 16 / 34

Overview of abstract interpretation

Soundness and false alarms
S

P

6⇐=
S

P

A

P 6⊆ S A ⊆ S
false negative
cannot occur

Goal : prove that a program P satisfies its specification S
We collect the reachable states P and compare to S
A polyhedral abstraction A can prove the correctness
A box abstraction cannot prove the correctness
=⇒ false alarm
(especially since the analysis may not output the tightest box / polyhedron!)

The analaysis is sound: no false negative reported!

Course 00 Introduction Antoine Miné p. 16 / 34

Overview of abstract interpretation

Example static analyzer: Astrée
Astrée: developed at ENS & INRIA by P. Cousot & al.

analyzes embedded critical C software
subset of C, no memory allocation, no recursivity → simpler semantics

checks for run-time errors
arithmetic overflows, array overflows, divisions by 0, pointer errors, etc. →
non-functional

specialized for control / command software
with zero false alarm goal
application domain specific abstractions

Airbus A380

2001–2004: academic success
proof of absence of RTE
on flight command

2009: industrialization
AbsInt

Course 00 Introduction Antoine Miné p. 17 / 34

Overview of abstract interpretation

Example static analyzer: Infer.AI at Facebook

Infer: http://fbinfer.com/

developed at Facebook (team formerly at Monoidics)

Infer.AI is an analysis framework based on abstract interpretation

open-source since 2015

analyzes Java, C, C++, and Objective-C

checks ThreadSafety (Java), Initalisation Order (C++), etc.

modular, bottom-up interprocedural analysis

targets the analysis of merge requests (small bits at a time)

favors speed over soundness
pragmatic choices, based on “what engineers want”
no requirements for certification, unlike the avionics industry. . .

used in production

Course 00 Introduction Antoine Miné p. 18 / 34

http://fbinfer.com/

Course organisation

Course organisation

Course 00 Introduction Antoine Miné p. 19 / 34

Course organisation

Teaching team

Caterina Urban Jérôme Feret

Antoine Miné Xavier Rival

Course 00 Introduction Antoine Miné p. 20 / 34

Course organisation

Syllabus and exams

https://www-apr.lip6.fr/˜mine/enseignement/mpri/2020-2021

Visit regularly for:
latest information on course dates
course material
course assignments
internship proposals

Exams:
50%: written mid-term exam (3h)

50%: oral final exam
(read a scientific article, present it, answer questions)

Course 00 Introduction Antoine Miné p. 21 / 34

https://www-apr.lip6.fr/~mine/enseignement/mpri/2020-2021

Course organisation

Course material

Links available on the web-page:

main material: slides

course notes
cover mainly foundations and numeric abstract domains
based on:
A. Miné. Tutorial on Static Inference of Numeric Invariants by Abstract
Interpretation. In Foundations and Trends in Programming Languages, 4(3–4),
120–372. Now Publishers.

recommended reading on theory and applications:
J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, X. Rival.
Static analysis and verification of aerospace software by abstract interpretation.
In Foundations and Trends in Programming Languages, 2(2–3), 71–190, 2015.
Now Publishers.

Course 00 Introduction Antoine Miné p. 22 / 34

Course organisation

Course assignments (self-evaluation)

On the web page, highly recommended homework
exercises: prove a theorem, solve a former exam, etc.
reading assignments: an article related to the course
experiments: use a tool

Also:
previous exams, with correction
example programming project
(abstract interpreter for a toy language in OCaml)

Principle: self-evaluation
No credit.
Not corrected by teachers.

Course 00 Introduction Antoine Miné p. 23 / 34

Course organisation

Course plan (1/9)

Foundations of abstract interpretation: (courses 1 & 2)

mathematical background: order theory and fixpoints
formalization of abstraction, soundness
program semantics and program properties
hierarchy of collecting semantics

c

γ(a)

α(c)

a

≤ ⊑

γ

α

C A

Course 00 Introduction Antoine Miné p. 24 / 34

Course organisation

Course plan (2/9)

Bricks of abstraction: numerical domains

simple domains

x

y

Intervals
x ∈ [a, b]

x

y

Congruences
x ∈ aZ + b

relational domains

x

y

Octagons
±x ± y ≤ c

x

y

Polyhedra∑
i αi xi ≤ β

specific domains

x

y

Ellipsoids
digital filters

t

y

Exponentials
rounding errors

Course 00 Introduction Antoine Miné p. 25 / 34

Course organisation

Course plan (3/9)

Bricks of abstraction: memory abstractions

beyond numeric: reason on arrays, lists, trees, graphs, . . .
challenges: variety of structures, destructive updates
logical tools:

separation logics (a logic tailored for describing memory)
parametric three valued logics (representing arbitrary graphs)

abstract domains based on these logics

concrete:
&t 0x. . .

0x. . .

24

0x. . .

22

0x0

64

abstract: =&t
24

next

data

list

Course 00 Introduction Antoine Miné p. 26 / 34

Course organisation

Course plan (4/9)

Bricks of abstraction: partitioning abstractions

most abstract domains are not distributive
=⇒ reasoning over disjunctions loses precision
first solution: add disjunctions to any abstract domain
=⇒ expressive but costly
second solution: partitioning
conjunctions of implications as logical predicates
(partitioning may be based on many semantic criteria)

P1

P2

P3

P4

P5

loss of precision partitioning

Course 00 Introduction Antoine Miné p. 27 / 34

Course organisation

Course plan (5/9)
Analyses: abstract interpretation for liveness properties

beyond safety (e.g., absence of errors)
we prove that programs (eventually) do something good

abstract domains to reason about program termination
inference of ranking functions

generalization to other liveness properties
(e.g., expressed in CTL)

Course 00 Introduction Antoine Miné p. 28 / 34

Course organisation

Course plan (6/9)

Analyses: static analysis of neural networks

verification of local robustness against adversarial examples

fairness certification
(special case of global robustness verification)

verification of functional properties

Course 00 Introduction Antoine Miné p. 29 / 34

Course organisation

Course plan (7/9)

Analyses: analysis of mobile systems
dynamic creation of components and links
analyze the links between components

distinguish between recursive components
abstractions as sets of words

bound the number of components
using numeric relations

Course 00 Introduction Antoine Miné p. 30 / 34

Course organisation

Course plan (8/9)
Analyses: abstractions of signaling pathways

[Eikuch, 2007]
Course 00 Introduction Antoine Miné p. 31 / 34

Course organisation

Course plan (8/9)

Analyses: abstractions of signaling pathways
abstractions offer different perspectives on models

�

����

����

����

����

����

� � � � � ��

�
��
��
��
��
���
�

����

����������������������

����
�����

������������

concrete semantics causal traces

EGF

r

EGFR

l

rY68

Y48

ShC
piY7

Grb2
a

b Sosd

information f ow

��

�����

�����

�����

�����

�����

�� �� �� �� �� ���

�
��
��
��
��
���
�

����

��������������������������

����
�����

�������������

exact projection
of the ODE semantics

Course 00 Introduction Antoine Miné p. 32 / 34

Course organisation

Course plan (9/9)

Analyses: static analysis for security

challenge: security properties are diverse
from information leakage to unwanted execution of malicious code
and more complex than safety and liveness

the framework of hyperproperties can express security

apply abstract interpretation to reason over non-interference

Course 00 Introduction Antoine Miné p. 33 / 34

Course organisation

Internship proposals

Possibility of Master 2 internships at ENS or Sorbonne Université.

Example topics:

Automatic inference of input data assumptions
Fairness certification of machine-learned software
Static analysis of medical data processing software
Static analysis for lock-free data structures
Static analysis for consensus algorithms
. . .

Formal proposals will be available on the course page
also: discuss with your teachers for tailor-made subjects.

Course 00 Introduction Antoine Miné p. 34 / 34

	Formal Verification: Motivation
	Overview of abstract interpretation
	Course organisation

