
Shape analysis abstractions

MPRI — Cours 2.6 “Interprétation abstraite :
application à la vérification et à l’analyse statique”

Xavier Rival

INRIA

Jan, 29th, 2021

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 1 / 80

Introduction

Shape analysis

Shape analyses aim at discovering structural invariants

of programs that manipulate complex unbounded data-structures

Applications:
establish memory safety

verify the preservation of structural properties

e.g., list, doubly-linked lists, trees, ...
reason about programs that manipulate unbounded memory states

Previous course: separation logic based shape analyses

separating conjunction connector ⇤: ties properties that characterize
disjoint memory regions

also many other connectors:
disjunctions, classical conjunctions, separating implication...
can be turned into an abstract domain

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 2 / 80

Introduction

Properties to verify: examples

A program closing a list of file

descriptors

// l points to a list
c = l;
while(c 6= NULL){
close(c! FD);
c = c! next;

}

Correctness properties
1 memory safety
2 l is supposed to store all file

descriptors at all times
will its structure be preserved ?
yes, no breakage of a next link

3 closure of all the descriptors

Examples of structure preservation properties

algorithms manipulating trees, lists...

libraries of algorithms on balanced trees

not guaranteed by the language !
e.g., the balancing of Maps in the OCaml standard library was incorrect for
years (performance bug)

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 3 / 80

Introduction

On today’s agenda

Another important family of shape analysis abstractions:
three valued logic based abstraction
maps predicates into “true”, “false”, “maybe” logical values
can describe memory states (in this course)
but also other objects (not in this course)
useful comparison with separation logic based abstraction

Combination with value abstraction:
so far, we have considered pointer information only

real states also include numerical and boolean values, but also strings and
others...
issue 1: shape abstractions are very dynamic

e.g., the scope of summaries varies during the analysis
issue 2: exchange information between shape and value

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 4 / 80

Setup (reminder) Syntax and semantics

Outline

1 Introduction

2 Setup (reminder)

Syntax and semantics

Basic pointer abstractions

3 Shape analysis in Three-Valued Logic (TVL)

4 Combining shape and value abstractions

5 Conclusion

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 5 / 80

Setup (reminder) Syntax and semantics

Assumptions: syntax of programs

l ::= l-valules

| x (x 2 X)
| ⇤e pointer dereference
| l · f field read

pointers, array dereference...

e ::= expressions

| c (c 2 V)
| l (l-value)
| e� e (arith operation, comparison)
| &l "address of" operator

s ::= statements

| l = e (assignment)
| s; . . . s; (sequence)
| if(e){s} (condition)
| while(e){s} (loop)
| x = malloc(c) allocation of c bytes
| free(x) deallocation of the block pointed to by

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 6 / 80

Setup (reminder) Syntax and semantics

Semantic domains

No one-to-one relation betwee memory cells and program variables

a variable may correspond to several cells (structures...)
dynamically allocated cells correspond to no variable at all...

Thus, we distinguish memory contents and variable addresses:

Environment + Heap
Addresses are values: Vaddr ✓ V

Environments e 2 E map variables into their addresses
Heaps (h 2 H) map addresses into values

E = X! Vaddr
H = Vaddr ! V

h is actually only a partial function
Memory states (or memories): M = E⇥H

Note: Avoid confusion between heap (function from addresses to values)

and dynamic allocation space (often referred to as “heap”)

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 7 / 80

Setup (reminder) Syntax and semantics

Example of a concrete memory state (variables)

x and z are two list elements containing values 64 and 88, and where the
former points to the latter
y stores a pointer to z

Memory layout

(pointer values underlined)

address

&x = 300
304

&y = 308
&z = 312

316 0x0
88
312
312
64

e : x 7! 300
y 7! 308
z 7! 312

h : 300 7! 64
304 7! 312
308 7! 312
312 7! 88
316 7! 0

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 8 / 80

Setup (reminder) Syntax and semantics

Example of a concrete memory state (variables + dyn. cell)

same configuration
+ z points to a dynamically allocated list element (in purple)

Memory layout

address

&x = 300
304

&y = 308
&z = 312

316

508
512 0x0

25

508
88
312
312
64

e : x 7! 300
y 7! 308
z 7! 312

h : 300 7! 64
304 7! 312
308 7! 312
312 7! 88
316 7! 508
508 7! 25
512 7! 0

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 9 / 80

Setup (reminder) Syntax and semantics

Semantics of the pointer operations

Case of l-values: JlK : M! Vaddr

JxK(e, h) = e(x)

J⇤eK(e, h) =

⇢
h(JeK(e, h)) if JeK(e, h) 6= 0 ^ JeK(e, h) 2 Dom(h)
⌦ otherwise

Jl · fK(e, h) = JlK(e, h) + offset(f) (numeric offset)

Case of expressions: JeK : M! V, mostly unchanged

JlK(e, h) = h(JlK(e, h)) (evaluates into the contents)
J&lK(e, h) = JlK(e, h) (evaluates into the address)

Case of statements that are specific to memory operations:
memory allocation x = malloc(c): (e, h)! (e, h 0) where
h 0 = h[e(x) k]] {k 7! vk , k + 1 7! vk+1, . . . , k + c � 1 7! vk+c�1} and
k , . . . , k + c � 1 are fresh and unused in h
memory deallocation free(x): (e, h)! (e, h 0) where k = e(x) and
h = h 0] {k 7! vk , k + 1 7! vk+1, . . . , k + c � 1 7! vk+c�1}
Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 10 / 80

Setup (reminder) Basic pointer abstractions

Outline

1 Introduction

2 Setup (reminder)

Syntax and semantics

Basic pointer abstractions

3 Shape analysis in Three-Valued Logic (TVL)

4 Combining shape and value abstractions

5 Conclusion

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 11 / 80

Setup (reminder) Basic pointer abstractions

Pointer non relational abstractions

Assumption on the set of values:

V = Vaddr] . . . and X = Xaddr] . . .

pointer values (Vaddr) describe (either symbolic or numerical) memory
addresses
base values may include integers and other base types
abstract cells C

] finitely summarize concrete cells, through a fixed

� : Vaddr �! C
]

we apply a non relational abstraction:

Non relational pointer abstraction
Set of pointer abstract values D

]
ptr

Concretization �ptr : D
]
ptr ! P(Vaddr) into pointer sets

Abstract memory states of the form C
] ! D

]
ptr with

�(m]) = {(e, h) | 8p 2 Xaddr, h(e(p)) 2 �ptr � m] � �(e(p))))}

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 12 / 80

Setup (reminder) Basic pointer abstractions

Pointer non relational abstraction: null pointers

The dereference of a null pointer will cause a crash

To establish safety: compute which pointers may be null

Null pointer analysis
Abstract domain for addresses:

�ptr(?) = ;
�ptr(>) = Vaddr

�ptr(6= NULL) = Vaddr \ {0} ?

6= NULL

>

we may also use a lattice with a fourth element = NULL
exercise: what do we gain using this lattice ?
very lightweight, can typically resolve rather trivial cases
useful for C, but also for Java

we can define very similar abstractions to deal with dangling or invalid
pointers
Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 13 / 80

Setup (reminder) Basic pointer abstractions

Pointer non relational abstraction: points-to sets

Determine where a pointer may store a reference to

1 : int x, y;
2 : int ⇤ p;
3 : y = 9;
4 : p = &x;
5 : ⇤p = 0;

what is the final value for x ?
0, since it is modified at line 5...
what is the final value for y ?
9, since it is not modified at line 5...

Basic pointer abstraction
We assume a set of abstract memory locations A

] is fixed:
A

] = {&x, &y, . . . , &t, a0, a1, . . . , aN}
Concrete addresses are abstracted into A

] by �A : A! A
]] {>}

A pointer value is abstracted by the abstraction of the addresses it may point
to, i.e., D

]
ptr = P(A])

and �ptr(a]) = {a 2 A | �A(a) = a]}

example: p may point to {&x}
Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 14 / 80

Setup (reminder) Basic pointer abstractions

Points-to sets computation example

Example code:

1 : int x, y;
2 : int ⇤ p;
3 : y = 9;
4 : p = &x;
5 : ⇤p = 0;
6 : . . .

Abstract locations: {&x, &y, &p}
Analysis results:

&x &y &p
1 > > >
2 > > >
3 > > >
4 > [9, 9] >
5 > [9, 9] {&x}
6 [0, 0] [9, 9] {&x}

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 15 / 80

Setup (reminder) Basic pointer abstractions

Points-to sets computation and imprecision

x 2 [�10,�5]; y 2 [5, 10]
1 : int ⇤ p;
2 : if(?){
3 : p = &x;
4 : } else {
5 : p = &y;
6 : }
7 : ⇤p = 0;
8 : . . .

&x &y &p
1 [�10,�5] [5, 10] >
2 [�10,�5] [5, 10] >
3 [�10,�5] [5, 10] >
4 [�10,�5] [5, 10] {&x}
5 [�10,�5] [5, 10] >
6 [�10,�5] [5, 10] {&y}
7 [�10,�5] [5, 10] {&x, &y}
8 [�10, 0] [0, 10] {&x, &y}

What is the final range for x ?
What is the final range for y ?

Abstract locations: {&x, &y, &p}

Imprecise results
The abstract information about
both x and y are weakened
The fact that x 6= y is lost

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 16 / 80

Setup (reminder) Basic pointer abstractions

Weak-updates

As in array analysis, we encounter:

Weak updates
The modified concrete cell cannot be uniquely mapped into a well

identified abstract cell that describes only it

The resulting abstract information is obtained by joining the new value and

the old information

Effect in pointer analysis, in the case of an assignment:
if the points-to set contains exactly one element, the analysis can perform
a strong update

if the points-to set may contain more than one element, the analysis needs
to perform a weak-update

Consequence: weak updates cause severe losses in precision

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 17 / 80

Setup (reminder) Basic pointer abstractions

Previous course about memory abstraction: separation logic

Key idea:

Avoid weak updates by localizing memory accesses (read or write)

in a very precise manner, and with no ambiguity

Logical items:
separating conjunction connector:
logically, splits the memory into two disjoint regions
basic predicates, to describe individual cells
inductive summary predicates, that describe unbouned memory regions

Main algorithms:
unfolding: to refine summary predicates
folding: to synthesize summary predicates

Today: compare separation logic with another shape abstraction
and augment shape analysis to describe value properties

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 18 / 80

Shape analysis in Three-Valued Logic (TVL) Principles of Three-Valued Logic based abstraction

Outline

1 Introduction

2 Setup (reminder)

3 Shape analysis in Three-Valued Logic (TVL)

Principles of Three-Valued Logic based abstraction

Comparing and concretizing Three-Valued Logic abstractions

Weakening Three-Valued Logic abstractions

Transfer functions

Focusing

Comparing Separation Logic and Three-Valued logic abstractions

4 Combining shape and value abstractions

5 Conclusion

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 19 / 80

199 Sebefore SL
TVLAAnalysis

Shape analysis in Three-Valued Logic (TVL) Principles of Three-Valued Logic based abstraction

Representation of memory states: memory graphs

Observation: representation of memory states by graphs
Nodes (aka, atoms) denote variables, memory locations

Edges denote properties of addresses / pointers, such as:
I “field f of location u points to v ”

I “variable x is stored at location u”

This representation is also relevant in the case of separation logic based
shape abstraction

A couple of examples:

Two alias pointers:

x

y

u0

u1

u2

A list of length 2 or 3:

x u0 u1 u2
n n

x u0 u1 u2 u3
n n n

We need to over-approximate sets of shape graphs

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 20 / 80

graphs table of
predicates

Shape analysis in Three-Valued Logic (TVL) Principles of Three-Valued Logic based abstraction

Memory graphs and predicates: variables

Before we apply some abstraction, we formalize memory graphs using some
predicates, such as:

“Variable content” predicate
We note x(u) = 1 if node u represents the contents of x.

Examples:
Two alias pointers:

x

y

u0

u1

u2

Then, we have x(u0) = 1 and y(u1) = 1, and x(u) = 0 (resp., y(u) = 0) in
all the other cases
A list of length 2:

x u0 u1 u2
n n

Then, we have x(u0) = 1 and x(u) = 0 in all the other cases

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 21 / 80

O False
c true

x uz O
x Keo O

Shape analysis in Three-Valued Logic (TVL) Principles of Three-Valued Logic based abstraction

Memory graphs and predicates: (field) pointers

“Field content pointer” predicate
We note n(u, v) if the field n of u stores a pointer to v

We note 0(u, v) if u stores a pointer to v (base address field is at offset 0)

Examples:
Two alias pointers:

x

y

u0

u1

u2

Then, we have 0(u0, u2) = 1 and 0(u1, u2) = 1, and 0(u, v) = 0 in all the
other cases
A list of length 2:

x u0 u1 u2
n n

Then, we have n(u0, u1) = 1 and n(u1, u2) = 1, and n(u, v) = 0 in all the
other cases

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 22 / 80

Q ague O

Shape analysis in Three-Valued Logic (TVL) Principles of Three-Valued Logic based abstraction

2-structures and conretization

We can represent the memory graphs using tables of predicate values:

Two-structures and concretization
We assume a set P = {p0, p1, . . . , pn} of predicates (we write ki for the arity of
predicate pi). A formal representation of a memory graph is a 2-structure

(U ,�) 2 D
]
2 defined by:

a set U = {u0, u1, . . . , um} of atoms

a truth table � such that �(pi , ul1 , . . . , ulki) denotes the truth value of pi for
ul1 , . . . , ulki

Then, �2(U ,�) is the set of (e, h , ⌫) where ⌫ : U ! Vaddr and that satisfy exactly
the truth tables defined by �:

(e, h , ⌫) satisfies x(u) iff e(x) = ⌫(u)

(e, h , ⌫) satisfies f(u, v) iff h(⌫(u), f) = ⌫(v)

the name “two-structure” will become clear (very) soon
the set of two-structures is parameterized by the data of a set of predicates
x(.), y(.), 0(., .), n(., .) (additional predicates will be added soon...)
Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 23 / 80

barity

Shape analysis in Three-Valued Logic (TVL) Principles of Three-Valued Logic based abstraction

Examples of two-structures

Two alias pointers:

x

y

u0

u1

u2

x y
u0 1 0
u1 0 1
u2 0 0

7! u0 u1 u2
u0 0 0 1
u1 0 0 1
u2 0 0 0

A list of length 2:

x u0 u1 u2
n n

x
u0 1
u1 0
u2 0

·n 7! u0 u1 u2
u0 0 1 0
u1 0 0 1
u2 0 0 0

A list of length 2:

x y

u0 u1 u2
n n

x y
u0 1 0
u1 0 1
u2 0 0

·n 7! u0 u1 u2
u0 0 1 0
u1 0 0 1
u2 0 0 0

Lists of arbitrary length ? More on this later

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 24 / 80

Shape analysis in Three-Valued Logic (TVL) Principles of Three-Valued Logic based abstraction

Unknown value: three valued logic

How to abstract away some information ?

i.e., how to abstract several graphs into one ?
Example: pointer variable p alias with x or y x

p

y

u0

u1

x

p

y

u0

u1

A boolean lattice
Use predicate tables

Add a > boolean value;
(denoted to by 1

2 in TVLA papers)

0 1

1
2

Graph representation:
dotted edges

Abstract graph:

x

p

y

u0

u1

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 25 / 80

Shape analysis in Three-Valued Logic (TVL) Principles of Three-Valued Logic based abstraction

Summary nodes

At this point, we cannot talk about unbounded memory states with finitely

many nodes, since one node represents at most one memory cell

An idea
Choose a node to represent several concrete nodes
Similar to smashing of arrays using segments

Definition: summary node
A summary node is an atom that may denote several concrete atoms

intuition: we are using a non injective function �A : A �! A
]

representation: double circled nodes

Lists of lengths 1, 2, 3:

x u0 u1
n

x u0 u1 u2
n n

x u0 u1 u2 u3
n n n

Attempt at a summary graph:

x u0 u1
n n

Edges to u1 are dotted
Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 26 / 80

nLuoun or

yncaom.to
Had

Izun dez
4 3

Shape analysis in Three-Valued Logic (TVL) Principles of Three-Valued Logic based abstraction

Additional graph predicate: sharing

We now define a few higher level predicates based on the previously seen
atomic predicates describing the graphs.

Example: a cell is shared if and only if there exists several distinct pointers to it

“Is shared” predicate
The predicate sh(u) holds if and only if

9v0, v1,

8
<

:

v0 6= v1
^ n(v0, u)
^ n(v1, u)

(for concision, we assume only n pointers)

u0

u1

u2 u3

n

n
n sh(u0) = sh(u1) = sh(u3) = 0

sh(u2) = 1

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 27 / 80

Shape analysis in Three-Valued Logic (TVL) Principles of Three-Valued Logic based abstraction

Additional graph predicate: reachability

We can also define higher level predicates using induction:

For instance, a cell is reachable from u if and only it is u or it is reachable from a
cell pointed to by u.

“Reachability” predicate
The predicate r(u, v) holds if and only if:

u = v
_ 9u0, n(u, u0) ^ r(u0, v)

(for concision, we assume only n pointers)

x u0 u1 u2 u3
n n n

r(u1, u0) = r(u2, u0) = r(u3, u1) = 0
r(u0, u0) = r(u0, u2) = r(u0, u3) = 1

“Acyclicity” predicate
The predicate acy(u) holds if and only if r(u, u) does not hold

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 28 / 80

Shape analysis in Three-Valued Logic (TVL) Principles of Three-Valued Logic based abstraction

Three structures

As for 2-structures, we assume a set P = {p0, p1, . . . , pn} of predicates fixed and
write ki for the arity of predicate pi .

Definition: 3-structures
A 3-structure is a tuple (U ,�) defined by:

a set U = {u0, u1, . . . , um} of atoms

a truth table � such that �(pi , ul1 , . . . , ulki) denotes the truth value of pi for
ul1 , . . . , ulki
note: truth values are elements of the lattice {0, 1

2 , 1}
We write D

]
3 for the set of three-structures.

x u0 u1
n n

⇢
U = {u0, u1}
P = {x(·), n(·, ·), sum(·)}

x sum
u0 1 0

u1 0
1
2

n u0 u1

u0 0 1

u1 0 0

In the following we build up an abstract domain of 3-structures

(but a bit more work is need for the definition of the concretization)

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 29 / 80

o
O of

Shape analysis in Three-Valued Logic (TVL) Principles of Three-Valued Logic based abstraction

Main predicates and concretization

We have already seen:

x(u) variable x contains the address of u
n(u, v) field of u points to v
sum(u) whether u is a summary node (convention: either 0 or 1

2)
sh(u) whether there exists several distinct pointers to u
r(u, v) whether v is reachable starting from u
acy(v) v may not be on a cycle

Concretization for 2 structures:

(e, h , ⌫) 2 �2(U ,�) ()
^

p2P
(env , h , ⌫) evaluates p as specified in �

Concretization for 3 structures:

predicates with value 1
2 may concretize either to true or to false

but the concretization of summary nodes is still unclear...
Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 30 / 80

Shape analysis in Three-Valued Logic (TVL) Comparing and concretizing Three-Valued Logic abstractions

Outline

1 Introduction

2 Setup (reminder)

3 Shape analysis in Three-Valued Logic (TVL)

Principles of Three-Valued Logic based abstraction

Comparing and concretizing Three-Valued Logic abstractions

Weakening Three-Valued Logic abstractions

Transfer functions

Focusing

Comparing Separation Logic and Three-Valued logic abstractions

4 Combining shape and value abstractions

5 Conclusion

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 31 / 80

Shape analysis in Three-Valued Logic (TVL) Comparing and concretizing Three-Valued Logic abstractions

Embedding

Reasons why we need to set up a relation among structures:
learn how to compare two 3-structures
describe the concretization of 3-structures into 2-structures

The embedding principle
Let S0 = (U0,�0) and S1 = (U1,�1) be two three structures, with the same sets
of predicates P. Let f : U0 ! U1, surjective.
We say that f embeds S0 into S1 iff

for all predicate p 2 P of arity k , for all ul1 , . . . , ulki 2 U0,
�0(ul1 , . . . , ulki) v �1(f (ul1), . . . , f (ulki))

Then, we write S0 vf S1

Note: we use the order v of the lattice {0, 1
2 , 1}

Intuition: embedding defines an abstract pre-order

i.e., when S0 vf S1, any property that is satsfied by S0 is also satisfied by S1

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 32 / 80

E

Shape analysis in Three-Valued Logic (TVL) Comparing and concretizing Three-Valued Logic abstractions

Embedding examples

A few examples of the embedding relation:

x u0 u1 u2
n n n

vf x u0 u1
n n

where f : u0 7! u0; u1 7! u1; u2 7! u1

x u0 u1 u2 u3
n n n vf x u0 u1

n n

where f : u0 7! u0; u1 7! u1; u2 7! u1; u3 7! u1

x u0 u1 u2

n
n vf x u0 u1

n n

where f : u0 7! u0; u1 7! u1; u2 7! u1

The last example shows summary nodes are not enough to capture just lists:
reachability would be necessary to constrain it be a list
alternatively: list cells should not be shared

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 33 / 80

ACar ma I n uncles L
11

It

Shape analysis in Three-Valued Logic (TVL) Comparing and concretizing Three-Valued Logic abstractions

Concretization of three-structures

Intuitions:
concrete memory states correspond to 2-structures
embedding applies uniformally to 2-structures and 3-structures (in fact,
2-structures are a subset of 3-structures)
2-structures can be embedded into 3-structures, that abstract them

This suggests a concretization of 3-structures in two steps:
1 turn it into a set of 2-structures that can be embedded into it
2 concretize these 2-structures

Concretization of 3-structures
Let S be a 3-structure. Then:

�3(S) =
[

{�2(S 0) | S 0
2-structure s.t. 9f ,S 0 vf S}

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 34 / 80

Shape analysis in Three-Valued Logic (TVL) Comparing and concretizing Three-Valued Logic abstractions

Concretization examples

Without reachability:

x u0 u1 u2

n
n vf x u0 u1

n n

x u0 u1 u2 u3
n n n vf x u0 u1

n n

where f : u0 7! u0; u1 7! u1; u2 7! u1; u3 7! u1

With reachability:

x u0 u1 u2
n n vf x u0 u1

n n
r(u0, u1)

where f : u0 7! u0; u1 7! u1; u2 7! u1

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 35 / 80

Shape analysis in Three-Valued Logic (TVL) Comparing and concretizing Three-Valued Logic abstractions

Disjunctive completion

Do 3-structures allow for a sufficient level of precision ?
How to over-approximate a set of 2-structures ?

int ⇤ x; int ⇤ y; . . .
int ⇤ p = NULL;
if(. . .){

p = x;
}else{

p = y;
}
printf(”%d”, ⇤p);
⇤p = . . . ;

After the if statement:
abstracting would be imprecise

x

p

y

u0

u1

x

p

y

u0

u1

Abstraction based on disjunctive completion
In the following, we use partial disjunctive completion

i.e., TVLA manipulates finite disjunctions of 3-structures
We write D

]
P(3) for the abstract domain made of finite sets of 3-structures in

D
]
3

How to ensure disjunctions will not grow infinite ?
the set of atoms is unbounded, so it is not necessarily true!

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 36 / 80

H

Shape analysis in Three-Valued Logic (TVL) Weakening Three-Valued Logic abstractions

Outline

1 Introduction

2 Setup (reminder)

3 Shape analysis in Three-Valued Logic (TVL)

Principles of Three-Valued Logic based abstraction

Comparing and concretizing Three-Valued Logic abstractions

Weakening Three-Valued Logic abstractions

Transfer functions

Focusing

Comparing Separation Logic and Three-Valued logic abstractions

4 Combining shape and value abstractions

5 Conclusion

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 37 / 80

Shape analysis in Three-Valued Logic (TVL) Weakening Three-Valued Logic abstractions

Canonical abstraction

To prevent disjunctions from growing infinite, we propose to normalize (in a

precision losing manner) abstract states:
the analysis may use all 3-structures at most points
at selected points (including loop heads), only 3-structures in a finite set
D

]
can(3) are allowed

there is a function to coarsen 3-structures into elements of D]
can(3)

Canonicalization function
Let L be a lattice, L0 ✓ L be a finite sub-lattice and can : L! L0:

operator can is called canonicalization if and only if it defines an upper

closure operator

then it extends into a canonicalization operator can : P(L)! P(L0) for
the disjunctive completion domain:

can(E) = {can(x) | x 2 E}

proof of the extension two disjunctive completion domains: left as an exercise
to make the powerset domain work, we simply need a can over 3-structures
Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 38 / 80

Shape analysis in Three-Valued Logic (TVL) Weakening Three-Valued Logic abstractions

Canonical abstraction

Definition of a finite lattice D
]
can(3)

We partition the set of predicates P into two subsets Pa and Po :
Pa and defines abstraction predicates and should contains only unary
predicates and have a finite truth table whatever the number of atoms
Po denotes non-abstraction predicates, and may define truth tables of
unbounded size

Then, we let D]
can(3) be the set of 3-structures such that no pair of atoms have

the same value of the Pa predicates. It defines a finite set of 3-structures.

This sub-lattice defines a clear “canonicalization” algorithm:

Canonical abstraction by truth blurring
1 Identify nodes that have different abstraction predicates

2 When several nodes have the same abstraction predicate

introduce a summary node

3 Compute new predicate values by doing a join over truth values

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 39 / 80

Shape analysis in Three-Valued Logic (TVL) Weakening Three-Valued Logic abstractions

Canonical abstraction examples

Most common TVLA instantiation:
ae assume there are n variables x1, . . . , xn
thus the number of unary predicates is finite, and provides a good choice
for Pa

sub-lattice: structures with atoms distinguished by the values of the

unary predicates x1, . . . , xn

Examples:

Elements not merged: Elements merged:

x

p

y

u0

u1

x

p

y

u0

u1

Lists of lengths 1, 2, 3: Abstract into:
x u0 u1

n

x u0 u1 u2
n n

x u0 u1 u2 u3
n n n

x u0 u1
n

x r(x)

u0 u1
n n

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 40 / 80

c o ETI

Shape analysis in Three-Valued Logic (TVL) Transfer functions

Outline

1 Introduction

2 Setup (reminder)

3 Shape analysis in Three-Valued Logic (TVL)

Principles of Three-Valued Logic based abstraction

Comparing and concretizing Three-Valued Logic abstractions

Weakening Three-Valued Logic abstractions

Transfer functions

Focusing

Comparing Separation Logic and Three-Valued logic abstractions

4 Combining shape and value abstractions

5 Conclusion

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 41 / 80

Shape analysis in Three-Valued Logic (TVL) Transfer functions

Principle for the design of sound transfer functions

Intuitively, concrete states correspond to 2-structures

The analysis should track 3-structures, thus the analysis and its soundness
proof need to rely on the embedding relation

Embedding theorem
We assume that

S0 = (U0,�0) and S1 = (U1,�1) define a pair of 3-structures
f : U0 ! U1, is such that S0 vf S1 (embedding)
 is a logical formula, with variables in X

g : X ! U0 is an assignment for the variables of
Then, the semantics (evaluation) of logical formulae is such that

J |g K(S0) v J |f �g K(S1)

Intuition: this theorem ties the evaluation of conditions in the concrete and in the
abstract in a general manner

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 42 / 80

Shape analysis in Three-Valued Logic (TVL) Transfer functions

Principle for the design of sound transfer functions

Transfer functions for static analysis
Semantics of concrete statements is encoded into boolean formulas

Evaluation in the abstract is sound (embedding theorem)

Example: analysis of an assignment y := x

1 let y0 be a new predicate that denotes the new value of y
2 then we can add the constraint y0(u) = x(u)

(using the embedding theorem to prove soundness)

3 rename y0 into y

Advantages:
abstract transfer functions derive directly from the concrete transfer
functions (intuition: ↵ � f � �...)
the same solution works for weakest pre-conditions

Disadvantage: precision will require some care, more on this later!
Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 43 / 80

Shape analysis in Three-Valued Logic (TVL) Transfer functions

Assignment: a simple case

Statement l0 : y = y -> n; l1 : . . . Pre-condition S x, y u0 u1 u2
n n .

Transfer function computation:

it should produce an over-approximation of {m1 2M | (l0,m0)! (l1,m1)}
encoding using “primed predicates” to denote predicates after the
evaluation of the assignment, to evaluate them in the same structure (non
primed variables are removed afterwards and primed variables renamed):

x0(u) = x(u)
y0(u) = 9v , y(v) ^ n(v , u)

n0(u, v) = n(u, v)

resulting structure:

x

u0

y

u1 u2
n n

This is exactly the expected result

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 44 / 80

y

i

I
I v no

Shape analysis in Three-Valued Logic (TVL) Focusing

Outline

1 Introduction

2 Setup (reminder)

3 Shape analysis in Three-Valued Logic (TVL)

Principles of Three-Valued Logic based abstraction

Comparing and concretizing Three-Valued Logic abstractions

Weakening Three-Valued Logic abstractions

Transfer functions

Focusing

Comparing Separation Logic and Three-Valued logic abstractions

4 Combining shape and value abstractions

5 Conclusion

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 45 / 80

Shape analysis in Three-Valued Logic (TVL) Focusing

Assignment: a more involved case

Statement l0 : y = y -> n; l1 : . . . Pre-condition S

x, y r(x)

u0 u1
n n

.

Let us try to resolve the update in the same way as before:

x0(u) = x(u)
y0(u) = 9v , y(v) ^ n(v , u)

n0(u, v) = n(u, v)

We cannot resolve y0: ⇢
y0(u0) = 0
y0(u1) = 1

2

Imprecision: after the statement, y may point to anywhere in the list, save
for the first element...

The assignment transfer function cannot be computed immediately

We need to refine the 3-structure first

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 46 / 80

Shape analysis in Three-Valued Logic (TVL) Focusing

Focus

Focusing on a formula
We assume a 3-structure S and a boolean formula f are given, we call a focusing

S on f the generation of a set Ŝ of 3-structures such that:
f evaluates to 0 or 1 on all elements of Ŝ
precision was gained: 8S 0 2 Ŝ, S 0 v S (embedding)
soundness is preserved: �(S) =

S
{�(S 0) | S 0 2 Ŝ}

Details of focusing algorithms are rather complex: not detailed here
They involve splitting of summary nodes, solving of boolean constraints

Example: focusing on
y0(u) = 9v , y(v)

^ n(v , u) We obtain (we show y and y0):

x, y r(x), y0

u0 u1
n n

x, y r(x)

u0 u1
n

x, y r(x), y0

u0 u1
n n

x, y r(x), y0 r(x)

u0 u1 u2
n n

nn

n

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 47 / 80

Shape analysis in Three-Valued Logic (TVL) Focusing

Focus and coerce

Some of the 3-structures generated by focus are not precise

x, y r(x)

u0 u1
n

u1 is reachable from x, but there is no
sequence of n fields: this structure has
empty concretization

x, y r(x), y0 r(x)

u0 u1 u2
n n

nn

n

u0 has an n-field to u1 so u1
denotes a unique atom and
cannot be a summary node

Coerce operation
It enforces logical constraints among predicates and discards 3-structures with
an empty concretization

Result: one case removed (bottom), two possibly summary nodes non summary

x, y r(x), y0

u0 u1
n

x, y r(x), y0 r(x)

u0 u1 u2
n n n

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 48 / 80

Shape analysis in Three-Valued Logic (TVL) Focusing

Focus, transfer, abstract...

Computation of a transfer function
We consider a transfer function encoded into boolean formula f

S]
pre

Ŝpre Ŝpost

S]
post

focus
coerce

f

can

Soundness proof steps:
1 sound encoding of the semantics of program statements into formulas

(typically, no loss of precision at this stage)
2 focusing produces a refined over-approximation (disjunction)
3 canonicalization over-approximates graphs (truth blurring)

A common picture in shape analysis

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 49 / 80

SL

SL
O fiery

unfolding

mdbedingaS.L log camp

Shape analysis in Three-Valued Logic (TVL) Focusing

Shape analysis with three valued logic

Abstract states; two abstract domains are used:
infinite domain D

]
P(3): finite disjunctions of 3-structures in D

]
3

for general abstract computations
finite domain D

]
P(can(3)): disjunctions of finite domain D

]
can(3)

to simplify abstract states and for loop iteration
concretization via D

]
2

Abstract post-conditions:
1 start from D

]
P(3) or D]

can(3)
2 focus and coerce when needed
3 apply the concrete transformation
4 apply can to weaken abstract states; result in D

]
P(can(3))

Analysis of loops:
iterations in D

]
P(can(3)) terminate, as it is finite

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 50 / 80

Shape analysis in Three-Valued Logic (TVL) Comparing Separation Logic and Three-Valued logic abstractions

Outline

1 Introduction

2 Setup (reminder)

3 Shape analysis in Three-Valued Logic (TVL)

Principles of Three-Valued Logic based abstraction

Comparing and concretizing Three-Valued Logic abstractions

Weakening Three-Valued Logic abstractions

Transfer functions

Focusing

Comparing Separation Logic and Three-Valued logic abstractions

4 Combining shape and value abstractions

5 Conclusion

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 51 / 80

Shape analysis in Three-Valued Logic (TVL) Comparing Separation Logic and Three-Valued logic abstractions

Separation logic

Separation logic formulas (main connectors only)
F ::= emp

| TRUE
| l 7! l
| F0 ⇤ F1
| F0 ^ F1
| F0 �⇤ F1

Concretization:
�(emp) = E⇥ {[]}
�(TRUE) = E⇥H

�(l 7! v) = {(e, [JlK(e, h) 7! v]) | e 2 E}
�(F0 ⇤ F1) = {(e, h0 ⇣ h1) | (e, h0) 2 �(F0) ^ (e, h1) 2 �(F1)}
�(F0 ^ F1) = �(F0) \ �(F1)

�(F0 �⇤ F1) = exercise

Program reasoning: frame rule and strong updates

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 52 / 80

Shape analysis in Three-Valued Logic (TVL) Comparing Separation Logic and Three-Valued logic abstractions

Shape graphs and separation logic

Shape graphs: provide an efficient data-structure to describe a subset of
separation logic predicates, and do static analysis with them.

Important addition: inductive predicates.

Semantic preserving translation ⇧ of graphs into separation logic formulas:

Graph S] 2 D
]
sh Translated formula ⇧(S])

↵ �
f ↵ · f 7! �

S]
0 S]

1 ⇧(S]
0) ⇤ ⇧(S]

1)

↵
list

↵ · list
↵ �

list
list

↵ · list_endp(�)

other inductives and segments similar

Note that:
shape graphs can be encoded into separation logic formula
the opposite is usually not true
Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 53 / 80

Shape analysis in Three-Valued Logic (TVL) Comparing Separation Logic and Three-Valued logic abstractions

Comparing the structure of abstract formulae

Separation logic:

F0 ⇤ F1 ⇤ . . . ⇤ Fn

first the heap is partitioned
each region is described separately
some of the Fi components may
be summary predicates, describing
unbounded regions
reachability is implicit
allows local reasoning

Three valued logic:

p0 ^ p1 ^ . . . ^ pn

first a conjunction of properties
each predicate pi may talk about
any heap region
no direct heap partitioning
reachability can be expressed
(natively)
no local reasoning

Two very different sets of predicates
one allows local reasoning, the other not
the other way for reachability predicates

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 54 / 80

O O O O
ite E is

Shape analysis in Three-Valued Logic (TVL) Comparing Separation Logic and Three-Valued logic abstractions

Summarization: one abstract cell, many concrete cells

Large / unbounded numbers of concrete cells need to be abstracted

Dynamic structures (lists, trees) have an unknown and unbounded number
of cells, hence require summarization
We also needed summaries to deal with arrays

Summary
A summary predicate allows to describe an unbounded number of memory
locations using a fixed, finite set of predicates

Principles underlying summarization:
in separation logic:
using inductive definitions for lists, trees...
unbounded size of the summarized region is hidden in the recursion

in three-valued logic:
summary nodes + high level predicates (such as reachability)
one summary node carries the properties of an unbounded number of cells
Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 55 / 80

Shape analysis in Three-Valued Logic (TVL) Comparing Separation Logic and Three-Valued logic abstractions

Concretize partially, update, abstract

For precise analysis, summaries need to be (temporarily) refined

Separation logic:

Local (partial) concretization
For materialization:

S]
pre

S]
pre,ref S]

post

unfold
(materialize)

f

Global abstraction: widening
S]

0 OS]
1

OS]
0 S]

1

In both cases, two mechanisms are

needed:
1 refine summaries
2 synthesize summaries

TVLA:

Focus, analyze, canonicalize
S]

pre

Spre Spost

S]
post

partially
concretize

f

abstract

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 56 / 80

Combining shape and value abstractions

Outline

1 Introduction

2 Setup (reminder)

3 Shape analysis in Three-Valued Logic (TVL)

4 Combining shape and value abstractions

Shape and value properties

Combined abstraction with cofibered abstract domain

Combined analysis algorithms

5 Conclusion

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 57 / 80

Combining shape and value abstractions Shape and value properties

Shape and value properties

Common data-structures require to reason both about shape and data:
hybrid stores: data stored next to inductive structures
list of even elements:

68 24 0 112
&x 0x0

sorted list:

&x
8 9 33

0x0

list with a length constraint

tries: binary trees with paths labelled with sequences of “0” and “1”
balanced trees: red-black, AVL...

This part of the course:
how to express both shape and numerical properties ?

how to extend shape analysis algorithms

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 58 / 80

Combining shape and value abstractions Shape and value properties

Description of a sorted list

Example: sorted list
&x

8 9 33
0x0

Inductive definition
Each element should be greater than the previous one
The first element simply needs be greater than �1...
We need to propagate the lower bound, using a scalar parameter

↵ · lsortaux(n) := ↵ = 0 ^ emp
_ ↵ 6= 0 ^ n � ^ ↵ · next 7! �
⇤ ↵ · data 7! � ⇤ � · lsortaux(�)

↵ · lsort() := ↵ · lsortaux(�1)

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 59 / 80

Combining shape and value abstractions Shape and value properties

Adding value information (here, numeric)

Concrete numeric values appear in the valuation

thus the abstracting contents boils down to abstracting ⌫ !

Example: all lists of length 2, sorted in the increasing order of data fields

Memory abstraction: ↵0

↵1

↵2

↵3

↵4

+0

+4

+0

+4

0x...a0
0x...a4

0x...b0
0x...b4 0x0

9

0x...b0
7

⌫ : ↵1 7! 7
↵3 7! 9
. . . 7! . . .

0x...a0
0x...a4

0x...b0
0x...b4 0x0

12

0x...b0
8

⌫ : ↵1 7! 8
↵3 7! 12
. . . 7! . . .

Abstraction of valuations: ⌫(↵1) < ⌫(↵3), can be described by the constraint
↵1 < ↵3

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 60 / 80

Combining shape and value abstractions Shape and value properties

A first step towards a combined domain

Domains and their concretization:
shape abstract domain D

]
sh of graphs

abstract stores together with a physical mapping of nodes
�sh : D]

sh ! P((D]
sh !M)⇥ (V] ! V))

numerical abstract domain D
]
num, abstracts physical mapping of nodes

�num : D]
num ! P(V] ! V)

Combined domain [CR]
Set of abstract values: D

] = D
]
sh ⇥ D

]
num

Concretization:

�(S],N]) = {(h , ⌫) 2M | ⌫ 2 �num(N
]) ^ (h , ⌫) 2 �sh(S

])}

Can it be described as a reduced product ?

product abstraction: D
] = D

]
0 ⇥ D

]
1 (componentwise ordering)

concretization: �(x0, x1) = �(x0) \ �(x1)
reduction: D

]
r is the quotient of D] by the equivalence relation ⌘ defined by

(x0, x1) ⌘ (x 00, x
0
1) () �(x0, x1) = �(x 00, x

0
1)

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 61 / 80

Combining shape and value abstractions Shape and value properties

Formalizing the product domain

The use of a simple reduced product raises several issues

Elements without a clear meaning:

&t

↵0

↵1

↵2

a

b

↵1 ↵2
↵2 ↵1 + ↵3

this element exists in the reduced product domain (independent components)
but, ... what is ↵3 ?

Unclear comparison:
How can we compare the two elements below ?

&t

↵ is even
↵

next

data

leven

and &t
leven

in the reduced product domain, they are not comparable:
nodes do not match, so componentwise comparison does not make sense
when concretizing them, there is clear inclusion

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 62 / 80

Combining shape and value abstractions Shape and value properties

Towards a more adapted combination operator

Reason why the reduced product construction does not work well:
the set of nodes / symbolic variables is not fixed

the set of dimensions in the numerical domain depends on the shape
abstraction

) thus the product is not symmetric

however, the reduced product construction is symmetric

Intuitions
Graphs form a shape domain D

]
sh

For each graph S] 2 D
]
sh, we have a numerical lattice D

]
numhS]i

I example: if graph S]
contains nodes ↵0,↵1,↵2, D

]
numhS]i should abstract

{↵0,↵1,↵2} ! V

An abstract value is a pair (S],N]), such that N] 2 D
]
numhN]i

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 63 / 80

Combining shape and value abstractions Combined abstraction with cofibered abstract domain

Outline

1 Introduction

2 Setup (reminder)

3 Shape analysis in Three-Valued Logic (TVL)

4 Combining shape and value abstractions

Shape and value properties

Combined abstraction with cofibered abstract domain

Combined analysis algorithms

5 Conclusion

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 64 / 80

Combining shape and value abstractions Combined abstraction with cofibered abstract domain

Cofibered domain

Definition, for shape + num
Basis: abstract domain (D]

sh,v
]), with concretization

�sh : D]
sh ! D

Function: � : D]
sh ! D, where each element of D is an

abstract domain instance (D]
num,v]

num), with a
concretization �num : D]

num ! D (tied to a shape

graph)
Domain D

]: set of pairs (S],N]) where N] 2 �(S])

Concretization: �(S],N]) = �(S]) \ �(N])

Lift functions: 8S]
0, S

]
1 2 D

]
sh, such that S]

0 v] S]
1, there

exists a function ⇧S]
0 ,S

]
1
: �(S]

0)! �(S]
1), that is

monotone for �S]
0

and �S]
1

S]
0

S]
1

S]
2

D
]
numhS

]
0i

D
]
numhS

]
1i

D
]
numhS

]
2i

General construction presented in [AV](Arnaud Venet)
Intuition: a dependent domain product

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 65 / 80

Combining shape and value abstractions Combined abstraction with cofibered abstract domain

Overall abstract domain structure

Implementation exploiting the modular structure
Each layer accounts for one aspect of the concrete states

Each layer boils down to a module or functor in ML

shape abstract domain D
]
sh

S] abstracts sets of (h , ⌫)
value abstract domain D

]
num

N] abstracts sets of ⌫

combined shape-value abstract domain D
]
cof

(S],N]) abstracts sets of (h , ⌫)

state abstract domain D
]
mem

(e], S],N]) abstracts sets of (e, h)

How about operations, transfer functions ? Also to be modularly defined

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 66 / 80

Combining shape and value abstractions Combined abstraction with cofibered abstract domain

Domain operations

The cofibered structure allows to define standard domain operations:
ift functions allow to switch domain when needed

computations first done in the basis, then in the numerical domains, after
lifting, when needed

Comparison of (S]
0,N

]
0) and (S]

1,N
]
1)

1 First, compare S]
0 and S]

1 in D
]
sh

2 If S]
0 v] S]

1, compare ⇧S]
0 ,S

]
1
(N]

0) and N]
1

Widening of (S]
0,N

]
0) and (S]

1,N
]
1)

1 First, compute the widening in the basis S] = S]
0 O S]

1

2 Then move to �(S]), by computing N]
0c = ⇧S]

0 ,S
](N

]
0) and N]

1c = ⇧S]
1 ,S

](N
]
1)

3 Last widen in �(S]): N] = N]
0c OS] N]

1c

4 Return (S]
0,N

]
0)O(S

]
A,N

]
1) = (S],N])

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 67 / 80

Combining shape and value abstractions Combined analysis algorithms

Outline

1 Introduction

2 Setup (reminder)

3 Shape analysis in Three-Valued Logic (TVL)

4 Combining shape and value abstractions

Shape and value properties

Combined abstraction with cofibered abstract domain

Combined analysis algorithms

5 Conclusion

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 68 / 80

Combining shape and value abstractions Combined analysis algorithms

Domain operations and transfer functions

Abstract assignments, condition tests:
need to modify both the shape abstraction and the value abstraction
both modification are interdependent

Typical process to compute abstract post-conditions
1 compute the post in the shape abstract domain and update the basis
2 update the value abstraction (numerics) to model dimensions additions and

removals
3 compute the post in the value abstract domain

Proofs of soundness of transfer functions rely on:
the soundness of the lift functions
the soundness of both domain transfer functions

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 69 / 80

Combining shape and value abstractions Combined analysis algorithms

Analysis of an assignment in the graph domain

Steps for analyzing x = y -> next (local reasoning)
1 Evaluate l-value x into points-to edge ↵ 7! �
2 Evaluate r-value y -> next into node �0

3 Replace points-to edge ↵ 7! � with points-to edge ↵ 7! �0

With pre-condition:
&x ↵0 �0

&y ↵1 �1 �2
next

Step 1 produces ↵0 7! �0

Step 2 produces �2

End result:
&x ↵0 �0

&y ↵1 �1 �2next

With pre-condition:
&x ↵0 �0

&y ↵1 �1
list

Step 1 produces ↵0 7! �0

Step 2 can succeed only after

unfolding is performed

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 70 / 80

Combining shape and value abstractions Combined analysis algorithms

Analysis of an assignment in the combined domain

shape

domain

numeric

domain

cofibered layer

shape + num

environment layer

shape + num + env

&x ↵0 ↵1

&y ↵2 ↵3
lpos

N] = ↵1 � 0 ^ ↵3 6= 0x0

y -> d = x+ 1

Abstract post-condition ?

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 71 / 80

Combining shape and value abstractions Combined analysis algorithms

Analysis of an assignment in the combined domain

shape

domain

numeric

domain

cofibered layer

shape + num

environment layer

shape + num + env

&x ↵0 ↵1

&y ↵2 ↵3
lpos

N] = ↵1 � 0 ^ ↵3 6= 0x0

y -> d = x+ 1) (⇤↵2) · d = (⇤↵0) + 1

Abstract post-condition ?

Stage 1: environment resolution
replaces x with ⇤e](x)

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 71 / 80

Combining shape and value abstractions Combined analysis algorithms

Analysis of an assignment in the combined domain

shape

domain

numeric

domain

cofibered layer

shape + num

environment layer

shape + num + env

&x ↵0 ↵1

&y ↵2 ↵3
lpos

N] = ↵1 � 0 ^ ↵3 6= 0x0

(⇤↵2) · d = (⇤↵0) + 1

Abstract post-condition ?

Stage 2: propagate into the shape + numerics domain
only symbolic nodes appear

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 71 / 80

Combining shape and value abstractions Combined analysis algorithms

Analysis of an assignment in the combined domain

shape

domain

numeric

domain

cofibered layer

shape + num

environment layer

shape + num + env

&x ↵0 ↵1

&y ↵2 ↵3
lpos

N] = ↵1 � 0 ^ ↵3 6= 0x0

(⇤↵2) · d = (⇤↵0) + 1

Abstract post-condition ?

Stage 3: resolve cells in the shape graph abstract domain
⇤↵0 evaluates to ↵1; ⇤↵2 evaluates to ↵3

(⇤↵2) · d fails to evaluate: no points-to out of ↵3

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 71 / 80

Combining shape and value abstractions Combined analysis algorithms

Analysis of an assignment in the combined domain

shape

domain

numeric

domain

cofibered layer

shape + num

environment layer

shape + num + env

&x ↵0 ↵1

&y ↵2 ↵3
lpos

N] = ↵1 � 0 ^ ↵3 6= 0x0

(⇤↵2) · d = (⇤↵0) + 1

Abstract post-condition ?

Stage 4 (a): unfolding triggered
the analysis needs to locally materialize ↵3 · lpos...
thus, unfolding starts at symbolic variable ↵3

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 71 / 80

Combining shape and value abstractions Combined analysis algorithms

Analysis of an assignment in the combined domain

shape

domain

numeric

domain

cofibered layer

shape + num

environment layer

shape + num + env

&x ↵0 ↵1

&y ↵2 ↵3

↵4

↵5

d

n
lpos

N] = ↵1 � 0 ^ ↵3 6= 0x0

(⇤↵2) · d = (⇤↵0) + 1

Abstract post-condition ?

Stage 4 (b): unfolding, shape part
unfolding of the memory predicate part
numerical predicates still need be taken into account

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 71 / 80

Combining shape and value abstractions Combined analysis algorithms

Analysis of an assignment in the combined domain

shape

domain

numeric

domain

cofibered layer

shape + num

environment layer

shape + num + env

&x ↵0 ↵1

&y ↵2 ↵3

↵4

↵5

d

n
lpos

N] = ↵1 � 0 ^ ↵3 6= 0x0 ^ ↵4 � 0

(⇤↵2) · d = (⇤↵0) + 1

Abstract post-condition ?

Stage 4 (c): unfolding, numeric part
numerical predicates taken into account
l-value ↵3 · d now evaluates into edge ↵3 · d 7! ↵4

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 71 / 80

Combining shape and value abstractions Combined analysis algorithms

Analysis of an assignment in the combined domain

shape

domain

numeric

domain

cofibered layer

shape + num

environment layer

shape + num + env

&x ↵0 ↵1

&y ↵2 ↵3

↵4

↵5

d

n
lpos

N] = ↵1 � 0 ^ ↵3 6= 0x0 ^ ↵4 � 0

create node ↵6

&x ↵0 ↵1

&y ↵2 ↵3

↵4

↵5

↵6d

n
lpos

N] = ↵1 � 0 ^ ↵3 6= 0x0 ^ ↵4 � 0

Stage 5: create a new node
new node ↵6 denotes a new value
will store the new value

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 71 / 80

Combining shape and value abstractions Combined analysis algorithms

Analysis of an assignment in the combined domain

shape

domain

numeric

domain

cofibered layer

shape + num

environment layer

shape + num + env

&x ↵0 ↵1

&y ↵2 ↵3

↵4

↵5

d

n
lpos

N] = ↵1 � 0 ^ ↵3 6= 0x0 ^ ↵4 � 0

↵6 ↵1 + 1 in numerics

&x ↵0 ↵1

&y ↵2 ↵3

↵4

↵5

↵6d

n
lpos

N] = ↵1 � 0 ^ ↵3 6= 0x0 ^ ↵4 � 0 ^ ↵6 � 1

Stage 6: perform numeric assignment
numeric assignment completely ignores pointer structures

to the new node

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 71 / 80

Combining shape and value abstractions Combined analysis algorithms

Analysis of an assignment in the combined domain

shape

domain

numeric

domain

cofibered layer

shape + num

environment layer

shape + num + env

mutate (↵3 · d) 7! ↵4 into ↵6

&x ↵0 ↵1

&y ↵2 ↵3

↵4

↵5

↵6d

n
lpos

N] = ↵1 � 0 ^ ↵3 6= 0x0 ^ ↵4 � 0 ^ ↵6 � 1

Stage 7: perform the update in the graph
classic strong update in a pointer aware domain
symbolic node ↵4 becomes redundant and can be removed

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 71 / 80

Combining shape and value abstractions Combined analysis algorithms

Shape graph weakening: definition (reminder)

To design inclusion test, join and widening algorithms, we first study a more
general notion of weakening:

Weakening
We say that S]

0 can be weakened into S]
1 if and only if

8(h , ⌫) 2 �sh(S
]
0), 9⌫0 2 Val, (h , ⌫0) 2 �sh(S

]
1)

We then note S]
0 4 S]

1

Applications:

inclusion test (comparison) inputs S]
0, S

]
1; if returns true S]

0 4 S]
1

canonicalization (unary weakening) inputs S]
0 and returns ⇢(S]

0) such that
S]

0 4 ⇢(S]
0)

widening / join (binary weakening ensuring termination or not) inputs S]
0, S

]
1

and returns S]
up such that S]

i 4 S]
up

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 72 / 80

Combining shape and value abstractions Combined analysis algorithms

Shape graph weakening weakening based on local rules

(reminder)

By rule (4Id):

↵1 ↵2

↵3

next

data

list
4

↵1 ↵2

↵3

next

data

list

Thus, by rule (4U):

↵1 ↵2

↵3

next

data

list
4

↵1
list

Additionally, by rule (4Id):

&l
↵0 ↵1

4

&l
↵0 ↵1

Thus, by rule (4⇤):

&l
↵0 ↵1 ↵2

↵3

next

data

list
4

&l
↵0 ↵1

list

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 73 / 80

Combining shape and value abstractions Combined analysis algorithms

Shpae graph abstract union

The principle of join and widening algorithm is similar to that of v]
:

It can be computed region by region, as for weakening in general:
If 8i 2 {0, 1}, 8s 2 {lft, rgh}, S]

i,s 4 S]
s ,

S]
0,lft S]

1,lft↵0 ↵1 ↵2

S]
0,rgh S]

1,rgh�0 �1 �2

4 S]

0 S]
1

�0 �1 �2

The partitioning of inputs / different nodes sets requires a node

correspondence function

 : V](S]
lft)⇥ V

](S]
rgh) �! V

](S])

The computation of the shape join progresses by the application of local join

rules, that produce a new (output) shape graph, that weakens both

inputs

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 74 / 80

Combining shape and value abstractions Combined analysis algorithms

Widening / join in the combined domain

shape

domain

numeric

domain

cofibered layer

shape + num

environment layer

shape + num + env &x ↵0 ↵1

↵2

↵3

&y ↵4 ↵5

d

n
lpos

N]
lft = ↵2 � ↵5 � 2

&x �0 �1

&y �2 �3

lpos

N]
rgh = �3 � 1

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 75 / 80

Combining shape and value abstractions Combined analysis algorithms

Widening / join in the combined domain

shape

domain

numeric

domain

cofibered layer

shape + num

environment layer

shape + num + env &x ↵0 ↵1

↵2

↵3

&y ↵4 ↵5

d

n
lpos

N]
lft = ↵2 � ↵5 � 2

&x �0 �1

&y �2 �3

lpos

N]
rgh = �3 � 1

&x �0

&y �1

 (↵0,�0) = �0
 (↵4,�2) = �1

Stage 1: abstract environment
compute new abstract environment and initial node relation
e.g., ↵0,�0 both denote &x

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 75 / 80

Combining shape and value abstractions Combined analysis algorithms

Widening / join in the combined domain

shape

domain

numeric

domain

cofibered layer

shape + num

environment layer

shape + num + env &x ↵0 ↵1

↵2

↵3

&y ↵4 ↵5

d

n
lpos

N]
lft = ↵2 � ↵5 � 2

&x �0 �1

&y �2 �3

lpos

N]
rgh = �3 � 1

&x �0

&y �1

 (↵0,�0) = �0
 (↵4,�2) = �1

Stage 2: join in the “cofibered” layer
operations to perform:

1 compute the join in the graph
2 convert value abstractions, and join the resulting lattice

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 75 / 80

Combining shape and value abstractions Combined analysis algorithms

Widening / join in the combined domain

shape

domain

numeric

domain

cofibered layer

shape + num

environment layer

shape + num + env &x ↵0 ↵1

↵2

↵3

&y ↵4 ↵5

d

n
lpos

N]
lft = ↵2 � ↵5 � 2

&x �0 �1

&y �2 �3

lpos

N]
rgh = �3 � 1

&x �0

&y �1

�2
 (↵0,�0) = �0
 (↵4,�2) = �1
 (↵1,�1) = �2

Stage 2: graph join
apply local join rules
ex: points-to matching, weakening to inductive...
incremental algorithm

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 75 / 80

Combining shape and value abstractions Combined analysis algorithms

Widening / join in the combined domain

shape

domain

numeric

domain

cofibered layer

shape + num

environment layer

shape + num + env &x ↵0 ↵1

↵2

↵3

&y ↵4 ↵5

d

n
lpos

N]
lft = ↵2 � ↵5 � 2

&x �0 �1

&y �2 �3

lpos

N]
rgh = �3 � 1

&x �0

&y �1

�2

�3

 (↵0,�0) = �0
 (↵4,�2) = �1
 (↵1,�1) = �2
 (↵5,�3) = �3

Stage 2: graph join
apply local join rules
ex: points-to matching, weakening to inductive...
incremental algorithm

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 75 / 80

Combining shape and value abstractions Combined analysis algorithms

Widening / join in the combined domain

shape

domain

numeric

domain

cofibered layer

shape + num

environment layer

shape + num + env &x ↵0 ↵1

↵2

↵3

&y ↵4 ↵5

d

n
lpos

N]
lft = ↵2 � ↵5 � 2

&x �0 �1

&y �2 �3

lpos

N]
rgh = �3 � 1

&x �0

&y �1

�2

�3

lpos (↵0,�0) = �0
 (↵4,�2) = �1
 (↵1,�1) = �2
 (↵5,�3) = �3

Stage 2: graph join
apply local join rules
ex: points-to matching, weakening to inductive...
incremental algorithm

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 75 / 80

Combining shape and value abstractions Combined analysis algorithms

Widening / join in the combined domain

shape

domain

numeric

domain

cofibered layer

shape + num

environment layer

shape + num + env &x ↵0 ↵1

↵2

↵3

&y ↵4 ↵5

d

n
lpos

N]
lft = ↵2 � ↵5 � 2

&x �0 �1

&y �2 �3

lpos

N]
rgh = �3 � 1

&x �0

&y �1

�2

�3

lpos

N]
t = [�3 � 2] t [�3 � 1]

 (↵0,�0) = �0
 (↵4,�2) = �1
 (↵1,�1) = �2
 (↵5,�3) = �3

Stage 3: conversion function application in numerics
remove nodes that were abstracted away
rename other nodes

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 75 / 80

Combining shape and value abstractions Combined analysis algorithms

Widening / join in the combined domain

shape

domain

numeric

domain

cofibered layer

shape + num

environment layer

shape + num + env &x ↵0 ↵1

↵2

↵3

&y ↵4 ↵5

d

n
lpos

N]
lft = ↵2 � ↵5 � 2

&x �0 �1

&y �2 �3

lpos

N]
rgh = �3 � 1

&x �0

&y �1

�2

�3

lpos

N]
t = [�3 � 1]

 (↵0,�0) = �0
 (↵4,�2) = �1
 (↵1,�1) = �2
 (↵5,�3) = �3

Stage 4: join in the numeric domain
apply t for regular join, O for a widening

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 75 / 80

Conclusion

Outline

1 Introduction

2 Setup (reminder)

3 Shape analysis in Three-Valued Logic (TVL)

4 Combining shape and value abstractions

5 Conclusion

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 76 / 80

Conclusion

Shape analysis and summarization

Summaries:
describe unbounded memory regions, with general predicates
e.g., list or tree structures, local and global sharing (doubly-linked lists)
summary nodes + associated predicates in TVLA,
inductive predicates in separation logic

Local refinement (concretization):
focus in TVLA, unfolding in separation logic based aanlysis
required to analyze precisely post-conditions that touch summaries

Global abstraction:
ensure termination despite unbounded, infinite domain
in TVLA, canonical abstraction into a finite domain

In all cases, analysis algorithms aim at avoiding weak updates

(that would cause a severe precision loss over the whole memory)
Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 77 / 80

Conclusion

Shape analysis and value abstraction

Main issue: the support of the shape abstraction is always changing

summaries appear at canonicalization/widening points
new atoms/nodes appear at focus/materialization points

Cofibered domain
an abstract form of dependent product

assymetric version of D
]
sh ⇥ D

]
num

the shape abstraction “controls” the value abstraction
information can still be exchanged in both directions (reduction)
slightly more complex lattice structure
but standard definitions for widening, inclusion test...

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 78 / 80

Conclusion

Bibliography

[SRW]: Parametric Shape Analysis via 3-Valued Logic.
Shmuel Sagiv, Thomas W. Reps et Reinhard Wilhelm. In POPL’99, pages

105–118, 1999.

[AV]: Abstract Cofibered Domains: Application to the Alias Analysis of Untyped
Programs.
Arnaud Venet.
In SAS’96, pages 366–382.

[CR]: Relational inductive shape analysis.
Bor-Yuh Evan Chang et Xavier Rival.
In POPL’08, pages 247–260, 2008.

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 79 / 80

Conclusion

Assignment: formalization and paper reading

Formalization of the concretization of 2-structures:

describe the concretization formula, assuming that we consider the predicates
discussed in the course
run it on the list abstraction example (from the 3-structure to a few select
2-structures, and down to memory states)
prove the correctness and termination of the widening of the cofibered
abstract domain

Reading:

Parametric Shape Analysis via 3-Valued Logic.

Shmuel Sagiv, Thomas W. Reps et Reinhard Wilhelm.

In POPL’99, pages 105–118, 1999.

Xavier Rival (INRIA) Shape analysis abstractions Jan, 29th, 2021 80 / 80

