
Written exam

MPRI 2-6, year 2020–2021

30 November 2020

- The exam is individual.

- You are expected to send your copy by email before 30 November 2020 midnight to antoine.mine@lip6.fr and xavier.rival@ens.fr

- You can either send your answers in a text or PDF file, or as high resolution pictures with legible hand-writing.

- The questions are written in English. You can answer either in English or in French.

- The exercises are independent and can be solved in any order.

- It will not be answered any question during the exam. In case of ambiguity or error in the definitions or the questions, it is
part of the exam to correct them and answer to the best of your abilities.

Exercise 1: Cardinal power abstractions

In this exercise, we study the computation of sound abstract post-conditions in cardinal power abstract domains.

Notations. In the following, we use the following notations.
We assume a set of states S, the precise definition of which is left as a parameter for now (several instances will be

considered in the following questions). The concrete domain is the powerset of the set of states (P(S),⊆). Moreover,
we will also assume a transition relation over states () ⊆ S× S, which is also left as a parameter for now, and which
generally captures computation (e.g., the evaluation of an arbitrary function or one step of execution for a program).

An abstract domain is defined by a set D of abstract elements equipped with an order v and a monotone con-
cretization function γ : D −→ P(S).

A sound post-condition operator for abstract domain (D,v, γ) is a function post : D −→ D such that:

∀d ∈ D, ∀s ∈ γ(d), ∀s′ ∈ S, s s′ =⇒ s′ ∈ γ(post(d))

Cardinal power abstract domain. We let (D0,v0, γ0) and (D1,v1, γ1) be two abstract domains. We recall that
their cardinal power is the abstract domain (D2,v2, γ2) defined by:

• D2 is the set of monotone functions D0 −→M D1 from D0 to D1;
• v2 is the pointwise ordering;
• s ∈ γ2(d2) if and only if ∀d0 ∈ D0, s ∈ γ0(d0) =⇒ s ∈ γ1(d2(d0)).

Before we move on to post-conditions, we start with a basic numerical example.

Question 1 (Example cardinal power).

In this question, we make the following assumptions:
• S = R2 where R is the set of real numbers; thus a state may be viewed as a point (x, y) in the two-dimensional

plane;
• (D0,v0, γ0) defines the interval abstraction applied to the first component of pairs (x, y);
• (D1,v1, γ1) defines the abstract domain of finite conjunctions of linear inequalities.

Moreover, we consider the set of states S defined by:

S = {(x, y) | (x ≤ 1 ∧ y = −1

2
(1 + x)) ∨ (x ≥ 1 ∧ y = x− 2)}

1. Define formally the abstractions (D0,v0, γ0) and (D1,v1, γ1).
2. Give as precise a characterization of S as possible in the cardinal power abstract domain.
3. Does this instance of the cardinal power have a best abstraction function? Give a sufficient condition on D1 for

the cardinal power abstract domain to have a best abstraction.

1

Towards the computation of abstract post-conditions. In the following, we search for ways to define a sound
post-condition operator for cardinal power abstract domain D2 using elementary operators on D0,D1.

Question 2 (A naive definition).

As a first attempt, we propose to only assume a sound post-condition for D1 and to let:

post2(d2) = λ(d0 ∈ D0) · post1(d2(d0))

Does this operator define a sound post-condition? If so, prove it correct; otherwise, explain why using a counter
example. If it is sound, explain what short-coming it may have.

Projected post-condition operator. We now add some new assumptions, so as to define a new post-condition
operation.

Given two abstract domains D0,D1 and two elements d0, d
′
0 of D0, we call a projected post-condition operator a

function postD1[d0→d′0] such that:

∀d1 ∈ D1, ∀s ∈ γ1(d1) ∩ γ0(d0), ∀s′ ∈ γ0(d′0), s s′ =⇒ s′ ∈ γ1(postD1[d0→d′0](d1))

In the following, we make the three following assumptions:
1. we assume that D1 defines projected post-condition operators for any pair of elements of D0;
2. we assume that D0 is covering the concrete domain in the sense that

∀s ∈ S, ∃d0 ∈ D0, s ∈ γ0(d0)

3. we assume that D1 defines a sound over-approximation of unions that we assume to be commutative, associative
and defined over any family of abstract elements, so that we note it t1; moreover, we assume that it satisfies
the soundness condition below:

∀E ⊆ D1;
⋃
d1∈E

γ1(d1) ⊆ γ1(t1E)

Question 3 (A second post-condition operator proposal).

Under the above assumption, we propose:

post2(d2) = λ(d0 ∈ D0) · t1{postD1[d′0→d0](d2(d′0)) | d′0 ∈ D0}

Prove that this operator defines a sound post-condition.

Disjunctive pre-conditions. We now add two more assumptions:
• We require D0 to provide a function pre0 : D0 −→ P(P(D0)) that returns all “disjunctive pre-conditions” of any

element, in the following sense:

∀d0 ∈ D0, pre0(d0) = {D0 ⊆ D0 | ∀s ∈ γ(d0), ∀s′ ∈ S, s′ s =⇒ ∃d′0 ∈ D0, s
′ ∈ γ0(d′0)}

• Second, we require D1 to provide an operator that over-approximates intersection, and that is associative and
commutative, so that we note it u1; it should satisfy the soundness condition below:

∀E ⊆ D1;
⋂
d1∈E

γ1(d1) ⊆ γ1(u1E)

Under these assumptions, in addition to the assumptions made in the previous paragraph, we design a new operator:

Question 4 (A third post-condition operator proposal).

We propose a new abstract post-condition operator for the cardinal power

post2(d2) = λ(d0 ∈ D0) · u1{t1{postD1[d′0→d0](d2(d′0)) | d′0 ∈ D0} | D0 ∈ pre0(d0)}

2

• Prove that this operator is sound.
• Give a sufficient condition under which D2 is strictly more precise than the operator post2 of the previous

question and comment whether this assumption is commonly satisfied.
• Compare them from a computational cost point of view. Suggest how to mitigate this difference.

Question 5 (Comparison).

We compare the operators post2 and post2 based on the example abstract domain and operation shown in question 1.
Can both operators be defined? (are all the required conditions satisfied?).
Explain whether one form may be more precise than the other.

Flow sensitivity and variant as a cardinal power. During the lecture, we have seen that flow sensitivity can
be described as a cardinal power. We study the post-condition operator in this case.

We let L denote a set of control states and M a set of memory states. We assume that S = (L×M)∗ is the set of
non empty finite sequences of elements of L ×M, which denote program executions. Moreover, we let be defined
by an execution step relation (→) ⊆ (L×M)× (L×M) as:

〈(l0,m0), . . . , (ln,mn)〉 〈(l0,m0), . . . , (ln,mn), (ln+1,mn+1)〉 ⇐⇒ (ln,mn)→ (ln+1,mn+1)

Question 6 (Basic flow sensitive abstraction).

The flow insensitive abstraction maps each control state into the set of memory states that may be observed at that
point.
1. Define formally the abstractions (D0,v0, γ0) and (D1,v1, γ1) that allow to define the flow sensitive abstraction

as a cardinal power, following the above intution.
2. Following the approach from question 3, propose an operator to compute abstract post-conditions in the resulting

cardinal power abstract domain and comment on this formula.
3. Can we improve this post-condition operator using some inspiration based on question 4?

We now discuss a more elaborate abstraction that includes some information typically tracked by trace partitioning.

Question 7 (A variant of flow sensitive abstraction that records some history information).

We propose to study another abstraction which maps a pair of control states (l, l′) to the memory states observed at
l, and at the end of executions that visited l′ at some point.
1. Define formally the abstractions (D0,v0, γ0) and (D1,v1, γ1) that allow to define this abstraction as a cardinal

power.
2. Propose a post-condition operator based on question 3 and question 4, with both precision and cost in mind.

Exercise 2: Concurrent programs with weak memories

This exercise studies the abstract interpretation of multi-threaded concurrent programs executing on a multi-core
processor with a shared memory. A natural execution model, called sequential consistency, considers that the execution
of a program is an interleaving of the execution of its threads, and that a thread reads back from a shared memory
location the value stored by the previous write to this location by the last thread that wrote to this location. However,
in modern processors, due to optimizations, accesses to the shared memory are more complex: a thread may cache
a memory write into a buffer for some time before it is dispatched to the memory and becomes visible to other
threads; hence, different threads can have different views of the same shared memory location. Under these weaker
memory models, the program may exhibit more behaviors, and analyses that are only sound with respect to sequential
consistency may no longer be sound.

In this exercise, we will start by constructing a transition relation of sequentially consistent executions and a
concrete reachability semantics in equational form. Secondly, we will move on to a weaker memory model, total store
ordering, and design a sound operational semantics for this model. Thirdly, we will consider another model, partial
store ordering, and express it as an abstraction of total store ordering. Finally, we will consider further abstractions
towards effective static analyses.

3

Concurrent programs. We consider a concurrent program composed of two threads, T1 and T2.1 Each thread

Ti
def
= (Ni, ei, Ei, stmt i,Ri), for i ∈ {1, 2}, has its own control-flow graph: a set of nodes Ni, with an entry node

ei ∈ Ni, and edges Ei ⊆ Ni × stmt i × Ni that are labelled with statements in the language stmt i. Thread i has a
fixed, finite set Ri of numeric variables local to the thread that we call registers. In addition to registers, the program
has a shared memory composed of a fixed, finite set S of numeric variables. The threads are disjoint: N1 ∩ N2 = ∅,
R1 ∩R2 = ∅, ∀i : Ri ∩ S = ∅. Statements stmt i and expressions expi for thread i ∈ {1, 2} include:

stmt i ::= R← expi (assignment into register R ∈ Ri)
| expi ./ expi? (test, ./∈ {=, 6=, <,>,≤,≥})
| load(S → R) (load from shared memory S ∈ S into register R ∈ Ri)
| store(expi → S) (write to shared memory S ∈ S)

expi ::= R (register, R ∈ Ri)
| c (constant, c ∈ Z)
| expi ◦ expi (numeric operation ◦ ∈ {+,−,×})

As in the course, assignments R ← expi update register values while tests expi ./ exp′i? stop execution until the
condition is satisfied. Note that expressions expi can only contain registers from thread i, and not shared variables.
Communication with the shared memory S ∈ S is done only through explicit statements: load(S → R) to load into
a register and store(expi → S) to store the value of an expression.

Sequentially consistent execution model. A program state is a pair (`,m) ∈ Σ
def
= C × M composed of a

control state `
def
= (`1, `2) ∈ C def

= N1 ×N2 and a memory state m ∈ M def
= V → Z where V def

= S ∪ R1 ∪ R2 is
the set of all the registers and the shared variables. The execution model is that, in a given a state ((`1, `2),m) ∈ Σ, a
thread i ∈ {1, 2} is picked non-deterministcally to execute a statement s along an edge (`i, s, `

′
i) ∈ Ei, which updates

the memory m and the control state `i, leaving unchanged the control state of the other thread `j 6=i. Due to non-
determinism, it is possible for a thread to execute an arbitrary number of statements before the other thread executes.
The program starts at the entry control point (e1, e2) with all the registers and shared variables initialized to 0. In
this execution model, the shared memory behaves like regular variables. Hence load(S → R) and store(e → S) are
really regular assignments, respectively R← S and S ← e.

Question 1. Transition system.
Show how to derive a transition system τ ⊆ Σ × Σ generated from a concurrent program (T1, T2). Each transition
consists in executing one statement from a thread chosen arbitrarily.

Question 2. Concrete equational semantics.
i) Give the concrete reachability semantics SJ s K : P(M)→ P(M) of statement s ∈ stmt i as a function that, given a

set X ⊆M of memory states before the statement, provides the set of states SJ s KX reachable after the statement.
ii) Deduce an equation system over variables X` with value in P(M) for ` ∈ C that computes, in X`, the set of

memory states reachable at control point `.

Example 1. We consider as example a program with shared variables S def
= {S, T}, registers R1

def
= {X} and

R2
def
= {Y }, and control-flow graph as follows:

• T1: N1
def
= {a, b, c}, e1

def
= a, E1

def
= { (a, store(1→ S), b), (b, load(T → X), c), (c,X = 0?, a) }

• T2: N2
def
= {a′, b′, c′}, e2

def
= a′, E2

def
= { (a′, store(1→ T), b′), (b′, load(S → Y), c′), (c′, Y = 0?, a′) }

Question 3.
Give the equation system corresponding to Example 1 and solve it.
Deduce that, at the control point (c, c′), X and Y cannot be both 0.

1We consider only two threads to simplify the notations, but the method extends to a finite number of threads.

4

(S,1)

(T,42)

(T,9)

(T,12)

(T,8)

Shared memory

S = 8 T = 0

b1 b2

(S,1)

(T,42)

(T,9)

(T,12)

(T,8)

Shared memory

S = 8 T = 0

b1 b2

(S,7) (S,1)

(T,42)

(T,9)

(T,12)

(T,8)

Shared memory

S = 8 T = 0

b1 b2

42

(S,1)

(T,42)

(T,12)

(T,8)

Shared memory

S = 8 T = 9

b1 b2

T1 : store(7→ S) from (a) T1 : load(T → X) from (a) T1 : commit from (a)

(a) (b) (c) (d)

Figure 1: Total store ordering model.

Total store ordering (TSO). We now consider a more realistic memory model. Each thread Ti is equipped with

a write buffer bi ∈ B
def
= (S × Z)∗ which is a (possibly empty) finite sequence of pairs composed of a shared variable

and its value, as show in Fig. 1.(a). It behaves as a FIFO (first-in first-out) queue.

1. A store(e → S) executed by thread Ti does not access the shared memory m; instead, it adds a pair (S, v),
where v is the value of e, to its buffer bi (Fig. 1.(b)).

2. For a load(S → R), Ti first looks for the most recent pair (S, v) matching the loaded variable S in its buffer bi
and stores v into R (Fig. 1.(c)); in case there is no pair of the form (S, v) in bi, the thread reads the value of the
variable from the shared memory m(S) and stores it into R (as in the classic semantics).

3. Independently from the execution of the threads, the oldest pair (S, v) of any buffer bi, i ∈ {1, 2} can be
committed into the shared memory: the pair is removed from bi and the memory m is replaced with m[S 7→ v]
(Fig. 1.(d)). This process happens in parallel to the execution of the threads, and there might be an arbitrary
(possibly null) number of commits from b1 and from b2 between the execution of two thread statements.

To model this, we enrich the memory stateM with two buffers and define: MTSO
def
= M×B×B, while the control

state C remains intact. The reachability semantics is now an operator STSOJ s K : P(MTSO)→ P(MTSO).

Question 4.
i) Give the new semantic operators STSOJ store(e→ S) K and STSOJ load(S → R) K .

ii) Give the semantics STSOJ commit K corresponding to a single commit.
iii) Show how to derive a new equational semantics over variables X`, ` ∈ C, with value in P(MTSO), that takes into

account the semantics of commits.
iv) Give the reachable memory states for Example 1. Is it still true that X and Y cannot be both 0 at control point

(c, c′)?

Memory barriers. To avoid the effect of write buffers, processors offer memory barrier operations. We add to our
language a fence statement with the following semantics: the thread executing fence is blocked until its write buffer
is fully committed (i.e., become empty).

Question 5.
i) Give the concrete semantics of memory barriers STSOJ fence K .

ii) Show that, in Example 1, if we insert a fence statement just after both store(1 → S) and store(1 → T)
statements, then we retrieve the property that X and Y cannot be both 0 at control point (c, c′).

5

Partial store ordering (PSO). The previous memory model can be further relaxed by forgetting in write buffers
the order between pairs (S, v) and (S′, v′) for different variables S 6= S′, while the order between pairs (S, v) and
(S, v′) on the same variable is maintained. We propose a new semantics which replaces, for each thread, its buffer

bi ∈ B
def
= (S ×Z)∗ with a per-variable buffer bi ∈ B

def
= S → Z∗, associating to each variable a list of values. MTSO

is replaced with MPSO
def
= M×B × B.

Question 6. Galois connection.

i) Give a Galois insertion P(MTSO) −−−→−→←−−−−
α

γ
P(MPSO) between the two semantic domains (prove that it is a Galois

insertion).
ii) Justify the claim that the abstraction indeed corresponds to forgetting the order of pairs over different variables.

Question 7. Abstract semantics.
i) Show how to derive the PSO semantics SPSOJ store(e → S) K , SPSOJ load(S → R) K , SPSOJ commit K , and

SPSOJ fence K from the TSO semantics by abstraction.
ii) Give an example of statement with a non-exact abstraction in PSO.

iii) Does this abstraction change the result of the semantics of Example 1 without the fences? of Example 1 with
fences added (Question 5)?

Uniform buffer abstraction. We wish to analyze our programs in PSO semantics using a non-relational domain
such as the interval domain. However, numeric domains only abstract a finite number of variables, while elements in
(m, b1, b2) ∈ MPSO have an unbounded number of integer values as each buffer bi(V) can have an arbitrary size. To
solve this problem, we will maintain only one piece of information per buffer. We consider a uniform, non-relational

abstract domain DU
def
= VU → P(Z) with VU

def
= R1 ∪ R2 ∪ {S, S1, S2 | S ∈ S }: ρ ∈ DU maintains a set of values

ρ(R) for each register R ∈ R1 ∪R2 and ρ(S) for each shared variable S ∈ S; while ρ(S1) and ρ(S2) denote the set of
possible values in the buffer associated to variable S in, respectively, thread 1 and thread 2.

Question 8. Galois connection.

Give a Galois connection P(MPSO) −−−→←−−−α
γ
DU between P(MPSO) and DU (prove that it is a Galois connection).

Discuss carefully the abstraction of states containing empty buffers, and the definition of γ(x) when x(V) = ∅ for some
V ∈ VU .
Is it a Galois insertion? (justify your answer).

Question 9. Abstract semantics.
i) Give a sound abstract semantics in DU for SU J store(e→ S) K , SU J load(S → R) K , SU J commit K , SU J fence K .

ii) Give a sound abstraction in DU of the union ∪ and the intersection ∩ and explain how the intersection differs
from the one we saw in the course for non-relational domains (give an example).

iii) Is DU sufficiently precise to handle Example 1 (with or without fences)?

It would now be a simple matter to replace, in DU , P(Z) with a non-relational domain basis, such as intervals, to
obtain an effective analysis. We will not pursue this avenue further.

Improving the precision. Consider a thread that executes store(1 → S); store(2 → S); load(S → X) while the
other thread does not write into S. Then, under the PSO semantics, X will equal 2.

Question 10.
i) Show that the uniform semantics in DU loses precision on this example.

ii) Show how to recover the lost precision by abstracting separately, in each buffer, the element added by the last store
from the elements added by previous stores. You will provide the new abstract domain, its Galois connection, and
sound operators for store(e→ S), load(S → R), commit, and fence.

6

