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Formal Verification: Motivation

A classic example: Ariane 5, Flight 501

Maiden flight of the Ariane 5 Launcher, 4 June 1996.
Cost of failure estimated at more than 370 000 000 US$1

1M. Dowson. ”The Ariane 5 Software Failure”. Software Engineering Notes 22 (2): 84, March 1997.
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Formal Verification: Motivation

Cause of Ariane 5 failure

Cause: software error2

arithmetic overflow in unprotected data conversion
from 64-bit float to 16-bit integer types3

P M DERIVE(T ALG.E BH) :=
UC 16S EN 16NS (TDB.T ENTIER 16S

((1.0/C M LSB BH) * G M INFO DERIVE(T ALG.E BH)));

software exception not caught
=⇒ computer switched off
all backup computers run the same software
=⇒ all computers switched off, no guidance
=⇒ rocket self-destructs

A “simple” error. . .

2J.-L. Lions et al., Ariane 501 Inquiry Board report.
3J.-J. Levy. Un petit bogue, un grand boum. Séminaire du Département d’informatique de l’ENS, 2010.
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Formal Verification: Motivation

How can we avoid such failures?

Choose a safe programming language.
C (low level) / Ada, Java, OCaml (high level)
yet, Ariane 5 software is written in Ada

Carefully design the software.
many software development methods exist
yet, critical embedded software follow strict development processes

Test the software extensively.
yet, the erroneous code was well tested. . . on Ariane 4

=⇒ not sufficient!

We should use formal methods.
provide rigorous, mathematical insurance of correctness
may not prove everything, but give a precise notion of what is proved

This case triggered the first large scale static code analysis
(PolySpace Verifier, using abstract interpretation)
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Formal Verification: Motivation

Verification: compromises
Undecidability: correctness properties are undecidable!
cannot build a program that automatically and precisely separates all correct programs from
all incorrect ones

Compromises:
lose automation, completeness, soundness, or generality

Test: complete and automatic, but unsound
Theorem proving

proof essentially manual, but checked automatically
powerful, but very steep learning curve

Deductive methods
automated proofs for some logic fragments (SAT, SMT)
still requires program annotations (contracts, invariants)

Model checking
check a (often hand-crafted) model of the program
finite or regular models, expressive properties (LTL)
automatic and complete (wrt. model)

Static analysis (next slide)
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Formal Verification: Motivation

Verification by static analysis

source

int search(int* t, int n) {
int i;
for (i=0; i<n; i++) {

if (t[i]) break;
}
return t[i];

}

=⇒

analysis result

int search(int* t, int n) {
int i;
for (i=0; i<n; i++) {

// 0 ≤ i < n
if (t[i]) break; 3

}
// 0 ≤ i ≤ n ∨ n < 0
return t[i]; 7

}

work directly on the source code
infer properties on program executions
automatically (cost effective)

construct dynamically a semantic abstraction of the program
deduce program correctness or raise alarms
(implicit specification: absence of RTE; or user-defined properties: contracts)

with approximations (incomplete: efficient, but possible false alarms)

soundly (no false positive)
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Formal Verification: Motivation

Verification in practice: Example of avionics software
Critical avionics software is subject to certification:

more than half the development cost
regulated by international standards (DO-178B, DO-178C)

mostly based on massive test campaigns & intellectual reviews

Current trend:
use of formal methods now acknowledged (DO-178C, DO-333)

at the binary level, to replace testing
at the source level, to replace intellectual reviews
at the source level, to replace testing
provided the correspondence with the binary is also certified

=⇒ formal methods can improve cost-effectiveness!

Caveat: soundness is required by DO standards
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Formal Verification: Motivation

Verification in practice: Formal verification at Airbus
Program proofs: deductive methods

functional properties of small sequential C codes
replace unit testing
not fully automatic
Caveat / Frama-C tool (CEA)

Sound static analysis:
fully automated on large applications, non functional properties
worst-case execution time and stack usage, on binary
aiT, StackAnalyzer (AbsInt)
absence of run-time error, on sequential C code
Astrée analyzer (AbsInt)

Certified compilation:
allows source-level analysis to certify sequential binary code
CompCert C compiler, certified in Coq (INRIA)
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Formal Verification: Motivation

Another example bug: Heartbleed

Vulnerability in OpenSSL cryptographic library
all versions from 2012 to 2014
OpenSSL is used 66% of WEB servers for https
(also : email encryption, VPN, etc.)

Cause : buffer overflow in “heartbeat” protocol.
Consequence :4

leak of private information, such as private keys
no way to actually know what has been extracted
=⇒ need to renew all keys after correcting the bug !
very high economic cost !

4
http://heartbleed.com

Course 0 Introduction Antoine Miné p. 10 / 39
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Formal Verification: Motivation

Improving software quality

Study from Consortium for Information & Software Quality:5

$607 billions spent finding and fixing bugs
$1.56 trillon cost for software failure
just for 2020 in the US !

=⇒ even non-critical domains could use formal methods!

5Herb Krasner. The cost of poor software quality in the US: A 2020 report.
https://www.it-cisq.org/pdf/CPSQ-2020-report.pdf, 2021. Accessed: 2021-08.
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Overview of abstract interpretation

Abstract interpretation

Patrick Cousot6

General theory of the approximation and comparison
of program semantics:

unifies existing semantics
guides the design of static analyses
that are correct by construction

6P. Cousot. ”Méthodes itératives de construction et d’approximation de points fixes d’opérateurs monotones sur un
treillis, analyse sémantique des programmes.” Thèse És Sciences Mathématiques, 1978.
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Overview of abstract interpretation

Concrete collecting semantics
(S0)
assume X in [0,1000];
(S1)
I := 0;
(S2)
while (S3) I < X do

(S4)
I := I + 2;
(S5)

(S6)
program
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Overview of abstract interpretation

Concrete collecting semantics
(S0)
assume X in [0,1000];
(S1)
I := 0;
(S2)
while (S3) I < X do

(S4)
I := I + 2;
(S5)

(S6)

Si ∈ D = P({I, X} → Z)
S0 = { (i , x) | i , x ∈ Z } = >
S1 = { (i , x) ∈ S0 | x ∈ [0, 1000] } = F1(S0)
S2 = { (0, x) | ∃i , (i , x) ∈ S1 } = F2(S1)
S3 = S2 ∪ S5
S4 = { (i , x) ∈ S3 | i < x } = F4(S3)
S5 = { (i + 2, x) | (i , x) ∈ S4 } = F5(S4)
S6 = { (i , x) ∈ S3 | i ≥ x } = F6(S3)

program semantics

Concrete semantics Si ∈ D = P({I, X} → Z):
strongest program properties (inductive invariants)

set of reachable environments, at each program point
smallest solution of a system of equations
well-defined solution, but not computable in general
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Overview of abstract interpretation

Abstracting
Principle: be tractable by reasoning at an abstract level

concrete executions : {(0, 3), (5.5, 0), (12, 7), . . .} (not computable)
box domain : X ∈ [0, 12] ∧ Y ∈ [0, 8] (linear cost)
polyhedra domain : 6X + 11Y ≥ 33 ∧ · · · (exponential cost)

many abstractions: trade-off cost vs. precision and expressiveness
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Overview of abstract interpretation

Abstracting
Principle: be tractable by reasoning at an abstract level

concrete executions : {(0, 3), (5.5, 0), (12, 7), . . .} (not computable)
box domain : X ∈ [0, 12] ∧ Y ∈ [0, 8] (linear cost)
polyhedra domain : 6X + 11Y ≥ 33 ∧ · · · (exponential cost)

many abstractions: trade-off cost vs. precision and expressiveness

Course 0 Introduction Antoine Miné p. 15 / 39



Overview of abstract interpretation

From concrete to abstract semantics
(S0)
assume X in [0,1000];
(S1)
I := 0;
(S2)
while (S3) I < X do

(S4)
I := I + 2;
(S5)

(S6)

Si ∈ D
def= P({I, X} → Z)

S0 = { (i , x) | i , x ∈ Z }
S1 = J X ∈ [0, 1000] K (S0)
S2 = J I ← 0 K (S1)
S3 = S2 ∪ S5
S4 = J I < X K (S3)
S5 = J I ← I + 2 K (S4)
S6 = J I ≥ X K (S3)

program concrete semantics

Concrete semantics Si ∈ D = P({I, X} → Z):
J X ∈ [0, 1000] K , J I ← 0 K , etc. are transfer functions
strongest program properties
set of reachable environments, at each program point
not computable in general
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Overview of abstract interpretation

From concrete to abstract semantics
(S0)
assume X in [0,1000];
(S1)
I := 0;
(S2)
while (S3) I < X do

(S4)
I := I + 2;
(S5)

(S6)

S]
i ∈ D]

S]
0 = >]

S]
1 = J X ∈ [0, 1000] K ](S]

0)
S]

2 = J I ← 0 K ](S]
1)

S]
3 = S]

2 ∪] S]
5

S]
4 = J I < X K ](S]

3)
S]

5 = J I ← I + 2 K ](S]
4)

S]
6 = J I ≥ X K ](S]

3)

program abstract semantics

Abstract semantics S]i ∈ D]:
D] is a subset of properties of interest
semantic choice + a machine representation

F ] : D] → D] over-approximates the effect of F : D → D in D]
with effective algorithms
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Overview of abstract interpretation

Abstract operator examples

In the polyhedra domain:

• Abstract assignment
J X ← X + 1 K ]

translation (exact)

• Abstract union
∪]
convex hull (approximate)

• Solving the equation system
by iteration
using extrapolation to terminate
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Overview of abstract interpretation

Soundness and false alarms

⇐=
S

P

A

P ⊆ S A ⊆ S
program proved

Goal : prove that a program P satisfies its specification S
We collect the reachable states P and compare to S
A polyhedral abstraction A can prove the correctness

A box abstraction cannot prove the correctness
=⇒ false alarm
(especially since the analysis may not output the tightest box / polyhedron!)

The analaysis is sound: no false negative reported!
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Overview of abstract interpretation

Soundness and false alarms
S

P

6⇐=
S

P

A

P 6⊆ S A ⊆ S
false negative
cannot occur

Goal : prove that a program P satisfies its specification S
We collect the reachable states P and compare to S
A polyhedral abstraction A can prove the correctness
A box abstraction cannot prove the correctness
=⇒ false alarm
(especially since the analysis may not output the tightest box / polyhedron!)

The analaysis is sound: no false negative reported!
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Overview of abstract interpretation

Getting it right: eBPF example

eBPF:
a virtual machine inside the Linux kernel
can run arbitrary code in kernel mode
very low-level, can perform arbitrary pointer arithmetic
run sandboxed to protect agains bugs and attacks

In theory :
a static analysis checks bytecode safety before execution
includes an interval analysis for pointers
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Overview of abstract interpretation

Getting it not right: eBPF example

Bound computation for bit-shift >>:7

case BPF_RSH:
if (min_val < 0 || dst_reg->min_value < 0)

dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
else

dst_reg->min_value = (u64)(dst_reg->min_value) >> min_val;
if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)

dst_reg->max_value >>= max_val;
break;

Due to large amount of bugs in the static analysis,
a dynamic analysis has been added. . .
which exploits results from by the static analysis. . .

7
https://www.zerodayinitiative.com/blog/2021/1/18/

zdi-20-1440-an-incorrect-calculation-bug-in-the-linux-kernel-ebpf-verifier
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Example tools
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Example tools

Astrée
Astrée: developed at ENS & INRIA by P. Cousot & al.

analyzes embedded critical C software
subset of C, no memory allocation, no recursivity → simpler semantics

checks for run-time errors
arithmetic overflows, array overflows, divisions by 0, pointer errors, etc. →
non-functional

specialized for control / command software
with zero false alarm goal
application domain specific abstractions

Airbus A380

2001–2004: academic success
proof of absence of RTE
on flight command

2009: industrialization
AbsInt
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Example tools

Infer.AI

Infer: http://fbinfer.com/

developed at Facebook (team formerly at Monoidics)

Infer.AI is an analysis framework based on abstract interpretation
open-source since 2015
analyzes Java, C, C++, and Objective-C
checks ThreadSafety (Java), Initalisation Order (C++), etc.
modular, bottom-up interprocedural analysis
targets the analysis of merge requests (small bits at a time)

favors speed over soundness
pragmatic choices, based on “what engineers want”
no requirements for certification, unlike the avionics industry. . .

used in production
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Example tools

Frama-C

Frama-C: https://frama-c.com/

developed at CEA
open-source
analyzes C
combines abstract interpretation and deductive methods
has a specification language (ACSL) for functional verification
used in industrial applications
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Example tools

Research project : MOPSA
Modular Open Platform For Static Analysis
developed at Sorbonne University : https://mopsa.lip6.fr/
An abstract interpreter prototype tool for research and education

extendable to new properties and new languages
help developing, reusing, combining abstractions
open-source : https://gitlab.com/mopsa/mopsa-analyzer

Currently available: (but not fully scalable)
C analysis for run-time error detection
Python analysis

On-going research:
patch and portability analysis for C
analyze programs mixing C and Python
analysis of smart-contracts
internship possible !
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Course organisation

Teaching team

Caterina Urban Jérôme Feret

Antoine Miné Xavier Rival
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Course organisation

Syllabus and exams

https://www-apr.lip6.fr/˜mine/enseignement/mpri/2021-2022

Visit regularly for:
latest information on course dates
course material
course assignments
internship proposals

Exams:
50%: written mid-term exam (3h)

50%: oral final exam
(read a scientific article, present it, answer questions)
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Course organisation

Course material

Links available on the web-page:
main material: slides

course notes
cover mainly foundations and numeric abstract domains
based on:
A. Miné. Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation.
In Foundations and Trends in Programming Languages, 4(3–4), 120–372. Now
Publishers.

recommended reading on theory and applications:
J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, X. Rival. Static
analysis and verification of aerospace software by abstract interpretation. In Foundations
and Trends in Programming Languages, 2(2–3), 71–190, 2015. Now Publishers.
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Course organisation

Course assignments (self-evaluation)

On the web page, highly recommended homework
exercises: prove a theorem, solve a former exam, etc.
reading assignments: an article related to the course
experiments: use a tool

Also:
previous exams, with correction
example programming project
(abstract interpreter for a toy language in OCaml)

Principle: self-evaluation
No credit.
Not corrected by teachers.
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Course organisation

Course plan (1/8)

Foundations of abstract interpretation: (courses 1 & 2)

mathematical background: order theory and fixpoints
formalization of abstraction, soundness
program semantics and program properties
hierarchy of collecting semantics

c

γ(a)

α(c)

a

≤ ⊑

γ

α

C A
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Course organisation

Course plan (2/8)
Bricks of abstraction: numerical domains

simple domains

x

y

Intervals
x ∈ [a, b]

x

y

Congruences
x ∈ aZ + b

relational domains

x

y

Octagons
±x ± y ≤ c

x

y

Polyhedra∑
i αi xi ≤ β

specific domains

x

y

Ellipsoids
digital filters

t

y

Exponentials
rounding errors
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Course organisation

Course plan (3/8)

Bricks of abstraction: memory abstractions

beyond numeric: reason on arrays, lists, trees, graphs, . . .
challenges: variety of structures, destructive updates
logical tools:

separation logics (a logic tailored for describing memory)
parametric three valued logics (representing arbitrary graphs)

abstract domains based on these logics

concrete:
&t 0x. . .

0x. . .

24

0x. . .

22

0x0

64

abstract: =&t
24

next

data

list
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Course organisation

Course plan (4/8)

Bricks of abstraction: partitioning abstractions

most abstract domains are not distributive
=⇒ reasoning over disjunctions loses precision
first solution: add disjunctions to any abstract domain
=⇒ expressive but costly
second solution: partitioning
conjunctions of implications as logical predicates
(partitioning may be based on many semantic criteria)

P1

P2

P3

P4

P5

loss of precision partitioning
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Course organisation

Course plan (5/8)
Analyses: abstract interpretation for liveness properties

beyond safety (e.g., absence of errors)
we prove that programs (eventually) do something good

abstract domains to reason about program termination
inference of ranking functions

generalization to other liveness properties
(e.g., expressed in CTL)
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Course organisation

Course plan (6/8)

Analyses: static analysis of neural networks

verification of local robustness against adversarial examples

fairness certification
(special case of global robustness verification)

verification of functional properties
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Course organisation

Course plan (7/8)

Analyses: analysis of mobile systems
dynamic creation of components and links
analyze the links between components

distinguish between recursive components
abstractions as sets of words

bound the number of components
using numeric relations
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Course organisation

Course plan (8/8)

Analyses: static analysis for security
challenge: security properties are diverse
from information leakage to unwanted execution of malicious code
and more complex than safety and liveness
the framework of hyperproperties can express security
apply abstract interpretation to reason over non-interference
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Course organisation

Internship proposals

Possibility of Master 2 internships at ENS or Sorbonne Université.

Example topics:

Automatic inference of input data assumptions
Fairness certification of machine-learned software
Static analysis of functional languages
Inferring counter-examples through static analysis
Static analysis of medical data processing software
Static analysis for lock-free data structures
Static analysis for consensus algorithms
. . .

Formal proposals will be available on the course page
and discussed during the courses
also: discuss with your teachers for tailor-made subjects.
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