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Introduction

Concurrent programming

Decompose a program into a set of (loosely) interacting processes.

@ exploit parallelism in current computers
(multi-processors, multi-cores, hyper-threading)

“Free lunch is over” (change in Moore's law, X2 transistors every 2 years)
@ exploit several computers (distributed computing)

@ ease of programming (GUI, network code, reactive programs)

But concurrent programs are hard to program and hard to verify:

@ combinatorial exposition of execution paths (interleavings)
@ errors lurking in hard-to-find corner cases (race conditions)

@ unintuitive execution models (weak memory consistency)
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Introduction

Scope

In this course:  static thread model
@ implicit communication through shared memory
@ explicit communication through synchronisation primitives
o fixed number of threads (no dynamic creation of threads)

@ numeric programs (real-valued variables)

Goal: static analysis

infer numeric program invariants
parameterized by a choice of numeric abstract domains

discover run-time errors (e.g., divisions by 0)

(]
(*]
@ discover data-races (unprotected accesses by concurrent threads)
o discover deadlocks (some threads block each other indefinitely)
*]

application to analyzing embedded C programs
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Introduction

Outline

@ Simple concurrent language

Non-modular concurrent semantics

Simple interference thread-modular concurrent semantics

o Abstract rely-guarantee thread-modular concurrent semantics

Application : the AstréeA analyzer
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Language and semantics

Language and semantics
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Language and semantics Syntax

Structured numeric language

o finite set of (toplevel) threads: stmt; to stmt,
o finite set of numeric program variables V € V
o finite set of statement locations / € L

@ locations with possible run-time errors w € Q (divisions by zero)

prog = Zstmtlg || ce || gStmth (parallel composition)
‘stmt’ = vy« eng (assignment)

| ‘if exp < 0 then ‘stmt’ £if (conditional)

| ‘while ‘exp >0 do ‘stmt’ done’ (loop)

| Zstmt; ‘stmt! (sequence)
exp n= V|[c,c]| —exp|expoexp
c, ERU{+00,—0}, o€ {+,—,%,/u}, xe{=,<,...}

V.
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Language and semantics Trace-based semantic model

Multi-thread execution model

ty ‘ (5]
‘1 while random do | * while random do
2 if x < y then % if y < 100 then
Bx ¢ x+1 ©y « y+ [1,3]

Execution model:

@ finite number of threads
@ the memory is shared (x,y)
@ each thread has its own program counter

@ execution interleaves steps from threads t; and t,

assignments and tests are assumed to be atomic

= we have the global invariant 0 < x < y <102
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Language and semantics Trace-based semantic model

Semantic model: labelled transition systems

simple extension of transition systems

Labelled transition system: (X, A, 7,7)

@ X: set of program states

o A: set of actions

o 7 C Y x Ax X: transition relation we note (¢,a,0") € 7 as o >, o
e 7 C Y. initial states

Labelled traces: sequences of states interspersed with actions

denoted as oy x o1 . o On+1

T is omitted on — for traces for simplicity
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Language and semantics Trace-based semantic model

From concurrent programs to labelled transition systems

o given: prog = ‘istmt || -+ || “stmt, "

o threads are numbered: T < {1,...,n}

Program states: ¥ & (T — L) x &

@ a control state L(t) € L for each thread t € T and

@ a single shared memory state p € £ Lvoz

Initial states:

threads start at their first control point ¢/, variables are set to 0:

T = {(At.li, A\V.0)}

Actions: actions are thread identifiers: A & T
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Language and semantics Trace-based semantic model

From concurrent programs to labelled transition systems

Transition relation: 7CY xAXx X

<L7 p>$7< LI: pl> <Lif> <L(t)7 p>_>‘r[stmtt]< L/(t)7 pl> A
Vu # t: L(u) = L'(u)

@ based on the transition relation of individual threads seen as
sequential processes stmts: 7[stmty] C (L x &) x (L x E)

o choose a thread t to run
o update p and L(t)
o leave L(u) intact for u # t

see course 2 for the full definition of T[stmt]

e each transition 0 —[stnt,] o’ leads to many transitions — !
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Language and semantics Trace-based semantic model

Interleaved trace semantics

Maximal and finite prefix trace semantics are as before:

t
Blocking states: B = {o|Vo':Vt:0 /A o'}

Maximal traces: M, (finite or infinite)

def t th— i ti
Moo = {003-~~ n—>10,,|n20/\0061/\0nEBAVI<n:a;—>TJ;+1}U
t t
{00%001..4 [n>0A00 €ETAYIi <w:oi =+ 041}

Finite prefix traces: 7,

o th . i
Tp d:f{aog--~ —>la,,]n20/\00EI/\V/<n:U,~i>TU;+1}

Tp = lfp Fp where
tn_
FP(X):IU{UO3~~~ian+1\n20/\o‘og~- —)lUHEXAUniTUn+1}
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Language and semantics Trace-based semantic model

Fairness

Fairness conditions: avoid threads being denied to run forever

Given enabled(o,t) <% 3o’ € X0 5, o

. s 1 t) .
an infinite trace o9 — -0y -3 -+ - is:
@ weakly fair if Vt € T:
3i:Vj > i:enabled(oj,t) = Vi:3j>iaj=t
no thread can be continuously enabled without running

@ strongly fair if Vt € T:
Vi:3j > i:enabled(oj,t) = Vi:3j > iaj =t

no thread can be infinitely often enabled without running

Proofs under fairness conditions  given:

@ the maximal traces M, of a program

@ a property X to prove (as a set of traces)

o the set F of all (weakly or strongly) fair and of finite traces
= prove M, N F C X instead of My, C X
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Language and semantics Trace-based semantic model

Fairness (cont.)

Example: while x >0 do x <—x+1 done || x < —2
@ may not terminate without fairness

@ always terminates under weak and strong fairness

Finite prefix trace abstraction

Mo N F C X is abstracted into testing c<(Moo N F) C au<(X)
for all fairness conditions F, cau<(Moo N F) = ae<(Moo) = Tp

recall that o, <(T) def {teX*|3ue T:t <X u} is the finite prefix abstraction
and T = o, < (M)

—> fairness-dependent properties cannot be proved with finite prefixes only

In the following, we ignore fairness conditions J

Course 6 Thread-Modular Analysis of Concurrent Programs Antoine Miné

p.13 /75



Language and semantics Trace-based semantic model

Reachability semantics for concurrent programs

Reminder : Reachable state semantics: R € P(X)

Reachable states in any execution:
R < {o]| 3n>0,00,...,00
oo €L, Vi< ndteT: o; N oiriNo=op}

R = Ifp Fr where Fr(X)=ZU{o|30' € X,t e T:0’ 5, 0}

Can prove (non-)reachability, but not ordering, termination, liveness
and cannot exploit fairness.

Abstraction of the finite trace semantics.

def

R = ap(Tp) where ap(X) = {o|3n20,aog~-‘an €EXio=on}
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Language and semantics Reminders: sequential semantics

Reminders: sequential semantics
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Language and semantics

Reminders: sequential semantics

Equational state semantics of sequential program

@ see Ifp f as the least solution of an equation x = f(x)
@ partition states by control: P(L x &) ~ L — P(E)

Xy € P(E): invariant at £ € L

def

Ve l: Xy ={me&|(l,m)eR}

— set of recursive equations on X}

Example:

Course 6

4
4

i 2
2
n < [—o0, +00];
Bori1e
while © i < n do
©if [0,1] =0 then
Cieit
fi
ﬂdone
[8

X1 =171

XQZC[[i(—Z]]Xl

X3 = C[n <+ [—o0,+00] | X2
Xy = X3 U X

X5:C|II'< n]]X4

Xe = Xs
X7:X5UC[[I'<—/+1]]X6
Xg=C[i>n]Xs
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Language and semantics Reminders: sequential semantics

Denotational state semantics

Alternate view as an input-output state function C[ stmt

Clstmt] : P(E) — P(E)

def

C[X «+ e]R {pIX—vVv]|peR,veE[e]p}

ClexO0] R {peR|3veE[e]p:vx0}

Clif exaOthensfi]R & (C[s] oC[ex=0])RUC[e 0] R

Clsi; 2] L C[s2] oC[s1]

C[while exiOdo sdone] R & Clept 0] (IfpAY.RU(C[s] o C[e=0])Y)

def

@ mutate memory states in £
@ structured: nested loops yield nested fixpoints
@ big-step: forget information on intermediate locations /¢

@ mimics an actual interpreter
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Language and semantics Reminders: sequential semantics

Equational vs. denotational form

Equational: Denotational:

i=0;
while (i < nb)
{
alil =12;
i++;
}
def

C[while c do bdone] X =
§ 7£2§§1§ C[-c](fpAY.XUC[b](C[c]Y))
3=l Clif cthent£i] X &
Xy = F4(X37X4) IIC[[t]] (CHCHX)HU CII_'C]]X

@ linear memory in program length @ linear memory in program depth

o flexible solving strategy o fixed iteration strategy

flexible context sensitivity fixed context sensitivity
(follows the program structure)
@ easy to adapt to concurrency,
using a product of CFG @ no inductive definition of the product

—> thread-modular analysis
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Language and semantics Non-modular concurrent semantics

Non-modular concurrent semantics
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Language and semantics Non-modular concurrent semantics

Equational concurrent state semantics

Equational form:

o foreach L € T — L, a variable X; with value in £

@ equations are derived from thread equations eg(stmt;) as:
XLI = UtET{ F(XLzz o 7XLN) |
H(Xgl = F(XZp ey XZN)) € eq(stmtt):
Vi < N:Li(t) =4, Vu # t: Li(u) = Li(v) }
Join with U equations from eq(stmt;) updating a single thread t € T.

(see course 2 for the full definition of eq(stmt))
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Language and semantics Non-modular concurrent semantics

Equational state semantics (illustration)

88

N

@ control state = tuple of program points
— combinatorial explosion of abstract states

RR 55
/8\

Product of control-flow graphs:

e transfer functions are duplicated
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Language and semantics Non-modular concurrent semantics

Equational state semantics (example)

Example: inferring 0 < x < y <102

ty | (%3
1 yhile random do | ** while random do
2 if x < y then  if y < 100 then
Bx¢x+1 %y« y+ [1,3]

Equation system:
Xi4=1
X2’4 = X174 @]} C[[X > y]]Xg,4 @] C|IX — X+ 1]] X374
X34 = C[[X < y]] Row
X175 = X1’4 @] C[[y > 100ﬂ le5 U C[[y —y+ [1,3”]le5
X2’5 = X175 @] C[[X > y]]Xg,g, @] ClIX (—X+1]]X3,5 @]
Ao 4 U ClIy > 100]] Ao 5 U ClIy —y+ [173]]]X2,6
A5 = C[[X < y]] Aos U A3 4 U C[[y > 100]] Az 5 U C[[y —y+ [173]]]-)(3,6
X1,6 = C[[y < 100]] XI,S
X276 = X175 @]} C[[X > y]]XQ,G @] C|IX — X+ 1]] X3’6 @]} C[[y < 100]].)(2’5
X3 =C[x<y]XosUC[y <100] X35
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Language and semantics Non-modular concurrent semantics

Equational state semantics (example)

Example: inferring 0 < x < y <102

t1 | tr
1 yhile random do | ** while random do
2 if x < y then 5 if y < 100 then
B x e x+1 Z6y<—y+[1,3]

Pros:
@ easy to construct
o easy to further abstract in an abstract domain &F

Cons:
@ explosion of the number of variables and equations
@ explosion of the size of equations
— efficiency issues

@ the equation system does not reflect the program structure
(not defined by induction on the concurrent program)
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Language and semantics Non-modular concurrent semantics

Wish-list

We would like to:

o keep information attached to syntactic program locations
(control points in £, not control point tuples in T — L)

@ be able to abstract away control information
(precision/cost trade-off control)

@ avoid duplicating thread instructions
@ have a computation structure based on the program syntax

(denotational style)

Ideally: thread-modular denotational-style semantics

analyze each thread independently by induction on its syntax

but remain sound with respect to all interleavings !
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Simple interference semantics

Simple interference semantics
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Simple interference semantics Intuition

Thread-modular analysis with simple interferences

while (i < nb) while (i < nb)
{
alil - alil ++;
i++; i++;
} }

Principle:

@ analyze each thread in isolation
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Simple interference semantics Intuition

Thread-modular analysis with simple interferences

while (i < nb) while (i < nb)
{
ali] --; ali] ++;
i++; i++;
} }

“reer

Principle:
@ analyze each thread in isolation

@ gather the values written into each variable by each thread
— so-called interferences

suitably abstracted in an abstract domain, such as intervals
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Simple interference semantics Intuition

Thread-modular analysis with simple interferences

0;

while (i < nb)

0;

while (i < nb)

afil -
i++;

afil ++;
i++;

} }

Principle:
@ analyze each thread in isolation

@ gather the values written into each variable by each thread
— so-called interferences

suitably abstracted in an abstract domain, such as intervals

@ reanalyze threads, injecting these values at each read
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Simple interference semantics Intuition

Thread-modular analysis with simple interferences

i=0;
while (i < nb)

i=0;

while (i < nb)
alil -
i++;

ali] ++;
i++;

} }

Principle:
@ analyze each thread in isolation

@ gather the values written into each variable by each thread
— so-called interferences

suitably abstracted in an abstract domain, such as intervals
@ reanalyze threads, injecting these values at each read

@ iterate until stabilization while widening interferences
= one more level of fixpoint iteration
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Simple interference semantics Intuition

Example

1 yhile random do  while random do
2 if x < y then % if y < 100 then
B xex+1 ©y+—y+[1,3]
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Simple interference semantics Intuition

Example

1 yhile random do  while random do
2 if x < y then % if y < 100 then
B xex+1 ©y«—y+1]1,3]

Analysis of t; in isolation

:x=y=0 =1
Eix=y=0 XA=XUC[x+x+1]XUC[x>y]AX
(3): L X =C[x<y]X
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Simple interference semantics Intuition

Example

1 yhile random do  while random do
2 if x < y then % if y < 100 then
B xex+1 ©y«—y+1]1,3]

Analysis of t» in isolation

(4)

X
(5): x
X

0,y €[0,102] Xs=XUC[y <+ y+[1,3]]XUC[y>100] A5
=0, y €[0,99] Xe=C[y <100] X5

output interferences: y < [1,102]
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Simple interference semantics Intuition

Example

1 yhile random do  while random do
2 if x < y then % if y < 100 then
B xex+1 ©y«—y+1]1,3]

Re-analysis of t; with interferences from t»

input interferences: y <« [1,102]

1:x=y=0 X =1

(2):x €1[0,102], y=0 Xo =X, UC[x +x+1]X5UC[x > (y|[1,102])] &>
@3):x€1[0,102], y=0 A3 =C[x < (y]|[1,102])] x>

output interferences: x < [1,102]

subsequent re-analyses are identical (fixpoint reached)
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Simple interference semantics Intuition

Example

‘1 while random do * yhile random do
2 if x < y then % if y < 100 then
B xex+1 ©y«—y+1]1,3]

Derived abstract analysis:

@ similar to a sequential program analysis, but iterated
can be parameterized by arbitrary abstract domains

o efficient few reanalyses are required in practice

@ interferences are non-relational and flow-insensitive
limit inherited from the concrete semantics
Limitation:
we get x,y € [0,102]; we don't get that x < y
simplistic view of thread interferences (volatile variables)
based on an incomplete concrete semantics (we'll fix that later)
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Simple interference semantics Formalizing the simple interference semantics

Formalizing the simple interference semantics

Course 6 Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 27 /75



Simple interference semantics Formalizing the simple interference semantics

Denotational semantics with interferences

. def
Interferencesin | = T xV xR

(t, X, v) means that t can store the value v into the variable X

We define the analysis of a thread t
with respect to a set of interferences / C I.

Expressions : E¢[exp] : € x P(I) = P(R) x P(Q) for thread t
@ add interference | € 1, as input
@ add error information w € €2 as output

locations of / operators that can cause a division by 0

Example:

@ Apply interferences to read variables:
def

EfXD(p 1) = {p(X)}U{v|Tust:(u X, v)el}, )
@ Pass recursively | down to sub-expressions:

Ef—el(p 1) ©let (V, 0)=Efe](p [)in{({-v|veV}, O)
@ etc.
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Simple interference semantics Formalizing the simple interference semantics

Denotational semantics with interferences (cont.)

Statements with interference: for thread t

Ce[stmt] : P(E) x P(Q) x P(I) = P(E) x P(Q) x P(I)

@ pass interferences to expressions
o collect new interferences due to assignments
@ accumulate interferences from inner statements

@ collect and accumulate errors from expressions

X« e](R O, 1) %
(0,0,1) U |_|,,€R<{P[XHV]\V€ Vo}, Op, {(t, X, v)|veEV,})

def
Clsii 2] = Ce[s2] o Ce[s1]

def
noting (V,, O,) = Et[e](p, I)
LI is now the element-wise U in P(E) x P(2) x P(I)
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Simple interference semantics Formalizing the simple interference semantics

Denotational semantics with interferences (cont.)

Program semantics: P[prog] € Q

Given prog ::= stmty || --- || stmt,, we compute:
Plprog] ' [ifoA(0, ). Ler [Celstmte] (&, 0, Doy
@ each thread analysis starts in an initial environment set
& = {AV.0}

o [X]q, projects X € P(£) x P(2) x P(I) on P(Q) x P(I)
and interferences and errors from all threads are joined

the output environments from a thread analysis are not easily exploitable

e P[prog] only outputs the set of possible run-time errors

We will need to prove the soundness of P[ prog]
with respect to the interleaving semantics. . .
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Simple interference semantics Formalizing the simple interference semantics

Interference abstraction

Abstract interferences |f

P(1) & P(T x V x R) is abstracted as 1! & (T x V) — R
where R abstracts P(R) (e.g. intervals)

Abstract semantics with interferences Ci[s]

derived from C*[s] in a generic way:

Example: CI[X < e] (R, Q, 1)
@ for each Y in e, get its interference Yfz = nga {I(u, Y)Y |u#t}
© if YL # L%, replace Y in e with get( Y, R*) UL YE
get(Y, RY) extracts the abstract values variable Y from Rf € &t
@ compute (RY O') = Ci[e] (RY, O)
@ enrich /(t, X) with get(X, RY)
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Simple interference semantics Formalizing the simple interference semantics

Static analysis with interferences

Pi[prog] ' [IimA O, F).(0, )V Llicr |Cilstutc[ (£, 0, )]

Q1 ]Q

o effective analysis by structural induction

o P[prog] is sound with respect to P[prog]
@ termination ensured by a widening
°

parameterized by a choice of abstract domains Rf, &f

interferences are flow-insensitive and non-relational in R?

o thread analysis remains flow-sensitive and relational in &*

reminder: [X]q, [Y]q s keep only X's component in Q, Y's components in Q and 1
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Simple interference semantics Path-based soundness proof

Path-based soundness proof
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Simple interference semantics Path-based soundness proof

Control paths of a sequential program

atomic ::= X < exp | exp 10

« : stmt — P(atomic™)

def

m(X<e) = {X<+e}
m(if e 0 thens fi) & ({ex0}-m(s))U{enti0}
m(while e 1 0 do s done) % (U,ZO({ ena0} - w(s))i) {ers0}

(st ) € w(s1) - ()

m(stmt) is a (generally infinite) set of finite control paths

eg. m(i + 0; while i < 10do i+ i+ 1ldone; x+ i)=i+0-(i<10-i+i+1)" - x+i
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Simple interference semantics Path-based soundness proof

Path-based concrete semantics of sequential programs

Join-over-all-path semantics
[P]: (P(&) x P() = (P(£) x P()) P C atomic*

[PI(R, 0) = || (Clsal o---oCLs])(R, O)

Si-....sp€P

Semantic equivalence
C[stmt] = [m(stmt)]

no longer true in the abstract
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Simple interference semantics

Path-based soundness proof

Path-based concrete semantics of concurrent programs

ef
Ty =

{linterleavings of m(stmt;), t € T}

{ p € atomic* |Vt € T, proj,(p) € m(stmt;) }

Interleaving program semantics

P.[prog] = [ [m (&, 0)lq

(proj:(p) keeps only the atomic statement in p coming from thread t)

(~ sequentially consistent executions [Lamport 79])
Issues:

@ too many paths to consider exhaustively
@ no induction structure to iterate on

— abstract as a denotational semantics
Course 6 Thread-Modular Analysis of Concurrent Programs
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Simple interference semantics Path-based soundness proof

Soundness of the interference semantics

P.[prog] C P[prog] I

o define ([PIX ' | |{Cilsti...isn] X[s1-...-sn€ P},

then ¢[n(s)] = Ce[s];
@ given the interference fixpoint / C | from P[prog],

Proof sketch:

prove by recurrence on the length of p € 7, that:
o Vol [P)&, O)]e, Ve,
o' €[ ilproj(p) (&, B, 1] such that

VX eV, p(X)=p/(X)or (u, X, p(X)) € I for some u # t.

o [ [rl(&, 0)lq € Userl c[proji(p) (&, 0, 1o

Notes:
@ sound but not complete
@ can be extended to soundness proof under weakly consistent memories
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Simple interference semantics Locks and synchronization

Locks and synchronization
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Simple interference semantics Locks and synchronization

Scheduling

stmt = lock(m)
|  unlock(m)

m € M : finite set of non-recursive mutexes

Scheduling

mutexes ensure mutual exclusion

at each time, each mutex can be locked by a single thread
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Simple interference semantics Locks and synchronization

Mutual exclusion

lock(m) unlock(m)
W \\ "

pi

P2
R R W R
lock(m) unlock(m)

We use a refinement of the simple interference semantics
by partitioning wrt. an abstract local view of the scheduler C
0 & ~ EXC, & ~ Co &l
o1 ETXxVXR ~ | £ TxCxVxR,
1< (TxV) = RE ~ IFE (TxCxV)— R

def
C = Crace UCsync separates

@ data-race writes C,;ce

o well-synchronized writes Cgypc
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Simple interference semantics

Mutual exclusion

Locks and synchronization

pi

P2 rereresereees

Data-race effects

lock(m)

[

unlock(m)
W -| "

I

[

]

—

lock(m) unlock(m)

Crace ~ P(M)
Across read / write not protected by a mutex.
Partition wrt. mutexes M C M held by the current thread t.

@ Ci[X <+ e]{p, M, Iy adds {{t, M, X, v)|veEE[X]{p, M, 1)} to ]
@ E[X](p, M, 1) =

(o) YULVI(E, M, X, vy el t£E, MOM =0}

Bonus: we get a data-race analysis for freel!
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Simple interference semantics Locks and synchronization

Mutual exclusion

lock(m) unlock(m)
W \\ "
Pl — & &

lock(m) unlock(m)

Well-synchronized effects Cgync ~ M x P(M)

o last write before unlock affects first read after lock

@ partition interferences wrt. a protecting mutex m (and M)
o CiJunlock(m)] (p, M, I) stores p(X) into /

o Ci[lock(m)](p, M, I') imports values form / into p

@ imprecision: non-relational, largely flow-insensitive

— C ~ P(M) x ({data — race} UM)
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Simple interference semantics Locks and synchronization

Deadlock checking

t1 ‘ to

lock(a) lock(a)
lock(c) lock(b) (2
unloc‘l:((c) unlock(a) v @ @
lock(b lock(a)

)
unlock(b) unlock(a) & 5
unlock(a) unlock(b) ‘ ‘ w @<T®

During the analysis, gather:
@ all reachable mutex configurations: R C T x P(M)

@ lock instructions from these configurations R x M
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Simple interference semantics Locks and synchronization

Deadlock checking

t1 ‘ to
lock(a) lock(a) ’*‘ a
lock(c) lock(b) @

5 \ockta) blocks

unlock(c) | unlock(a)
lock(b

unlock(a) unlock(b)

lock(a) blocks

lock(b) blocks

During the analysis, gather:
@ all reachable mutex configurations: R C T x P(M)

@ lock instructions from these configurations R x M

Then, construct a blocking graph between lock instructions

o ((t,m),£) blocks ((t',m’), ) if
t # t’ and mN m’ = () (configurations not in mutual exclusion)
£ € m' (blocking lock)

A deadlock is a cycle in the blocking graph.

ranaralizatinn +a lavaar ~uclac wwiith marva thrande invahiad in A Adasdlacl ic anev

Course 6 Thread-Modular Analysis of Concurrent Programs Antoine Miné

) lock(a) t
unlock(b) unloci{(a) . . 'w QDT@
\—/

p. 41/ 75



Simple interference semantics Locks and synchronization

Priority-based scheduling

priority
yield yield

yield

Real-time scheduling:

@ priorities are strict (but possibly dynamic)
@ a process can only be preempted by a process of strictly higher priority

@ a process can block for an indeterminate amount of time (yield, lock)

Analysis: refined transfer of interference based on priority
@ partition interferences wrt. thread and priority
support for manual priority change, and for priority ceiling protocol
@ higher priority processes inject state from yield into every point

@ lower priority processes inject data-race interferences into yield
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Beyond non-relational interferences

Beyond non-relational interferences
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Inspiration from program logics
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Beyond non-relational interferences Inspiration from program logics

Reminder: Floyd—Hoare logic

Logic to prove properties about sequential programs [Hoar69].

Hoare triples: {P}stmt {Q}
@ annotate programs with logic assertions { P} stmt { Q}
(if P holds before stmt, then Q holds after stmt)

o check that {P}stmt{Q} is derivable with the following rules
(the assertions are program invariants)
{PANex0}s{Q} PAerki0=Q

{Ple/X]} X < e{P} {P}if e 0 then s fi{Q}
(Prsi{Qt {Qts2{R} {PAer0}s{P}
{P}si;{R} {P}while e 0 do s done {P A e 4 0}

{P}s{Q} P=P Q=0
{P}s{@}

Link with abstract interpretation:

@ the equations reachability semantics (X;)¢c, provides the most precise Hoare triples in
fixpoint constructive form
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Beyond non-relational interferences Inspiration from program logics

Jones' rely-guarantee proof method

Idea: explicit interferences with (more) annotations [Jone81].
Rely-guarantee “quintuples”: R, G - {P} stmt {Q}

@ if P is true before stmt is executed

@ and the effect of other threads is included in R (rely)

@ then @ is true after stmt

o and the effect of stmt is included in G (guarantee)

where:
@ P and @ are assertions on states (in P(X))

@ R and G are assertions on transitions  (in P(Z x A x ¥))
The parallel composition rule is:

RV Gy, G + {Pl}Sl {Ql} RV G, G - {P2}52 {QQ}
R,G1V Go = {P1APa}si|| s2{@1 A Q}
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Beyond non-relational interferences Inspiration from program logics

Rely-guarantee example

T, (T

% yhile random do
%5 if y < 100 then
Oy« y+ 1,3

‘1 yhile random do
2 4f x < y then
Box  x+1

fi fi
done done
l: x=y=0 atth: x=y=0
02: x,y €[0,102], x <y at (5: x,y €[0,102], x <y
l3: x €[0,101], y € [1,102], x < y at 06 : x €[0,99], y €[0,99], x <y
4 4
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Beyond non-relational interferences

Rely-guarantee example

Inspiration from program logics

Coecking e Wcheckng )

1 yhile random do | x unchanged
2 4f x < y then | y incremented
Box — x+1 0<y<102
fi
done

/1: x=y=0
02 x,y €[0,102], x <y
l3: x €[0,101], y € [1,102], x < y

y unchanged
0<x<y

atlt4d: x=y=0
at /5: x,y €[0,102], x <y
at 06 : x €[0,99], y €[0,99], x <y

4 yhile random do
5 if y < 100 then
%y« y+ [1,3]
fi
done

In this example:

@ guarantee exactly what is relied on

Benefits of rely-guarantee:

@ more precise: can prove x < y

@ invariants are still local to threads

@ checking a thread does not require looking at other threads,
only at an abstraction of their semantics

Course 6 Thread-Modular Analysis of Concurrent Programs

(R1 = Gi and Ry = Gp)

@ rely and guarantee are global assertions

Antoine Miné p. 47 / 75



Beyond non-relational interferences Rely-guarantee as abstract interpretation

Rely-guarantee as abstract interpretation
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Beyond non-relational interferences Rely-guarantee as abstract interpretation

Modularity: main idea

Thread

x=0

while x<y
X4+;

/* blabla*

Main idea: separate execution steps

@ from the current thread a
o found by analysis by induction on the syntax of a

@ from other threads b

e given as parameter in the analysis of a
o inferred during the analysis of b

= express the semantics from the point of view of a single thread
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Beyond non-relational interferences Rely-guarantee as abstract interpretation

Trace decomposition

Reachable states projected on thread t: TRI(t)

@ attached to thread control point in £, not control state in T — L

@ remember other thread’s control point as “auxiliary variables”
(required for completeness)

RI(t) = m(R) CLx(VU{pcy|t#t €T}) =R
where 7,(R) = { (L(t), p[Vt' # t: pcy — L(t)]) (L, p) € R}
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Beyond non-relational interferences Rely-guarantee as abstract interpretation

Trace decomposition

a b b
o0 "0

b a b a
o000 @

Interferences generated by t: A(t) (~ guarantees on transitions)

Extract the transitions with action t observed in 7,

(subset of the transition system, containing only transitions actually used in reachability)
def |
At) = a'(Tp)(t)

where o/ (X)(t) & { (0}, 0is1)|Foo Doy S op € Xiaj =1t}
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Beyond non-relational interferences Rely-guarantee as abstract interpretation

Thread-modular concrete semantics

b b a
a
@ @ @ @ @
A 4 4 4
' . ! ’
\\ S~ -
, I
.
Thread
x=0
while x<y
X++;
/* bla bla */

We express RI(t) and A(t) directly from the transition system, without computing 7,
States: R/
Interleave:

@ transitions from the current thread t

@ transitions from interferences A by other threads
RI(t) = Ifp R:(A), where
R(Y)(X) X mo(D U {me(0") | 3me(0) € Xoo - o' YU

{me(c")|Ime(o) € X: 3t £ t: (o, 0") € Y(t') }

= similar to reachability for a sequential program, up to A
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Beyond non-relational interferences Rely-guarantee as abstract interpretation

Thread-modular concrete semantics

b b a
a
@ @ @ @ @
] ]
I I
,,,,,, e
|
|
a
Thread
a
x=0
whilex<y & _________
X4+; ) -
/* bla bla */

We express RI(t) and A(t) directly from the transition system, without computing 7,
Interferences: A

Collect transitions from a thread t and reachable states R:

A(t) = B(RI)(t), where
B(Z)(t) % (0, 0') |m(0) € Z(t) Ao s o'}
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Beyond non-relational interferences Rely-guarantee as abstract interpretation

Thread-modular concrete semantics

Thread

a
x=0
while x<y ‘ 7777777777 =
X4+;
/* bla bla */

We express RI(t) and A(t) directly from the transition system, without computing 7,
Recursive definition:

® RI(t) = Ifp Ri(A)

@ A(t) = B(RI)(t)
= express the most precise solution as nested fixpoints:

RI = Ifp \Z.\t. Ifp Re(B(Z))

Completeness: Vt:RI(t) @R (7 is bijective thanks to auxiliary variables)
any property provable with the interleaving semantics

can be proven with the thread-modular semantics!

Course 6 Thread-Modular Analysis of Concurrent Programs
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Beyond non-relational interferences Rely-guarantee as abstract interpretation

Fixpoint form

Constructive fixpoint form:

Use Kleene's iteration to construct fixpoints:

o RI=Ifp H =],y H"(At.0)

in the pointwise powerset lattice HteT {t} = P(%t)

o H(Z)(t) = Ifp Re(B(Z)) = Unen(Re(B(2)))"(0)

in the powerset lattice P(X¢)

(similar to the sequential semantics of thread t in isolation)

— nested iterations
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Beyond non-relational interferences Rely-guarantee as abstract interpretation

Abstract rely-guarantee

Suggested algorithm:  nested iterations with acceleration

once abstract domains for states and interferences are chosen
VR
@ while Ag, is not stable

def

o compute YVt € T:7?J£+1(t) = Ifp RI(AY)
by iteration with widening v

e start from Rf; ot

(~~ separate analysis of each thread)
e compute AE,H o Al Bﬁ(7?]5+1)

@ when Ag, = AiH, return 72],’1,
— thread-modular analysis
parameterized by abstract domains (only source of approximation)

able to easily reuse existing sequential analyses
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Beyond non-relational interferences Retrieving thread-modular abstractions

Retrieving thread-modular abstractions
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Beyond non-relational interferences Retrieving thread-modular abstractions

Flow-insensitive abstraction

Flow-insensitive abstraction:

@ reduce as much control information as possible

@ but keep flow-sensitivity on each thread’s control location

Local state abstraction: remove auxiliary variables

o (X) = { (L py) (L p) €XFUX

Interference abstraction: remove all control state

alf (V) = {(p, o)LL €T L((Lp), (L'p))eY}
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Beyond non-relational interferences Retrieving thread-modular abstractions

Flow-insensitive abstraction (cont.)

Flow-insensitive fixpoint semantics:

We apply 045’{ and aQ\f to the nested fixpoint semantics.

R \fp AZ At Ifp R" ,(B™ (Z)), where

0 B(Z)(t) = {(p, p') |36, € L:(L, p) € Z(E) AL, p) —¢ (€, 0)}

(extract interferences from reachable states)
o R (Y)(X) & RE(X)U AT (V)(X)
(interleave steps)
def i
© RE(X) = {(LL AV.0)Y UL (L, p')[3(£ p) € X: (€, p) = (€, p')}
(thread step)

0 A (Y)(X) E (4 ') 3p, ut (b p)EXA(p, p')EY(u)}

(interference step)

Cost/precision trade-off:

@ less variables
— subsequent numeric abstractions are more efficient

o insufficient to analyze x +— x+ 1 || x + x+1
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Beyond non-relational interferences Retrieving thread-modular abstractions

Retrieving the simple interference-based analysis

Cartesian abstraction: on interferences

o forget the relations between variables

o forget the relations between values before and after transitions
(input-output relationship)

@ only remember which variables are modified, and their value:
A (Y) EAVAx e V[3(p, p') € Yip(V) #xAp/ (V) =x}

@ to apply interferences, we get, in the nested fixpoint form:

AT(YY(X) S {8, plV = V) (6 p) EX,V EV,Tu# tiv e Y(u)(V)}

@ no modification on the state
(the analysis of each thread can still be relational)

— we get back our simple interference analysis!

Finally, use a numeric abstract domain o : P(V — R) — Df
for interferences, V — P(R) is abstracted as V — D*
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Beyond non-relational interferences Retrieving thread-modular abstractions

From traces to thread-modular analyses

abstract states abstract interferences static analyzer

| R oo
foe

non-relational interferences

ag —@ —@® — @
T — P(E€)
fox
local states flow-insensitive interferences rely-guarantee
[ 3] o—0 O o o ©o (without aux. variables)
(Tx L) —PE) T PEXE)
. fast
local states interferences rely-guarantee
- ® ® e e & e oo o (with aux. variables)
W:Hrg {t} = P(Zy) A:T— P(ExX)
th ’Taitf
interleaved execution trace prefixes concrete executions

® e ® @ 7,cPiEY
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Beyond non-relational interferences Relational thread-modular abstractions

Relational thread-modular abstractions
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Beyond non-relational interferences Relational thread-modular abstractions

Fully relational interferences with numeric domains

Reachability : RI(t) : L — P(V, — Z)
approximated as usual with one numeric abstract element per label

auxiliary variables pc, € V, are kept (program labels as numbers)

Interferences : A(t) € P(X X X)
a numeric relation can be expressed in a classic numeric domain
as P((Va = Z) x (Vo = Z)) = P((V,UV,) — 2Z)
@ X €V, value of variable X or auxiliary variable in the pre-state
o X' €V, value of variable X or auxiliary variable in the post-state
eg.: {(x,x+1)|x €[0,10] } is represented as x’ = x + 1 A x € [0, 10]

—> use one global abstract element per thread

Benefits and drawbacks:

@ simple: reuse stock numeric abstractions and thread iterators
@ precise: the only source of imprecision is the numeric domain
@ costly: must apply a (possibly large) relation at each program step
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Beyond non-relational interferences

Relational thread-modular abstractions

Experiments with fully relational interferences

6000
% 27 e -
2 : PP
T 84p m e-e-o"
5f - - -
1k
» e -e batman
b’ concurinterproc
0.08
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
number of threads
t t
while z < 10000 while z < 10000
z+z+1 z+—z+1
ify<ctheny <+ y—+1 if x<ythenx + x+1
done done

Experiments by R. Monat

Scalability in the number of threads (assuming fixed number of variables)
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Beyond non-relational interferences Relational thread-modular abstractions

Partially relational interferences

Abstraction: keep relations maintained by interferences

@ remove control state in interferences (a2 )
o keep mutex state M (set of mutexes held)
o forget input-output relationships

@ keep relationships between variables

Qv (Y) LM, p) |30/ ((M, p), (M, p')) € YV ((M, ), (M, p)) €Y}

(M, p) € af¥(Y) = (M, p) € aif¥(Y) after any sequence of interferences from Y

Lock invariant:

{p|3te T, M:(M, p)€ag(I(t)), m¢ M}
@ property malntamed outside code protected by m
@ possibly broken while m is locked

@ restored before unlocking m
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Beyond non-relational interferences Relational thread-modular abstractions

Relational lock invariants

lock unlock

lock unlock

Improved interferences: mixing simple interferences and lock invariants
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Beyond non-relational interferences

Relational thread-modular abstractions

Relational lock invariants

o

Improved interferences:

lock

unlock

non-rel

lock unlock

mixing simple interferences and lock invariants

@ apply non-relational data-race interferences
unless threads hold a common lock (mutual exclusion)
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Beyond non-relational interferences Relational thread-modular abstractions

Relational lock invariants

lock unlock

lock unlock

Improved interferences: mixing simple interferences and lock invariants

@ apply non-relational data-race interferences
unless threads hold a common lock (mutual exclusion)

@ apply non-relational well-synchronized interferences at lock points
then intersect with the lock invariant

@ gather lock invariants for Lock / unlock pairs

Course 6 Thread-Modular Analysis of Concurrent Programs Antoine Miné



Beyond non-relational interferences Relational thread-modular abstractions

Relational lock invariants

lock unlock
o

\\ rel
non-rel \l
t2

lock unlock

Improved interferences: mixing simple interferences and lock invariants

@ apply non-relational data-race interferences
unless threads hold a common lock (mutual exclusion)

@ apply non-relational well-synchronized interferences at lock points
then intersect with the lock invariant

@ gather lock invariants for Lock / unlock pairs
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Beyond non-relational interferences Relational thread-modular abstractions

Monotonicity abstraction

Abstraction:
map variables to /' monotonic or T don't know

def

oY) = AVIifV{p, p') € Yip(V) < p/(V) then [ else T

@ keep some input-output relationships
o forgets all relations between variables
o flow-insensitive

Inference and use

@ gather:
Amere(t)(V) =7 <
all assignments to V in t have the form V + V 4+ e, with e >0

@ use: combined with non-relational interferences
if Vt: Amere(t)(V) =/
then any test with non-relational interference C[ X < (V |[a, b])] can be
strengthened into C[ X < V]
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Beyond non-relational interferences Relational thread-modular abstractions

Weakly relational interference example

analyzing t; M analyzing "

t1 | to t1 | ta
while random do | x unchanged y unchanged while random do
lock(m); y incremented 0<x,x<y lock(m);
if x < y then 0 <y < 102 if y < 100 then
X+ x + 1; y <y + [1,3];
unlock(m) unlock(m)
y

Using all three interference abstractions:
@ non-relational interferences (0 <y < 102,0 < x)
@ lock invariants, with the octagon domain (x < y)

@ monotonic interferences (y monotonic)

we can prove automatically that x < y holds
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Application: The AstréeA analyzer
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Application: The AstréeA analyzer

The Astrée analyzer

Astrée:

@ started as an academic project by : P. Cousot, R. Cousot, J. Feret, A. Miné, X. Rival,
B. Blanchet, D. Monniaux, L. Mauborgne

@ checks for absence of run-time error in embedded synchronous C code
@ applied to Airbus software with zero alarm (A340 in 2003, A380 in 2004)

O
@ industrialized by AbsInt since 2009 “

Design by refinement:

@ incompleteness: any static analyzer fails on infinitely many programs
@ completeness: any program can be analyzed by some static analyzer
@ in practice:
o from target programs and properties of interest
o start with a simple and fast analyzer (interval)
o while there are false alarms, add new / tweak abstract domains

4Ll
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Application: The AstréeA analyzer

The AstréeA analyzer

From Astrée to AstréeA:

@ follow-up project: Astrée for concurrent embedded C code (2012-2016)
interferences abstracted using stock non-relation domains

memory domain instrumented to gather / inject interferences

added an extra iterator = minimal code modifications

*]
(*]
(]
@ additionally: 4 KB ARINC 653 OS model

Target application:
@ ARINC 653 embedded avionic application
@ 15 threads, 1.6 Mlines
@ embedded reactive code + network code + string formatting
o
o

many variables, arrays, loops

shallow call graph, no dynamic allocation
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Application: The AstréeA analyzer

From simple interferences to relational interferences

monotonicity | relational lock | analysis time | memory | iterations | alarms
domain invariants
X X 25h 26mn 22 GB 6 4616
v X 30h 30mn 24 GB 7 1100
v v 110h 38mn 90 GB 7 1009
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Conclusion

Conclusion
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Conclusion

Conclusion

We presented static analysis methods that are:
@ inspired from thread-modular proof methods

@ abstractions of complete concrete semantics
(for safety properties)

@ sound for all interleavings
@ aware of scheduling, priorities and synchronization

@ parameterized by (possibly relational) abstract domains
(independent domains for state abstraction and interference abstraction)
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