Partitioning abstractions

MPRI — Cours 2.6 “Interprétation abstraite :
application a la vérification et a |'analyse statique”

Xavier Rival

INRIA, ENS, CNRS

Dec, 6th. 2021

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 1/93

Introduction

Towards disjunctive abstractions

Extending the expressiveness of abstract domains
@ disjunctions are often needed...

@ ... but potentially costly

In this lecture, we will discuss:

@ precision issues that motivate the use of abstract domains able to express
disjunctions
e several techniques to express disjunctive properties using abstract

domain combination methods (construction of abstract domains from
other abstract domains):

» disjunctive completion)
» cardinal power

» state partitioninD

» trace partitioning

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 2/93

Introduction

Domain combinators (or combiners)

General combination of abstract domains
@ takes one or more abstract domains as inputs

@ produces a new abstract domain

Input and output abstract domains are characterized by an “interface”:

@ concrete domain,

@ abstraction relation,

@ and abstract operations (post-conditions, widening...)

Advantages:

e general definition, formalized and proved once

@ can be implemented in a separate way, e.g., in ML:
» abstract domain: module
module D = (struct ... end: 1I)

» abstract domain combinator: functor

module C = functor (D: I0) -> (struct ... end:

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions

I1)

Dec, 6th. 2021

3/03

Introduction

Example: product abstraction

Set notations: Assumptions:
o V: values @ concrete domain (P(M), C) with M =X — V
e X: variables @ we assume an abstract domain D! that provides
o M: stores » concretization function v : D} — P(M)
M=X — V » element | with empty concretization y(L) = @

Product combinator (implemented as a functor)

Given abstract domains (ID)O,fyo, 1g) and (DD 1,71, 11), the product abstraction is
(ID)X,fyX, «) Where:

o]D)tL:ID)”xID)”

o 7x () = 10(x) N m ()
o J—x = (J_(),J_l)

This amounts to expressing conjunctions of elements of]Dg and]Dg

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 4 /93

Introduction

Example: product abstraction, coalescent product

The product abstraction is not very precise and needs a reduction:

Uxh e D, xP e DY, (Lo, x!) = v (6, L1) = 0 = v, (L)

Coalescent product

Given abstract domains (]D)g,'yo, 1g) and (Dg,fyl, 11), the coalescent product
abstraction is (IDDtL,fyX,J_X) where:

o DY = {L, 3w {(x},x) e D x D} | 5§ # Lo Axd # 14}
o Yo (L) =0, 1< (x4 x1) = 70 () N1 (o)

In many cases, this is not enough to achieve reduction:

@ let ID)E) be the interval abstraction, ID)I{ be the congruences abstraction
o 7x({x € 3,4}, {x =0 mod 5}) = ¢

@ how to define abstract domain combinators to add disjunctions ?)

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 5/93

© Introduction

e Imprecisions in convex abstractions

e Disjunctive completion

e Cardinal power and partitioning abstractions
e State partitioning

@ Trace partitioning

@ Conclusion

Imprecisions in convex abstractions

Convex abstractions

Many numerical abstractions describe convex sets of points

A A AN

Y o y y
O (@) (@) (e)
(@)
- » » ;
X X X
© Convex
interval domain octagon domain polyedra domain

Imprecisions inherent in the convexity, and when computing abstract join
(over-approximation of concrete union):

7 Such imprecisions may
make analyses fail }
¥ AUt ¥
Imprecision Similar issues also arise
& in non-numerical static
% analyses

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 7/93

Imprecisions in convex abstractions

Non convex abstractions

We consider abstractions of D = P(Z)

Congruences: Non relational product two variables

o D' =7 x N 7
o Y(n,k)={n+k-p|p€Z}

o —2¢€v(1,2)and 1 € y(1,2) R
but 0 & (1, 2))

Signs: /T\\

e 0 ¢ v([£0]) so [# 0] describes a < 0] £ 0] > 0]
non convex set ‘ >< >< ‘
@ other abstract elements describe [—] [0] [+]

convex sets \ ‘ /
1

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 8/93

Imprecisions in convex abstractions

Example 1: verification problem

bool bg, b1;
int x, v; (uninitialized) @ if =bg, then x <0
bg=x>0; .
b?:igo; @ if -by, then x >0
if(bo && bé){ o if either by or by is false, then x # 0
y =0;
}else { @ thus, if point @ is reached the division is
) y = 100/x; safe
}

How to verify the division operation ?

@ Non relational abstraction (e.g., intervals), at point @©:
{ by € {FALSE, TRUE} A b; € {FALSE, TRUE}
x: T
@ Signs, congruences do not help:
in the concrete, x may take any value but 0

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions

Dec, 6th. 2021

9/03

Imprecisions in convex abstractions

Example 1: program annotated with local invariants

bool by, by;
int x, y; (uninitialized)
boZXEO;

(bo Ax>0)V (—bp Ax<0)
b1:X§0;

(bo Aby Ax=0)V (bg A—=by Ax>0)V (=bpg Aby Ax<0)
if(bo && b1){
(bo Ab1 A x=0)
y=0;
(bo Aby Ax=0Ay=0)

}else{
(bo A =b1 Ax>0)V (abg Aby Ax<D0)
y = 100/x;
(bo A=b1 Ax>0)V (7bg Abs Ax<0)

The obvious way to sucessfully analyzing this program consists in
adding symbolic disjunctions to our abstract domain

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 10/93

Imprecisions in convex abstractions

Example 2: verification problem

intx € Z;

int s; o

) S. @ s is either 1 or —1

int y;

if(x > 0){ @ thus, the division at @ should not fail
s =1; _

Yelse { @ moreover s has the same sign as x
s=-L @ thus, the value stored in y should always

} .

® y=x/s be positive at @

@ assert(y > 0);

@ How to verify the division operation ?

@ In the concrete, s is always non null:
convex abstractions cannot establish this; congruences can

@ Moreover, s has always the same sign as x
expressing this would require a non trivial numerical abstraction

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 11 /93

Imprecisions in convex abstractions

Example 2: program annotated with local invariants

intx € Z;
int s;
int y;
if(x > 0){
(x > 0)
s = 1;
(x>0As=1)
}else {
(x <0)
s =—1;
(x<0As=-1)
}
(x>0As=1)V(x<0As=-1)
O y=x/s;

(x>0As=1Ay>20)V(E<O0As=-1Ay>0)
@ assert(y > 0);

Again, the obvious solution consists in
adding disjunctions to our abstract domain

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021

12/93

© Introduction

e Imprecisions in convex abstractions

e Disjunctive completion

e Cardinal power and partitioning abstractions
e State partitioning

@ Trace partitioning

@ Conclusion

Disjunctive completion

Distributive abstract domain

Principle:
© consider concrete domain (D, C), with least upper bound operator L
© assume an abstract domain (D, C#) with concretization : D} — D

@ build a domain containing all the disjunctions of elements of DF

Definition: distributive abstract domain

Abstract domain (D, C*) with concretization function v : D! — D is distributive
(or disjunctive, or complete for disjunction) if and only if:

ve C DY, 3t e DI, () = | | v
yhee€

Examples:
@ the lattice {1,< 0,=0,>0,<0,50,> 0, T} is distributive
e the lattice of intervals is not distributive:
there is no interval with concretization ([0, 10]) U v([12, 20])

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 14 /93

Disjunctive completion
Definition

Definition: disjunctive completion
The disjunctive completion of abstract domain (D, C*) with concretization
function 7 : D! — D is the smallest abstract domain (]D)gisj, E”disj) with

concretization function “gis; ID)g“sj — D such that:

o DI C DY

disj
o Vx! € DY, y4i5(x") = v(x")

® (Dndisj, E”disj) with concretization q;sj is distributive

Building a disjunctive completion domain:

© include in ID)EISJ- all elements of Df
@ for all set &€ C D¥ such that there is no x# € D!, such that

v(xt) = Ll sce v(y"), add [LIE] to]DEHSJ-, and extend ygis; by

Vaisi([LE]) = Uyﬁeé‘ 'Y(yu)
Theorem: this process constructs a disjunctive abstraction

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021

15 /93

Disjunctive completion

Example 1: completion of signs

We consider concrete lattice D = P(Z), with C=C
and (D, C") defined by:

vy L — 0
/‘\ [<0] — {k€eZ|k<O0}
— 0] [+] [=0] — <{keZ|k=0}
[>0] — {keZ|k>0}

N ol

Then, the disjunctive completion is defined

-
by adding elements corresponding to: / ‘ \

o U{[-],[0]} [< 0] [# 0] [> 0]
o L1, 1) T

o L{[0], [+]} ~_ | _—
1

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021

Disjunctive completion

Example 2: completion of constants

We consider concrete lattice D = P(Z), with C=C
and (DF, C*) defined by:

(2] [-1] [0 [i] [2]

Then, the disjunctive completion coincides with the power-set:
o DL =P(2)

disj
e this abstraction loses no information: 7y is the identity function !

@ obviously, this lattice contains infinite sets which are not representable

Middle ground solution: k-bounded disjunctive completion

@ only add disjunctions of at most k elements

@ e.g., if k=2, pairs are represented precisely, other sets abstracted to T

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 17 /93

Disjunctive completion

Example 3: completion of intervals

We consider concrete lattice D = P(Z), with C=C
and let (D!, C") the domain of intervals

o DV ={1,TYw{[a,b]|a< b}
o y(lab]) = {x € Z|a<x < b}

Then, the disjunctive completion is the set of unions of intervals :
o Dgisj collects all the families of disjoint intervals
@ this lattice contains infinite sets which are not representable

@ as expressive as the completion of constants, but more efficient representation

The disjunctive completion of (D")” is not equivalent to (Dﬂisj)”
@ which is more expressive ?

@ show it on an example !

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec|, 6th. 2021 18 /93

Disjunctive completion

Example 3: completion of intervals and verification

We use the disjunctive completion of (ID¥)3.
The invariants below can be expressed in the disjunctive completion:

intx € Z;
int s;
inty;
if(x > 0){
(x > 0)
s =1;
(x>0As=1)
}else{
(x <0)
s =—1;
(x<0As=-1)
}

(x>0As=1)V(x<0As=-1)

y = x/s;
(x>0As=1Ay>20)V(x<0As=-1Ay>0)
assert(y > 0);

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 19 /93

Disjunctive completion

Static analysis

To carry out the analysis of a basic imperative language, we will define:

@ Operations for the computation of post-conditions:
sound over-approximation for basic program steps

» concrete post : P(S) — P(S) (where S is the set of states);
> the abstract post! : D! — D" should be such that

postoy L yo postu

» case where post is an assignment: postIj = assign
inputs a variable, an expression, an abstract pre-condition, outputs an abstract
post-condition

> case where post is a condition test: post! = test inputs a boolean expression, an
abstract pre-condition, outputs an abstract post-condition

@ An operator join for over-approximation of concrete unions
@ A widening operator V for the analysis of loops

@ A conservative inclusion checking operator

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 20/93

Disjunctive completion

Static analysis with disjunctive completion

Transfer functions for the computation of abstract post-conditions:

@ we assume a monotone concrete post-condition operation post : D — 1D, and
an abstract post! : D! — D! such that post oy C 7 o post!

o convention: if y(y*) = | {v(z") | 2! € £}, we note y! = [LI€]

@ then, we can simply use, for the disjunctive completion domain:
postl(ILE]) = [U{posi*(xF) | x* € €3]

(note it may be an element of the initial domain)
@ the proof is left as exercise

@ this works for assignment, condition tests...

Abstract join:

e disjunctive completion provides an exact join (exercise !)

Inclusion check: exercise !

Widening: no general definition/solution to the disjunct explosion problem

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 21 /93

Disjunctive completion

Limitations of disjunctive completion

Combinatorial explosion:

o if D! is infinite,]Dgisj may have elements that cannot be represented

e.g., completion of constants or intervals
e even when DV is finite, IDE“SJ- may be huge

in the worst case, if D has n elements, I[Dgisj may have 2" elements

Many elements useless in practice:
disjunctive completion of intervals: may express any set of integers...

No general definition of a widening operator

@ most common approach to achieve that: k-limiting
bound the numbers of disjuncts
i.e., the size of the sets added to the base domain

@ remaining issue: the join operator should “select” which disjuncts to merge

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 22/93

Cardinal power and partitioning abstractions

Outline

@ Cardinal power and partitioning abstractions

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 23 /93

Cardinal power and partitioning abstractions

Principle

Observation

Disjuncts that are required for static analysis
can usually be characterized by some semantic property

Examples: each disjunct is characterized by
@ the sign of a variable

@ the value of a boolean variable

e the execution path, e.g., side of a condition that was visited

Solution: perform a kind of indexing of disjuncts

@ introduce a new abstraction to describe labels
e.g., the sign of a variable, the value of a boolean, or another trace property...

@ apply the store abstraction (or another abstraction) to the set of states
associated to each label

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 24 /93

Cardinal power and partitioning abstractions

Disjuncts indexing: example

int x € Z;
int s;
int y;
if(x > 0){
(x > 0)
s=1;
(x>0As=1)
}else {
(x < 0)
s = —1; =A
’ ~ = 0= 5
} (X<0/\S——1) 9{40 = S“—""(
(x>0As=1)V(x<0As=-1)
y =x/s;

(x>0As=1Ay>20)V(x<0As=-1Ay>0)
assert(y > 0);

@ natural “indexing”: sign of x

@ but we could also rely on the sign of s

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 25 /93

Cardinal power and partitioning abstractions

Cardinal power abstraction

We assume (D,C) = (P(€), C), and two abstractions (]D)g, I;g), (]D)g, Ijl) given by

their concretization functions:

o :Dg—D 7D —D
: ‘ ~
indeing “rigular”

Definition
We let the cardinal power abstract domain be defined by:

o DI = D} () D! be the set of (monotong functions from D} into D

° Eﬂp be the pointwise extension of Eg

@ Ycp is defined by:

-)
e Dﬂp — D ZAC%(
Xt — {yecg|vd E]Duo,yE’)’o(Zu):>y6’>’1(Xu(Zu))}

We sometimes denote it by IDP) = ID)Q, Ypi—pt to make it more explicit.
0 1

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021

o

26 /93

Cardinal power and partitioning abstractions

Use of cardinal power abstractions

Intuition: cardinal power expresses properties of the form

(Po = P

AN p1 = P

(A P = P,
Two independent choices:
(1)]Dg: set of partitions (the “labels”), represents py, ..., pn
Q]D)g: abstraction of sets of states, e.g., a numerical abstraction, represents
PGy - - -5 P ((DD sign(x)
S%n(y}
Application (x >0ANs=1Ay>0)V (x<0As=—-1Ay>0) o
. o
e Dg: sign of s .
0 (sien
o]DDQ: other constraints 7 (-L(‘S)>
oweget: s>0= (x>0As=1Ay>0)As<0=(...) |hurdic

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 27 /93

Cardinal power and partitioning abstractions

Another example, with a single variable

Assumptions:

@ concrete lattice D = P(Z), with

o (D!, C!) be the lattice of signs -1 0[]

(stric;inequalities only) \l/

o (D!, C") be the lattice of intervals

Example abstract values:

(L — 14 ! q
-] — L rn
e [0,8] is expressed by: { [0] ~— [0,0] Jm 2
[— L8
(. T +— [0,8]
(1L — 14
-] — [-10,-3]
o [-10,—3] W [7,10] is expressed by: { [0] — 1,
[+] — [7,10]
| T — [-10,10]
Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021

28 /03

Cardinal power and partitioning abstractions

Cardinal power: why monotone functions ?

We have seen the reduced cardinal power intuitively denotes a conjunction of
implications, thus, assuming that Dg has two comparable elements pg, p1 and:

{Poipf)
AN opr = P

Then:
@ pg, p1 are comparable, so let us fix pg I;”O p1
@ logically, this means pg = p1

@ thus the abstract element represents states where pg = p1 = p;

. . - . - -r\l .
@ as a conclusion, if p; is not as strong as pi, it is possible to reinforce it!

@ new abstract state:
{ po = po/ Py
N p1 = Pi

This is a reduction operation.

Non monotone functions can be reduced into monotone functions)

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 29 /93

Cardinal power and partitioning abstractions

Example reduction (1): relation between the two domains

>, 21

@ concrete lattice D = P(Z), with C=C

° (ID)?), I;g) be the lattice of signs / «/7L,(
° (]Dg, g{{) be the lattice of inter\éals v
&\ =
(F frs "elo
. q/ Cd\\/E e
We let: o

— 14
— 14
— 1y :_L
— 13
— 14

Note: monotone functions may also benefit from reduction

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 30/93

Cardinal power and partitioning abstractions

Example reduction (2): tightening relations

@ concrete lattice D = P(Z), with C=C T
o (DY, %) be the lattice of signs -] 0 [+
o (D!, C") be the lattice of intervals 1
(L — 1y (L — 1
[_] — [_5a_1] [_] — [_5a_1]
We let: Xt=1{ [0] ~— [0,0] YE=2{ [0] — [0,0]
[+] — [1,9] [+] — [1,5]
@ — e LT e
Lo =
@ Then, 'ycp(Xﬂ) = fycp(Yﬂ) 7 [S/SJ
® Yo([=]) Uo([0]) U ([+]) = »(T)
but

Yo(X*([-1)) U o(X¥([0])) U v (XH([+])) Cv(XH(T))
In fact, we can improve the image of T into [-5, 5]

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021

31/03

Cardinal power and partitioning abstractions

Reduction, and improving precision in the cardinal power

In general, the cardinal power construction requires reduction)

Hence, reduced cardinal power = cardinal power + reduction

Strengthening using both sides of = \
Tightening of yg — yf when: <0 = (A}
o 3z # vi, m(y)) N0(¥) € () | 2 =0 L

@ in the example, zlIj =13..

Strengthening of one relation using other relations

Tightening of relation (U{z! | z! € £}) — xf when: T = 3
o U{r(2") | 28 € £} = yo(L{* | 2 € £}) TR |

o Iy, U{m(Xi(2) | 28 € £} C m(yh) c m(XH(u{Z | 2 € £}))

@ in the example, we use a set of elements that cover T...

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 32 /93

Cardinal power and partitioning abstractions

Representation of the cardinal power

Basic ML representation:

@ using functions, i.e. type cp = d0 -> d1
= usually a bad choice, as it makes it hard to operate in the ID)?) side

@ using some kind of dictionnaries type cp = (d0,d1) map
= better, but not straightforward...

Even the latter is not a very efficient representation:
o if IDE, has N elements, then an abstract value in D! requires N elements of
f
Dy
o if IDP) is infinite, and Dq is non trivial, then]D)E':p has elements that cannot
be represented

@ the 2nd reduction shows it is unnecessary to represent bindings for all

elements of ID)E,
example: this is the case of L

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 33 /93

Cardinal power and partitioning abstractions

More compact representation of the cardinal power

Principle:
@ use a dictionnary data-type (most likely functional arrays)
@ avoid representing information attached to redundant elements

A compact representation should be just sufficient to “represent” all elements of

]D)g:
Compact representation

Reduced cardinal power of]Dg and 11))”1 can be represented by considering only a
subset C C]Dg where

vxt e DY, 3 C ¢, yo(xh) = U{r(?) | y' € £}

In particular:
@ if possible, C should be minimal
@ inany case, 1g &C

@ also, when Ty can be generated by a union of a set of elements, it can be
removed

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021

34 /03

Cardinal power and partitioning abstractions

Example: compact cardinal power over signs

@ concrete lattice D = P(Z), with C=C /T\
° (Duo, I;HO) be the lattice of signs = o [+
) (]Dli, I;li) be the lattice of intervals \l/

Observations

@ | does not need be considered (obvious right hand side: 1)

e Yo([< 0]) Uvo([=0]) U~([> 0]) = (T) thus T does not need be considered
Thus, we let C = {[-],[0], [+]}

) [—] — J_]_
e [0, 8] is expressed by: { [0] —s [0,0]
[+] — [1,8]

-] — [-10,-3]
e [—10,-3] W [7,10] is expressed by: { 0 — 1
[+] — [7,10]

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 35 /93

Cardinal power and partitioning abstractions

Lattice operations
Infimum:
@ if Ly is the infimum of D'i, Lep = A2 €]Dg) - Ly is the infimum of D!

Ordering test (sound, not necessarily optimal):

@ we define I;(“:p as the pointwise ordering:

ef
xict xb L vAend, xi(2h cf X

@ then, X(I)j Egp X]l_j — ’ch(Xg) C ')’Cp(Xf)

Join operation:
@ we assume that Ll; is a sound upper bound operator in ID)Q

@ then, U, defined below is a sound upper bound operator in]D)ﬂp:

def
Xue XE 22 A edl) - (XM XE ()

@ the same construction applies to widening, if]Dﬂo is finite

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 36 /93

Cardinal power and partitioning abstractions

Abstract post-conditions

n

The general definition is qui

rst assume]D)ul = D and consider
f:D— P(D).

L, 6])o> k—\SD\()/

(

Definitions: (x#(’%))
o for x!, yt € DI, we let i (D — DY) — Dg be defimedb

a1 (XP)(2%) = 70(y*) AT (XE(xT) N yo ()

o for x! € DY, we note P(x") the set of “predecessor coverings” of x*:

{V C DL | Ve e D,V € f(c) Nyo(x"), 3yt € V,c e ’Y(yu)}

Then the definition below provides a sound over-approximation of f:

X — A(xP e IDDP))- ﬂ U ft 1 (XP(x1))
VeP(xl) \yteVv

@ this definition is not practical: using a direct abstraction will result in a
prohibitive runtime cost!

@ in the following, we set specific instances.

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 37 /93

Cardinal power and partitioning abstractions

Composition with another abstraction

We assume three abstractions DA

o (]DP), Eg), with concretization «p : I[Dg — D % bz

o (]Dul, I;t{) with concretization 7; : ID)Q — D Dp ——=, D}
R

o (]Dg, I;g) with concretization 7, : I[Dg —]Dg ’yc])D —P(E;yl

Cardinal power abstract domains]D)g = ID)u1 and]D)g = ID)u2 can be bound by an

abstraction relation defined by concretization function «: ngj
>
v =oh) — (=D A~
Xt — A(Z' € DY) - ya(XH(2H)) I'—Da
Applications: X) C/)'O'
@ start with ID'{,% defined as the identity abstraction D :—3[5)

@ compose an abstraction for right hand side of relations
e compose several cardinal power abstractions (or partitioning abstractions)

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 38 /93

Cardinal power and partitioning abstractions

Composition with another abstraction

@ concrete lattice D = P(Z), with E=C

-
o (ID)E,, I;g) be the lattice of signs / ‘ \
o (D!, C!) be the identity abstraction =] [0 [+

D S P(2), =1 NI

o (]D)g, I;g) be the lattice of intervals

Then, [-10, —3] W [7, 10] is abstracted in two steps:
! ’ -] — {-10,-9,-8,—7,—6,—5,—4, -3}
e in Dy = D3, { [0 — 0
[+] — {7,8,9,10}
(note that, at this stage, the right hand sides are simply sets of values)
i i [_] — [_107_3]
o in Dy = D73, { [0 — 1,
[+] ~— [7,10]

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021

30 /03

State partitioning Definition and examples

Outline

e State partitioning
@ Definition and examples
@ Abstract interpretation with boolean partitioning

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 40 /93

State partitioning Definition and examples
Definition

We consider concrete domain) = P(S) where

@ S =1L x M where L. denotes the set of control states
o M=X—YV

State partitioning

A state partitioning abstraction is defined as the cardinal power of two

abstractions (Dg, Eg,'yo) and (]D)g, ;2,71) of the domain of sets of states
(P(S), ©):

= o (ID)%, E(u),’)’o) defines the partitions

o (ID)E, I;Ii,fyl) defines the abstraction of each element of partitions

Typical instances:
o either D! = P(S) =D

@ or an abstraction of sets of memory states: numerical abstraction
can be obtained by composing another abstraction on top of (P(S), C)

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021

41 /93

State partitioning Definition and examples

Use of a partition: intuition

We fix a partition U of P(S):
QVE,E'cU, E£AE — ENE =0
Q@ S=UU

We can apply the cardinal power construction:

State partitioning abstraction W

Eo

E;

E>

Es

2
We let Dy =2 U {1, T} and 7o : E — E. Thus, D{, =1 — D} and:

Yp: DL, — D

b {seSWEeu,seE———>56%(X“(E))}

@ each E € U is attached to a piece of
information in ID)&

@ exercise: what happens if we use only a
covering, i.e., if we drop property 1 7

e we will often focus on U and drop L, T

Xavier Rival (INRIA, ENS, CNRS)

Partitioning abstractions

Eo

E;

E>

Es

Dec, 6th. 2021

42 /93

State partitioning

Definition and examples

Application 1: flow sensitive abstraction

Principle: abstract separately the states at distinct control states

This is what we have been often doing already, without formalizing it
for instance, using the the interval abstract domain:

lo: // assume x>0
h: if(x < 10){

S S S
<
I
N
|
b4

Xavier Rival (INRIA, ENS, CNRS)

lo

1111111
S S

h
b
h
la
5
le

Partitioning abstractions

T Ay: T

[0, 40| Ay : T

0,9 Ay T

[0,9] Ay [-2,7]
[10,+o0[Ay T

- [10, +00[Ay ;] — 00, —8]
[0, +00[Ay :] — 00,7]

Dec, 6th. 2021

43 /93

State partitioning Definition and examples

Application 1: flow sensitive abstraction

Principle: abstract separately the states at distinct control states

Flow sensitive abstraction

We apply the cardinal power based partitioning abstraction with:
oU =L
@ vo: [l {[} xM

It is induced by partition {{/} x M | [€ L}

Then, if X! is an element of the reduced cardinal power,

,),Cp(Xn) = {seS|Vxe ID)g, s € o(x) = s € m(X}(x))}
= {(/,m) €S| men(X})}

@ after this abstraction step,]D)EL only needs to represent sets of memory states
(numeric abstractions...)

@ this abstraction step is very common as part of the design of abstract
Interpreters

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 44 /93

State partitioning Definition and examples

Application 1: flow insensitive abstraction

Flow sensitive abstraction is sometimes too costly:

@ e.g., ultra fast pointer analyses (a few seconds for 1 MLOC) for
compilation and program transformation

@ context insensitive abstraction simply collapses all control states

Flow insensitive abstraction

We apply the cardinal power based partitioning abstraction with:
o Df = {}
@ Y:-— S
o D! = P(M)
o1 :Mw—{(l,m)|[€L,me M}
It is induced by a trivial partition of P(S)

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 45 / 93

State partitioning Definition and examples

Application 1: flow insensitive abstraction

We compare with flow sensitive abstraction:

lb: // assume x>0 b — x:TAy:T

ho: if(x < 10){ h — x:[0,4oo[Ay:T

b : y=x—2; b — x:[0,9]Ay:T

L: Jelse{ L — x:[0,9] Ay:[-2,7]

ly : y=2—x; L — x:[10,4c0[Ay:T

5: } 5 — x:[10,40o[Ay :] — oo, —8]
o: ... b — x:[0,400[Ay:]—00,7]

o the best global information isx: T Ay : T (very imprecise)

@ even if we exclude the entry point before the assumption point, we get
x :[0,400[Ay: T (still very imprecise)

For a few specific applications flow insensitive is ok
In most cases (e.g., numeric properties), flow sensitive is absolutely needed

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 46 / 93

State partitioning Definition and examples

Application 2: context sensitive abstraction

We consider programs with procedures

Example:
voidmain(){... 6 : £();... 4 :£();... L :g()...}
void £(){...}
void g(){if(_.)4 - ()}else{s - (}}

@ assumption: flow sensitive abstraction used inside each function

@ we need to also describe the call stack state

Call stack (or, “call string”)

Thus, S = K x L x M, where K is the set of call stacks (or, “call strings”)
-

k € K call stacks
K = € empty call stack
| (f,)& call to f from stack k at point /[

I :
‘[g
3 /]

v

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021

47 /93

State partitioning Definition and examples

Application 2: context sensitive abstraction, co-CFA
C[F/i) — CO(\}/rOJ \F[OV\/ lﬂmcclajg/'s

Fully context sensitive abstraction (co-CFA)
o D! =K x L
® Yo : (kL) = {(k,[,m) | me M}

void main(){... o : £();... 4 : £();... L :g()...}
void £(){...}
void g(){if(...){5 : g()}else{& : £()}}

Abstract contexts in function f:

(o,)€ (4,f) € (4, 1) (&,8) ¢,
([47) ([37) ([27) (&l f) ([37g)'([3,g)'([2;g)'61

@ one invariant per calling context, very precise

e infinite in presence of recursion (i.e., not practical in this case)

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 48 /93

State partitioning Definition and examples

Application 2: context insensitive abstraction, 0-CFA

Context insensitive abstraction (0-CFA)

oDl =L
o Yo:l—{(xk,[,m)]|keK meM}

void main(){... o : £();... 4 : £();... L :g()...}
void £(){...}
void g(){if(...){5 : g()}else{l : £()}}

Abstract contexts in function f are of the form (?,£) - ...,

@ 0-CFA merges all calling contexts to a same procedure, very coarse
abstraction

@ but is usually quite efficient to compute

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 49 /93

State partitioning Definition and examples

Application 2: context sensitive abstraction, k-CFA

Partially context sensitive abstraction (k-CFA)

o D! = {k € K| length(x) < k} x L
@ v :(k,[)={(k-K [,m)| K €K ,meM}

void main(){... 6 : £();... 4 : £();... L :g()...}
void £(){...}
void g(){if(...){5 : g()}else{ls : £()}}

Abstract contexts in function £, in 2-CFA:

I :
‘[g
3 4

(b,f)-€ (4,%) € (4,f) (G,8)-(?,g) ...,(aT) (L,g)-(?,main)

@ usually intermediate level of precision and efficiency

@ can be applied to programs with recursive procedures

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 50 /93

State partitioning Definition and examples

Application 3: partitioning by a boolean condition

@ so far, we only used abstractions of the control states to partition

@ we now consider abstractions of memory states properties

Function guided memory states partitioning

We let:
o D! = A where A finite set is a finite set of values / properties
@ ¢ : Ml — A maps each store to its property
@ 7o is of the form (a € A) — {(/,m) €S | ¢(m) = a}

Common choice for A: the set of boolean values B
(or another finite set of values —convenient for enum types!)

Many choices for function ¢ are possible:
@ value of one or several variables (boolean or scalar)
@ sign of a variable

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021

51 /03

State partitioning Definition and examples

Application 3: partitioning by a boolean condition

We assume:

0 X = Xpoo1 W Xint, Where X001 (resp., Xint) collects boolean (resp., integer)
variables

® Xpool = {bo, ..., b1}
° Xint - {X07 R 7X/—1}

Thus, M = X = V = (Xpool = Vbool) X (Xint = Vint) = VE ;X V!

int

Boolean partitioning abstract domain

We apply the cardinal power abstraction, with a domain of partitions defined by a
function, with:

o A= Rk
o ¢(m) = (m(bo),...,m(bk_1))

@ we let (]D)g, g?{,yl) be any numerical abstract domain for P(V!)

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 52 /93

State partitioning Definition and examples

Application 3: example

With Xpoo1 = {bo, b1}, Xint = {x,y}, we can express:

>
boAb; = x€[-3,0]AyE[-20] o
bo A by = x€[-3,00Aye€[-20] >
-bp Aby = x€[0,3]Ay€]0,2] 50
-bg A-b; = x€[0,3]Ay€]0,2]

@ this abstract value expresses a relation between by and x,y
(which induces a relation between x and y)

@ alternative: partition with respect to only some variables
e.g., here by only since by is irrelevant

@ typical representation of abstract values:
based on some kind of decision trees (variants of BDDs)

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 53 /93

State partitioning Definition and examples

Application 3: example

@ Left side abstraction shown in blue: boolean partitioning for bg, by
@ Right side abstraction shown in green: interval abstraction

@ We omit the cases of the form P — ...

bool bo, bs;

int x, y; (uninitialized)

bg = x Z 0;
(bo_—_>XZO)/\(_|bo_—_>X<O)

b1 =x < 0;

(bo Aby = x=0) A (bg A by = x > 0) A (0bg A by = x < 0)
if(bo && b1){
(bo/\b1:>X:0)
y=0;
(bo Abj=x=0Ay=0)

telse{
(bo/\"bl_—_>X>O)/\(_lbo/\b1:X<O)

y = 100/x;
(bo A" by =x>0Ay>0)A(-bgAb;=x<0Ay<0)

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021

54 /03

State partitioning Definition and examples

Application 3: partitioning by the sign of a variable

We now consider a semantic property: the sign of a variable

We assume:

o X = Xjpt, /.e., all variables have integer type

° Xint — {X01 R 7X/—1}
Thus, M=X—=V=V],

Sign partitioning abstract domain

We apply the cardinal power abstraction, with a domain of partitions defined by a
function, with:
o A={[<0],[=0],[> 0]}
[< O] if m(Xo) <0
@ p(m)=< [=0] ifm(x)=0
[> O] if m(Xo) >0

° (]D)g, E'i,fyl) an abstraction of P(V!}) (no need to abstract xo twice)

int

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 55 /93

State partitioning Definition and examples

Application 3: example

@ Sign abstraction fixing partitions shown in blue
@ States abstraction shown in green: interval abstraction

@ We omit the cases of the form P — 1 ...

intx €7Z;
int s;
int y;
if(x > 0){
x<0=1L)Ax=0=>T)A(x>0=T)
s = 1;
(x<0= 1)A(x=0=>s=1)A(x>0=>s=1)
}else{

(x<0=>T)A(x=0=>L)A(x>0= 1)
s =-1;
(x<0=>s=-1)A(x=0=>L)A(x>0= 1)

}

© y=x/s;

(x<0=>s=-1)A(x=0=2>s=1)A(x>0=>s=1)

x<0=2s=-1Ay>0)A(x=0=2>s=1Ay=0A(x>0=>s=1Ay>0)
@ assert(y > 0);

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 56 /93

State partitioning Abstract interpretation with boolean partitioning

Outline

e State partitioning
@ Definition and examples
@ Abstract interpretation with boolean partitioning

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 57 /93

State partitioning Abstract interpretation with boolean partitioning

Computation of abstract semantics and partitioning

We present abstract operations in the context of an analysis that combines two
forms of partitioning;:

e by control states (as previously), using a chaotic iteration strategy

@ by the values of the boolean variables

Intuitively, the abstract values are of the form:

fﬂ : (L X V‘éool) — Dg
L N #
= \V\OOO —Y) *—
Yet, this is not a very good representatlcon: | D’
@ program transition from one control state to another are known before
the analysis:

they correspond to the program transitions

@ program transition from one boolean configuration to another are not
known before the analysis: we need to know information about the values
of the boolean variables, which the analysis is supposed to compute

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 58 /93

State partitioning Abstract interpretation with boolean partitioning

A combination of two cardinal powers

Sequence of abstractions:

© concrete states: P(L x M) = P(L x (V. x V/..))
© partitioning of states by the control state:

L —PM) =L —P((Vioor X Vint))
© partitioning by the boolean configuration:
L — (Vioor —P(Vint))
© numerical abstraction of numerical stores:
L — (Voo — DY)
Computer representation:

type absl = ... (* abstract elements of ID)'i *)
type abs_state = ... (%

boolean trees with elements of type abs1 at the leaves *)
type abs_cp = (labels, abs_state) Map.t

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021

50 /93

State partitioning Abstract interpretation with boolean partitioning

Abstract operations

Abstract post-conditions
@ concrete post : P(S) — P(S) (where S is the set of states);
o the abstract post! : D! — D! should be such that

postoy L yo po.stn

In the next part, we seek for abstract post-conditions for the following
operations, in the cardinal power domain, assuming similar functions are defined in
the underlying domain (numeric abstract domain, cf previous course):

@ assignment to scalar, e.g., x =1 — x; poih)rwfsc
@ assignment to boolean, e.g., bg =x <7
e scalar test, e.g., if(x > 8)... lpo;,\m'\y

e boolean test, e.g., if(—b;)...

Other lattice operations (inclusion check, join, widening) are left as exercise

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 60 /93

State partitioning Abstract interpretation with boolean partitioning

Transfer functions: assignment to scalar (1/2)

Computation of an abstract post-condition

Xk = €;

Example:
@ statement x =1 — x;

@ abstract pre-condition:
b = >
AN b = <

@ the values of the boolean variables do not change

Intuition:

@ the values of the numeric values can be updated separately for each partition

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 61 /93

State partitioning Abstract interpretation with boolean partitioning

Transfer functions: assignment to scalar (2/2)

Definition of the abstract post-condition

assign (x, &, X1) = A(21 € Vhoy) - assign, (x, &, X1(21)

This post-condition is sound:

Soundness

|f assign, is sound, so is assign__, in the sense that:
cp

vt e Df

by ¥ € Yep(XF), mlx [e](m)] € yep(assign ,,(x, e, X))

@ proof by case analysis over the value of the boolean variables
Example:

wssim (%1 — x b = x>0 _ b = x<1
Ilhep \ * "IA b = x<0[/) | A b = x>1

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 62 /93

IN 1V

State partitioning Abstract interpretation with boolean partitioning

Transfer functions: scalar test (1/2)

Computation of an abstract post-condition

if(e){...
where e only refers to numeric variables
(analysis of a condition test, of a loop test, of an assertion)

Example:
e statement: if(x > 8){...
@ abstract pre-condition:
b = x
A b = X

o

VANV

Intuition:

@ the values of the variables do not change, no relations between boolean and

numeric variables can be inferred

@ new conditions on the numeric variables can be inferred, separately for each

partition (possibly leading to empty abstract states)

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021

63 /03

State partitioning Abstract interpretation with boolean partitioning

Transfer functions: scalar test (2/2)

Definition of the abstract post-condition

teStcp(C7Xu) —)‘(Zu € Vl/;ool) ' te5t1(C’Xu(Zu))

This post-condition is sound:

Soundness

If test; is sound, so is testcp, in the sense that:

VX' € DL, Vim € veo(X), [c](m) = TRUE => m € yep(testep(x, €, X))

@ proof by case analysis over the value of the boolean variables
Example:

st (x> 8 b = 0 B b = x>38
e G R N S 0 A b = L

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 64 /93

M
IN TV

State partitioning Abstract interpretation with boolean partitioning

Transfer functions: boolean condition test (1/3)

Computation of an abstract post-condition

if(e)]{...
where e only refers to boolean variables
(analysis of a condition test, of a loop test, of an assertion)

Example:

e statement: if(—b;)...
~

@ abstract pre-condition: <

Intuition:

@ the values of the variables do not change, no new relations between boolean
and numeric variables can be inferred

@ certain boolean configurations get discarded or refined

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 65 /93

State partitioning Abstract interpretation with boolean partitioning

Transfer functions: boolean condition test (2/3)

Definition of the abstract post-condition

X4(ZH) if testo(c, XH(2")) # Lo

te.stcp(c, Xu) =)\(Zu - Vl/;ool) ’ { J—l otherwise

This post-condition is sound:

Soundness

If testy is sound, so is testcp, in the sense that:

VX' € DL, Vi € veo(X), [c](m) = TRUE = m € yep(testep(x, €, X))

Proof:

@ case analysis over the boolean configurations

@ in each situation, two cases depending on whether or not the condition test
evaluates to TRUE or to FALSE

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 66 /93

State partitioning

Abstract interpretation with boolean partitioning

Transfer functions: boolean condition test (3/3)

Example abstract post-condition:

(bg N\ by
AN bg A b
testcp | b1, 0 1
A —bg A by
(bo A by
iy A bg A —7bq
A —bg A by

Xavier Rival (INRIA, ENS, CNRS)

Partitioning abstractions

Dec, 6th. 2021

67 /93

State partitioning Abstract interpretation with boolean partitioning

Transfer functions: assignment to boolean (1/3)

Computation of an abstract post-condition

b; = e;

where e only refers to numeric variables

Example: b, ~> €
@ statement: byp=x<7 K cond. Clee
= 15<x M) —
|

.. = 9<x<14 - =% cond
e abstract pre-condition: P e

= 6<x<8 > G

xXG (
—~ [U A —bgA-by = x <5 N cond r/r\”up h

Intuition: o |, —of" b, Ab,
@ the value of the boolean variable in the left hand side changes, thus partitions
need to be recomputed

@ new relations between boolean variables and numeric variables emerge (old
relations get discarded)

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 68 /93

State partitioning Abstract interpretation with boolean partitioning

Transfer functions: assignment to boolean (2/3)

Definition of the abstract post-condition

i A
| . _ test (e, X*(z[b < TRUE]))
assign (b, e, X*)(2"[b < TRUE]) { Ly test1(e, X!(z![b + FALSE]))
| B test1(—e, X}(z![b « TRUE]))
assign_ (b, e, X")(z![b FALSE]) = { Ui testr(—e, X(2![b « FALSE]))
Soundness

VX' € D, Vi € ep(XP), mlb + [e](m)] € Yep(assign, (b, e, X))

Proof: if z! € Df and z!(b) = TRUE, then, assign_ (b, e[xo, . .., %], X#)(z") should
account for all states where b becomes true, whatever the previous value, other
boolean variables remaining unchanged; the case where z#(b) = FALSE is
symmetric.

The partitions get modified (this is a costly step, involving join))

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 69 /93

State partitioning Abstract interpretation with boolean partitioning

Transfer functions: assignment to boolean (3/3)

Example abstract post-condition:)

N
-~

(bg N by = <)
A bgAN—- by = 9<x<14
] b <7 -
B lep SR A —bgAb; = 6<x<8 f

S
>
&
L R A AN

— AN bo AN _Ibl X S 5 '
N AN _lbo N b1 8 S X
\/\ _lbo/_lbl 9§X§14)
The partitions get modified (this is a costly step, involving join) J

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 70 /93

State partitioning Abstract interpretation with boolean partitioning

Choice of boolean partitions

Boolean partitioning allows to express relations between boolean and scalar
variables, but these relations are expensive to maintain:

@ partitioning with respect to N boolean variables translates into a 2" space
cost factor

@ after assignments, partitions need be recomputed (use of join)

Packing addresses the first issue
@ select groups of variables for which relations would be useful
@ can be based on syntactic or semantic criteria

Whatever the packs, the transfer functions will produce a sound result
(but possibly not the most precise one)

In the last part of this course, we present another form of partitioning that can
sometimes alleviate these issues

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 71 /93

Trace partitioning Principles and examples

Outline

e Trace partitioning
@ Principles and examples
@ Abstract interpretation with trace partitioning

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 72 /93

Trace partitioning Principles and examples

Definition of trace partitioning

Principle

We start from a trace semantics and rely on an abstraction of execution

history for partitioning

e concrete domain: D) = P(S*)
o left side abstraction 7y :]DDE) — ID: a trace abstraction
to be defined precisely later

e right side abstraction, as a composition of two abstractions:
> the final state abstraction defined by (D!,) = (P(S), C) and:

’}’1ZMI—){<50,...,Sk,([,m)>|mEM,[EL,So,...,SkES}

» a store abstraction applied to the traces final memory state
Y2 : Dg —]D)g

Trace partitioning

Cardinal power abstraction defined by abstractions g and 1 o>

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021

73 /93

Trace partitioning Principles and examples

Application 1: partitioning by control states

Flow sensitive abstraction
o Welet D} = LU{T}

@ Concretization is defined by:

[— S*-({/} xM)

v

This produces the same flow sensitive abstraction as with state partitioning; in the
following we always compose context sensitive abstraction with other
abstractions...

Trace partitioning is more general than state partitioning

Any state partitioning abstraction is also a trace partitioning abstraction:

@ context-sensitivity, partial context sensitivity

@ partitioning guided by a boolean condition...

v

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 74 /93

Trace partitioning Principles and examples

Application 2: partitioning guided by a condition

We consider a program with a conditional statement:

E L 0,
é—;[z . Jelse{

@ '@ it free i€ Rlee
= - .-

Domain of partitions

The partitions are defined by ID)E, = {Tif, Tit:f, | and:

Yo: Tiex +—> {{(lo,m),(4,m),...) | meM,m € M}
Tie.e — {((b,m),(5,m'),...) | me M, m' € M}
T — S*

Application:
discriminate the executions depending on the branch they visited

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 75 /93

Trace partitioning Principles and examples

Application 2: partitioning guided by a condition

This partitioning resolves the second example:

intx € Z;
int s;
int y;
if(x > 0){
Tift = (0 < X) N Tirf = L
s =1;
Tif;t:>(0§X/\S:1)/\Tif;f:>J_
}else {
Tif;fj(X<0)/\Tif;t$J_
s =—1;
Tif;fi(X<0/\S:—l)/\7’if;t$J_ 3:&0
}
{ Tife = (ng/\s:l)/)
N Tiff = (X<0/\S:_1)\‘> &;&;O

Tift = (OSX/\S:]. Ogy)
A Tier = (x<0As=-1n0<Yy)

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 76 /93

Trace partitioning Principles and examples

Application 3: partitioning guided by a loop

We consider a program with a loop statement:

b : while(c){
hq:

b: }
G ...

Domain of partitions
For a given k € N, the partitions are defined by

| .
Dy = {Tloop:O; Tloop:1 - - + » Tloop:k» T} and:

Yo ! Ticop:i '+ traces that visit 4 i times
T — S*

Application:
discriminate executions depending on the number of iterations in a loop

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 77 /93

Trace partitioning Principles and examples

Application 3: partitioning guided by a loop

An interpolation function:

~1 if x < —1
;= -4+ ifxe[-1,1]
—1+x ifx€l(l,3]
2 if 3<x >

Typical implementation:
@ use tables of coefficients and loops to search for the range of x
@ here we assume the entrance is positive:

inti=0;
while(i < 4 && x > t,[i+ 1]){
i++
}
Tioop:0 1 (case x < —1)
Tloop:1 0<x<1Ai=1 (case —1<x<1)

3<xAi=3
ty[i]

Tloop:3

=
=

Tloop:2 = 1§XS3/\i:2
=

vy = tc[i] X (x — tx[i]) +

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 78 /93

Trace partitioning Principles and examples

Application 4: partitioning guided by the value of a variable

We consider a program with an integer variable x, and a program point [:
e wes equaf (o 8 of [€

—_

Domain of partitions: partitioning by the value of a variable
For a given £ C V;; finite set of integer values, the partitions are defined by
D} = {rari | i € E}W{T} and:

Yo: Tvark +—— {{..,([,m),...)]| m(x) =k}
T — S*

Domain of partitions: partitioning by the property of a variable

For a given abstraction -y : (V#, Eu) — (P(Vint), ©), the partitions are defined by
DP’) — {Tvar:vﬂ ‘ Vi c \/H} and:

Yo: Tearvt +—— {(-..,([,m),...) | m(x) € Tyar vt }

v

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec, 6th. 2021 79 /93

Trace partitioning Principles and examples

Application 4: parti