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Introduction

Towards disjunctive abstractions

Extending the expressiveness of abstract domains
@ disjunctions are often needed...

@ ... but potentially costly

In this lecture, we will discuss:

@ precision issues that motivate the use of abstract domains able to express
disjunctions
e several techniques to express disjunctive properties using abstract

domain combination methods (construction of abstract domains from
other abstract domains):

» disjunctive completion )
» cardinal power

» state partitioninD

» trace partitioning
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Introduction

Domain combinators (or combiners)

General combination of abstract domains
@ takes one or more abstract domains as inputs

@ produces a new abstract domain

Input and output abstract domains are characterized by an “interface”:

@ concrete domain,

@ abstraction relation,

@ and abstract operations (post-conditions, widening...)

Advantages:

e general definition, formalized and proved once

@ can be implemented in a separate way, e.g., in ML:
» abstract domain: module
module D = (struct ... end: 1I)

» abstract domain combinator: functor

module C = functor (D: I0) -> (struct ... end:
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Introduction

Example: product abstraction

Set notations: Assumptions:
o V: values @ concrete domain (P(M), C) with M =X — V
e X: variables @ we assume an abstract domain D! that provides
o M: stores » concretization function v : D} — P(M)
M=X — V » element | with empty concretization y(L) = @

Product combinator (implemented as a functor)

Given abstract domains (ID)O,fyo, 1g) and (DD 1,71, 11), the product abstraction is
(ID)X,fyX, « ) Where:

o]D)tL:ID)”xID)”

o 7x () = 10(x) N m ()
o J—x = (J_(),J_l)

This amounts to expressing conjunctions of elements of ]Dg and ]Dg
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Introduction

Example: product abstraction, coalescent product

The product abstraction is not very precise and needs a reduction:

Uxh e D, xP e DY, (Lo, x!) = v (6, L1) = 0 = v, (L)

Coalescent product

Given abstract domains (]D)g,'yo, 1g) and (Dg,fyl, 11), the coalescent product
abstraction is (IDDtL,fyX,J_X) where:

o DY = {L, 3w {(x},x) e D x D} | 5§ # Lo Axd # 14}
o Yo (L) =0, 1< (x4 x1) = 70 () N1 (o)

In many cases, this is not enough to achieve reduction:

@ let ID)E) be the interval abstraction, ID)I{ be the congruences abstraction
o 7x({x € 3,4}, {x =0 mod 5}) = ¢

@ how to define abstract domain combinators to add disjunctions ? )
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Imprecisions in convex abstractions

Convex abstractions

Many numerical abstractions describe convex sets of points

A A AN

Y o y y
O (@) (@) (e)
(@)
- » » ;
X X X
© Convex
interval domain octagon domain polyedra domain

Imprecisions inherent in the convexity, and when computing abstract join
(over-approximation of concrete union):

7 Such imprecisions may
make analyses fail }
¥ AUt ¥
Imprecision Similar issues also arise
& in non-numerical static
% analyses
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Imprecisions in convex abstractions

Non convex abstractions

We consider abstractions of D = P(Z)

Congruences: Non relational product two variables

o D' =7 x N 7
o Y(n,k)={n+k-p|p€Z}

o —2¢€v(1,2)and 1 € y(1,2) R
but 0 & (1, 2) )

Signs: /T\\

e 0 ¢ v([£0]) so [# 0] describes a < 0] £ 0] > 0]
non convex set ‘ >< >< ‘
@ other abstract elements describe [—] [0] [+]

convex sets \ ‘ /
1
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Imprecisions in convex abstractions

Example 1: verification problem

bool bg, b1;
int x, v; (uninitialized) @ if =bg, then x <0
bg=x>0; .
b?:igo; @ if -by, then x >0
if(bo && bé){ o if either by or by is false, then x # 0
y =0;
}else { @ thus, if point @ is reached the division is
) y = 100/x; safe
}

How to verify the division operation ?

@ Non relational abstraction (e.g., intervals), at point @©:
{ by € {FALSE, TRUE} A b; € {FALSE, TRUE}
x: T
@ Signs, congruences do not help:
in the concrete, x may take any value but 0
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Imprecisions in convex abstractions

Example 1: program annotated with local invariants

bool by, by;
int x, y; (uninitialized)
boZXEO;

(bo Ax>0)V (—bp Ax<0)
b1:X§0;

(bo Aby Ax=0)V (bg A—=by Ax>0)V (=bpg Aby Ax<0)
if(bo && b1){
(bo Ab1 A x=0)
y=0;
(bo Aby Ax=0Ay=0)

}else{
(bo A =b1 Ax>0)V (abg Aby Ax<D0)
y = 100/x;
(bo A=b1 Ax>0)V (7bg Abs Ax<0)

The obvious way to sucessfully analyzing this program consists in
adding symbolic disjunctions to our abstract domain
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Imprecisions in convex abstractions

Example 2: verification problem

intx € Z;

int s; o

) S. @ s is either 1 or —1

int y;

if(x > 0){ @ thus, the division at @ should not fail
s =1; _

Yelse { @ moreover s has the same sign as x
s=-L @ thus, the value stored in y should always

} .

® y=x/s be positive at @

@ assert(y > 0);

@ How to verify the division operation ?

@ In the concrete, s is always non null:
convex abstractions cannot establish this; congruences can

@ Moreover, s has always the same sign as x
expressing this would require a non trivial numerical abstraction
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Imprecisions in convex abstractions

Example 2: program annotated with local invariants

intx € Z;
int s;
int y;
if(x > 0){
(x > 0)
s = 1;
(x>0As=1)
}else {
(x <0)
s =—1;
(x<0As=-1)
}
(x>0As=1)V(x<0As=-1)
O y=x/s;

(x>0As=1Ay>20)V(E<O0As=-1Ay>0)
@ assert(y > 0);

Again, the obvious solution consists in
adding disjunctions to our abstract domain
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Disjunctive completion

Distributive abstract domain

Principle:
© consider concrete domain (D, C), with least upper bound operator L
© assume an abstract domain (D, C#) with concretization  : D} — D

@ build a domain containing all the disjunctions of elements of DF

Definition: distributive abstract domain

Abstract domain (D, C*) with concretization function v : D! — D is distributive
(or disjunctive, or complete for disjunction) if and only if:

ve C DY, 3t e DI, () = | | v
yhee€

Examples:
@ the lattice {1,< 0,=0,>0,<0,50,> 0, T} is distributive
e the lattice of intervals is not distributive:
there is no interval with concretization ([0, 10]) U v([12, 20])
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Disjunctive completion
Definition

Definition: disjunctive completion
The disjunctive completion of abstract domain (D, C*) with concretization
function 7 : D! — D is the smallest abstract domain (]D)gisj, E”disj) with

concretization function “gis; ID)g“sj — D such that:

o DI C DY

disj
o Vx! € DY, y4i5(x") = v(x")

® (Dndisj, E”disj) with concretization q;sj is distributive

Building a disjunctive completion domain:

© include in ID)EISJ- all elements of Df
@ for all set &€ C D¥ such that there is no x# € D!, such that

v(xt) = Ll sce v(y"), add [LIE] to ]DEHSJ-, and extend ygis; by

Vaisi([LE]) = Uyﬁeé‘ 'Y(yu)
Theorem: this process constructs a disjunctive abstraction
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Disjunctive completion

Example 1: completion of signs

We consider concrete lattice D = P(Z), with C=C
and (D, C") defined by:

vy L — 0
/‘\ [<0] — {k€eZ|k<O0}
— 0] [+] [=0] — <{keZ|k=0}
[>0] — {keZ|k>0}

N ol

Then, the disjunctive completion is defined

-
by adding elements corresponding to: / ‘ \

o U{[-],[0]} [< 0] [# 0] [> 0]
o L1, 1) T

o L{[0], [+]} ~_ | _—
1
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Disjunctive completion

Example 2: completion of constants

We consider concrete lattice D = P(Z), with C=C
and (DF, C*) defined by:

(2] [-1] [0 [i] [2]

Then, the disjunctive completion coincides with the power-set:
o DL =P(2)

disj
e this abstraction loses no information: 7y is the identity function !

@ obviously, this lattice contains infinite sets which are not representable

Middle ground solution: k-bounded disjunctive completion

@ only add disjunctions of at most k elements

@ e.g., if k=2, pairs are represented precisely, other sets abstracted to T
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Disjunctive completion

Example 3: completion of intervals

We consider concrete lattice D = P(Z), with C=C
and let (D!, C") the domain of intervals

o DV ={1,TYw{[a,b]|a< b}
o y(lab]) = {x € Z|a<x < b}

Then, the disjunctive completion is the set of unions of intervals :
o Dgisj collects all the families of disjoint intervals
@ this lattice contains infinite sets which are not representable

@ as expressive as the completion of constants, but more efficient representation

The disjunctive completion of (D")” is not equivalent to (Dﬂisj)”
@ which is more expressive ?

@ show it on an example !
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Disjunctive completion

Example 3: completion of intervals and verification

We use the disjunctive completion of (ID¥)3.
The invariants below can be expressed in the disjunctive completion:

intx € Z;
int s;
inty;
if(x > 0){
(x > 0)
s =1;
(x>0As=1)
}else{
(x <0)
s =—1;
(x<0As=-1)
}

(x>0As=1)V(x<0As=-1)

y = x/s;
(x>0As=1Ay>20)V(x<0As=-1Ay>0)
assert(y > 0);
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Disjunctive completion

Static analysis

To carry out the analysis of a basic imperative language, we will define:

@ Operations for the computation of post-conditions:
sound over-approximation for basic program steps

» concrete post : P(S) — P(S) (where S is the set of states);
> the abstract post! : D! — D" should be such that

postoy L yo postu

» case where post is an assignment: postIj = assign
inputs a variable, an expression, an abstract pre-condition, outputs an abstract
post-condition

> case where post is a condition test: post! = test inputs a boolean expression, an
abstract pre-condition, outputs an abstract post-condition

@ An operator join for over-approximation of concrete unions
@ A widening operator V for the analysis of loops

@ A conservative inclusion checking operator
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Disjunctive completion

Static analysis with disjunctive completion

Transfer functions for the computation of abstract post-conditions:

@ we assume a monotone concrete post-condition operation post : D — 1D, and
an abstract post! : D! — D! such that post oy C 7 o post!

o convention: if y(y*) = | {v(z") | 2! € £}, we note y! = [LI€]

@ then, we can simply use, for the disjunctive completion domain:
postl(ILE]) = [U{posi*(xF) | x* € €3]

(note it may be an element of the initial domain)
@ the proof is left as exercise

@ this works for assignment, condition tests...

Abstract join:

e disjunctive completion provides an exact join (exercise !)

Inclusion check: exercise !

Widening: no general definition/solution to the disjunct explosion problem
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Disjunctive completion

Limitations of disjunctive completion

Combinatorial explosion:

o if D! is infinite, ]Dgisj may have elements that cannot be represented

e.g., completion of constants or intervals
e even when DV is finite, IDE“SJ- may be huge

in the worst case, if D has n elements, I[Dgisj may have 2" elements

Many elements useless in practice:
disjunctive completion of intervals: may express any set of integers...

No general definition of a widening operator

@ most common approach to achieve that: k-limiting
bound the numbers of disjuncts
i.e., the size of the sets added to the base domain

@ remaining issue: the join operator should “select” which disjuncts to merge
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Cardinal power and partitioning abstractions

Outline

@ Cardinal power and partitioning abstractions
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Cardinal power and partitioning abstractions

Principle

Observation

Disjuncts that are required for static analysis
can usually be characterized by some semantic property

Examples: each disjunct is characterized by
@ the sign of a variable

@ the value of a boolean variable

e the execution path, e.g., side of a condition that was visited

Solution: perform a kind of indexing of disjuncts

@ introduce a new abstraction to describe labels
e.g., the sign of a variable, the value of a boolean, or another trace property...

@ apply the store abstraction (or another abstraction) to the set of states
associated to each label
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Cardinal power and partitioning abstractions

Disjuncts indexing: example

int x € Z;
int s;
int y;
if(x > 0){
(x > 0)
s=1;
(x>0As=1)
}else {
(x < 0)
s = —1; =A
’ ~ = 0= 5
} (X<0/\S——1) 9{40 = S“—""(
(x>0As=1)V(x<0As=-1)
y =x/s;

(x>0As=1Ay>20)V(x<0As=-1Ay>0)
assert(y > 0);

@ natural “indexing”: sign of x

@ but we could also rely on the sign of s
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Cardinal power and partitioning abstractions

Cardinal power abstraction

We assume (D,C) = (P(€), C), and two abstractions (]D)g, I;g), (]D)g, Ijl) given by

their concretization functions:

o :Dg—D 7D —D
: ‘ ~
indeing “rigular”

Definition
We let the cardinal power abstract domain be defined by:

o DI = D} () D! be the set of (monotong functions from D} into D

° Eﬂp be the pointwise extension of Eg

@ Ycp is defined by:

- )
e Dﬂp — D ZAC%(
Xt — {yecg|vd E]Duo,yE’)’o(Zu):>y6’>’1(Xu(Zu))}

We sometimes denote it by IDP) = ID)Q, Ypi—pt to make it more explicit.
0 1
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Cardinal power and partitioning abstractions

Use of cardinal power abstractions

Intuition: cardinal power expresses properties of the form

( Po = P

AN p1 = P

(A P = P,
Two independent choices:
(1) ]Dg: set of partitions (the “labels”), represents py, ..., pn
Q ]D)g: abstraction of sets of states, e.g., a numerical abstraction, represents
PGy - - -5 P ((DD sign(x)
S%n(y}
Application (x >0ANs=1Ay>0)V (x<0As=—-1Ay>0) o
. o
e Dg: sign of s .
0 (sien
o ]DDQ: other constraints 7 (-L(‘S)>
oweget: s>0= (x>0As=1Ay>0)As<0=(...) |hurdic
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Cardinal power and partitioning abstractions

Another example, with a single variable

Assumptions:

@ concrete lattice D = P(Z), with

o (D!, C!) be the lattice of signs -1 0[]

(stric;inequalities only) \l/

o (D!, C") be the lattice of intervals

Example abstract values:

(L — 14 ! q
-] — L rn
e [0,8] is expressed by: { [0] ~— [0,0] Jm 2
[ — L8
(. T +— [0,8]
(1L — 14
-] — [-10,-3]
o [-10,—3] W [7,10] is expressed by: { [0] — 1,
[+] — [7,10]
| T — [-10,10]
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Cardinal power and partitioning abstractions

Cardinal power: why monotone functions ?

We have seen the reduced cardinal power intuitively denotes a conjunction of
implications, thus, assuming that Dg has two comparable elements pg, p1 and:

{Poipf)
AN opr = P

Then:
@ pg, p1 are comparable, so let us fix pg I;”O p1
@ logically, this means pg = p1

@ thus the abstract element represents states where pg = p1 = p;

. . - . - -r\l .
@ as a conclusion, if p; is not as strong as pi, it is possible to reinforce it!

@ new abstract state:
{ po = po/ Py
N p1 = Pi

This is a reduction operation.

Non monotone functions can be reduced into monotone functions )
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Cardinal power and partitioning abstractions

Example reduction (1): relation between the two domains

>, 21

@ concrete lattice D = P(Z), with C=C

° (ID)?), I;g) be the lattice of signs / «/7L,(
° (]Dg, g{{) be the lattice of inter\éals v
&\ =
(F frs "elo
. q/ Cd\\/E e
We let: o

— 14
— 14
— 1y :_L
— 13
— 14

Note: monotone functions may also benefit from reduction
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Cardinal power and partitioning abstractions

Example reduction (2): tightening relations

@ concrete lattice D = P(Z), with C=C T
o (DY, %) be the lattice of signs -] 0 [+
o (D!, C") be the lattice of intervals 1
(L — 1y (L — 1
[_] — [_5a_1] [_] — [_5a_1]
We let: Xt=1{ [0] ~— [0,0] YE=2{ [0] — [0,0]
[+] — [1,9] [+] — [1,5]
@ — e LT e
Lo =
@ Then, 'ycp(Xﬂ) = fycp(Yﬂ) 7 [S/SJ
® Yo([=]) Uo([0]) U ([+]) = »(T)
but

Yo(X*([-1)) U o(X¥([0])) U v (XH([+])) Cv(XH(T))
In fact, we can improve the image of T into [-5, 5]
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Cardinal power and partitioning abstractions

Reduction, and improving precision in the cardinal power

In general, the cardinal power construction requires reduction )

Hence, reduced cardinal power = cardinal power + reduction

Strengthening using both sides of = \
Tightening of yg — yf when: <0 = (A}
o 3z # vi, m(y)) N0(¥) € () | 2 =0 L

@ in the example, zlIj =13..

Strengthening of one relation using other relations

Tightening of relation (U{z! | z! € £}) — xf when: T = 3
o U{r(2") | 28 € £} = yo(L{* | 2 € £}) TR |

o Iy, U{m(Xi(2) | 28 € £} C m(yh) c m(XH(u{Z | 2 € £}))

@ in the example, we use a set of elements that cover T...
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Cardinal power and partitioning abstractions

Representation of the cardinal power

Basic ML representation:

@ using functions, i.e. type cp = d0 -> d1
= usually a bad choice, as it makes it hard to operate in the ID)?) side

@ using some kind of dictionnaries type cp = (d0,d1) map
= better, but not straightforward...

Even the latter is not a very efficient representation:
o if IDE, has N elements, then an abstract value in D! requires N elements of
f
Dy
o if IDP) is infinite, and Dq is non trivial, then ]D)E':p has elements that cannot
be represented

@ the 2nd reduction shows it is unnecessary to represent bindings for all

elements of ID)E,
example: this is the case of L
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Cardinal power and partitioning abstractions

More compact representation of the cardinal power

Principle:
@ use a dictionnary data-type (most likely functional arrays)
@ avoid representing information attached to redundant elements

A compact representation should be just sufficient to “represent” all elements of

]D)g:
Compact representation

Reduced cardinal power of ]Dg and 11))”1 can be represented by considering only a
subset C C ]Dg where

vxt e DY, 3 C ¢, yo(xh) = U{r(?) | y' € £}

In particular:
@ if possible, C should be minimal
@ inany case, 1g &C

@ also, when Ty can be generated by a union of a set of elements, it can be
removed
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Cardinal power and partitioning abstractions

Example: compact cardinal power over signs

@ concrete lattice D = P(Z), with C=C /T\
° (Duo, I;HO) be the lattice of signs = o [+
) (]Dli, I;li) be the lattice of intervals \l/

Observations

@ | does not need be considered (obvious right hand side: 1)

e Yo([< 0]) Uvo([=0]) U~([> 0]) = (T) thus T does not need be considered
Thus, we let C = {[-],[0], [+]}

) [—] — J_]_
e [0, 8] is expressed by: { [0] —s [0,0]
[+] — [1,8]

-] — [-10,-3]
e [—10,-3] W [7,10] is expressed by: { 0 — 1
[+] — [7,10]
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Cardinal power and partitioning abstractions

Lattice operations
Infimum:
@ if Ly is the infimum of D'i, Lep = A2 € ]Dg) - Ly is the infimum of D!

Ordering test (sound, not necessarily optimal):

@ we define I;(“:p as the pointwise ordering:

ef
xict xb L vAend, xi(2h cf X

@ then, X(I)j Egp X]l_j — ’ch(Xg) C ')’Cp(Xf)

Join operation:
@ we assume that Ll; is a sound upper bound operator in ID)Q

@ then, U, defined below is a sound upper bound operator in ]D)ﬂp:

def
Xue XE 22 A edl) - (XM XE ()

@ the same construction applies to widening, if ]Dﬂo is finite
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Cardinal power and partitioning abstractions

Abstract post-conditions

n

The general definition is qui

rst assume ]D)ul = D and consider
f:D— P(D).

L, 6])o> k—\SD\()/

(

Definitions: (x#(’%))
o for x!, yt € DI, we let i (D — DY) — Dg be defimedb

a1 (XP)(2%) = 70(y*) AT (XE(xT) N yo ()

o for x! € DY, we note P(x") the set of “predecessor coverings” of x*:

{V C DL | Ve e D,V € f(c) Nyo(x"), 3yt € V,c e ’Y(yu)}

Then the definition below provides a sound over-approximation of f:

X — A(xP e IDDP))- ﬂ U ft 1 (XP(x1))
VeP(xl) \yteVv

@ this definition is not practical: using a direct abstraction will result in a
prohibitive runtime cost!

@ in the following, we set specific instances.
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Cardinal power and partitioning abstractions

Composition with another abstraction

We assume three abstractions DA

o (]DP), Eg), with concretization «p : I[Dg — D % bz

o (]Dul, I;t{) with concretization 7; : ID)Q — D Dp ——=, D}
R

o (]Dg, I;g) with concretization 7, : I[Dg — ]Dg ’yc])D —P(E;yl

Cardinal power abstract domains ]D)g = ID)u1 and ]D)g = ID)u2 can be bound by an

abstraction relation defined by concretization function «: ngj
>
v =oh) — (=D A~
Xt —  A(Z' € DY) - ya(XH(2H)) I'—Da
Applications: X) C/)'O'
@ start with ID'{,% defined as the identity abstraction D :—3[5)

@ compose an abstraction for right hand side of relations
e compose several cardinal power abstractions (or partitioning abstractions)
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Cardinal power and partitioning abstractions

Composition with another abstraction

@ concrete lattice D = P(Z), with E=C

-
o (ID)E,, I;g) be the lattice of signs / ‘ \
o (D!, C!) be the identity abstraction =] [0 [+

D S P(2), =1 NI

o (]D)g, I;g) be the lattice of intervals

Then, [-10, —3] W [7, 10] is abstracted in two steps:
! ’ -] — {-10,-9,-8,—7,—6,—5,—4, -3}
e in Dy = D3, { [0 — 0
[+] — {7,8,9,10}
(note that, at this stage, the right hand sides are simply sets of values)
i i [_] — [_107_3]
o in Dy = D73, { [0 — 1,
[+] ~— [7,10]
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State partitioning Definition and examples

Outline

e State partitioning
@ Definition and examples
@ Abstract interpretation with boolean partitioning
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State partitioning  Definition and examples
Definition

We consider concrete domain ) = P(S) where

@ S =1L x M where L. denotes the set of control states
o M=X—YV

State partitioning

A state partitioning abstraction is defined as the cardinal power of two

abstractions (Dg, Eg,'yo) and (]D)g, ;2,71) of the domain of sets of states
(P(S), ©):

= o (ID)%, E(u),’)’o) defines the partitions

o (ID)E, I;Ii,fyl) defines the abstraction of each element of partitions

Typical instances:
o either D! = P(S) =D

@ or an abstraction of sets of memory states: numerical abstraction
can be obtained by composing another abstraction on top of (P(S), C)
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State partitioning Definition and examples

Use of a partition: intuition

We fix a partition U of P(S):
QVE,E'cU, E£AE — ENE =0
Q@ S=UU

We can apply the cardinal power construction:

State partitioning abstraction W

Eo

E;

E>

Es

2
We let Dy =2 U {1, T} and 7o : E — E. Thus, D{, =1 — D} and:

Yp: DL, — D

b {seSWEeu,seE———>56%(X“(E))}

@ each E € U is attached to a piece of
information in ID)&

@ exercise: what happens if we use only a
covering, i.e., if we drop property 1 7

e we will often focus on U and drop L, T

Xavier Rival (INRIA, ENS, CNRS)

Partitioning abstractions

Eo

E;

E>
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State partitioning

Definition and examples

Application 1: flow sensitive abstraction

Principle: abstract separately the states at distinct control states

This is what we have been often doing already, without formalizing it
for instance, using the the interval abstract domain:

lo: // assume x>0
h: if(x < 10){

S S S
<
I
N
|
b4

Xavier Rival (INRIA, ENS, CNRS)

lo

1111111
S S

h
b
h
la
5
le

Partitioning abstractions

T Ay: T

[0, 40| Ay : T

0,9 Ay T

[0,9] Ay [-2,7]
[10,+o0[ Ay T

- [10, +00[ Ay ;] — 00, —8]
[0, +00[ Ay :] — 00,7]
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State partitioning  Definition and examples

Application 1: flow sensitive abstraction

Principle: abstract separately the states at distinct control states

Flow sensitive abstraction

We apply the cardinal power based partitioning abstraction with:
oU =L
@ vo: [l {[} xM

It is induced by partition {{/} x M | [ € L}

Then, if X! is an element of the reduced cardinal power,

,),Cp(Xn) = {seS|Vxe ID)g, s € o(x) = s € m(X}(x))}
= {(/,m) €S| men(X})}

@ after this abstraction step, ]D)EL only needs to represent sets of memory states
(numeric abstractions...)

@ this abstraction step is very common as part of the design of abstract
Interpreters
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State partitioning  Definition and examples

Application 1: flow insensitive abstraction

Flow sensitive abstraction is sometimes too costly:

@ e.g., ultra fast pointer analyses (a few seconds for 1 MLOC) for
compilation and program transformation

@ context insensitive abstraction simply collapses all control states

Flow insensitive abstraction

We apply the cardinal power based partitioning abstraction with:
o Df = {}
@ Y:-— S
o D! = P(M)
o1 :Mw—{(l,m)|[€L,me M}
It is induced by a trivial partition of P(S)
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State partitioning Definition and examples

Application 1: flow insensitive abstraction

We compare with flow sensitive abstraction:

lb: // assume x>0 b — x:TAy:T

ho: if(x < 10){ h — x:[0,4oo[Ay:T

b : y=x—2; b — x:[0,9]Ay:T

L: Jelse{ L — x:[0,9] Ay:[-2,7]

ly : y=2—x; L — x:[10,4c0[Ay:T

5: } 5 — x:[10,40o[ Ay :] — oo, —8]
o: ... b — x:[0,400[Ay:]—00,7]

o the best global information isx: T Ay : T (very imprecise)

@ even if we exclude the entry point before the assumption point, we get
x :[0,400[Ay: T (still very imprecise)

For a few specific applications flow insensitive is ok
In most cases (e.g., numeric properties), flow sensitive is absolutely needed
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State partitioning  Definition and examples

Application 2: context sensitive abstraction

We consider programs with procedures

Example:
voidmain(){... 6 : £();... 4 :£();... L :g()...}
void £(){...}
void g(){if(_. )4 - ()}else{s - (}}

@ assumption: flow sensitive abstraction used inside each function

@ we need to also describe the call stack state

Call stack (or, “call string”)

Thus, S = K x L x M, where K is the set of call stacks (or, “call strings”)
-

k € K call stacks
K = € empty call stack
| (f, )& call to f from stack k at point /[

I :
‘[ g
3 /]

v
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State partitioning Definition and examples

Application 2: context sensitive abstraction, co-CFA
C[F/i) — CO(\}/rOJ \F[OV\/ lﬂmcclajg/'s

Fully context sensitive abstraction (co-CFA)
o D! =K x L
® Yo : (kL) = {(k,[,m) | me M}

void main(){... o : £();... 4 : £();... L :g()...}
void £(){...}
void g(){if(...){5 : g()}else{& : £()}}

Abstract contexts in function f:

(o, )€ (4,f) € (4, 1) (&,8) ¢,
([47 ) ([37 ) ([27 ) (&l f) ([37g)'([3,g)'([2;g)'61

@ one invariant per calling context, very precise

e infinite in presence of recursion (i.e., not practical in this case)
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State partitioning Definition and examples

Application 2: context insensitive abstraction, 0-CFA

Context insensitive abstraction (0-CFA)

oDl =L
o Yo:l—{(xk,[,m)]|keK meM}

void main(){... o : £();... 4 : £();... L :g()...}
void £(){...}
void g(){if(...){5 : g()}else{l : £()}}

Abstract contexts in function f are of the form (?,£) - ...,

@ 0-CFA merges all calling contexts to a same procedure, very coarse
abstraction

@ but is usually quite efficient to compute
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State partitioning Definition and examples

Application 2: context sensitive abstraction, k-CFA

Partially context sensitive abstraction (k-CFA)

o D! = {k € K| length(x) < k} x L
@ v :(k,[)={(k-K [,m)| K €K ,meM}

void main(){... 6 : £();... 4 : £();... L :g()...}
void £(){...}
void g(){if(...){5 : g()}else{ls : £()}}

Abstract contexts in function £, in 2-CFA:

I :
‘[ g
3 4

(b,f)-€ (4,%) € (4,f) (G,8)-(?,g) ...,(aT) (L,g)-(?,main)

@ usually intermediate level of precision and efficiency

@ can be applied to programs with recursive procedures
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State partitioning  Definition and examples

Application 3: partitioning by a boolean condition

@ so far, we only used abstractions of the control states to partition

@ we now consider abstractions of memory states properties

Function guided memory states partitioning

We let:
o D! = A where A finite set is a finite set of values / properties
@ ¢ : Ml — A maps each store to its property
@ 7o is of the form (a € A) — {(/,m) €S | ¢(m) = a}

Common choice for A: the set of boolean values B
(or another finite set of values —convenient for enum types!)

Many choices for function ¢ are possible:
@ value of one or several variables (boolean or scalar)
@ sign of a variable
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State partitioning  Definition and examples

Application 3: partitioning by a boolean condition

We assume:

0 X = Xpoo1 W Xint, Where X001 (resp., Xint) collects boolean (resp., integer)
variables

® Xpool = {bo, ..., b1}
° Xint - {X07 R 7X/—1}

Thus, M = X = V = (Xpool = Vbool) X (Xint = Vint) = VE ;X V!

int

Boolean partitioning abstract domain

We apply the cardinal power abstraction, with a domain of partitions defined by a
function, with:

o A= Rk
o ¢(m) = (m(bo),...,m(bk_1))

@ we let (]D)g, g?{,yl) be any numerical abstract domain for P(V! )
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State partitioning  Definition and examples

Application 3: example

With Xpoo1 = {bo, b1}, Xint = {x,y}, we can express:

>
boAb; = x€[-3,0]AyE[-20] o
bo A by = x€[-3,00Aye€[-20] >
-bp Aby = x€[0,3]Ay€]0,2] 50
-bg A-b; =  x€[0,3]Ay€]0,2]

@ this abstract value expresses a relation between by and x,y
(which induces a relation between x and y)

@ alternative: partition with respect to only some variables
e.g., here by only since by is irrelevant

@ typical representation of abstract values:
based on some kind of decision trees (variants of BDDs)
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State partitioning Definition and examples

Application 3: example

@ Left side abstraction shown in blue: boolean partitioning for bg, by
@ Right side abstraction shown in green: interval abstraction

@ We omit the cases of the form P — ...

bool bo, bs;

int x, y; (uninitialized)

bg = x Z 0;
(bo_—_>XZO)/\(_|bo_—_>X<O)

b1 =x < 0;

(bo Aby = x=0) A (bg A by = x > 0) A (0bg A by = x < 0)
if(bo && b1){
(bo/\b1:>X:0)
y=0;
(bo Abj=x=0Ay=0)

telse{
(bo/\"bl_—_>X>O)/\(_lbo/\b1:X<O)

y = 100/x;
(bo A" by =x>0Ay>0)A(-bgAb;=x<0Ay<0)
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State partitioning  Definition and examples

Application 3: partitioning by the sign of a variable

We now consider a semantic property: the sign of a variable

We assume:

o X = Xjpt, /.e., all variables have integer type

° Xint — {X01 R 7X/—1}
Thus, M=X—=V=V],

Sign partitioning abstract domain

We apply the cardinal power abstraction, with a domain of partitions defined by a
function, with:
o A={[<0],[=0],[> 0]}
[< O] if m(Xo) <0
@ p(m)=< [=0] ifm(x)=0
[> O] if m(Xo) >0

° (]D)g, E'i,fyl) an abstraction of P(V!}) (no need to abstract xo twice)

int
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State partitioning Definition and examples

Application 3: example

@ Sign abstraction fixing partitions shown in blue
@ States abstraction shown in green: interval abstraction

@ We omit the cases of the form P — 1 ...

intx €7Z;
int s;
int y;
if(x > 0){
x<0=1L)Ax=0=>T)A(x>0=T)
s = 1;
(x<0= 1 )A(x=0=>s=1)A(x>0=>s=1)
}else{

(x<0=>T)A(x=0=>L)A(x>0= 1)
s =-1;
(x<0=>s=-1)A(x=0=>L)A(x>0= 1)

}

© y=x/s;

(x<0=>s=-1)A(x=0=2>s=1)A(x>0=>s=1)

x<0=2s=-1Ay>0)A(x=0=2>s=1Ay=0A(x>0=>s=1Ay>0)
@ assert(y > 0);
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State partitioning Abstract interpretation with boolean partitioning

Outline

e State partitioning
@ Definition and examples
@ Abstract interpretation with boolean partitioning
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State partitioning Abstract interpretation with boolean partitioning

Computation of abstract semantics and partitioning

We present abstract operations in the context of an analysis that combines two
forms of partitioning;:

e by control states (as previously), using a chaotic iteration strategy

@ by the values of the boolean variables

Intuitively, the abstract values are of the form:

fﬂ : (L X V‘éool) — Dg
L N #
= \V\OOO —Y ) *—
Yet, this is not a very good representatlcon: | D’
@ program transition from one control state to another are known before
the analysis:

they correspond to the program transitions

@ program transition from one boolean configuration to another are not
known before the analysis: we need to know information about the values
of the boolean variables, which the analysis is supposed to compute
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State partitioning Abstract interpretation with boolean partitioning

A combination of two cardinal powers

Sequence of abstractions:

© concrete states: P(L x M) = P(L x (V. x V/..))
© partitioning of states by the control state:

L —PM) =L —P((Vioor X Vint))
© partitioning by the boolean configuration:
L — (Vioor —P(Vint))
© numerical abstraction of numerical stores:
L — (Voo — DY)
Computer representation:

type absl = ... (* abstract elements of ID)'i *)
type abs_state = ... (%

boolean trees with elements of type abs1 at the leaves *)
type abs_cp = (labels, abs_state) Map.t
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State partitioning Abstract interpretation with boolean partitioning

Abstract operations

Abstract post-conditions
@ concrete post : P(S) — P(S) (where S is the set of states);
o the abstract post! : D! — D! should be such that

postoy L yo po.stn

In the next part, we seek for abstract post-conditions for the following
operations, in the cardinal power domain, assuming similar functions are defined in
the underlying domain (numeric abstract domain, cf previous course):

@ assignment to scalar, e.g., x =1 — x; poih)rwfsc
@ assignment to boolean, e.g., bg =x <7
e scalar test, e.g., if(x > 8)... lpo;,\m'\y

e boolean test, e.g., if(—b;)...

Other lattice operations (inclusion check, join, widening) are left as exercise
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State partitioning Abstract interpretation with boolean partitioning

Transfer functions: assignment to scalar (1/2)

Computation of an abstract post-condition

Xk = €;

Example:
@ statement x =1 — x;

@ abstract pre-condition:
b = >
AN b = <

@ the values of the boolean variables do not change

Intuition:

@ the values of the numeric values can be updated separately for each partition
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State partitioning  Abstract interpretation with boolean partitioning

Transfer functions: assignment to scalar (2/2)

Definition of the abstract post-condition

assign (x, &, X1) = A(21 € Vhoy) - assign, (x, &, X1(21)

This post-condition is sound:

Soundness

|f assign, is sound, so is assign__, in the sense that:
cp

vt e Df

by ¥ € Yep(XF), mlx  [e](m)] € yep(assign ,,(x, e, X))

@ proof by case analysis over the value of the boolean variables
Example:

wssim (%1 — x b = x>0 _ b = x<1
Ilhep \ * "IA b = x<0[/) | A b = x>1
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State partitioning  Abstract interpretation with boolean partitioning

Transfer functions: scalar test (1/2)

Computation of an abstract post-condition

if(e){...
where e only refers to numeric variables
(analysis of a condition test, of a loop test, of an assertion)

Example:
e statement: if(x > 8){...
@ abstract pre-condition:
b = x
A b = X

o

VANV

Intuition:

@ the values of the variables do not change, no relations between boolean and

numeric variables can be inferred

@ new conditions on the numeric variables can be inferred, separately for each

partition (possibly leading to empty abstract states)
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State partitioning Abstract interpretation with boolean partitioning

Transfer functions: scalar test (2/2)

Definition of the abstract post-condition

teStcp(C7Xu) — )‘(Zu € Vl/;ool) ' te5t1(C’Xu(Zu))

This post-condition is sound:

Soundness

If test; is sound, so is testcp, in the sense that:

VX' € DL, Vim € veo(X), [c](m) = TRUE => m € yep(testep(x, €, X))

@ proof by case analysis over the value of the boolean variables
Example:

st (x> 8 b = 0 B b = x>38
e G R N S 0 A b = L
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State partitioning Abstract interpretation with boolean partitioning

Transfer functions: boolean condition test (1/3)

Computation of an abstract post-condition

if(e)]{...
where e only refers to boolean variables
(analysis of a condition test, of a loop test, of an assertion)

Example:

e statement: if(—b;)...
~

@ abstract pre-condition: <

Intuition:

@ the values of the variables do not change, no new relations between boolean
and numeric variables can be inferred

@ certain boolean configurations get discarded or refined
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State partitioning  Abstract interpretation with boolean partitioning

Transfer functions: boolean condition test (2/3)

Definition of the abstract post-condition

X4(ZH) if testo(c, XH(2")) # Lo

te.stcp(c, Xu) = )\(Zu - Vl/;ool) ’ { J—l otherwise

This post-condition is sound:

Soundness

If testy is sound, so is testcp, in the sense that:

VX' € DL, Vi € veo(X), [c](m) = TRUE = m € yep(testep(x, €, X))

Proof:

@ case analysis over the boolean configurations

@ in each situation, two cases depending on whether or not the condition test
evaluates to TRUE or to FALSE
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State partitioning

Abstract interpretation with boolean partitioning

Transfer functions: boolean condition test (3/3)

Example abstract post-condition:

( bg N\ by
AN bg A b
testcp | b1, 0 1
A —bg A by
( bo A by
iy A bg A —7bq
A —bg A by

Xavier Rival (INRIA, ENS, CNRS)
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State partitioning Abstract interpretation with boolean partitioning

Transfer functions: assignment to boolean (1/3)

Computation of an abstract post-condition

b; = e;

where e only refers to numeric variables

Example: b, ~> €
@ statement: byp=x<7 K cond. Clee
= 15<x M) —
|

.. = 9<x<14 - =% cond
e abstract pre-condition: P e

= 6<x<8 > G

xXG (
—~ [ U A —bgA-by = x <5 N cond r/r\”up h

Intuition: o |, —of" b, Ab,
@ the value of the boolean variable in the left hand side changes, thus partitions
need to be recomputed

@ new relations between boolean variables and numeric variables emerge (old
relations get discarded)
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State partitioning Abstract interpretation with boolean partitioning

Transfer functions: assignment to boolean (2/3)

Definition of the abstract post-condition

i A
| . _ test (e, X*(z[b < TRUE]))
assign (b, e, X*)(2"[b < TRUE]) { Ly test1(e, X!(z![b + FALSE]))
| B test1(—e, X}(z![b « TRUE]))
assign_ (b, e, X")(z![b  FALSE]) = { Ui testr(—e, X(2![b « FALSE]))
Soundness

VX' € D, Vi € ep(XP), mlb + [e](m)] € Yep(assign, (b, e, X))

Proof: if z! € Df and z!(b) = TRUE, then, assign_ (b, e[xo, . .., %], X#)(z") should
account for all states where b becomes true, whatever the previous value, other
boolean variables remaining unchanged; the case where z#(b) = FALSE is
symmetric.

The partitions get modified (this is a costly step, involving join) )
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State partitioning Abstract interpretation with boolean partitioning

Transfer functions: assignment to boolean (3/3)

Example abstract post-condition: )

N
-~

( bg N by = < )
A bgAN—- by = 9<x<14
] b <7 -
B lep SR A —bgAb; = 6<x<8 f

S
>
&
L R A AN

— AN bo AN _Ibl X S 5 '
N AN _lbo N b1 8 S X
\/\ _lbo/\_lbl 9§X§14)
The partitions get modified (this is a costly step, involving join) J
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State partitioning Abstract interpretation with boolean partitioning

Choice of boolean partitions

Boolean partitioning allows to express relations between boolean and scalar
variables, but these relations are expensive to maintain:

@ partitioning with respect to N boolean variables translates into a 2" space
cost factor

@ after assignments, partitions need be recomputed (use of join)

Packing addresses the first issue
@ select groups of variables for which relations would be useful
@ can be based on syntactic or semantic criteria

Whatever the packs, the transfer functions will produce a sound result
(but possibly not the most precise one)

In the last part of this course, we present another form of partitioning that can
sometimes alleviate these issues
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Outline

e Trace partitioning
@ Principles and examples
@ Abstract interpretation with trace partitioning
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Trace partitioning Principles and examples

Definition of trace partitioning

Principle

We start from a trace semantics and rely on an abstraction of execution

history for partitioning

e concrete domain: D) = P(S*)
o left side abstraction 7y : ]DDE) — ID: a trace abstraction
to be defined precisely later

e right side abstraction, as a composition of two abstractions:
> the final state abstraction defined by (D!, ) = (P(S), C) and:

’}’1ZMI—){<50,...,Sk,([,m)>|mEM,[EL,So,...,SkES}

» a store abstraction applied to the traces final memory state
Y2 : Dg — ]D)g

Trace partitioning

Cardinal power abstraction defined by abstractions g and 1 o>
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Trace partitioning Principles and examples

Application 1: partitioning by control states

Flow sensitive abstraction
o Welet D} = LU{T}

@ Concretization is defined by:

[ — S*-({/} xM)

v

This produces the same flow sensitive abstraction as with state partitioning; in the
following we always compose context sensitive abstraction with other
abstractions...

Trace partitioning is more general than state partitioning

Any state partitioning abstraction is also a trace partitioning abstraction:

@ context-sensitivity, partial context sensitivity

@ partitioning guided by a boolean condition...

v
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Trace partitioning Principles and examples

Application 2: partitioning guided by a condition

We consider a program with a conditional statement:

E L 0,
é—;[z . Jelse{

@ '@ it free i€ Rlee
= - .-

Domain of partitions

The partitions are defined by ID)E, = {Tif, Tit:f, | and:

Yo: Tiex +—> {{(lo,m),(4,m),...) | meM,m € M}
Tie.e —  {((b,m),(5,m'),...) | me M, m' € M}
T — S*

Application:
discriminate the executions depending on the branch they visited
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Trace partitioning Principles and examples

Application 2: partitioning guided by a condition

This partitioning resolves the second example:

intx € Z;
int s;
int y;
if(x > 0){
Tift = (0 < X) N Tirf = L
s =1;
Tif;t:>(0§X/\S:1)/\Tif;f:>J_
}else {
Tif;fj(X<0)/\Tif;t$J_
s =—1;
Tif;fi(X<0/\S:—l)/\7’if;t$J_ 3:&0
}
{ Tife = (ng/\s:l)/)
N Tiff = (X<0/\S:_1)\‘> &;&;O

Tift = (OSX/\S:]. Ogy)
A Tier = (x<0As=-1n0<Yy)
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Trace partitioning Principles and examples

Application 3: partitioning guided by a loop

We consider a program with a loop statement:

b : while(c){
hq:

b: }
G ...

Domain of partitions
For a given k € N, the partitions are defined by

| .
Dy = {Tloop:O; Tloop:1 - - + » Tloop:k» T} and:

Yo ! Ticop:i '+ traces that visit 4 i times
T —  S*

Application:
discriminate executions depending on the number of iterations in a loop
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Trace partitioning Principles and examples

Application 3: partitioning guided by a loop

An interpolation function:

~1 if x < —1
;= -4+ ifxe[-1,1]
—1+x ifx€l(l,3]
2 if 3<x >

Typical implementation:
@ use tables of coefficients and loops to search for the range of x
@ here we assume the entrance is positive:

inti=0;
while(i < 4 && x > t,[i+ 1]){
i++
}
Tioop:0 1 (case x < —1)
Tloop:1 0<x<1Ai=1 (case —1<x<1)

3<xAi=3
ty[i]

Tloop:3

=
=

Tloop:2 = 1§XS3/\i:2
=

vy = tc[i] X (x — tx[i]) +
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Trace partitioning Principles and examples

Application 4: partitioning guided by the value of a variable

We consider a program with an integer variable x, and a program point [:
e wes equaf (o 8 of [€

—_

Domain of partitions: partitioning by the value of a variable
For a given £ C V;; finite set of integer values, the partitions are defined by
D} = {rari | i € E}W{T} and:

Yo: Tvark +—— {{..,([,m),...) ]| m(x) =k}
T — S*

Domain of partitions: partitioning by the property of a variable

For a given abstraction -y : (V#, Eu) — (P(Vint), ©), the partitions are defined by
DP’) — {Tvar:vﬂ ‘ Vi c \/H} and:

Yo: Tearvt +—— {(-..,([,m),...) | m(x) € Tyar vt }

v
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Application 4: parti