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Overview of the lecture
So far, we have shown numerical abstract domains

non relational: intervals, congruences...
relational: polyhedra, octagons, ellipsoids...

How to deal with non purely numerical states ?
How to reason about complex data-structures ?

) a very broad topic, and two lectures:

This lecture
overview memory models and memory properties
non relational pointer structures abstraction
predicates based shape abstraction

Next lecture: separation logic and shape abstraction, shape/numerical
abstraction
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Memory models Towards memory properties

Outline

1 Memory models
Towards memory properties
Formalizing concrete memory states
Treatment of errors
Language semantics

2 Pointer Abstractions

3 Shape analysis in Three-Valued Logic (TVL)

4 Conclusion
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Memory models Towards memory properties

Assumptions for the two lectures on memory abstraction
Imperative programs viewed as transition systems:

set of control states: L (program points)

set of variables: X (all assumed globals)

set of values: V (so far: V consists of integers (or floats) only)

set of memory states: M (so far: M = X! V)

error state: ⌦

states: S

S = L⇥M

S⌦ = S ] {⌦}
transition relation:

(!) ✓ S⇥ S⌦

Abstraction of sets of states
abstract domain D

]

concretization � : (D],v]) �! (P(S),✓)
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Memory models Towards memory properties

Assumptions: syntax of programs

We start from the same language syntax and will extend l-values:

l ::= l-values
| x (x 2 X)
| . . . we will add other kinds of l-values

pointers, array dereference...
e ::= expressions

| c (c 2 V)
| l (lvalue)
| e� e (arith operation, comparison)

s ::= statements
| l = e (assignment)
| s; . . . s; (sequence)
| if(e){s} (condition)
| while(e){s} (loop)
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Memory models Towards memory properties

Assumptions: semantics of programs

We assume classical definitions for:
l-values: JlK : M! X

expressions: JeK : M! V

programs and statements:
I we assume a label before each statement
I each statement defines a set of transitions (!)

In this course, we rely on the usual reachable states semantics

Reachable states semantics
The reachable states are computed as JSKR = lfpF where

F : P(S) �! P(S)
X 7�! SI [ {s 2 S | 9s 0 2 X , s 0 ! s}

and SI denotes the set of initial states.
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Memory models Towards memory properties

Assumptions: general form of the abstraction

We assume an abstraction for sets of memory states:
memory abstract domain D

]
mem

concretization function �mem : D]
mem ! P(M)

Reachable states abstraction
We construct D] = L! D

]
mem and:

� : D
] �! P(S)

X ] 7�! {(l ,m) 2 S | m 2 �mem(X ](l ))}

The whole question is how do we choose D
]
mem, �mem...

previous lectures:
X is fixed and finite and, V is scalars (integers or floats), thus, M ⌘ V

n

today:
we will extend the language thus, also need to extend D

]
mem, �mem
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Memory models Towards memory properties

Abstraction of purely numeric memory states

Purely numeric case
V is a set of values of the same kind
e.g., integers (Z), machine integers (Z \ [�263, 263 � 1])...
If the set of variables is fixed, we can use any abstraction for V

N

Example: N = 2, X = {x , y}

concrete set

x

y

interval domain

x

y

octagon domain

x

y

polyedra domain

x

y
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Memory models Towards memory properties

Heterogeneous memory states
In real life languages, there are many kinds of values:

scalars (integers of various sizes, boolean, floating-point values)...
pointers, arrays...

Heterogeneous memory states and non relational abstraction
types t0, t1, . . . and values V = Vt0 ] Vt1 ] . . .

finitely many variables; each has a fixed type: X = Xt0 ] Xt1 ] . . .

memory states: M = Xt0 ! Vt0 ⇥ Xt1 ! Vt1 . . .

Principle: compose abstractions for sets of memory states of each type

Non relational abstraction of heterogeneous memory states
M ⌘M0 ⇥M1 ⇥ . . . where Mi = Xi ! Vi

Concretization function (case with two types)
�nr : P(M0)⇥ P(M1) �! P(M)

(m]
0,m]

1) 7�! {(m0,m1) | 8i , mi 2 �i (m]
i )}

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Jan, 10th. 2021 9 / 76

records Eo scalars integers
En pointers

a

naive



Memory models Towards memory properties

Memory structures

Common structures (non exhaustive list)
Structures, records, tuples:

sequences of cells accessed with fields
Arrays:

similar to structures; indexes are integers in [0, n � 1]
Pointers:

numerical values corresponding to the address of a memory cell
Strings and buffers:

blocks with a sequence of elements and a terminating element (e.g., 0x0)
Closures (functional languages):

pointer to function code and (partial) list of arguments)

To describe memories, the definition M = X! V is too restrictive

Generally, non relational, heterogeneous abstraction cannot handle many
such structures all at once: relations are needed!
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Memory models Towards memory properties

Specific properties to verify

Memory safety
Absence of memory errors (crashes, or undefined behaviors)

Pointer errors:
Dereference of a null pointer / of an invalid pointer

Access errors:
Out of bounds array access, buffer overruns (often used for attacks)

Invariance properties
Data should not become corrupted (values or structures...)

Examples:
Preservation of structures, e.g., lists should remain connected
Preservation of invariants, e.g., of balanced trees
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Memory models Towards memory properties

Properties to verify: examples

A program closing a list of file
descriptors

// l points to a list

c = l;
while(c 6= NULL){
close(c! FD);
c = c! next;

}

Correctness properties
1 memory safety
2 l is supposed to store all file

descriptors at all times
will its structure be preserved ?
yes, no breakage of a next link

3 closure of all the descriptors

Examples of structure preservation properties

Algorithms manipulating trees, lists...

Libraries of algorithms on balanced trees

Not guaranteed by the language !
e.g., the balancing of Maps in the OCaml standard library was incorrect for
years (performance bug)
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Memory models Formalizing concrete memory states

A more realistic model

No one-to-one relation between memory cells and program variables
a variable may indirectly reference several cells (structures...)
dynamically allocated cells correspond to no variable at all...

Environment + Heap
Addresses are values: Vaddr ✓ V

Environments e 2 E map variables into their addresses
Heaps (h 2 H) map addresses into values

E = X! Vaddr
H = Vaddr ! V

h is actually only a partial function
Memory states (or memories): M = E⇥H

Note: Avoid confusion between heap (function from addresses to values)
and dynamic allocation space (often referred to as “heap”)
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Memory models Formalizing concrete memory states

Example of a concrete memory state (variables)

Example setup:
x and z are two list elements containing values 64 and 88, and where the
former points to the latter
y stores a pointer to z

Memory layout
(pointer values underlined)

address

&x = 300
304

&y = 308
&z = 312

316 0x0
88
312
312
64

e : x 7! 300
y 7! 308
z 7! 312

h : 300 7! 64
304 7! 312
308 7! 312
312 7! 88
316 7! 0
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Memory models Formalizing concrete memory states

Example of a concrete memory state (variables + dyn. cell)

Example setup:
same configuration
+ second field of z points to a dynamically allocated list element (in purple)

Memory layout

address

&x = 300
304

&y = 308
&z = 312

316

508
512 0x0

25

508
88
312
312
64

e : x 7! 300
y 7! 308
z 7! 312

h : 300 7! 64
304 7! 312
308 7! 312
312 7! 88
316 7! 508
508 7! 25
512 7! 0
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Memory models Formalizing concrete memory states

Extending the semantic domains

Some slight modifications to the semantics of the initial language:

Addresses are values: Vaddr ✓ V

L-values evaluate into addresses: JlK : M! Vaddr

JxK(e, h) = e(x)

Semantics of expressions JeK : M! V, mostly unchanged

JlK(e, h) = h(JlK(e, h))

Semantics of assignment l0 : l := e; l1 : . . .:
(l0, e, h0) �! (l1, e, h1)

where
h1 = h0[JlK(e, h0) JeK(e, h0)
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Memory models Formalizing concrete memory states

Realistic definitions of memory states

Our model is still not very accurate for most languages
Memory cells do not all have the same size
Memory management algorithms usually do not treat cells one by one,
e.g., malloc returns a pointer to a block
applying free to that pointer will dispose the whole block

Other refined models
Partition of the memory in blocks with a base address and a size
Partition of blocks into cells with a size
Description of fields with an offset
Description of pointer values with a base address and an offset...

For a very formal description of such concrete memory states:
see CompCert project source files (Coq formalization)
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Memory models Treatment of errors

Language semantics: program crash

In an abnormal situation, we assume that the program will crash
advantage: very clear semantics
disadvantage (for the compiler designer): dynamic checks are required

Error state
⌦ denotes an error configuration
⌦ is a blocking: (!) ✓ S⇥ ({⌦} ] S)

OCaml:
out-of-bound array access:
Exception: Invalid_argument "index out of bounds".

no notion of a null pointer
Java:

exception in case of out-of-bound array access, null dereference:
java.lang.ArrayIndexOutOfBoundsException
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Memory models Treatment of errors

Language semantics: undefined behaviors

Alternate choice: leave the behavior of the program unspecified when an
abnormal situation is encountered

advantage: easy implementation (often architecture driven)
disadvantage: unintuitive semantics, errors hard to reproduce
different compilers may make different choices...
or in fact, make no choice at all (= let the program evaluate even when
performing invalid actions)

Modeling of undefined behavior
Very hard to capture what a program operation may modify
Abnormal situation at (l0,m0) such that 8m1 2M, (l0,m0)! (l1,m1)

In C:
array out-of-bound accesses and dangling pointer dereferences lead to
undefined behavior (and potentially, memory corruption) whereas a
null-pointer dereference always result into a crash
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Memory models Language semantics

Composite objects

How are contiguous blocks of information organized ?

Java objects, OCaml struct types
sets of fields
each field has a type
no assumption on physical storage, no pointer arithmetics

C composite structures and unions
physical mapping defined by the norm
each field has a specified size and a specified alignment
union types / casts:
implementations may allow several views
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Memory models Language semantics

Pointers and records / structures / objects

Many languages provide pointers or references and allow to manipulate
addresses, but with different levels of expressiveness

What kind of objects can be referred to by a pointer ?

Pointers only to records / structures / objects
Java: only pointers to objects
OCaml: only pointers to records, structures...

Pointers to fields
C: pointers to any valid cell...

struct {int a; int b} x;
int ⇤ y = &(x · b);
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Memory models Language semantics

Pointer arithmetics

What kind of operations can be performed on a pointer ?

Classical pointer operations
Pointer dereference:
⇤p returns the contents of the cell of address p
“Address of” operator: &x returns the address of variable x

Can be analyzed with a rather coarse pointer model
e.g., symbolic base + symbolic field

Arithmetics on pointers, requiring a more precise model
Addition of a numeric constant:
p+ n: address contained in p + n times the size of the type of p
Interaction with pointer casts...
Pointer subtraction: returns a numeric offset
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Memory models Language semantics

Manual memory management

Allocation of unbounded memory space
How are new memory blocks created by the program ?
How do old memory blocks get freed ?

OCaml memory management
implicit allocation
when declaring a new object
garbage collection: purely
automatic process, that frees
unreachable blocks

C memory management
manual allocation: malloc
operation returns a pointer to a
new block
manual de-allocation: free
operation (block base address)

Manual memory management is not safe:
memory leaks: growing unreachable memory region; memory exhaustion
dangling pointers if freeing a block that is still referred to
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Memory models Language semantics

Summary on the memory model

Language dependent items
Clear error cases or undefined behaviors
for analysis, a semantics with clear error cases is preferable

Composite objects: structure fully exposed or not

Pointers to object fields: allowed or not

Pointer arithmetic: allowed or not
i.e., are pointer values symbolic values or numeric values

Memory management: automatic or manual

In this course, we start with a simple model, and study specific features one by
one and in isolation from the others
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Memory models Language semantics

Rest of these two lectures

Abstraction for pointers and dynamic data-structures:

pointer abstractions
three-valued logic-based abstraction for dynamic structures
separation logic-based abstraction for dynamic structures
combination of value and structure abstractions

Abstract operations:

post-condition for the reading of a cell defined by an l-value
e.g., x = a[i] or x = ⇤p
post-condition for the writing of a heap cell
e.g., a[i] = p or p -> f = x

abstract join, that approximates unions of concrete states

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Jan, 10th. 2021 25 / 76

short simpletechniques



Pointer Abstractions

Outline

1 Memory models

2 Pointer Abstractions

3 Shape analysis in Three-Valued Logic (TVL)

4 Conclusion
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Pointer Abstractions

Programs with pointers: syntax

Syntax extension: we add pointer operations

l ::= l-values
| x (x 2 X)
| . . .
| ⇤e pointer dereference
| l · f field read

e ::= expressions
| l

| . . .
| &l "address of" operator

s ::= statements
| . . .
| x = malloc(c) allocation of c bytes
| free(x) deallocation of the block pointed to by x

We do not consider pointer arithmetics here
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Pointer Abstractions

Programs with pointers: semantics

Case of l-values:

JxK(e, h) = e(x)

J⇤eK(e, h) =

⇢
h(JeK(e, h)) if JeK(e, h) 6= 0 ^ JeK(e, h) 2 Dom(h)
⌦ otherwise

Jl · fK(e, h) = JlK(e, h) + offset(f) (numeric offset)

Case of expressions:

JlK(e, h) = h(JlK(e, h)) (evaluates into the contents)
J&lK(e, h) = JlK(e, h) (evaluates into the address)

Case of statements:
memory allocation x = malloc(c): (e, h)! (e, h 0) where
h 0 = h[e(x) k] ] {k 7! vk , k + 1 7! vk+1, . . . , k + c � 1 7! vk+c�1} and
k , . . . , k + c � 1 are fresh and unused in h
memory deallocation free(x): (e, h)! (e, h 0) where k = e(x) and
h = h 0 ] {k 7! vk , k + 1 7! vk+1, . . . , k + c � 1 7! vk+c�1}
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Pointer Abstractions

Pointer non relational abstractions

We rely on the non relational abstraction of heterogeneous states that was
introduced earlier, with a few changes:

we let V = Vaddr ] Vint and X = Xaddr ] Xint

concrete memory cells now include structure fields, and fields of
dynamically allocated regions
abstract cells C

] finitely summarize concrete cells
we apply a non relational abstraction:

Non relational pointer abstraction
Set of pointer abstract values D

]
ptr

Concretization �ptr : D
]
ptr ! P(Vaddr) into pointer sets

We will see several instances of this kind of abstraction, and show how such
abstraction lift into abstraction for sets of heaps
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Pointer Abstractions

Pointer non relational abstraction: null pointers

The dereference of a null pointer will cause a crash

To establish safety: compute which pointers may be null

Null pointer analysis
Abstract domain for addresses:

�ptr(?) = ;
�ptr(>) = Vaddr

�ptr( 6= NULL) = Vaddr \ {0} ?

6= NULL

>

we may also use a lattice with a fourth element = NULL

exercise: what do we gain using this lattice ?
very lightweight, can typically resolve rather trivial cases
useful for C, but also for Java
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Pointer Abstractions

Pointer non relational abstraction: dangling pointers

The dereferece of a null pointer will cause a crash

To establish safety: compute which pointers may be dangling

Null pointer analysis
Abstract domain for addresses:

�ptr(?) = ;
�ptr(>) = Vaddr ⇥H

�ptr(Not dangling) = {(v , h) | h 2 H ^ v 2
Dom(h)} ?

Not dangling

>

very lightweight, can typically resolve rather trivial cases
useful for C, useless for Java (initialization requirement + GC)
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Pointer Abstractions

Pointer non relational abstraction: points-to sets

Determine where a pointer may store a reference to

1 : int x, y;
2 : int ⇤ p;
3 : y = 9;
4 : p = &x;
5 : ⇤p = 0;

what is the final value for x ?
0, since it is modified at line 5...
what is the final value for y ?
9, since it is not modified at line 5...

Basic pointer abstraction
We assume a set of abstract memory locations A

] is fixed:
A

] = {&x, &y, . . . , &t, a]0, a
]
1, . . . , a

]
N}

where a]0, . . . , a
]
N is a collection of N + 1 fixed abstract addresses

Concrete addresses are abstracted into A
] by �A : Vaddr ! A

] ] {>}
Assumption: �A surjective (no useless abstract address).
A pointer value is abstracted by the abstraction of the addresses it may point
to, i.e., D

]
ptr = P(A])

and �ptr(a]) = {a 2 Vaddr | �A(a) = a]}
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Pointer Abstractions

Abstraction of pointer states

We consider all values are of pointer type, i.e., heaps are of the form
h : Vaddr ! Vaddr.

Intuition:
collect information separately for each element of A]

use a pointer value abstract element for each abstract address

Lifting a pointer abstraction to heap abstraction
We let D]

mem = A
] ! D

]
ptr and define

�mem(h]) = {h 2 H | 8a 2 Vaddr, 8a] 2 A
],

�A(a) = a] =) �A(h(a)) 2 �ptr(h](a]))}

Examples of properties described by this abstraction:
p may point to {&x}
p points to some address described by a] and, at all addresses described by
a], we can read another address described by a]
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Pointer Abstractions

Points-to sets computation example

Example code:
1 : int x, y;
2 : int ⇤ p;
3 : y = 9;
4 : p = &x;
5 : ⇤p = 0;
6 : . . .

Abstract locations: {&x, &y, &p}
Analysis results:

&x &y &p

1 > > >
2 > > >
3 > > >
4 > [9, 9] >
5 > [9, 9] {&x}
6 [0, 0] [9, 9] {&x}
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Pointer Abstractions

Points-to sets computation and imprecision

x 2 [�10,�5]; y 2 [5, 10]
1 : int ⇤ p;
2 : if(?){
3 : p = &x;
4 : } else {
5 : p = &y;
6 : }
7 : ⇤p = 0;
8 : . . .

&x &y &p

1 [�10,�5] [5, 10] >
2 [�10,�5] [5, 10] >
3 [�10,�5] [5, 10] >
4 [�10,�5] [5, 10] {&x}
5 [�10,�5] [5, 10] >
6 [�10,�5] [5, 10] {&y}
7 [�10,�5] [5, 10] {&x, &y}
8 [�10, 0] [0, 10] {&x, &y}

What is the final range for x ?
What is the final range for y ?

Abstract locations: {&x, &y, &p}

Imprecise results
The abstract information about
both x and y are weakened
The fact that x 6= y is lost
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Pointer Abstractions

Weak updates

We can formalize this imprecision a bit more:

Weak updates
The modified concrete cell cannot be uniquely mapped into a well
identified abstract cell that describes only it
The resulting abstract information is obtained by joining the new value and
the old information

Effect in pointer analysis, in the case of an assignment:
if the points-to set contains exactly one element, the analysis can perform
a strong update
as in the first example: p Z) {&x}

if the points-to set may contain more than one element, the analysis needs
to perform a weak-update
as in the second example: p Z) {&x, &y}
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Pointer Abstractions

Weak updates
We recall:

A
] = {&x, &y, . . . , &t, a]0, a

]
1, . . . , a

]
N}

�A : Vaddr ! A
] ] {>}, surjective

Moreover, we assume an abstract state h] and an assignment l := c where l is an
l-value. We note the abstract evaluation of the l-value:

L ::= ��1
A (JlK](h])) = {a 2 A

] | �A(a) 2 JlK](h])}

We have two cases, based on the cardinality of L:
1 |L|  1:

then, exactly one abstract value needs to be updated (�A(a) if L = {a})
2 |L| > 1:

then, there exists two distinct addresses a0, a1 2 L; since the assignment
overwrites one cell exactly:

I if the content of a0 is modified, then that of a1 stays the same...
I the other way around too, of course

thus the post-condition need to map �A(a0) to something weaker than
h](a0), and the same for a1, which means we have a weak update
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Pointer Abstractions

Weak updates

We consider:
abstract heap h]

assignment l := c

the abstract evaluation of the l-value:

L ::= ��1
A (JlK](h])) = {a 2 A

] | �A(a) 2 JlK](h])}

So, when does the weak update happen ?

There are two (non exclusive) situations:
1 when |JlK](h])| > 1:

this includes that the evaluation of l is not precise in the abstract
2 when there exists a 2 JlK](h]) such that |��1

A ({a})| > 1:
this means that one of the addresses l may evaluate to corresponds to
several distinct concrete cells

Both cases can be expected to happen frequently in pointer analysis...
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Pointer Abstractions

Pointer aliasing based on equivalence on access paths

Aliasing relation
Given m = (e, h), pointers p and q are aliases iff h(e(p)) = h(e(q))

Abstraction to infer pointer aliasing properties
An access path describes a sequence of dereferences to resolve an l-value
(i.e., an address); e.g.:

a ::= x | a · f | ⇤ a
An abstraction for aliasing is an over-approximation for equivalence
relations over access paths

Examples of aliasing abstractions:
set abstractions: map from access paths to their equivalence class
(ex: {{p0, p1, &x}, {p2, p3}, . . .})
numerical relations, to describe aliasing among paths of the form x(->n)k

(ex: {{x(->n)k, &(x(->n)k+1) | k 2 N})
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Pointer Abstractions

Limitation of basic pointer analyses seen so far
Weak updates:

imprecision in updates that spread out as soon as points-to set contain
several elements
impact client analyses severely (e.g., low precision on numerical)

Unsatisfactory abstraction of unbounded memory:
common assumption that C] be finite
programs using dynamic allocations often perform unbounded numbers of
malloc calls (e.g., allocation of a list)

Unable to express well structural invariants:
for instance, that a structure should be a list, a tree...
very indirect abstraction in numeric / path equivalence abstration

A common solution:
shape abstraction
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Shape analysis in Three-Valued Logic (TVL) Principles of Three-Valued Logic based abstraction

Outline

1 Memory models

2 Pointer Abstractions

3 Shape analysis in Three-Valued Logic (TVL)
Principles of Three-Valued Logic based abstraction
Comparing and concretizing Three-Valued Logic abstractions
Weakening Three-Valued Logic abstractions
Transfer functions
Focusing

4 Conclusion
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Representation of memory states: memory graphs

Observation: representation of memory states by graphs
Nodes (aka, atoms) denote variables, memory locations
Edges denote properties of addresses / pointers, such as:

I “field f of location u points to v ”
I “variable x is stored at location u”

This representation is also relevant in the case of separation logic based
shape abstraction

A couple of examples:

Two alias pointers:

x

y

u0

u1

u2

A list of length 2 or 3:

x u0 u1 u2
n n

x u0 u1 u2 u3
n n n

We need to over-approximate sets of shape graphs
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Memory graphs and predicates: variables

Before we apply some abstraction, we formalize memory graphs using some
predicates, such as:

“Variable content” predicate
We note x(u) = 1 if node u represents the contents of x.

Examples:
Two alias pointers:

x

y

u0

u1

u2

Then, we have x(u0) = 1 and y(u1) = 1, and x(u) = 0 (resp., y(u) = 0) in
all the other cases
A list of length 2:

x u0 u1 u2
n n

Then, we have x(u0) = 1 and x(u) = 0 in all the other cases
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Memory graphs and predicates: (field) pointers

“Field content pointer” predicate
We note n(u, v) if the field n of u stores a pointer to v

We note 0(u, v) if u stores a pointer to v (base address field is at offset 0)

Examples:
Two alias pointers:

x

y

u0

u1

u2

Then, we have 0(u0, u2) = 1 and 0(u1, u2) = 1, and 0(u, v) = 0 in all the
other cases
A list of length 2:

x u0 u1 u2
n n

Then, we have n(u0, u1) = 1 and n(u1, u2) = 1, and n(u, v) = 0 in all the
other cases
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2-structures and conretization
We can represent the memory graphs using tables of predicate values:

Two-structures and concretization
We assume a set P = {p0, p1, . . . , pn} of predicates (we write ki for the arity of
predicate pi ). A formal representation of a memory graph is a 2-structure
(U ,�) 2 D

]
2 defined by:

a set U = {u0, u1, . . . , um} of atoms
a truth table � such that �(pi , ul1 , . . . , ulki ) denotes the truth value of pi for
ul1 , . . . , ulki (where arities of predicates are respected)

Then, �2(U ,�) is the set of (e, h , ⌫) where ⌫ : U ! Vaddr and that satisfy exactly
the truth tables defined by �:

(e, h , ⌫) satisfies x(u) iff e(x) = ⌫(u)

(e, h , ⌫) satisfies f(u, v) iff h(⌫(u), f) = ⌫(v)

the name “two-structure” will become clear (very) soon
the set of two-structures is parameterized by the data of a set of predicates
x(.), y(.), 0(., .), n(., .) (additional predicates will be added soon...)
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Examples of two-structures

Two alias pointers:

x

y

u0

u1

u2

x y

u0 1 0
u1 0 1
u2 0 0

7! u0 u1 u2
u0 0 0 1
u1 0 0 1
u2 0 0 0

A list of length 2:

x u0 u1 u2
n n

x

u0 1
u1 0
u2 0

·n 7! u0 u1 u2
u0 0 1 0
u1 0 0 1
u2 0 0 0

A list of length 2:

x y

u0 u1 u2
n n

x y

u0 1 0
u1 0 1
u2 0 0

·n 7! u0 u1 u2
u0 0 1 0
u1 0 0 1
u2 0 0 0

Lists of arbitrary length ? More on this later
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Unknown value: three valued logic

How to abstract away some information ?

i.e., how to abstract several graphs into one ?
Example: pointer variable p alias with x or y x

p

y

u0

u1

x

p

y

u0

u1

A boolean lattice
Use predicate tables
Add a > boolean value;
(denoted to by 1

2 in TVLA papers)

0 1

1
2

Graph representation:
dotted edges
Abstract graph:

x

p

y

u0

u1
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Summary nodes
At this point, we cannot talk about unbounded memory states with finitely
many nodes, since one node represents at most one memory cell

An idea
Choose a node to represent several concrete nodes
Similar to smashing of arrays using segments

Definition: summary node
A summary node is an atom that may denote several concrete atoms

intuition: we are using a non injective function �A : Vaddr �! A
]

representation: double circled nodes

Lists of lengths 1, 2, 3:

x u0 u1
n

x u0 u1 u2
n n

x u0 u1 u2 u3
n n n

Attempt at a summary graph:

x u0 u1
n n

Edges to u1 are dotted
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Additional graph predicate: sharing

We now define a few higher level predicates based on the previously seen
atomic predicates describing the graphs.

Example: a cell is shared if and only if there exists several distinct pointers to it

“Is shared” predicate
The predicate sh(u) holds if and only if

9v0, v1,

8
<

:

v0 6= v1
^ n(v0, u)
^ n(v1, u)

(for concision, we assume only n pointers)

u0

u1

u2 u3

n

n

n sh(u0) = sh(u1) = sh(u3) = 0
sh(u2) = 1
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Additional graph predicate: reachability
We can also define higher level predicates using induction:

For instance, a cell is reachable from u if and only it is u or it is reachable from a
cell pointed to by u.

“Reachability” predicate
The predicate r(u, v) holds if and only if:

u = v
_ 9u0, n(u, u0) ^ r(u0, v)

(for concision, we assume only n pointers)

x u0 u1 u2 u3
n n n

r(u1, u0) = r(u2, u0) = r(u3, u1) = 0
r(u0, u0) = r(u0, u2) = r(u0, u3) = 1

“Acyclicity” predicate
The predicate acy(u) holds iff 9v , v 6= u ^ r(u, v) ^ r(v , u) does not hold
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Three structures
As for 2-structures, we assume a set P = {p0, p1, . . . , pn} of predicates fixed and
write ki for the arity of predicate pi .

Definition: 3-structures
A 3-structure is a tuple (U ,�) defined by:

a set U = {u0, u1, . . . , um} of atoms
a truth table � such that �(pi , ul1 , . . . , ulki ) denotes the truth value of pi for
ul1 , . . . , ulki
note: truth values are elements of the lattice {0, 1

2 , 1}
We write D

]
3 for the set of three-structures.

x u0 u1
n n

⇢
U = {u0, u1}
P = {x(·), n(·, ·), sum(·)}

x sum
u0 1 0
u1 0 1

2

n u0 u1

u0 0 1
2

u1 0 1
2

In the following we build up an abstract domain of 3-structures
(but a bit more work is needed for the definition of the concretization)

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Jan, 10th. 2021 51 / 76

C

T

8x D a



Shape analysis in Three-Valued Logic (TVL) Principles of Three-Valued Logic based abstraction

Main predicates and concretization
We have already seen:

x(u) variable x contains the address of u
n(u, v) field of u points to v
sum(u) whether u is a summary node (convention: either 0 or 1

2 )
sh(u) whether there exists several distinct pointers to u
r(u, v) whether v is reachable starting from u
acy(v) v may not be on a cycle

Concretization for 2 structures:

(e, h , ⌫) 2 �2(U ,�) ()
^

p2P
(env , h , ⌫) evaluates p as specified in �

Concretization for 3 structures:

predicates with value 1
2 may concretize either to true or to false

but the concretization of summary nodes is still unclear...
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Embedding

Reasons why we need to set up a relation among structures:
learn how to compare two 3-structures
describe the concretization of 3-structures into 2-structures

The embedding principle
Let S0 = (U0,�0) and S1 = (U1,�1) be two three structures, with the same sets
of predicates P. Let f : U0 ! U1, surjective.
We say that f embeds S0 into S1 iff

for all predicate p 2 P of arity k , for all ul1 , . . . , ulki 2 U0,
�0(ul1 , . . . , ulki ) v �1(f (ul1), . . . , f (ulki ))

Then, we write S0 vf S1

Note: we use the order v of the lattice {0, 1
2 , 1}

Intuition: embedding defines an abstract pre-order
i.e., when S0 vf S1, any property that is satsfied by S0 is also satisfied by S1
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Embedding examples

A few examples of the embedding relation:

x u0 u1 u2
n n n

vf x u0 u1
n n

where f : u0 7! u0; u1 7! u1; u2 7! u1

x u0 u1 u2 u3
n n n vf x u0 u1

n n

where f : u0 7! u0; u1 7! u1; u2 7! u1; u3 7! u1

x u0 u1 u2

n

n vf x u0 u1
n n

where f : u0 7! u0; u1 7! u1; u2 7! u1

The last example shows summary nodes are not enough to capture just lists:
reachability would be necessary to constrain it be a list
alternatively: list cells should not be shared
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Concretization of three-structures

Intuitions:
concrete memory states correspond to 2-structures
embedding applies uniformally to 2-structures and 3-structures (in fact,
2-structures are a subset of 3-structures)
2-structures can be embedded into 3-structures, that abstract them

This suggests a concretization of 3-structures in two steps:
1 turn it into a set of 2-structures that can be embedded into it
2 concretize these 2-structures

Concretization of 3-structures
Let S be a 3-structure. Then:

�3(S) =
[

{�2(S 0) | S 0 2-structure s.t. 9f ,S 0 vf S}
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Concretization examples

Without reachability:

x u0 u1 u2

n

n vf x u0 u1
n n

x u0 u1 u2 u3
n n n vf x u0 u1

n n

where f : u0 7! u0; u1 7! u1; u2 7! u1; u3 7! u1

With reachability:

x u0 u1 u2
n n vf x u0 u1

n n

r(u0, u1)

where f : u0 7! u0; u1 7! u1; u2 7! u1

Note the first item of the above case does not work here
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Disjunctive completion
Do 3-structures allow for a sufficient level of precision ?
How to over-approximate a set of 2-structures ?

int ⇤ x; int ⇤ y; . . .
int ⇤ p = NULL;
if(. . .){

p = x;
}else{

p = y;
}
printf(”%d”, ⇤p);
⇤p = . . . ;

After the if statement:
abstracting would be imprecise

x

p

y

u0

u1

x

p

y

u0

u1

Abstraction based on disjunctive completion
In the following, we use partial disjunctive completion
i.e., TVLA manipulates finite disjunctions of 3-structures
We write D

]
P(3) for the abstract domain made of finite sets of 3-structures in

D
]
3

How to ensure disjunctions will not grow infinite ?
the set of atoms is unbounded, so it is not necessarily true!
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Canonical abstraction
To prevent disjunctions from growing infinite, we propose to normalize (in a
precision losing manner) abstract states:

the analysis may use all 3-structures at most points
at selected points (including loop heads), only 3-structures in a finite set
D

]
can(3) are allowed

there is a function to coarsen 3-structures into elements of D]
can(3)

Canonicalization function
Let L be a lattice, L0 ✓ L be a finite sub-lattice and can : L! L0:

operator can is called canonicalization if and only if it defines an upper
closure operator
then it extends into a canonicalization operator can : P(L)! P(L0) for
the disjunctive completion domain:

can(E) = {can(x) | x 2 E}

proof of the extension to disjunctive completion domains: left as an exercise
to make the powerset domain work, we simply need a can over 3-structures
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Canonical abstraction

Definition of a finite lattice D
]
can(3)

We partition the set of predicates P into two subsets Pa and Po :
Pa and defines abstraction predicates and should contains only unary
predicates and have a finite truth table whatever the number of atoms
Po denotes non-abstraction predicates, and may define truth tables of
unbounded size

Then, we let D]
can(3) be the set of 3-structures such that no pair of atoms have

the same value of the Pa predicates. It defines a finite set of 3-structures.

This sub-lattice defines a clear “canonicalization” algorithm:

Canonical abstraction by truth blurring
1 Identify nodes that have different abstraction predicates
2 When several nodes have the same abstraction predicate

introduce a summary node
3 Compute new predicate values by doing a join over truth values
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Canonical abstraction examples

Most common TVLA instantiation:
ae assume there are n variables x1, . . . , xn
thus the number of unary predicates is finite, and provides a good choice
for Pa

sub-lattice: structures with atoms distinguished by the values of the
unary predicates x1, . . . , xn

Examples:

Elements not merged: Elements merged:

x

p

y

u0

u1

x

p

y

u0

u1

Lists of lengths 1, 2, 3: Abstract into:
x u0 u1

n

x u0 u1 u2
n n

x u0 u1 u2 u3
n n n

x u0 u1
n

x r(x)

u0 u1
n n
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Principle for the design of sound transfer functions

Intuitively, concrete states correspond to 2-structures
The analysis should track 3-structures, thus the analysis and its soundness
proof need to rely on the embedding relation

Embedding theorem
We assume that

S0 = (U0,�0) and S1 = (U1,�1) define a pair of 3-structures
f : U0 ! U1, is such that S0 vf S1 (embedding)
 is a logical formula, with variables in X

g : X ! U0 is an assignment for the variables of  
Then, the semantics (evaluation) of logical formulae is such that

J |g K(S0) v J |f �g K(S1)

Intuition: this theorem ties the evaluation of conditions in the concrete and in the
abstract in a general manner
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Principle for the design of sound transfer functions

Transfer functions for static analysis
Semantics of concrete statements is encoded into boolean formulas
Evaluation in the abstract is sound (embedding theorem)

Example: analysis of an assignment y := x

1 let y0 be a new predicate that denotes the new value of y
2 then we can add the constraint y0(u) = x(u)

(using the embedding theorem to prove soundness)
3 rename y

0 into y

Advantages:
abstract transfer functions derive directly from the concrete transfer
functions (intuition: ↵ � f � �...)
the same solution works for weakest pre-conditions

Disadvantage: precision will require some care, more on this later!
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Assignment: a simple case

Statement l0 : y = y -> n; l1 : . . . Pre-condition S x, y u0 u1 u2
n n .

Transfer function computation:
it should produce an over-approximation of {m1 2M | (l0,m0)! (l1,m1)}
encoding using “primed predicates” to denote predicates after the
evaluation of the assignment, to evaluate them in the same structure (non
primed variables are removed afterwards and primed variables renamed):

x
0(u) = x(u)

y
0(u) = 9v , y(v) ^ n(v , u)

n
0(u, v) = n(u, v)

resulting structure:

x

u0

y

u1 u2
n n

This is exactly the expected result
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Assignment: a more involved case

Statement l0 : y = y -> n; l1 : . . . Pre-condition S

x, y r(x)

u0 u1
n n

.

Let us try to resolve the update in the same way as before:

x
0(u) = x(u)

y
0(u) = 9v , y(v) ^ n(v , u)

n
0(u, v) = n(u, v)

We cannot resolve y
0: ⇢

y
0(u0) = 0

y
0(u1) = 1

2

Imprecision: after the statement, y may point to anywhere in the list, save
for the first element...

The assignment transfer function cannot be computed immediately
We need to refine the 3-structure first
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Focus

Focusing on a formula
We assume a 3-structure S and a boolean formula f are given, we call a focusing
S on f the generation of a set Ŝ of 3-structures such that:

f evaluates to 0 or 1 on all elements of Ŝ
precision was gained: 8S 0 2 Ŝ, S 0 v S (embedding)
soundness is preserved: �(S) =

S
{�(S 0) | S 0 2 Ŝ}

Details of focusing algorithms are rather complex: not detailed here
They involve splitting of summary nodes, solving of boolean constraints

Example: focusing on
y
0(u) = 9v , y(v)

^ n(v , u)
We obtain (we show y and y

0):

x, y r(x), y0

u0 u1
n n

x, y r(x)

u0 u1
n

x, y r(x), y0

u0 u1
n n

x, y r(x), y0 r(x)

u0 u1 u2
n n

n
n

n
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Focus and coerce

Some of the 3-structures generated by focus are not precise

x, y r(x)

u0 u1
n

u1 is reachable from x, but there is no
sequence of n fields: this structure has
empty concretization

x, y r(x), y0 r(x)

u0 u1 u2
n n

n
n

n

u0 has an n-field to u1 so u1
denotes a unique atom and
cannot be a summary node

Coerce operation
It enforces logical constraints among predicates and discards 3-structures with
an empty concretization

Result: one case removed (bottom), two possibly summary nodes non summary

x, y r(x), y0

u0 u1
n

x, y r(x), y0 r(x)

u0 u1 u2
n n n
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Focus, transfer, abstract...

Computation of a transfer function
We consider a transfer function encoded into boolean formula f

S]
pre

Ŝpre Ŝpost

S]
post

focus
coerce

f

can

Soundness proof steps:
1 sound encoding of the semantics of program statements into formulas

(typically, no loss of precision at this stage)
2 focusing produces a refined over-approximation (disjunction)
3 canonicalization over-approximates graphs (truth blurring)

A common picture in shape analysis
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Shape analysis with three valued logic

Abstract states; two abstract domains are used:
infinite domain D

]
P(3): finite disjunctions of 3-structures in D

]
3

for general abstract computations
finite domain D

]
P(can(3)): disjunctions of finite domain D

]
can(3)

to simplify abstract states and for loop iteration
concretization via D

]
2

Abstract post-conditions:
1 start from D

]
P(3) or D]

can(3)
2 focus and coerce when needed
3 apply the concrete transformation
4 apply can to weaken abstract states; result in D

]
P(can(3))

Analysis of loops:
iterations in D

]
P(can(3)) terminate, as it is finite
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Conclusion

Updates and summarization

Weak updates cause significant precision loss...

Basic pointer abstractions suffer weak update issues leading to high precision
loss
Various techniques exist to mitigate this effect
Today, we saw shape analysis based on three-valued predicates as a way to
circumvent it
Next week, another technique will be presented...

A novel family of abstract interpretation based static analyses:
Some analysis operations require local concretization of abstract predicates
A reverse operation makes abstract states more abstract

Internships
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Conclusion

Assignment: formalization and paper reading

Formalization of the concretization of 2-structures:

describe the concretization formula, assuming that we consider the predicates
discussed in the course
run it on the list abstraction example (from the 3-structure to a few select
2-structures, and down to memory states)
prove the correctness and termination of the widening of the cofibered
abstract domain

Reading:
Parametric Shape Analysis via 3-Valued Logic.
Shmuel Sagiv, Thomas W. Reps et Reinhard Wilhelm.
In POPL’99, pages 105–118, 1999.
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Conclusion

Assignment: a simple analysis in TVLA

l, k assumed to be disjoint lists

while(l 6= 0){

t = l -> n;

l -> n = k;

k = k;

l = t;

}
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