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Data Science is Everywhere

2

data is cheap and ubiquitous

web logs 

mobile devices 

sensors 

transactions 

data science is revolutionizing industries

health care 
• personalized treatments  
• preventive care

manufacturing 
• equipment failure predictions 
• internet of things

retail 
• personalized recommendations 
• targeted marketing

finance 
• predictive models 
• customized product offerings

pharmaceutical 
• predictive models 
• patient selection

energy 
• exploration and discovery 
• accident prevention
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datascience
software

I
data preprocessing training modeldeployment prediction

T t 1today nextweek
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Ubiquitous Programming Errors

3

programming means programming errors

data science means programming

Excel 
Python

R 

Julia 

programming errors that do not cause failures can have serious consequences

health care 
 

finance 

pharmaceutical 

energy 
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Anomalously Unused Data
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The Reinhart-Rogoff Paper

5

573

American Economic Review: Papers & Proceedings 100 (May 2010): 573–578
http://www.aeaweb.org/articles.php?doi=10.1257/aer.100.2.573

In this paper, we exploit a new multi-country 
historical dataset on public (government) debt to 
search for a systemic relationship between high 
public debt levels, growth and in!ation.1 Our 
main result is that whereas the link between 
growth and debt seems relatively weak at “nor-
mal” debt levels, median growth rates for coun-
tries with public debt over roughly 90 percent 
of GDP are about one percent lower than other-
wise; average (mean) growth rates are several 
percent lower. Surprisingly, the relationship 
between public debt and growth is remarkably 
similar across emerging markets and advanced 
economies. This is not the case for in!ation. We 
"nd no systematic relationship between high 
debt levels and in!ation for advanced econo-
mies as a group (albeit with individual country 
exceptions including the United States). By con-
trast, in emerging market countries, high public 
debt levels coincide with higher in!ation.

Our topic would seem to be a timely one. 
Public debt has been soaring in the wake of the 
recent global "nancial maelstrom, especially in 
the epicenter countries. This should not be sur-
prising, given the experience of earlier severe 
"nancial crises.2 Outsized de"cits and epic bank 
bailouts may be useful in "ghting a downturn, 
but what is the long-run macroeconomic impact, 

1 In this paper “public debt” refers to gross central 
government debt.   “Domestic public debt” is government 
debt issued under domestic legal jurisdiction. Public debt 
does not include debts carrying a government guarantee. 
Total gross external debt includes the external debts of all 
branches of government as well as private debt that is issued 
by domestic private entities under a foreign jurisdiction.

2 Reinhart and Rogoff (2009a, b) demonstrate that the 
aftermath of a deep "nancial crisis typically involves a 
protracted period of macroeconomic adjustment, particu-
larly in employment and housing prices. On average, public 
debt rose by more than 80 percent within three years after 
a crisis.

Growth in a Time of Debt

By Carmen M. Reinhart and Kenneth S. Rogoff*

especially against the backdrop of graying pop-
ulations and rising social insurance costs? Are 
sharply elevated public debts ultimately a man-
ageable policy challenge?

Our approach here is decidedly empirical, 
taking advantage of a broad new historical 
dataset on public debt (in particular, central 
government debt) "rst presented in Carmen M. 
Reinhart and Kenneth S. Rogoff (2008, 2009b). 
Prior to this dataset, it was exceedingly dif"cult 
to get more than two or three decades of pub-
lic debt data even for many rich countries, and 
virtually impossible for most emerging markets. 
Our results incorporate data on 44 countries 
spanning about 200 years. Taken together, the 
data incorporate over 3,700 annual observations 
covering a wide range of political systems, insti-
tutions, exchange rate and monetary arrange-
ments, and historic circumstances.

We also employ more recent data on external 
debt, including debt owed both by governments 
and by private entities. For emerging markets, 
we "nd that there exists a signi"cantly more 
severe threshold for total gross external debt (public and private)—which is almost exclu-
sively denominated in a foreign currency—than 
for total public debt (the domestically issued 
component of which is largely denominated 
in home currency). When gross external debt 
reaches 60 percent of GDP, annual growth 
declines by about two percent; for levels of 
external debt in excess of 90 percent of GDP, 
growth rates are roughly cut in half. We are not 
in a position to calculate separate total exter-
nal debt thresholds (as opposed to public debt 
thresholds) for advanced countries. The avail-
able time-series is too recent, beginning only in 
2000. We do note, however, that external debt 
levels in advanced countries now average nearly 
200 percent of GDP, with external debt levels 
being particularly high across Europe.

The focus of this paper is on the longer term 
macroeconomic implications of much higher 
public and external debt. The "nal section, how-
ever, summarizes the historical experience of 
the United States in dealing with private sector 

* Reinhart: Department of Economics, 4115 Tydings 
Hall, University of Maryland, College Park, MD 20742 (e-mail: creinhar@umd.edu); Rogoff: Economics Depart-
ment, 216 Littauer Center, Harvard University, Cambridge 
MA 02138–3001 (e-mail: krogoff@harvard.edu). The 
authors would like to thank Olivier Jeanne and Vincent R. 
Reinhart for helpful comments.
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in a position to calculate separate total exter-
nal debt thresholds (as opposed to public debt 
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able time-series is too recent, beginning only in 
2000. We do note, however, that external debt 
levels in advanced countries now average nearly 
200 percent of GDP, with external debt levels 
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The focus of this paper is on the longer term 
macroeconomic implications of much higher 
public and external debt. The "nal section, how-
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* Reinhart: Department of Economics, 4115 Tydings 
Hall, University of Maryland, College Park, MD 20742 (e-mail: creinhar@umd.edu); Rogoff: Economics Depart-
ment, 216 Littauer Center, Harvard University, Cambridge 
MA 02138–3001 (e-mail: krogoff@harvard.edu). The 
authors would like to thank Olivier Jeanne and Vincent R. 
Reinhart for helpful comments.

data excluded 
from the analysis
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England Covid-19 Cases Error

6 6

  

Excel spreadsheet error
blamed for UK’s 16,000 missing
coronavirus cases
The case went missing a!er the spreadsheet hit its filesize limit
By James Vincent  Oct 5, 2020, 9:41am EDT

SCIENCE US & WORLD TECH

6

Covid-19:
Only half

of 16 000
patients m

issed from
England’s

official

figures ha
ve been c

ontacted

Elisabeth
Mahase

Details of
nearly 16

000 cases
of covid-1

9 were no
t

transferre
d to Engla

nd’s NHS
Test and T

race servi
ce

and were
missed fro

m official fig
ures beca

use of an

error in th
e process

for updati
ng the dat

a.

England’s
health an

d social ca
re secreta

ry, Matt

Hancock,
told the H

ouse of Co
mmons on

Monday 5

October th
at after th

e error wa
s discover

ed on Frid
ay

2 October
“6500 hou

rs of extra
contact tr

acing” ha
d

been carri
ed out ove

r theweek
end. But a

s atMond
ay

morning o
nly half (5

1%) of the pe
ople had b

een

reached b
y contact

tracers.

In respon
se, Labou

r’s shadow
health sec

retary,

Jonathan
Ashworth

, said, “Th
ousands o

f people a
re

blissfully
unaware t

hey have b
een expos

ed to covi
d,

potentiall
y spreadin

g this dead
ly virus at

a timewhe
n

hospital a
dmissions

are rising
and we ar

e in the

secondwa
ve. This is

not just a s
hambles,

it is somu
ch

worse.”

The misse
d cases w

ere added
to the dail

y figures f
or

theweeke
nd,meani

ng that 22
961 casesw

ere reporte
d

on Sunda
y 4 Octobe

r and 12 8
72 were re

ported on

Saturday.

Reports in
dicated th

at the pro
blem may have

been

caused by
the row limit on M

icrosoft’s
Excel

spreadshe
et softwar

e, which c
aused num

bers sent

from one labor
atory to b

e missed o
ff.

Hancockw
ouldnot c

onfirm the cause
of the tech

nical

issue but s
aid that h

e had alre
ady decid

ed to repla
ce

the system
at fault in

July. “I co
mmission

ed a new

data syste
m to replace

the legacy
one, and t

he

contracts
were awa

rded in Au
gust and t

he work o
n

the upgra
de is alrea

dy under
way,” he t

old MPs.

The Guard
ian report

ed that th
e error occ

urred whe
n

one labor
atory sent

its daily te
st report t

o Public

Health En
gland in a

CSV file.1 Altho
ugh these

files

can be an
y size, an

Excel spre
adsheet h

as a limit
of

1 048 576
rows, or 6

5536 if an
older vers

ion of the

softwarew
as beingu

sed.Whena file l
onger than

that

is opened
, the rows

that excee
d themax

imumare cut

off, mean
ing once t

hat labora
tory had p

erformed

more than
a million

tests, its r
eports we

re not see
n

by PHE.

Comment
ing on the

error, Pete
r Banniste

r, executiv
e

chair of th
e Institutio

nofEngin
eeringand

Technolog
y

Healthcar
e Sector, s

aid, “It’s w
idely know

n within

medical d
evice deve

lopment t
hat the us

e of

commerci
al off-the-

shelf prod
ucts, such

as Excel,

requires a
dditional

testing to
ensure tha

t they are

able to me
et the strin

gent requ
irements o

f use in a

healthcar
e setting.

“In particu
lar, regula

tory autho
rities such

as the FDA

in the US
have calle

d out the
limitation

s of Excel

when app
lied to sto

ring and m
anipulatin

g medical

data and f
urthermor

e have iss
ued guida

nce on

validation
and risk m

anagemen
t for these

products

if they are
to beused

in such a s
afety critic

almanner
.”

The error
came as th

e Labour P
arty’s lead

er, Keir

Starmer, s
aid that th

e prime m
inister ha

d “lost

control” o
f covid-19,

withno cl
ear strateg

y for beati
ng

it. Speakin
g to the O

bserver, S
tarmer set

out his fiv
e

point plan
for covid-

19, which
starts with

publishin
g

the criteri
a for local

restriction
s, as the G

erman

governme
nt did. Se

condly, he
said publi

c health

messagin
g should b

e improve
d by addin

g a featur
e

to the NH
S covid-19

app so pe
ople can s

earch thei
r

postcode
and find o

ut their lo
cal restric

tions.

Starmer h
as also sai

d hewoul
d fix the co

ntact traci
ng

system by investi
ng in NHS

and unive
rsity

laboratori
es to expa

nd testing
and at the

same time

put local p
ublic heal

th teams i
n charge o

f contact

tracing in
their area

s. Routine
regular te

sting in hi
gh

risk workp
laces and

high trans
mission a

reas woul
d

then be ca
rried out,

with resul
ts within 2

4 hours.

Additiona
lly, Starm

er would o
utline a va

ccine

manufact
uring and

distributio
n program

me ready

for when a
vaccine is

approved
.

1 Halliday J,
Campbell D,W

alker P, Sa
mple I. Engla

nd covid c
ases error

means

50 000 contacts m
ay not hav

e been tra
ced. Guard

ian. 5 Oct
2020.

https://ww
w.theguar

dian.com/world/20
20/oct/05

/england-c
ovid-cases

-

error-unkn
own-how-

many-conta
cts-not-tra

ced-says-m
inister.

This article
is made freely

available f
or use in a

ccordance
with BMJ's website

terms and cond
itions for t

he duratio
n of the co

vid-19 pan
demic or until o

therwise

determined by BM
J. You may use, do

wnload an
d print the

article for
any lawful

,

non-commercial purp
ose (includ

ing text an
d data mining) prov

ided that a
ll

copyright
notices an

d trade m
arks are re

tained.

1

the bmj | BMJ 2020;371:m3891 | doi: 10.1136/bmj.m3891

NEWS

The BMJ

Cite this a
s: BMJ 20

20;371:m
3891

http://dx.d
oi.org/10.1

136/bmj.m3891

Published
: 06 October 2

020

 on 1 February 2022 by guest. Protected by copyright.

http://www.bm
j.com

/

BM
J: first published as 10.1136/bm

j.m
3891 on 6 O

ctober 2020. Downloaded from
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english = bool(input())  
math = bool(input())  
science = bool(input())  
bonus = bool(input())  
 
passing = True 
if not english:  
       english = False                                 
if not math:  
       passing = False or bonus  
if not math:                                                  
       passing = False or bonus              
 
print(passing) 

ERROR: english SHOULD BE passing

ERROR: math SHOULD BE science

INPUT VARIABLES

OUTPUT VARIABLES

the input variables english and science are unused

Example

7
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Maximal trace semantics
Least fixpoint formulation of maximal traces
Idea: To get a least fixpoint formulation for whole MŒ,

merge finite and infinite maximal trace least fixpoint forms.

Fixpoint fusion
MŒ fl �ú is best defined on (P(�ú), ™, fi, fl, ÿ, �ú).

MŒ fl �Ê is best defined on (P(�Ê), ´, fl, fi, �Ê, ÿ), the dual lattice

(we transform the greatest fixpoint into a least fixpoint!)

We mix them into a new complete lattice (P(�Œ), ı, Û, Ù, ‹, €):

A ı B def≈∆ (A fl �ú) ™ (B fl �ú) · (A fl �Ê) ´ (B fl �Ê)

A Û B def= ((A fl �ú) fi (B fl �ú)) fi ((A fl �Ê) fl (B fl �Ê))

A Ù B def= ((A fl �ú) fl (B fl �ú)) fi ((A fl �Ê) fi (B fl �Ê))

‹ def= �Ê

€ def= �ú

In this lattice, MŒ = lfp Fs where Fs (T ) def= B fi · ˚T .
(proof on next slides)

Course 2
Program Semantics and Properties

Antoine Miné
p. 77 / 99

8

Maximal Trace Semantics

[[P]]
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passing = True 
if not english:  
       english = False                                 
if not math:  
       passing = False or bonus  
if not math:                                                  
       passing = False or bonus             

passing = True

english → _ 
math → T 
science → _
bonus → _ 
passing → ?

english → _ 
math → T 
science → _
bonus → _ 
passing → T

passing = True

english → _ 
math → F 
science → _
bonus → T 
passing → ?

english → _ 
math → F 
science → _
bonus → T 
passing → T

passing = False or bonus
english → _ 
math → F 
science → _
bonus → T 
passing → T

passing = False or bonus
english → _ 
math → F 
science → _
bonus → T 
passing → T

passing = True

english → _ 
math → F 
science → _
bonus → F 
passing → ?

english → _ 
math → F 
science → _
bonus → F 
passing → T

passing = False or bonus
english → _ 
math → F 
science → _
bonus → F 
passing → F

passing = False or bonus
english → _ 
math → F 
science → _
bonus → F 
passing → F

JPK

9

Maximal Trace Semantics
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Input Data (Non-)Usage
!J

def= {[[P]] ∈ #(Σ+∞) ∣ ∀i ∈ J ⊆ IP : UNUSEDi([[P]])}
 is the set of all programs P (or, rather, their semantics )  

that do not use the value of the input variables in  
!J [[P]]

J ⊆ IP

I
setofallinputvariablesofprogramP
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Input Data (Non-)Usage
!J

def= {[[P]] ∈ #(Σ+∞) ∣ ∀i ∈ J ⊆ IP : UNUSEDi([[P]])}
 is the set of all programs P (or, rather, their semantics )  

that do not use the value of the input variables in  
!J [[P]]

J ⊆ IP

UNUSEDi([[M]]) def= 







∀t ∈ [[P]], v ∈ ) : t0(i) ≠ v ⇒ ∃t′ ∈ [[P]] :
(∀0 ≤ j ≤ | IP | : j ≠ i ⇒ t0( j) = t′ 0( j))
∧ t′ 0(i) = v
∧ tω = t′ ω

g setof allpossiblevariablevalues

tus tw
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Input Data (Non-)Usage
!J

def= {[[P]] ∈ #(Σ+∞) ∣ ∀i ∈ J ⊆ IP : UNUSEDi([[P]])}
 is the set of all programs P (or, rather, their semantics )  

that do not use the value of the input variables in  
!J [[P]]

J ⊆ IP

UNUSEDi([[M]]) def= 







∀t ∈ [[P]], v ∈ ) : t0(i) ≠ v ⇒ ∃t′ ∈ [[P]] :
(∀0 ≤ j ≤ | IP | : j ≠ i ⇒ t0( j) = t′ 0( j))
∧ t′ 0(i) = v
∧ tω = t′ ω

Intuitively: any possible program  
outcome is possible from any value 

of the input variable x0,iis
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passing = True 
if not english:  
       english = False                                 
if not math:  
       passing = False or bonus  
if not math:                                                  
       passing = False or bonus             

passing = True

english → _ 
math → T 
science → _
bonus → _ 
passing → ?

english → _ 
math → T 
science → _
bonus → _ 
passing → T

passing = True

english → _ 
math → F 
science → _
bonus → T 
passing → ?

english → _ 
math → F 
science → _
bonus → T 
passing → T

passing = False or bonus
english → _ 
math → F 
science → _
bonus → T 
passing → T

passing = False or bonus
english → _ 
math → F 
science → _
bonus → T 
passing → T

passing = True

english → _ 
math → F 
science → _
bonus → F 
passing → ?

english → _ 
math → F 
science → _
bonus → F 
passing → T

passing = False or bonus
english → _ 
math → F 
science → _
bonus → F 
passing → F

passing = False or bonus
english → _ 
math → F 
science → _
bonus → F 
passing → F

JPK

11

Input Data (Non-)Usage

onlytheinputvalvemath F yieldstheoutcomepassing e

s
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Input Data (Non-)Usage
!J

def= {[[P]] ∈ #(Σ+∞) ∣ ∀i ∈ J ⊆ IP : UNUSEDi([[P]])}
 is the set of all programs P (or, rather, their semantics )  

that do not use the value of the input variables in  
!J [[P]]

J ⊆ IP

UNUSEDi([[M]]) def= 







∀t ∈ [[P]], v ∈ ) : t0(i) ≠ v ⇒ ∃t′ ∈ [[P]] :
(∀0 ≤ j ≤ | IP | : j ≠ i ⇒ t0( j) = t′ 0( j))
∧ t′ 0(i) = v
∧ tω = t′ ω

Intuitively: any possible program  
outcome is possible from any value 

of the input variable x0,i

General and restricted trace properties

General properties

General setting:

given a program prog œ Prog

its semantics: J · K : Prog æ P(�ú) is a set of finite traces

a property P is the set of correct program semantics

i.e., a set of sets of traces P œ P(P(�ú))

™ gives an information order on properties

P ™ PÕ means that PÕ is weaker than P (allows more semantics)

Course 2
Program Semantics and Properties

Antoine Miné
p. 23 / 99

ima



Caterina UrbanStatic Analysis for Data ScienceLesson 14 13

Trace Properties

General and restricted trace properties
Restricted properties

Reasoning on (and abstracting) P(P(�ú)) is hard!
In the following, we use a simpler setting:

a property is a set of traces P œ P(�ú)
the collecting semantics is a set of traces: Col(prog) def= J prog K

the verification problem remains an inclusion checking: J prog K ™ P

abstraction will over-approximate the set of traces J prog K

Example properties:
state property P def= S ú (remain in the set S of safe states)

maximal execution time: P def= S Æk
ordering: P def= (� \ {b})ú

· a · �ú
· b · �ú (a occurs before b)

Course 2
Program Semantics and Properties

Antoine Miné
p. 25 / 99

JPK\ ✓ T

JPK ✓ T

JPK ✓ JPK\
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Program Properties

General and restricted trace properties
General properties

General setting:
given a program prog œ Progits semantics: J · K : Prog æ P(�ú) is a set of finite traces

a property P is the set of correct program semantics

i.e., a set of sets of traces P œ P(P(�ú))
™ gives an information order on properties

P ™ P Õ means that P Õ is weaker than P (allows more semantics)

Course 2
Program Semantics and Properties

Antoine Miné
p. 23 / 99

JPK ✓ JPK\

✘

JPK\ 2 H

JPK 2 H



Caterina UrbanStatic Analysis for Data ScienceLesson 14 15

Subset-Closed Properties

Caterina Urban

Static Analysis for Data Science

Lesson 14

14

Program Properties

General and restricted trace properties

General properties
General setting:given a program prog œ Prog

its semantics: J · K : Prog æ
P(� ú) is a set of finite traces

a property P is the set of correct program semantics

i.e., a set of sets of traces P œ P(P(� ú))

™ gives an information order on properties

P ™ P Õ means that P Õ is weaker than P (allows more semantics)
Course 2

Program Semantics and Properties

Antoine Miné

p. 23 / 99

JPK ✓ JPK\

✘

JPK\ 2 H

JPK 2 H

JPK ✓ JPK\

JPK\ 2 H

JPK 2 H

AXSEPTYEH
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passing = True 
if not english:  
       english = False                                 
if not math:  
       passing = False or bonus  
if not math:                                                  
       passing = False or bonus             

passing = True

english → _ 
math → T 
science → _
bonus → _ 
passing → ?

english → _ 
math → T 
science → _
bonus → _ 
passing → T

passing = True

english → _ 
math → F 
science → _
bonus → T 
passing → ?

english → _ 
math → F 
science → _
bonus → T 
passing → T

passing = False or bonus
english → _ 
math → F 
science → _
bonus → T 
passing → T

passing = False or bonus
english → _ 
math → F 
science → _
bonus → T 
passing → T

passing = True

english → _ 
math → F 
science → _
bonus → F 
passing → ?

english → _ 
math → F 
science → _
bonus → F 
passing → T

passing = False or bonus
english → _ 
math → F 
science → _
bonus → F 
passing → F

passing = False or bonus
english → _ 
math → F 
science → _
bonus → F 
passing → F

JPK

16

Input Data (Non-)Usage

Not a
subsetclosed
property

IF F F F
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Input Data (Non-)Usage
!J

def= {[[P]] ∈ #(Σ+∞) ∣ ∀i ∈ J ⊆ IP : UNUSEDi([[P]])}
 is the set of all programs P (or, rather, their semantics )  

that do not use the value of the input variables in  
!J [[P]]

J ⊆ IP

UNUSEDi([[M]]) def= 







∀t ∈ [[P]], v ∈ ) : t0(i) ≠ v ⇒ ∃t′ ∈ [[P]] :
(∀0 ≤ j ≤ | IP | : j ≠ i ⇒ t0( j) = t′ 0( j))
∧ t′ 0(i) = v
∧ tω = t′ ω

Intuitively: any possible program  
outcome is possible from any value 

of the input variable x0,i

P ⊧ !J ⇔ {[[P]]} ⊆ !J

Theorem

General and restricted trace properties

General properties

General setting:

given a program prog œ Prog

its semantics: J · K : Prog æ P(�ú) is a set of finite traces

a property P is the set of correct program semantics

i.e., a set of sets of traces P œ P(P(�ú))

™ gives an information order on properties

P ™ PÕ means that PÕ is weaker than P (allows more semantics)

Course 2
Program Semantics and Properties

Antoine Miné
p. 23 / 99

ima



Caterina UrbanStatic Analysis for Data ScienceLesson 14

General and restricted trace properties
General collecting semanticsThe collecting semantics Col : Prog æ P(P(�ú))

is the strongest property of a programHence: Col(prog) def= {J prog K }Benefit:
given a program prog and a property P œ P(P(�ú)) the verification

problem is an inclusion checking:

Col(prog) ™ Pgenerally, the collecting semantics cannot be computed

we settle for a weaker property S ˘ that
is sound: Col(prog) ™ S ˘implies the desired property: S ˘

™ PCourse 2
Program Semantics and Properties

Antoine Miné
p. 24 / 99

18

Collecting Semantics

{[[P]]}
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General and restricted trace properties
General collecting semanticsThe collecting semantics Col : Prog æ P(P(�ú))

is the strongest property of a programHence: Col(prog) def= {J prog K }Benefit:
given a program prog and a property P œ P(P(�ú)) the verification

problem is an inclusion checking:

Col(prog) ™ Pgenerally, the collecting semantics cannot be computed

we settle for a weaker property S ˘ that
is sound: Col(prog) ™ S ˘implies the desired property: S ˘

™ PCourse 2
Program Semantics and Properties

Antoine Miné
p. 24 / 99

Intuition
Collecting Semantics

19

Property (by extension): set of 
elements that have that property 

Property “being Patrick Cousot” 

Property “being program P”
{[[P]]}
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(Another) Hierarchy of Semantics

collecting semantics

dependency semantics

{[[M]]}

[[M]]∙

[[M]]↝

α∙

α↝

outcome semantics

UH

It
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(Another) Hierarchy of Semantics

collecting semantics

dependency semantics

{[[M]]}

[[M]]∙

[[M]]↝

α∙

α↝

outcome semantics

mm

me

Apa
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Outcome Semantics

[[M]]∙

!partitioning a set of traces 
that satisfies input data 
(non-)usage with respect to 
the program outcome yields 
sets of traces that also satisfy 
input data (non-)usage

MM
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Outcome Semantics
4 def= {Σ+

o1=v1,…,ok=vk
∣ v1, …, vk ∈ )} ∪ {Σω}

P ⊧ !J ⇔ {[[P]] ∩ O ∣ O ∈ 4} ⊆ !J

Lemma

outcomesf finite sequencesofstateswithvaluesVi ve foroutputvariableson or

inputdatanon usagecanbedecided
independentlyforeachpossibleoutcome
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Outcome Semantics
4 def= {Σ+

o1=v1,…,ok=vk
∣ v1, …, vk ∈ )} ∪ {Σω}

P ⊧ !J ⇔ {[[P]] ∩ O ∣ O ∈ 4} ⊆ !J

Lemma

⟨#(#(Σ+∞)), ⊆ ⟩ ⟨#(#(Σ+∞)), ⊆∙ ⟩

γ∙

α∙

α∙(S) def= {T ∩ O ∣ T ∈ S ∧ O ∈ 4} outcome abstraction

outcomes
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passing = True 
if not english:  
       english = False                                 
if not math:  
       passing = False or bonus  
if not math:                                                  
       passing = False or bonus             

passing = True

english → _ 
math → F 
science → _
bonus → T 
passing → ?

english → _ 
math → F 
science → _
bonus → T 
passing → T

passing = False or bonus
english → _ 
math → F 
science → _
bonus → T 
passing → T

english → _ 
math → F 
science → _
bonus → T 
passing → T

passing = True

english → _ 
math → F 
science → _
bonus → F 
passing → ?

english → _ 
math → F 
science → _
bonus → F 
passing → T

passing = False or bonus
english → _ 
math → F 
science → _
bonus → F 
passing → F

english → _ 
math → F 
science → _
bonus → F 
passing → F

english → _ 
math → T 
science → _
bonus → _ 
passing → ?

english → _ 
math → T 
science → _
bonus → _ 
passing → T

passing = True

passing = False or bonus

passing = False or bonus

JPK•

Outcome Semantics

0

OF unfeasible
nontermination
outcome
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Outcome Semantics
4 def= {Σ+

o1=v1,…,ok=vk
∣ v1, …, vk ∈ )} ∪ {Σω}

P ⊧ !J ⇔ {[[P]] ∩ O ∣ O ∈ 4} ⊆ !J

Lemma

⟨#(#(Σ+∞)), ⊆ ⟩ ⟨#(#(Σ+∞)), ⊆∙ ⟩

γ∙

α∙

α∙(S) def= {T ∩ O ∣ T ∈ S ∧ O ∈ 4} outcome abstraction

outcomes

[[P]]∙
def= α∙({[[P]]}) = {[[P]] ∩ O ∣ O ∈ 4}
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[[P]]∙

Caterina Urban

Static Analysis for Data Science

Lesson 14

Maximal trace semantics

Least fixpoint formulation of maximal traces

Idea: To get a least fixpoint formulation for whole M
Œ ,

merge finite and infinite maximal trace least fixpoint forms.

Fixpoint fusionM
Œ fl �ú is best defined on (P(�ú), ™, fi, fl, ÿ, �ú).

M
Œ fl �Ê is best defined on (P(�Ê), ´, fl, fi, �Ê

, ÿ), the dual lattice

(we transform the greatest fixpoint into a least fixpoint!)

We mix them into a new complete lattice (P(� Œ), ı, Û, Ù, ‹, €):

A ı B def≈∆ (A fl � ú) ™ (B fl � ú) · (A fl � Ê) ´ (B fl � Ê)

A Û B def= ((A fl � ú) fi (B fl � ú)) fi ((A fl � Ê) fl (B fl � Ê))

A Ù B def= ((A fl � ú) fl (B fl � ú)) fi ((A fl � Ê) fi (B fl � Ê))

‹ def= � Ê
€ def= � ú

In this lattice, M
Œ = lfp Fs where Fs (T ) def=

B fi · ˚T .(proof on next slides)

Course 2

Program Semantics and Properties

Antoine Miné

p. 77 / 99

8

Maximal Trace Semantics

[[P]]

Outcome Semantics
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Outcome Semantics

(proof by Kleenian Fixpoint Transfer [Urban18])
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Input Data (Non-)Usage
!J

def= {[[P]] ∈ #(Σ+∞) ∣ ∀i ∈ J ⊆ IP : UNUSEDi([[P]])}
 is the set of all programs P (or, rather, their semantics )  

that do not use the value of the input variables in  
!J [[P]]

J ⊆ IP

UNUSEDi([[M]]) def= 







∀t ∈ [[P]], v ∈ ) : t0(i) ≠ v ⇒ ∃t′ ∈ [[P]] :
(∀0 ≤ j ≤ | IP | : j ≠ i ⇒ t0( j) = t′ 0( j))
∧ t′ 0(i) = v
∧ tω = t′ ω

Intuitively: any possible program  
outcome is possible from any value 

of the input variable x0,i

Caterina UrbanStatic Analysis for Data ScienceLesson 14 25

Outcome Semantics
! def= {Σ+

o1=v1,…,ok=vk
∣ v1, …, vk ∈ %} ∪ {Σω}

P ⊧ (J ⇔ {[[P]] ∩ O ∣ O ∈ !} ⊆ (J

Lemma

⟨-(-(Σ+∞)), ⊆ ⟩ ⟨-(-(Σ+∞)), ⊆∙ ⟩

γ∙

α∙

α∙(S) def= {T ∩ O ∣ T ∈ S ∧ O ∈ !} outcome abstraction

outcomes

[[P]]∙
def= α∙({[[P]]}) = {[[P]] ∩ O ∣ O ∈ !}

Caterina Urban

Static Analysis for Data Science

Lesson 14

17

Input Data (Non-)Usage

!J
def= {[[P]] ∈ #(Σ+∞) ∣ ∀i ∈ J ⊆ IP: UNUSEDi([[P]])}

 is the set of all programs P (or, rather, their semantics )  

that do not use the value of the input variables in  

!J

[[P]]
J ⊆ IP

UNUSEDi([[M]]) def=








∀t ∈ [[P]], v ∈ ) : t0(i) ≠ v ⇒ ∃t′ ∈ [[P]] :

(∀0 ≤ j ≤ | IP| : j ≠ i ⇒ t0( j) = t′ 0( j))

∧ t′ 0(i) = v
∧ tω = t′ ω

Intuitively: any possible program  

outcome is possible from any value 


of the input variable x0,i

P ⊧ !J ⇔ {[[P]]} ⊆ !JTheorem

General and restricted trace properties

General properties

General settin
g:

given a program prog œ Prog

its semantics:
J · K : Prog æ

P(�
ú ) is a set of finite traces

a property P is the set of correct
program semantics

i.e., a set of sets of traces P œ P(P(�
ú ))

™ gives an information order on properties

P ™ PÕ means that PÕ is weaker than P (allows more semantics)

Course 2

Program Semantics and Properties

Antoine Miné

p. 23 / 99

P ⊧ !J ⇔ {[[P]]} ⊆ !J ⇔ α∙({[[P]]}) ⊆ !J ⇔ [[P]]∙ ⊆ !J

Theorem
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(Another) Hierarchy of Semantics

collecting semantics

dependency semantics

{[[M]]}

[[M]]∙

[[M]]↝

α∙

α↝

outcome semantics

as

am

Wha
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Dependency Semantics !to reason about input data 
(non-)usage we do not need to consider all intermediate 
computations between the 
initial and final states of a trace 
(if any)

[[M]]↝1PM
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Dependency Semantics

α↝(S) def= {{⟨t0, tω⟩ ∈ Σ × Σ⊥ ∣ t ∈ T} ∣ T ∈ S}

⟨#(#(Σ+∞)), ⊆∙ ⟩ ⟨#(#(Σ × Σ⊥)), ⊆↝ ⟩

α↝

γ↝

I
5 E u s

finalstateifany

Jhefaceisinfinite

8ns5 It Te PCE to tw e E x E I te T e s
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passing = True 
if not english:  
       english = False                                 
if not math:  
       passing = False or bonus  
if not math:                                                  
       passing = False or bonus             

english → _ 
math → F 
science → _
bonus → T 
passing → ?

english → _ 
math → F 
science → _
bonus → F 
passing → ?

english → _ 
math → T 
science → _
bonus → _ 
passing → ?

english → _ 
math → T 
science → _
bonus → _ 
passing → T

english → _ 
math → F 
science → _
bonus → T 
passing → T

english → _ 
math → F 
science → _
bonus → F 
passing → F

JPK 

Dependency Semantics
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Dependency Semantics

α↝(S) def= {{⟨t0, tω⟩ ∈ Σ × Σ⊥ ∣ t ∈ T} ∣ T ∈ S}

⟨#(#(Σ+∞)), ⊆∙ ⟩ ⟨#(#(Σ × Σ⊥)), ⊆↝ ⟩

α↝

γ↝

γ↝(S) def= {T ∈ #(Σ+∞) ∣ {⟨t0, tω⟩ ∈ Σ × Σ⊥ ∣ t ∈ T} ∈ S}

[[P]]↝
def= α↝([[P]]∙) = {{⟨t0, tω⟩ ∈ Σ × Σ ∣ t ∈ [[P]] ∩ O} ∣ O ∈ 4}
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Caterina Urban

Static Analysis for Data Science

Lesson 14

27

Outcome Semantics

(proof by Kleenian Fixpoint Transfer [Urban18])

Dependency Semantics
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Caterina Urban

Static Analysis for Data Science

Lesson 14
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Outcome Semantics

(proof by Kleenian Fixpoint Transfer [Urban18])

Dependency Semantics
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Caterina Urban

Static Analysis for Data Science

Lesson 14

27

Outcome Semantics

(proof by Kleenian Fixpoint Transfer [Urban18])

Dependency Semantics
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Dependency Semantics

k
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Input Data (Non-)Usage
!J

def= {[[P]] ∈ #(Σ+∞) ∣ ∀i ∈ J ⊆ IP : UNUSEDi([[P]])}
 is the set of all programs P (or, rather, their semantics )  

that do not use the value of the input variables in  
!J [[P]]

J ⊆ IP

UNUSEDi([[M]]) def= 







∀t ∈ [[P]], v ∈ ) : t0(i) ≠ v ⇒ ∃t′ ∈ [[P]] :
(∀0 ≤ j ≤ | IP | : j ≠ i ⇒ t0( j) = t′ 0( j))
∧ t′ 0(i) = v
∧ tω = t′ ω

Intuitively: any possible program  
outcome is possible from any value 

of the input variable x0,i

Caterina Urban

Static Analysis for Data Science

Lesson 14

28

Input Data (Non-)Usage

!J
def= {[[P]] ∈ #(Σ+∞) ∣ ∀i ∈ J ⊆ IP: UNUSEDi([[P]])}

 is the set of all programs P (or, rather, their semantics )  

that do not use the value of the input variables in  

!J

[[P]]
J ⊆ IP

UNUSEDi([[M]]) def=








∀t ∈ [[P]], v ∈ ) : t0(i) ≠ v ⇒ ∃t′ ∈ [[P]] :

(∀0 ≤ j ≤ | IP| : j ≠ i ⇒ t0( j) = t′ 0( j))

∧ t′ 0(i) = v
∧ tω = t′ ω

Intuitively: any possible program  

outcome is possible from any value 


of the input variable x0,i

Caterina Urban

Static Analysis for Data Science

Lesson 14

25

Outcome Semantics

! def= {Σ+
o1=v1,…,ok=vk

∣ v1, …, vk ∈ %} ∪ {Σω}

P ⊧ (J ⇔ {[[P]] ∩ O ∣ O ∈ !} ⊆ (J
Lemma

⟨-(-(Σ+∞)), ⊆ ⟩ ⟨-(-(Σ+∞)), ⊆∙ ⟩γ∙

α∙

α∙(S) def= {T ∩ O ∣ T ∈ S ∧ O ∈ !}
outcome abstraction

outcomes

[[P]]∙
def= α∙({[[P]]}) = {[[P]] ∩ O ∣ O ∈ !}

Caterina Urban

Static Analysis for Data Science

Lesson 14

17

Input Data (Non-)Usage

!J
def= {[[P]] ∈ #(Σ+∞ ) ∣ ∀i ∈ J ⊆ IP: UNUSED i([[P]])}

 is the set of all programs P (or, rather, their semantics 
)  

that do not use the value of the input variables in 
 

!J

[[P]]

J ⊆ IP

UNUSED i([[M
]])

def=








∀t ∈ [[P]], v ∈ ): t0(i)
≠ v ⇒ ∃t′ ∈ [[P]] :

(∀0 ≤ j ≤ | IP| : j ≠ i ⇒ t0( j) = t′ 0( j))

∧ t′ 0(i)
= v

∧ tω
= t′ ω

Intuitively: any possible program  

outcome is possible from any value 


of the input variable x0,i

P ⊧ !J ⇔ {[[P]]} ⊆ !J

Theorem

General and rest
rict

ed trace properti
es

General
propertie

s

General
sett

ing:

given
a program

prog œ
Prog

its sem
antics

: J · K : Prog æ
P

(�
ú ) is a set

of finite trac
es

a property
P is the set

of corr
ect

program
sem

antics

i.e.,
a set

of sets
of trac

es P œ
P

(P(�
ú ))

™ gives an information order on properti
es

P ™ PÕ means that PÕ is weaker than P (allows more sem
antics

)

Course
2

Program Semantics
and Properti

es

Antoine Miné

p. 23 / 99

P ⊧ !J ⇔ {[[P]]} ⊆ !J ⇔ α∙({[[P]]}) ⊆ !J ⇔ [[P]]∙ ⊆ !J

Theorem

Caterina UrbanStatic Analysis for Data ScienceLesson 14 33

Dependency Semantics

α↝(S) def= {{⟨t0, tω⟩ ∈ Σ × Σ⊥ ∣ t ∈ T} ∣ T ∈ S}

⟨)()(Σ+∞)), ⊆∙ ⟩ ⟨)()(Σ × Σ⊥)), ⊆↝ ⟩

α↝

γ↝

γ↝(S) def= {T ∈ )(Σ+∞) ∣ {⟨t0, tω⟩ ∈ Σ × Σ⊥ ∣ t ∈ T} ∈ S}

[[P]]↝
def= α↝([[P]]∙) = {{⟨t0, tω⟩ ∈ Σ × Σ ∣ t ∈ [[P]] ∩ O} ∣ O ∈ .}

P ⊧ !J ⇔ {[[P]]} ⊆ !J ⇔ [[P]]∙ ⊆ !J ⇔ γ↝([[P]]↝) ⊆ !J

Theorem
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Input Data (Non-)Usage 
Abstractions
Over-Approximation of the Used Input Data

P ⊧ !J♮⊆J ⇐ γ↝(γA([[P]]A)) ⊆ !J♮⊆J

 Under-Approximation of the Unused Input Data⇒

T
soundness

sinfEgation

semantics T Etat a
dependencyLj stronglivenesscollecting semantics

syntacticdata
nonusage
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Secure Information Flow

JPKF

L ⇢ x

L ⇢ y

L ⇢ z

H ⇢ w

H ⇢ t

possibilistic non-interference coincides with input data (non-)usage 
when the set J of unused input variables contains all input variables: 
• input variables are high-security variables
• output variables are low-security variables

Hypercollecting Semantics

and Its Application to Static Analysis of Information Flow
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Abstract

We show how static analysis for secure information flow can be ex-

pressed and proved correct entirely within the framework of abstract

interpretation. The key idea is to define a Galois connection that

directly approximates the hyperproperty of interest. To enable use

of such Galois connections, we introduce a fixpoint characterisation

of hypercollecting semantics, i.e. a “set of sets” transformer. This

makes it possible to systematically derive static analyses for hyper-

properties entirely within the calculational framework of abstract

interpretation. We evaluate this technique by deriving example static

analyses. For qualitative information flow, we derive a dependence

analysis similar to the logic of Amtoft and Banerjee (SAS’04) and

the type system of Hunt and Sands (POPL’06). For quantitative infor-

mation flow, we derive a novel cardinality analysis that bounds the

leakage conveyed by a program instead of simply deciding whether

it exists. This encompasses problems that are hypersafety but not

k-safety. We put the framework to use and introduce variations

that achieve precision rivalling the most recent and precise static

analyses for information flow.

Categories and Subject Descriptors D.2.4 [Software Engineer-

ing]: Software/Program Verification–Assertion checkers; D.3 [Pro-

gramming Languages]; F.3.1 [Logics and meanings of programs]:

Semantics of Programming Language

Keywords static analysis, abstract interpretation, information flow,

hyperproperties

1. Introduction

Most static analyses tell something about all executions of a program.

This is needed, for example, to validate compiler optimizations.

Functional correctness is also formulated in terms of a predicate on

observable behaviours, i.e. more or less abstract execution traces: A

program is correct if all its traces satisfy the predicate. By contrast

with such trace properties, extensional definitions of dependences

involve more than one trace. To express that the final value of a

variable x may depend only on the initial value of a variable y, the

requirement—known as noninterference in the security literature

(Sabelfeld and Myers 2003)—is that any two traces with the same

initial value for y result in the same final value for x. Sophisticated

information flow policies allow dependences subject to quantitative

bounds—and their formalisations involve more than two traces,

sometimes unboundedly many.

For secure information flow formulated as decision problems, the

theory of hyperproperties classifies the simplest form of noninterfer-

ence as 2-safety and some quantitative flow properties as hypersafety

properties (Clarkson and Schneider 2010). A number of approaches

have been explored for analysis of dependences, including type sys-

tems, program logics, and dependence graphs. Several works have

used abstract interpretation in some way. One approach to 2-safety is

by forming a product program that encodes execution pairs (Barthe

et al. 2004; Terauchi and Aiken 2005; Darvas et al. 2005), thereby

reducing the problem to ordinary safety which can be checked by

abstract interpretation (Kovács et al. 2013) or other means. Alter-

natively, a 2-safety property can be checked by dedicated analyses

which may rely in part on ordinary abstract interpretations for trace

properties (Amtoft et al. 2006).

The theory of abstract interpretation serves to specify and

guide the design of static analyses. It is well known that effective

application of the theory requires choosing an appropriate notion

of observable behaviour for the property of interest (Cousot 2002;

Bertrane et al. 2012, 2015). Once a notion of “trace” is chosen, one

has a program semantics and “all executions” can be formalized in

terms of collecting semantics, which can be used to define a trace

property of interest, and thus to specify an abstract interpretation

(Cousot and Cousot 1977, 1979; Cousot 1999).

The foundation of abstract interpretation is quite general, based

on Galois connections between semantic domains on which collec-

ting semantics is defined. Clarkson and Schneider (2010) formalize

the notion of hyperproperty in a very general way, as a set of sets

of traces. Remarkably, prior works using abstract interpretation for

secure information flow do not directly address the set-of-sets di-

mension and instead involve various ad hoc formulations. This paper

presents a new approach of deriving information flow static analyses

within the calculational framework of abstract interpretation.
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Secure Information Flow

JPKF

L ⇢ x

L ⇢ y

L ⇢ z

H ⇢ w

H ⇢ t

possibilistic non-interference coincides with input data (non-)usage 
when the set J of unused input variables contains all input variables: 
• input variables are high-security variables
• output variables are low-security variables

 
passing = True 
if not english:  
      english = False                                 
if not math:  
      passing = False or bonus  
if not math:                                                  
      passing = False or bonus            
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Secure Information Flow

JPKF

L ⇢ x

L ⇢ y

L ⇢ z

H ⇢ w

H ⇢ t

possibilistic non-interference coincides with input data (non-)usage 
when the set J of unused input variables contains all input variables: 
• input variables are high-security variables
• output variables are low-security variables

 
passing = True 
if not english:  
      english = False                                 
if not math:  
      passing = False or bonus  
if not math:                                                  
      passing = False or bonus            

L ⇢ passing, H ⇢ english, math, science, bonusI



Caterina UrbanStatic Analysis for Data ScienceLesson 14 38

Secure Information Flow

JPKF

L ⇢ x

L ⇢ y

L ⇢ z

H ⇢ w

H ⇢ t

possibilistic non-interference coincides with input data (non-)usage 
when the set J of unused input variables contains all input variables: 
• input variables are high-security variables
• output variables are low-security variables

 
passing = True 
if not english:  
      english = False                                 
if not math:  
      passing = False or bonus  
if not math:                                                  
      passing = False or bonus            

L ⇢ passing, H ⇢ english, math, science, bonus
L ⇢ passing, H ⇢ english, math, science, bonusI
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Secure Information Flow

JPKF

L ⇢ x

L ⇢ y

L ⇢ z

H ⇢ w

H ⇢ t

possibilistic non-interference coincides with input data (non-)usage 
when the set J of unused input variables contains all input variables: 
• input variables are high-security variables
• output variables are low-security variables

 
passing = True 
if not english:  
      english = False                                 
if not math:  
      passing = False or bonus  
if not math:                                                  
      passing = False or bonus            

L ⇢ passing, H ⇢ english, math, science, bonus

L ⇢ passing, H ⇢ english, math, science, bonus

L ⇢ passing, H ⇢ english, math, science, bonusl I
1 I
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Secure Information Flow

JPKF

L ⇢ x

L ⇢ y

L ⇢ z

H ⇢ w

H ⇢ t

possibilistic non-interference coincides with input data (non-)usage 
when the set J of unused input variables contains all input variables: 
• input variables are high-security variables
• output variables are low-security variables

 
passing = True 
if not english:  
      english = False                                 
if not math:  
      passing = False or bonus  
if not math:                                                  
      passing = False or bonus            

L ⇢ passing, H ⇢ english, math, science, bonus

L ⇢ passing, H ⇢ english, math, science, bonus

H ⇢ english, math, science, bonus, passing                                          

L ⇢ passing, H ⇢ english, math, science, bonus
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Secure Information Flow

JPKF

L ⇢ x

L ⇢ y

L ⇢ z

H ⇢ w

H ⇢ t

possibilistic non-interference coincides with input data (non-)usage 
when the set J of unused input variables contains all input variables: 
• input variables are high-security variables
• output variables are low-security variables

 
passing = True 
if not english:  
      english = False                                 
if not math:  
      passing = False or bonus  
if not math:                                                  
      passing = False or bonus            

L ⇢ passing, H ⇢ english, math, science, bonus

H ⇢ english, math, science, bonus, passing             

L ⇢ passing, H ⇢ english, math, science, bonus

H ⇢ english, math, science, bonus, passing                                          

L ⇢ passing, H ⇢ english, math, science, bonusE i
I

1
I
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Secure Information Flow

JPKF

L ⇢ x

L ⇢ y

L ⇢ z

H ⇢ w

H ⇢ t

possibilistic non-interference coincides with input data (non-)usage 
when the set J of unused input variables contains all input variables: 
• input variables are high-security variables
• output variables are low-security variables
and the program is terminating

 
passing = True 
while not english:  
      english = False                                

L ⇢ passing, H ⇢ english, math, science, bonus

L ⇢ passing, H ⇢ english, math, science, bonus

L ⇢ passing, H ⇢ english, math, science, bonus

P ⊧ !*IP
⇐ γ↝(γF([[P]]F)) ⊆ !*IP

Theorem

I 1

i
f 8

s RePCExE I a R E S
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Strong-Liveness
a variable is strongly live if 
• it is used in an assignment to another strongly live variable
• it is used in a statement other than an assignment

JPKX

x

y

z

w

t

PX S U N O X7 abstractdomain
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Strong-Liveness
a variable is strongly live if 
• it is used in an assignment to another strongly live variable
• it is used in a statement other than an assignment

JPKX

x

y

z

w

t

passing = True 
if not english:  
      english = False                                 
if not math:  
      passing = False or bonus  
if not math:                                                  
      passing = False or bonus 
            { passing }             theinitialsetofstrongly livevariablesisthesetofoutputvariables
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Strong-Liveness
a variable is strongly live if 
• it is used in an assignment to another strongly live variable
• it is used in a statement other than an assignment

JPKX

x

y

z

w

t

passing = True 
if not english:  
      english = False                                 
if not math:  
      passing = False or bonus  
if not math:                                                  
      passing = False or bonus 
            

{ bonus, math, english }     

{ passing }             
{ bonus }            

{ bonus, math }                                                
{ bonus, math }                                                
{ bonus, math }                                                
{ bonus, math }                                                

{ bonus, math, english }        
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Strong-Liveness
a variable is strongly live if 
• it is used in an assignment to another strongly live variable
• it is used in a statement other than an assignment

JPKX

x

y

z

w

t

passing = True 
if not english:  
      english = False                                 
if not math:  
      passing = False or bonus  
if not math:                                                  
      passing = False or bonus 
            

{ bonus, math, english }     

{ passing }             
{ bonus }            

{ bonus, math }                                                
{ bonus, math }                                                
{ bonus, math }                                                
{ bonus, math }                                                

{ bonus, math, english }        

P ⊧ !J ⇐ γ↝(γX([[P]]X)) ⊆ !J

Theorem
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Syntactic (Non-)Usage

JPKU

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

  
passing = True 
  
if not english:  
        
      english = False                                 
        
  
if not math:  
        
      passing = False or bonus  
        
  
if not math:                                                  
        
      passing = False or bonus 
        
           passing ⇢ U

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used

MAO

MEI

anyothervariablemapsto N
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Syntactic (Non-)Usage

JPKU

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

  
passing = True 
  
if not english:  
        
      english = False                                 
        
  
if not math:  
        
      passing = False or bonus  
        
  
if not math:                                                  
        
      passing = False or bonus 
        
           

passing ⇢ S | passing ⇢ U
passing ⇢ U

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used

Mom

Had

8 E 8

domainelements
arestacksofmaps
matchingnestinglevel
ofanalyzedstatements
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Syntactic (Non-)Usage

JPKU

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

  
passing = True 
  
if not english:  
        
      english = False                                 
        
  
if not math:  
        
      passing = False or bonus  
        
  
if not math:                                                  
        
      passing = False or bonus 
        
           

bonus ⇢ U, passing ⇢ O | passing ⇢ U

passing ⇢ S | passing ⇢ U
passing ⇢ U

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used

DAD

Mad

iftheassignedvariablewasused Uor s
itbecomesoverwritten o if notalso

fi

otherwise itbecomes freshlyused u
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Syntactic (Non-)Usage

JPKU

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

  
passing = True 
  
if not english:  
        
      english = False                                 
        
  
if not math:  
        
      passing = False or bonus  
        
  
if not math:                                                  
        
      passing = False or bonus 
        
           

bonus ⇢ U, passing ⇢ O | passing ⇢ U

passing ⇢ S | passing ⇢ U
passing ⇢ U

math, bonus, passing ⇢ U

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used

MAN

Had

a variablebecomesused uMiggy and
of a statementthat uses u ormodifies o
anothervariable



Caterina UrbanStatic Analysis for Data ScienceLesson 14 41

Syntactic (Non-)Usage

JPKU

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

  
passing = True 
  
if not english:  
        
      english = False                                 
        
  
if not math:  
        
      passing = False or bonus  
        
  
if not math:                                                  
        
      passing = False or bonus 
        
           

bonus ⇢ U, passing ⇢ O | passing ⇢ U

passing ⇢ S | passing ⇢ U
passing ⇢ U

math, bonus, passing ⇢ U

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used

MRU

MAI

restoresthepreviousvalue
if it hasnotchangedsince

mathbonusto u passing to
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Syntactic (Non-)Usage

JPKU

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

  
passing = True 
  
if not english:  
        
      english = False                                 
        
  
if not math:  
        
      passing = False or bonus  
        
  
if not math:                                                  
        
      passing = False or bonus 
        
           

bonus ⇢ U, passing ⇢ O | passing ⇢ U

passing ⇢ S | passing ⇢ U
passing ⇢ U

math, bonus, passing ⇢ U

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used

MAD

MEN

www.y yy
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Syntactic (Non-)Usage

JPKU

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

  
passing = True 
  
if not english:  
        
      english = False                                 
        
  
if not math:  
        
      passing = False or bonus  
        
  
if not math:                                                  
        
      passing = False or bonus 
        
           

bonus ⇢ U, passing ⇢ O | passing ⇢ U

passing ⇢ S | passing ⇢ U
passing ⇢ U

math, bonus, passing ⇢ U
math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used

MAO

MEI
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Syntactic (Non-)Usage

JPKU

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

  
passing = True 
  
if not english:  
        
      english = False                                 
        
  
if not math:  
        
      passing = False or bonus  
        
  
if not math:                                                  
        
      passing = False or bonus 
        
           

bonus ⇢ U, passing ⇢ O | passing ⇢ U

passing ⇢ S | passing ⇢ U
passing ⇢ U

math, bonus, passing ⇢ U
math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

math ⇢ S, bonus ⇢ U, passing ⇢ O | …

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used

MAD

Mad
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Syntactic (Non-)Usage

JPKU

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

  
passing = True 
  
if not english:  
        
      english = False                                 
        
  
if not math:  
        
      passing = False or bonus  
        
  
if not math:                                                  
        
      passing = False or bonus 
        
           

bonus ⇢ U, passing ⇢ O | passing ⇢ U

passing ⇢ S | passing ⇢ U
passing ⇢ U

math, bonus, passing ⇢ U
math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

math ⇢ S, bonus ⇢ U, passing ⇢ O | …

math, bonus, passing ⇢ U

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used

MAD

Mad
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Syntactic (Non-)Usage

JPKU

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

  
passing = True 
  
if not english:  
        
      english = False                                 
        
  
if not math:  
        
      passing = False or bonus  
        
  
if not math:                                                  
        
      passing = False or bonus 
        
           

bonus ⇢ U, passing ⇢ O | passing ⇢ U

passing ⇢ S | passing ⇢ U
passing ⇢ U

math, bonus, passing ⇢ U
math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

math ⇢ S, bonus ⇢ U, passing ⇢ O | …

math, bonus, passing ⇢ U
math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used

MAD

Mad
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Syntactic (Non-)Usage

JPKU

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

  
passing = True 
  
if not english:  
        
      english = False                                 
        
  
if not math:  
        
      passing = False or bonus  
        
  
if not math:                                                  
        
      passing = False or bonus 
        
           

bonus ⇢ U, passing ⇢ O | passing ⇢ U

passing ⇢ S | passing ⇢ U
passing ⇢ U

math, bonus, passing ⇢ U
math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

math ⇢ S, bonus ⇢ U, passing ⇢ O | …

math, bonus, passing ⇢ U
math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used

MAD

Mad
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Syntactic (Non-)Usage

JPKU

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

  
passing = True 
  
if not english:  
        
      english = False                                 
        
  
if not math:  
        
      passing = False or bonus  
        
  
if not math:                                                  
        
      passing = False or bonus 
        
           

bonus ⇢ U, passing ⇢ O | passing ⇢ U

passing ⇢ S | passing ⇢ U
passing ⇢ U

math, bonus, passing ⇢ U
math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

math ⇢ S, bonus ⇢ U, passing ⇢ O | …

math, bonus, passing ⇢ U
math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

math, bonus, passing ⇢ U

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used

MAD

Mad



Caterina UrbanStatic Analysis for Data ScienceLesson 14 41

Syntactic (Non-)Usage

JPKU

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

  
passing = True 
  
if not english:  
        
      english = False                                 
        
  
if not math:  
        
      passing = False or bonus  
        
  
if not math:                                                  
        
      passing = False or bonus 
        
           

bonus ⇢ U, passing ⇢ O | passing ⇢ U

passing ⇢ S | passing ⇢ U
passing ⇢ U

math, bonus, passing ⇢ U
math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

math ⇢ S, bonus ⇢ U, passing ⇢ O | …

math, bonus, passing ⇢ U
math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

math, bonus, passing ⇢ U

math, bonus ⇢ U, passing ⇢ O

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used
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Syntactic (Non-)Usage

JPKU

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used

 
passing = True 
while not english:  
      english = False                                

passing ⇢ O

passing ⇢ U

passing ⇢ U

P ⊧ !*J ⇐ γ↝(γQ([[P]]Q)) ⊆ !*J

Theorem
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Piecewise Syntactic  
(Non-)Usage

{0} N {i} U {i+1} O {len}

JPKS

{0} S {len} | {0} U {len}

{0} N {len}

grades = list(map(int, input().split()))  
 
count = 0 
 
i = 1    
 
while i < len(grades):  
       
      if grades[i] < 4:  
            count = count + 1 
             
       
      i = i + 1 
       
 
if 2 * count < len(grades):  
      passing = True  
else:  
      passing = False  
 
print(passing)          

ERROR: 1 SHOULD BE 0
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Piecewise Syntactic  
(Non-)Usage

{0} N {i} U {i+1} O {len}

JPKS

{0} S {len} | {0} U {len}

{0} N {len}

grades = list(map(int, input().split()))  
 
count = 0 
 
i = 1    
 
while i < len(grades):  
       
      if grades[i] < 4:  
            count = count + 1 
             
       
      i = i + 1 
       
 
if 2 * count < len(grades):  
      passing = True  
else:  
      passing = False  
 
print(passing)          

ERROR: 1 SHOULD BE 0

grades ⇢ { 0 } N { len(grades) }? 
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Piecewise Syntactic  
(Non-)Usage

{0} N {i} U {i+1} O {len}

JPKS

{0} S {len} | {0} U {len}

{0} N {len}

grades = list(map(int, input().split()))  
 
count = 0 
 
i = 1    
 
while i < len(grades):  
       
      if grades[i] < 4:  
            count = count + 1 
             
       
      i = i + 1 
       
 
if 2 * count < len(grades):  
      passing = True  
else:  
      passing = False  
 
print(passing)          

ERROR: 1 SHOULD BE 0

grades ⇢ { 0 } N { len(grades) }? 

grades ⇢ {0} N {len(grades)}?
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Piecewise Syntactic  
(Non-)Usage

{0} N {i} U {i+1} O {len}

JPKS

{0} S {len} | {0} U {len}

{0} N {len}

grades = list(map(int, input().split()))  
 
count = 0 
 
i = 1    
 
while i < len(grades):  
       
      if grades[i] < 4:  
            count = count + 1 
             
       
      i = i + 1 
       
 
if 2 * count < len(grades):  
      passing = True  
else:  
      passing = False  
 
print(passing)          

ERROR: 1 SHOULD BE 0

grades ⇢ { 0 } N { len(grades) }? 

grades ⇢ {0} N {len(grades)}?
grades ⇢ {0} N {i}? S {i+1}? S {len(grades)}? | …

grades ⇢ {0} N {i+1}? S {i+2}? S {len(grades)}? | …
grades ⇢ {0} N {i+1}? S {i+2}? S {len(grades)}? | … | …

grades ⇢ {0} N {i}? U {i+1}? S {i+2}? S {len(grades)}? | …

grades ⇢ {0} N {i}? U {i+1}? U {len(grades)}?
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Piecewise Syntactic  
(Non-)Usage

{0} N {i} U {i+1} O {len}

JPKS

{0} S {len} | {0} U {len}

{0} N {len}

grades = list(map(int, input().split()))  
 
count = 0 
 
i = 1    
 
while i < len(grades):  
       
      if grades[i] < 4:  
            count = count + 1 
             
       
      i = i + 1 
       
 
if 2 * count < len(grades):  
      passing = True  
else:  
      passing = False  
 
print(passing)          

ERROR: 1 SHOULD BE 0

grades ⇢ { 0 } N { len(grades) }? 

grades ⇢ {0} N {len(grades)}?
grades ⇢ {0} N {i}? S {i+1}? S {len(grades)}? | …

grades ⇢ {0} N {i+1}? S {i+2}? S {len(grades)}? | …
grades ⇢ {0} N {i+1}? S {i+2}? S {len(grades)}? | … | …

grades ⇢ {0} N {i}? U {i+1}? S {i+2}? S {len(grades)}? | …

grades ⇢ {0} N {i}? U {i+1}? U {len(grades)}?

grades ⇢ {0} N {1}? U {2}? U {len(grades)}?
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Implicit Assumptions on Data
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What Programs Want
Automatic Inference of Input Data Specifications

Caterina Urban1,2
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Abstract. Nowadays, as machine-learned software quickly permeates
our society, we are becoming increasingly vulnerable to programming er-
rors in the data pre-processing or training software, as well as errors in the
data itself. In this paper, we propose a static shape analysis framework
for input data of data-processing programs. Our analysis automatically
infers necessary conditions on the structure and values of the data read by
a data-processing program. Our framework builds on a family of underly-
ing abstract domains, extended to indirectly reason about the input data
rather than simply reasoning about the program variables. The choice of
these abstract domain is a parameter of the analysis. We describe various
instances built from existing abstract domains. The proposed approach
is implemented in an open-source static analyzer for python programs.
We demonstrate its potential on a number of representative examples.

1 Introduction

Due to the availability of vast amounts of data and corresponding tremendous
advances in machine learning, computer software is nowadays an ever increasing
presence in every aspect our society. As we rely more and more on machine-
learned software, we become increasingly vulnerable to programming errors but
(in contrast to traditional software) also errors in the data used for training.

In general, before software training, the data goes through long pre-processing
pipelines3. Errors can be missed, or even introduced, at any stage of these
pipelines. This is even more true when data pre-processing stages are disre-
garded as single-use glue code and, for this reason, are poorly tested, let alone
statically analyzed or verified. Moreover, this kind of code is often written in a
rush and is highly dependent on the data (e.g., the use of magic constants is
not uncommon) All this together, greatly increases the likelihood for errors to
be noticed extremely late in the pipeline (which entails a more or less important
waste of time), or more dangerously, to remain completely unnoticed.

3 https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-
hurdle-to-insights-is-janitor-work.html
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