
Static Value Analysis by Abstract
Interpretation of Functional Languages and

Application to OCaml Analysis

Master 2 research internship proposal, 2021–2022

Supervisor: Antoine Miné (antoine.mine@lip6.fr)

Internship location: APR team, LIP6
Sorbonne Université
Jussieu Campus, Paris, France

Duration: 6 months

Related project: MOPSA project, MOPSA analyzer

Relevant courses: MPRI 2.6: Abstract interpretation: application to
verification and static analysis

Master STL: Typage et analyse statique

The goal of the internship is to develop in the MOPSA analysis platform a static
value analysis by abstract interpretation for a realistic subset of OCaml, featuring at
least higher order functions, recursion, references, structure and variant types, and
exceptions. The analysis should target run-time errors, such as arithmetic overflows,
invalid operations, and unhandled exceptions.

Related Work

Static value analysis by abstract interpretation has been applied with some success to
the verification of imperative languages (such as C [3]) and object-oriented languages
(such as Java). The scope of these analyses has been extended recently to support
more dynamic languages, such as JavasScript and Python [2]. These analyses infer
(an over-approximation of) the possible values of variables at all program points in
order to detect soundly and statically run-time errors, such as arithmetic overflows,
invalid operations, invalid pointer or array access, etc. Functional languages have
been much less targeted by value analyses.

Indeed, while there already exists a large body of work on the static analysis of func-
tional languages, including analyses by abstract interpretation, these focus mostly on
static typing, control-flow analysis [5, 6], and strictness analysis [7]. These analyses
abstract away variable values, and so are not expressive enough to prove the absence
of run-time errors. The goal of the internship is to develop a value analysis by abstract
interpretation for OCaml that is expressive enough to prove the absence of run-time
errors and general enough to support complex value domains, such as relational nu-
meric domains.

Historically, abstract interpreters for functional languages are based on higher-
order abstract domains [7] designed to abstract concrete functions as abstract func-
tions or abstract relations, and are limited to finite or non-relational abstractions.

antoine.mine@lip6.fr
https://www-apr.lip6.fr/web
https://www.lip6.fr/
https://mopsa.lip6.fr/
https://gitlab.com/mopsa/mopsa-analyzer
https://gitlab.com/mopsa/mopsa-analyzer


There are two notable exceptions, which could provide interesting ideas for this in-
ternship. Firstly, an extension of classic higher-order abstract interpretation consid-
ers using relational numeric domains locally [8]. While it targets a lambda-calculus,
it could provide ideas for an analysis of OCaml. Secondly, Jhala et al. [4] propose
an analysis for OCaml that is precise enough to infer arithmetic relations, but uses a
hybrid approach combining refinement types with predicate abstraction, followed by
a conversion to first-order programs that are analyzed with an off-the-shelf analyzer.

In the internship, we will explore solutions based purely on abstract interpretation
and the design of suitable abstract domains that can be lifted to a native analysis of
OCaml, including its functional and imperative features and its rich data-types. In-
stead of considering higher-order abstractions [7] that are the basis of control-flow and
strictness analyses, but are theory-heavy, the internship will consider a more practical
route. We will study whether domains that are currently successful in value analy-
ses of imperative programs [1, 2] could be reused and extended to analyze functional
ones. For instance, memory and pointer abstractions could be exploited to abstract
closures.

Expected Work

The intended work will include a theoretical side: developing abstract domains
adapted to the analysis of functional languages and proving formally their sound-
ness. It will also include a practical side: implementing the analysis for a subset of
OCaml and validating its benefit experimentally. The host team is developing an open-
source static analysis platform, MOPSA [1], that includes an analysis of C and Python
programs using several, ready-to-use abstractions, and a framework to easily extend
it to new abstractions and new languages.

In practice, a first step will be to extend the abstract syntax tree (AST) used by
MOPSA to support OCaml programs, and to provide a front-end to parse OCaml pro-
grams into this AST. It will be important to choose the right intermediate language as
input to MOPSA, to benefit from type inference and removal of syntactic sugar.

A second step will be to design an analysis while relying as much as possible on
the domains currently existing in MOPSA and adding only the domains and iterators
for the constructions that are novel compared to C and Python. We expect that these
new domains and iterators would include support for closures (to represent functions
as values), variant types, and recursive functions (at the moment, recursion is not
supported for the analysis of C and Python). One possible idea is to exploit entangled
domains [8] proposed in the context of relational numeric analysis of lambda-calculus.
The analysis will be experimented on small but realistic OCaml programs that make
use of functional features.

After a basic analysis supporting a simple subset of OCaml is achieved, further
work can include either extensions to more complex OCaml features, or the design of
abstract domains more adapted to the analysis of functional languages than the ones
built in MOPSA (that target C and Python).

Requested Skills

- The internship requires a strong knowledge of static analysis by abstract interpre-
tation.

- The intern should have followed one of the following Master 2 courses: “Abstract
interpretation: application to verification and static analysis” from MPRI, or “Typage
et analyse statique” from the STL Master at Sorbonne Université, or an equivalent
course.

2

https://gitlab.com/mopsa/mopsa-analyzer


- Knowledge of the OCaml language is required as it is the analysis target in this
internship, but also to carry the implementation effort within the MOPSA platform
[1].

Context of the Internship

The internship will take place in the APR team, in the LIP6 laboratory, Jussieu Cam-
pus, Sorbonne Université, Paris. It is proposed in the scope of the MOPSA research
project.

References

[1] M. Journault, A. Miné, M. Monat, and A. Ouadjaout. Combinations of reusable
abstract domains for a multilingual static analyzer. In Proc. of the 11th Working
Conference on Verified Software: Theories, Tools, and Experiments (VSTTE19),
pages 1–17, Jul. 2019.

[2] R. Monat, A. Ouadjaout, A. Miné. Static type analysis by abstract interpretation of
Python programs. In Proc. of the 34th European Conference on Object-Oriented
Programming (ECOOP’20), volume 166 of LIPIcs, 2020, Dagstuhl Publishi, 17
pages.

[3] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In Proc. of the
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI’03), pages 196–207. ACM, Jun. 2003.

[4] R. Jhala, R. Majumdar, and A. Rybalchenko. HMC: Verifying Functional Programs
Using Abstract Interpreters. In Computer Aided Verification (CAV 2011), pp. 470–
485, 2011.

[5] F. Nielson and H. R. Nielson. Infinitary control flow analysis: a collecting seman-
tics for closure analysis. In POPL’97: Proc. of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 1997, ACM, pp. 332–345.

[6] B. Montagu and T. Jensen. Trace-based control-flow analysis. In PLDI’21: 42nd
ACM SIGPLAN International Conference on Programming Language Design and
Implementation, 2021, ACM, pp .482–496.

[7] P. Cousot and R. Cousot. Higher-order abstract interpretation (and application
to comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages). In Proc. of the 1994 International Conference
on Computer Languages, pp. 95—112, IEEE Press, 1994.

[8] S. Liang, M. Might. Entangled abstract domains for higher-order programs. In
the Annual Workshop on Scheme and Functional Programming, 2013.

3

https://gitlab.com/mopsa/mopsa-analyzer
https://mopsa.lip6.fr/
https://mopsa.lip6.fr/

