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Introduction

Outline

m The need for relational domains

m Presentation of a few relational numerical abstract domains
u linear equality domain
u polyhedra domain

m weakly relational domains: zones, octagons
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Shortcomings of non-relational domains

Shortcomings of non-relational domains
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Shortcomings of non-relational domains
Accumulated loss of precision

Non-relation domains cannot represent variable relationships

Rate limiter

Y < 0; while e 1=1 do X:  input signal
X « [-128,128]; D « [0,16]; v ou‘l utfi "
AL I L R s 5'. Iastpout Et
if R< -Dthen Y « §-Dfi; | o o VP
if R > D then Y « S + D fi )
D: max. allowed for |R)|
done
Y
X
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Shortcomings of non-relational domains
Accumulated loss of precision

Non-relation domains cannot represent variable relationships

Rate limiter

Y < 0; while e 1=1 do X:  input signal
X « [-128,128]; D « [0,16]; v Ou‘lput fignal
S+ Y; Y+ X; R+ X -38; '

! ’ ’ :  last output
if R < -D then Y « S - D fi; SR_ VA
if R > D then Y <~ S + D fi ’

* = en * D: max. allowed for |R)|
done
Iterations in the interval domain (without widening):
I I A
Y=0[Y[<144 | [Y[<160 | ... |][Y[<128+16n

In fact, Y € [—128,128] always holds.
To prove that, e.g. Y > —128, we must be able to:
m represent the properties R=X — S and R< —D
m combine them to deduce S — X > D, andthen Y =S —-D > X

Course 4 Relational Numerical Abstract Domains Antoine Miné



Shortcomings of non-relational domains
The need for relational loop invariants

To prove some invariant after the end of a loop,
we often need to find a loop invariant of a more complex form

relational loop invariant

X« 0; I+« 1;

while e I < 5000 do

if [0,1] = 1 then X «+ X + 1 else X «+ X - 1 fi;
I+~ I+1

done ¢

A non-relational analysis finds at ¢ that / = 5000 and X € Z
The best invariant is: (/ = 5000) A (X € [—4999,4999]) A (X =0 [2])

To find this non-relational invariant, we must find a relational loop invariant at
o (-1 <X<)AX+T=1[2])A(I€][1,5000]),
and apply the loop exit condition C*[/ > 5000]
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Shortcomings of non-relational domains

Modular analysis

store the maximum o

max(X,Y,Z)
Z «— X ;
if Y >Z then Z < Y ;
if Z < 0 then Z < O;

Modular analysis:
= analyze a function once (function summary)

m reuse the summary at each call site (instantiation)
= improved efficiency
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Shortcomings of non-relational domains

Modular analysis

store the maximum of X,Y,0 into Z’

max(X,Y,Z)

X2 «— X; Y < Y; 2° < Z;

Z> +— X’;

if Y’ > Z° then Z° + Y’;

if Z° < 0 then Z’ <+ 0;
(Z>XANZ'>2YNZ >20ANX' =XAY =Y)

Modular analysis:
m analyze a function once (function summary)
m reuse the summary at each call site (instantiation)
— improved efficiency
m infer a relation between input X,Y,Z and output X’,Y’,Z’ values, in
P((V—=R)x(V—=R))~P(VxV)—=R)
m requires inferring relational information [Ancol0], [Jean09]
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Linear equality domain

Linear equality domain

Course 4 Relational Numerical Ab: 0 s Antoine Miné



Linear equality domain Affine equalities

The affine equality domain

Here I € {Q,R}.

We look for invariants of the form:

N\ (XCriopVi=8), aj, B €l

where all the o and §; are inferred automatically.

We use a domain of affine spaces proposed by [Karr76]:
D! = { affine subspaces of V — 1 }
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Linear equality domain Affine equalities

Affine equality representation

Machine representation:  an affine subspace is represented as

= either the constant L¥,
= or a pair (M, C) where
= Mel™"isamx nmatrix, n=|V| and m < n,

m C € 1™ is a row-vector with m rows.

(M, 6) represents an equation system, with solutions:
(M, C)) E{ Vel MxV=C}

M should be in row echelon form: example:
B Vi < m:3ki: My, =1 and 1.0 0 5 0
Ve < kit Mic = 0, VI # i: My, = 0, PR
00 0 0 1

m if i < i then ki < ki (leading index)

Remarks:
the representation is unique
as m < n = |V|, the memory cost is in O(n?) at worst
T is represented as the empty equation system: m = 0
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Linear equality domain Affine equalities

Normalisation and emptiness testing

Let M x V = C be an equation system, not necessarily in normal form.
The Gaussian reduction Gauss((M, C)) tells in O(n3) time:

m whether the system is satisfiable, and in that case

m gives an equivalent system (M’ 5’} in normal form

i.e. returns an element in DE.

Principle: reorder lines, make linear combinations of lines to eliminate variables

Example:
2X + Y + Z = 19
2X 4+ Y - Z = 9
3Z = 15
4
X + 05Y = 7
Z =5
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Linear equality domain Affine equalities

Affine equality operators

Applications
If X%, V% £ 1F we define:

M C

f Aty def Xt Xt
XY _Gauss<<[Myu} l yu]>>
Xﬂ == uyﬂ <:’>def qu Myn and CXﬁ = 63;;1

XECEYE &S xEnf =t

Cu[[zjaj\/j:ﬂ]]é\fﬁ & Gauss <<[ all\'ll.,\:»nan ] ’[ %vn ]>>

Cilea0] Xt = Xt for other tests

Remarks:
Ct =% nf, =* and CH[Y; a5V = B] are exact:
XY s (X) A, V(X" NF YF) = 4(2%) Ny (¥F), ...
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Linear equality domain Affine equalities

Generator representation

Generator representation

An affine subspace can also be represented as a set of vector generators
Gy, ..., Gy and an origin point O, denoted as [G, O].

7([G,5]) LIGxX+0|Xel™} (Gel™ Oeln
We can switch between a generator and a constraint representation:
= From generators to constraints: (M, C) = Cons([G, O))
Write the system V=Gx2\ + O with variables \7 .

Solve it in X (by row operations).
Keep the constraints involving only V.

X = A+2 X—=-2 = A
e.g. Y = 224+pu+3 = —2X+Y+1 = pu
Z = p 2X-Y+Z-1 =0

Theresultis: 2X - Y + 272 = 1.
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Linear equality domain Affine equalities

Generator representation (cont.)

= From constraints to generators: [G, O] % Gen((M, C))

Assume (M, C) is normalized.
For each non-leading variable V/, assign a distinct Ay,
solve leading variables in terms of non-leading ones.

-0.5 7
X+05Y =7
e.g. { 7 - 5 — (1) Ay + (5)
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Linear equality domain Affine equalities

Affine equality operators (cont.)

Applications
Given X%, V¢ £ 1 we define:
Xt UE Y Cons ([Gm Gy: (Oyi — Ons), 5;“})
CHV; ¢ [—o0, +00] ] X# 2 ccns([c-;x,i %, éxu})
CLV, « 3,0V + 8] X% =
if a; =0,(C}[V; =3, Vi + B8] o C}[ V; + [—o0, +00] ] )X
if aj # 0, X% where V; is replaced with (V; — 3, a;V; — ) /oy

(proofs on next slide)

CHVj + e] &F = CHV; < [—o0, +00] ] X* for other assignments

Remarks:
= U? is optimal, but not exact.
m CI[V;+ 3, 0;Vi+ B8] and CH[V; « [—o00, +00]] are exact.
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Linear equality domain Affine equalities

Affine assignments: proofs

CLV) < 3 aiVi + B] XF =
if aj =0, (C[V; = 35, iV + B] o C[V; ¢[00, +o0] ] ) AF
if a; # 0, X* where V; is replaced with (V; — 3, a;V; — B) /oy

Proof sketch:

we use the following identities in the concrete

= non-invertible assignment: «; = 0
C[Vj«e] =C[V;« e] oC[V, < [—o0,+0]] as the value of V; is not used in e
so: C[Vj < e] =C[V;=¢e] oC[V, + [—o0,+0]]
—> reduces the assignment to a test
= invertible assignment: o; # 0
C[Vj«e] CC[Vj<«e] oC[Vj + [—00,+0]] as e depends on V
(eg. C[V+ V+1] #C[V <+ V+1] oC[V < [—o0,+0o0]])
peEC[Vi+e]lR < 3Fp' €R: p=p'[\/j»—>2i0¢fp/(vf)+5]
= 3 € R plVi = (p(V) = Y ean' (Vi) = B)/aj] = o
= plV; = (p(V)) — Z,#j aip(Vi) — B)/aj] € R

—> reduces the assignment to a substitution by the inverse expression

Antoine Miné
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Linear equality domain Affine equalities

Analysis example

No infinite increasing chain: we can iterate without widening.

Forward analysis example: 1@
X~10
Y 100
1x<—1§>;v<—1go; K=0
while “X 0 do B
X + x—;f; 20g—>o
Y + Y+10 4
done* X#0
X X-1
Y ~Y+10
30
L 7 N . 7 i IR + A WY 1
1| TF T T T? T
2| L% | (10,100) | (10,100) | 10X + Y =200 | 10X + Y = 200
3| Lf 1# (10, 100) (10, 100) 10X 4+ Y = 200
4| Lt 1t 1t 1k (0, 200)

Note in particular:
X2ﬁ3 ={(10,100)} U* {(9,110)} = { (X, Y) | 10X + Y =200 }
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Polyhedron domain

Polyhedron domain
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Polyhedron domain
The polyhedron domain

Here again | € {Q,R}.

n
We look for invariants of the form: /\ (Z a;Vi > ﬁJ-).
J i=1
We use the polyhedron domain proposed by [Cous78]:
D! = {closed convex polyhedra of V — I}

Note:  polyhedra need not be bounded (# polytopes).
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Polyhedron domain
Double description of polyhedra

Polyhedra have dual representations (\Weyl-Minkowski Theorem).
(see [Schr86])

Constraint representation

(M, C) with M € I™" and C € I represents:
Y(M, €)) AV M x V> C}

We will also often use a constraint set notation { >, a;V; > 3, }.

Generator representation

[P, R] where:
m P € 1"™P is a set of p points: F’l,...,f’p,

—

m R e 1™ is a set of r rays: ﬁl,...,R,.

W(P.R) = {(S0 oB) + (L BR) [ Viay =0, 527 ) =1, ¥: 4, > 0}
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Polyhedron domain

Double description of polyhedra (cont.)

Generator representation examples:

([P, R]) = {(X0, aiP)+ (X1 BiR) [Vira; > 0, 320 0y =1, Vj: ;> 0}

m the points can only define a bounded convex hull,
m the rays allow unbounded polyhedra.
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Polyhedron domain
Origin of duality

def

Dual: A* = {Xel"|Vie A3 - x<0}
m {3}* and {A\F| A\ > 0}* are half-spaces,
= (AUB)* = A*NB*,
= bidual: if A is convex, closed, and 0c A, then A** = A.

Duality on polyhedral cones:

Cone: C={V|[MxV >0}or C={X 3R]V >0}

(polyhedron with no vertex, except 6)

m C* is also a polyhedral cone,

m C*=C,

m a ray of C corresponds to a constraint of C*,
m a constraint of C corresponds to a ray of C*.

Extension to polyhedra: by homogenisation to polyhedral cones:

C(P) L {AV|A>0,(V4,...,V,) €v(P), Vpyuy =1} C Inf2

(polyhedron in 1" ~ polyhedral cone in 1"*1)
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Polyhedron domain

Polyhedra representations

m no best abstraction «,
(e.g., a disc has infinitely many polyhedral over-approximations, but no best one)

®m no memory bound on the representations.
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Polyhedron domain

Polyhedra representations

Minimal representations

m A constraint / generator system is minimal if no constraint / generator can
be omitted without changing the concretization.

m Minimal representations are not unique.
m No memory bound even on minimal representations.

Example:  three different constraint representations for a point

(@) (b) (©
= (a)y+x>0,y—x>0,y<0,y>-5
m (b)y+x>0,y—x>0,y<0
m(c)x<0,x>0,y<0,y>0

(non mimimal)
(minimal)
(minimal)

Course 4 Relational Numerical /
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Polyhedron domain

Chernikova's algorithm

Algorithm by [Cher68], improved by [LeVe92] to switch from a constraint system
to an equivalent generator system.

Why?  most operators are easier on one representation.

Notes:
m By duality, we can use the same algorithm to switch from generators to
constraints.

m The minimal generator system can be exponential in the original constraint
system. (e.g., hypercube: 2n constraints, 2" vertices)

m Equality constraints and lines (pairs of opposed rays) may be handled
separately and more efficiently.
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Polyhedron domain

Chernikova's algorithm (cont.)

Algorithm:  incrementally add constraints one by one
. Po={(0,...,0)} (origin)
Start with: { Ro={ % ~%|1<i<n} (axes)

For each constraint M - V > C € (M, E), update [Pyx_1, Rk_1] to [Pk, Ry].
Start with P, = R, = 0,

u for any Pec Py_1 s.t. Mk .P > Cg, add Pto Py

u for any Re Ri_1 s.t. Mk ‘R >0, add R to Ry

u for any ﬁ, é € Pyg_1 s.t. Mk . ’3 > Cy and Mk . é < Cg, add to Py:
o) d:ef 4ck:/\71k»6 B Ci— M -P ()

Wy -P—Hiy-0 WPy -0

i.e., move Q towards P along [Q, P] until it saturates the constraint

O
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Polyhedron domain

Chernikova's algorithm (cont.)

w forany R, S5 € Ry_1 st. My-R > 0and M-S <0, add to Ry:
0 L (M- 3R — (M- R)S
i.e., rotate S towards R until it is parallel to the constraint

u for any Pe Py_1, Re Ryx_1 s.t.
eitherl\?lk~.‘3>Ckand Mk-R"<O,orI\71k‘I3<Ckand M -R >0

LA def 5 G —M Pg
add to P: O = P+—A7’k'§ R

Course 4
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Polyhedron domain

Chernikova's algorithm example

Example:

Py = {(O’ 0)} Ro = {(17 0)7 (_1’ 0)7 (07 1)’ (O’ _1)}
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Polyhedron domain

Chernikova's algorithm example

Example:
D e
g
(0) M
Po = {(0’0)} Ro = {(170)7 ( 1’0)7 (0 1) (O )}
Y=>1 P, ={(0,1)} R: ={(1,0), (-1,0), (0,1)}
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Polyhedron domain

Chernikova's algorithm example

Example:
o b
£
(0) M @)
PO - {(0’0)} RO - {(170)7 ( 1’0)7 (0 1) (O )}
Yy >1 P, = {(0,1)} Ry = {(1,0), (~1,0), (0,1)}
X"f‘ Y Z 3 P2 — {(2a 1)} R2 = {(150)7 (_13 1)? (0’ 1)}
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Chernikova's algorithm example

Example:
4
v
(0) M 2 (3)
Po = {(0’0)} Ro = {(170)7 ( 1’0)7 (0 1) (O )}
Y=>1 P, ={(0,1)} R: = {(1,0), (-1,0), (0,1)}
X"f‘ Y Z 3 P2 = {(2a 1)} R2 = {(150)7 (_13 1)? (0’ 1)}
X-vY<1 P;={(21), (1,2} Rs={(0,1),(1,1)}

Antoine Miné
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Polyhedron domain
Redundancy removal

Goal: introduce only non-redundant generators during Chernikova's algorithm.

Definitions (for rays in polyhedral cones)

Given C={V|MxV>0}={RxF|F>0}.

m R saturates Mk V>0 N l\7lk R=0.
= S(R,C) & {k|M-R=0}.
Theorem:

Assunle C has no line (AL # 0 s.t. Va: aZ§ Q), B .
then R is non-redundant w.rt. R <= AR; € R:S(R,C) C S(R;, C).
m S(I_i”,-, 0), R; € R is maintained during Chernikova’s algorithm in a
saturation matrix,
B extension to (non-conic) polyhedra and to lines,
m various improvements exist [LeVe92].
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Polyhedron domain
Operators on polyhedra

Given X, V¥ £ 1* we define:

. VP EPyi:My: x P > Cys
Xtct oyt L CEePxMy: x P 2 Gy
- y VRERXu:MyuXR Z 0

(every generator of X ! must satisfy every constraint in VE )
xt=tyt ALyt ctyt oand Y C ot
Xty [ M.y: ] | G

My Cy:
(set union of sets of constraints)

Remarks:
m C¥ =% and N? are exact.

Relational Numerical Abstract Domains Antoine Miné
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Polyhedron domain

Operators on polyhedra: join

Join: Xﬂ U’i yﬁ d:ef [ [P/\f‘ﬂ Pyu], [qu Ryu] ] (join generator sets)

Examples:

T |

two polytopes a point and a line

Ut is optimal:
we get the topological closure of the convex hull of v(X*#) U ~()*).
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Polyhedron domain
Operators on polyhedra: tests

Forward operators: affine tests

M y:
al..-an

CY aiVi+ g >0]xt = <[

CHY eV = Bl = (CH[YS, iV > B] o CHL Y, i Vi < B ) A

These test operators are exact.
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Polyhedron domain

Operators on polyhedra: non-deterministic assignment

Forward operators: forget

CH[ V) ¢[00, +00] J X% = [Pas, [Ras 55 (—%)]]

-—

This operator is exact.
It is also a sound abstraction for any assignment.
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Polyhedron domain

Operators on polyhedra: affine assignments

Forward operators: affine assignments

CLV; ¥V + 81 A% =
if aj = 0,(C[V; = 35, iV + B] o C[ Vj 4 [—00, +00] ] ) X*
if a; # 0, (M, C) where V; is replaced with alj(\/J =2 iy aiVi—B)

Examples :

X+ X+Y -,

X+Y ‘ — —

Affine assignments are exact.
They could also be defined on generator systems.
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Polyhedron domain

Affine assignments: proofs

LY« 3 v+ gl At =

if oy =0,(CF[Y ], aiVi = Vi + B =0] o C*[ V] = [~o00, +oo] [ )X
ifaj#O,Xu where V; is replaced with (V; — Z caiVi — B)/o;

Proof sketch:
we use the following identities in the concrete

non-invertible assignment: a; =0
ClVi<«e] =C[V; <« e] oC[V, « [—oo,+o0]] as the value of Vj is not used in e
so: C[V +— e] 7C[[V =e] oC[[\/J<—[ oo, +00] ]

—> reduces the assignment to a test

invertible assignment: «; # 0

C[Vj«e] CC[Vj<«e] oC[V; + [—o0,+0]] as e depends on V
(eg C[V + V+1]] #C[[V<—V+1]] oC[[V(—[—oo +oo]1)

peC[Vi+ e]R = Elp'GR:p:p'[\/jHZiaip/(Vi)‘Fﬁ]
< 3p’ € R: p[V; = (p(V}) — Zi;!j aip'(Vi) = B)/aj] = o'
e plV; — (p(V)) — Zi#j aip(Vi) = B)/aj] € R

= reduces the assignment to a substitution by the inverse expression
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Polyhedron domain

Operators on polyhedra: backward assignments

Backward assignments:

def

TV, [—o0, +00] [ (X1, RE) & XA (CH[V; ¢ [—o00, +00] [ RY)

TV« T, 00Vi 4 BT (X, RE)
X*fNF (RF where V; is replaced with (3=, a; Vi + 33))

TV, « e] (¥t RY) & T

for other assignments

CH V; + [—o0, +oa] ] (X#, RF)

Note: identical to the case of linear equalities.
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Polyhedron domain

Polyhedra widening

DF has strictly increasing infinite chains = we need a widening.
Definition:

Take X and Y¥ in minimal constraint-set form, then
xtoyt = {cext|Yict{c}}

We suppress any unstable constraint ¢ € X%, i.e., V¥ Z* {c}.

Example:
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Polyhedron domain

Polyhedra widening

DF has strictly increasing infinite chains = we need a widening.
Definition:
Take X and Y¥ in minimal constraint-set form, then
Xty )yt feext|yict{c}}

U {cedt |3 extxt =t (x%\)u{c}}
We suppress any unstable constraint ¢ € X%, i.e., V¥ Z* {c}.
We also keep constraints ¢ € V¥ equivalent to those in X#,
i.e., when 3¢’ € X% X% =8 (X%\ ') U {c}.

Example:
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Polyhedron domain

Example analysis

X+ 2; I+« 0;
while @ I < 10 do

if [0,1] = O then X <« X + 2 else X + X - 3 fi;
I+~ I+1
done ¢
Loop invariant: \/
[} ;
X'y FH(X*y) X% Xy

Increasing iterations with widening at e give:

af {X=2,1=0}

xf {X=2,1=0} v ({X=2,1=0}U* {Xe[-1,4], I=1})
{X=2,1=0}v{l€0,1],2-3/<X<2/+2}
{I>0,2-31<X<2/+2}

Decreasing iterations (to find | < 10):

X} {X=2,1=0}Uf {I€[1,10], 23/ < X <2/ +2}
{1 €0,10], 2—3/ < X < 2/ + 2}

We find, at the end of the loop ¢: / =10 A X € [—28,22].
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Polyhedron domain

Other polyhedra widenings

Widening with thresholds:

Given a finite set T of constraints, we add to X¥ v V¥ all the constraints from
T satisfied by both X* and )*.

Delayed widening:

We replace Xt v Yt with X4 Ut V¥ a finite number of times.

(this works for any widening and abstract domain).

See also [Bagn03].
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Polyhedron domain

Integer polyhedra

How can we deal with | = Z?

Issue: integer linear programming is difficult.

Example:  satsfiability of conjunctions of linear constraints:

m polynomial cost in Q,
m NP-complete cost in Z.

Possible solutions:

m Use some complete integer algorithms.
(e.g. Presburger arithmetic)
Costly, and we do not have any abstract domain structure.

m Keep Q—polyhedra as representation, and change the concretization into:
1z(XF) = (X nzn.
However, operators are no longer exact / optimal.
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Weakly relational domains

Weakly relational domains
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Weakly relational domains

Zone domain
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Weakly relational domains Zone domain

The zone domain

Here, 1 € {Z,Q,R}.
We look for invariants of the form:
AVi—Vi<cor £V;<c¢, cel

A subset of 1” bounded by such constraints is called a zone.

[Miné01al
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Weakly relational domains Zone domain

Machine representation

A potential constraint has the form: V; — V; < c.

Potential graph: directed, weighted graph G

®m nodes are labelled with variables in V,

= we add an arc with weight ¢ from V; to V; for each constraint V; — V; < c.

Difference Bound Matrix (DBM)

Adjacency matrix m of G:
® m is square, with size n x n, and elements in | U {400},
= m; = ¢ < +oo denotes the constraint V; — V; <,

®m mj = +oo if there is no upper bound on V; — V.

Concretization:

~(m) d:ef{(vl,...,v,,)eI”|Vi,j:vjfv,-§m,-j}.
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Weakly relational domains Zone domain

Machine representation (cont.)

Modeling unary constraints: add a constant null variable V;.

m m has size (n+1) x (n+1),
m V;<cisdenoted as V; — Vy < ¢, i.e., mjg = c,
m V; > cisdenoted as Vo — V; < —c, i.e., mg; = —c,

m yis now: Yo(m) = { (vi,...,va) | (0,vi,...,v,) € ~y(m) }.

Example:

| Vo Vi Vo

Vo | +oo 4 3
Vil -1 400 +oo
Vs, —1 1 —+o0

Course 4 Relational Numerical Abstract Domains
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Weakly relational domains Zone domain

The DBM lattice

D*¥ contains all DBMs, plus L%,

< on U {400} is extended point-wisely.

If m,n# 1%
m Cin L5 Vijimy < ny
_ﬁ def, - _
m=%n Vi, j:mij = nj
[mén], = min(my, ny)
muin], = max(my,ny)
def
[Tﬁ]ij = +00

(DF, CH UP NF) LE TH) is a lattice.

Remarks:
m D! is complete if < is (I =R or Z, but not Q),
u m C%n = 75(m) C yo(n), but not the converse,
m m =F n = ~5(m) = yo(n), but not the converse.
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Weakly relational domains Zone domain

Normal form, equality and inclusion testing
Issue:  how can we compare o(m) and 7o(n) precisely?

Idea: find a normal form by propagating/tightening constraints.

Vo— Vi <3 Vo— V1 <3
Vi—-VW, < -1 Vi— VWV, < -1

Vo— Vo <4 Vo—V, <2

Definition: shortest-path closure m*

x def .
my = m,\lln E :mik ik+1

(=i, in=jy *1

Exists only when m has no cycle with strictly negative weight.
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Weakly relational domains Zone domain

Floyd—Warshall algorithm

Properties:
m 1(m) =0 <= G has a cycle with strictly negative weight.
m if yo(m) # 0, the shortest-path graph m* is a normal form:
m* =minc: { n [ y(m) =0(n) }

u If 0(m), y0(n) # 0, then
m yo(m) = y(n) <= m* =f n*,
m yo(m) C yo(n) <= m* C¥n.

Floyd—Warshall algorithm

def .
mj; = mln(m,’-j-, mﬁ( + m’,jj)
m If yo(m) # 0, then m* = m™1, (normal form)
5 yp(m)=0 < Jiml™ <0, (emptiness testing)

= m™! can be computed in O(n?) time.
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Weakly relational domains Zone domain

Abstract operators

Abstract join:  naive version Uf  (element-wise max)

m U! is a sound abstraction of U

but yo(m U n) is not necessarily the smallest zone
containing yo(m) and ~o(n) !

The union of two zones with U? is no more precise in the zone domain
than in the interval domain!
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Weakly relational domains Zone domain

Abstract operators (cont.)

Abstract join:  precise version: U* after closure

m (m*) Uf (n*) is however optimal
we have: (m*) U (n*) = minc: { 0| 70(0) 2 Yo(m) U~o(n) }

which implies:
Yo((m*) UF (n*)) = minc { 70(0) | 70(0) 2 70(m) U~o(n) }

after closure, new constraints ¢ < X — Y < d give an increase in precision

m (m*) Uf (n*) is always closed.
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Weakly relational domains Zone domain

Abstract operators (cont.)

Abstract intersection N¥: element-wise min

® N is an exact abstraction of N (zones are closed under intersection):

~o(m NF n) = y0(m) Ny0(n)

m (m*) N (n*) is not necessarily closed. . .
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Weakly relational domains Zone domain

Abstract operators (cont.)

We can define:

min(mij’c) if (i,J) = (io, Jo)s

i Y def
[C [V =V < C]]m]U = { mj; otherwise.

# : _ def —+o00 Ifl:_[o or j = jo,
[C [[VJO  [oo, +°O]]]m],-j - { m;;. otherwise.

not optimal on non-closed arguments
def
CHVjy + Vip +alm = (C*[Vjy — Viy = a] o C*[V}, <+ [—o0, +oo] ] )m  if ig # jo

[C”[[‘/jg<—‘/fo+a]]m] mj+a ifijoandj=jo

mj; otherwise.

i

det { mj—a ifi=joandj#jo

These transfer functions are exact.
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Weakly relational domains Zone domain

stract operators (cont.)

Backward assignment:

%n[[ Vjy = [—o0, +o0] ] (m,r) def mn# (Cn[[ Vjy + [—o0, +o0]] )

TH V) Vg +al(mr) ' mnf (CPLV, « Vyy — aln)

— def
[Cu[[‘/jo<_\40+a]](m7r)]ij =
min(r;,rjaj+a) if i =iy and j # i, jo

m min(r,-jf, r;o —a) ifj=ipandi#ig,jo
400 if i =joorj=jo
r otherwise.

u
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Weakly relational domains Zone domain

stract operators (cont.)

Issue: given an arbitrary linear assignment Vj, < ao + >, ax x Vi

m there is no exact abstraction in general,
m the best abstraction a0 C[c] oy can be costly to compute.

(e.g. convert to a polyhedron and back, with exponential cost)

Possible solution:

Given a (more general) assignment e = [ag, b] + Zk[ak, bi] x Vi,
we define an approximate operator as follows:

max(E*[ e] m) ifi=0andj=jy
—min(E¥[e] m) ifi=jopand j=0
£ def 4 o . S
[C[[Vjo<—e]]m]“ = max(E*[e — V;]m) ifi#0,joand j=jo
! —min(E*[e+ V;Im) ifi=joandj#0,j
mj; otherwise

where E*[ e] m evaluates e using interval arithmetics with V4 € [—m}y, mg,].

Quadratic total cost (plus the cost of closure).
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Weakly relational domains Zone domain

Abstract operators (cont.)

Example:
Argument

0<Z<10
0<Y-2<10

ﬂXe Y-Z

{1ogxg1o {1ogxg1o {0§X§10

{0§Y§10

—20< X —-Y <10 ~10<X-Y<0 ~10<X—-Y<0
—20<X—-2<10 ~10<X-2<10 ~10<X—-2Z<10

Intervals Approximate Best
solution (polyhedra)

We have a good trade-off between cost and precision.

The same idea can be used for tests and backward assignments.
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Weakly relational domains Zone domain

Widening and narrowing

The zone domain has both strictly increasing and decreasing infinite chains.
Widening V:

[m v n] def m,-j if n,~j S m,-j
i +o00  otherwise

Unstable constraints are deleted.

Narrowing A:

man], & M ifmy=too
U mj;  otherwise

Only +o00 bounds are refined.

Remarks:
m We can construct widenings with thresholds.

m V (resp. A) can be seen as a point-wise extension of an interval widening
(resp. narrowing).

Course 4 Relational Numerical / ains Antoine Miné



Weakly relational domains Zone domain

Interaction between closure and widening

Widening Vv and closure * cannot always be mixed safely:
e mj “m; v (nf) OK
e mi; = (m)Vn, wrong!
° mjy = (m; vn;))*  wrong

Otherwise the sequence (m;) may be infinite.

Example:
X« 05 Y « [-1,1]; iter. | X 4 X_—Y
RS P 0 0 [-1,1] [-1,1]
while ¢ 1 = 1 do
R « [-1,1]; 1 [_23 2] [_171] [_171]
; = Y the 2 [-2,2] [-3,3] [-1,1]
if X =Y then Y < X + R
else X < Y + R fi N . o
done 2j [—2/,2]] [-2/-1,2/+1] | [-1,1]
2j+1 | [-2j—2,2j4+2] | [-2j—1,2j+1] | [-1,1]

Applying the closure after the widening at e prevents convergence.

Without the closure, we would find in finite time X — Y € [-1,1].

Note: this situation also occurs in reduced products.

(here, D* ~reduced product of n x n intervals, * ~reduction)
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Weakly relational domains Zone domain

Interaction between closure and widening (illustration)

X« 0; Y « [-1,1]; iter. | X | ¥ | XY
. o T 0 0 [-1,1] [-1,1]
while ¢ 1 = 1 do
R « [-1,1]; 1 [_2a 2] [_131] [_111]
;  cho 2 [-2,2] [-3,3] [-1,1]
if X=Y then Y < X + R
1se X <« Y + R fi cee ]
done ' 2 [—2j,2]] [-2j - 1,2j+1] | [-1,1]

2j+1 | [-2j—2,2j4+2] | [-2j—1,2j+1] | [-1,1]

widening
without
closure

widening
with
closure
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Weakly relational domains Octagon domain

Octagon domain
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Weakly relational domains Octagon domain

The octagon domain

Now, I € {Q,R}.
We look for invariants of the form: /\ V£V, <c, cel
A subset of 1” defined by such constraints is called an octagon.

It is a generalization of zones (more symmetric).

[Miné01b]
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Weakly relational domains Octagon domain

Machine representation

Idea: use a variable change to get back to potential constraints.

Let V/ = {V},..., V).

The constraint | is encoded as
Vi-Vi<c (i#)) Vo1 — V5 1< ¢ and VZ’J—Vz', <c
Vit Vi<c  (i#)) Vi o VS e oand Vi Vise
-Vi—V;<c (i#])) Vz’/.—V2',-71 < ¢ and Vy -V <c
Vi<e V1= Vi < 2
Vize Vai = Vaiop <-2¢

We use a matrix m of size (2n) x (2n) with elements in 1 U {400} and
def

ye(m) = {(vi,...,vn) | (vi,—Vvi, ooy Vi, — V) € ¥(m) }.

Note:

Two distinct m elements can represent the same constraint on V.

To avoid this, we impose that Vi, j: m;j = mj;; where 7 =i ® 1.
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Weakly relational domains Octagon domain

Machine representation (cont.)

Example:

Vi+W, <3

Vo —V; <3
Vi— V<3
“Vi—Va< -3
2V, < 2

2V, <8

Lattice : constructed by point-wise extension of < on U {+o0}.
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Weakly relational domains Octagon domain

Algorithms

*

m* is not a normal form for ~,.

Idea use two local transformations instead of one:

V‘-/—Vk,SC ’ ’
{ Vi-Vvi<qg —ViTViscetrd
and
VI — Vv <
{ Vg = V-V <(c+d)2
J J —

Modified Floyd—Warshall algorithm:

m*® d=ef S(m2n+1)

1 def
CVIE S P
where: [m* ]y = min(ny, ng + ng), 1 < k < 2n

(B) [Sm)]; = min(ng, (miz + nz)/2)
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Weakly relational domains Octagon domain

Algorithms (cont.)

Applications:
B yi(m)=0 < Jiim} <0,
m if y£(m) # 0, m® is a normal form:
m® = minc: { n [ yx(n) = y=(m) },

m (m®) Uf (n®) is the best abstraction for the set-union y4(m) U v+ (n).

Widening and narrowing:

m The zone widening and narrowing can be used on octagons.
m The widened iterates should not be closed. (prevents convergence)

Abstract transfer functions are similar to the case of the zone domain.

Course 4 Relational Numerical Abstract Domains Antoine Miné



Weakly relational domains Octagon domain

Analysis example

Rate limiter

Y < 0; while o 1=1 do

X « [-128,128]; D <« [0,16]; f, 'c:'upt”z:'fi"i'al
S+ Y; Y« X; R« X - S; & last"out Et
if R < -D then Y < S - D £i; : P
. = . R: delta Y — S
if R > D then Y < S + D fi
dome D: max. allowed for |R|

Analysis using:
m the octagon domain,

= an abstract operator for Vj, < [ao, bo] + >, [ak, bk] x Vi similar to the one
we defined on zones,

= a widening with thresholds T.

Result: we prove that |Y| is bounded by: min { t € T | t > 144 }.

Note: the polyhedron domain would find | Y| < 128 and does not require
thresholds, but it is more costly.
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Summary

Summary of numerical domains

domain invariants memory cost | time cost (per operation)
intervals Ve [¢ h] O(|n|) O(|n|)
linear equalities | > a;V; =i R o(|n)?)
zones Vi-V;<c o(|n)?) o(|n]?)
polyhedra Zia,-\/; > Bi unbounded, exponential in practice

m abstract domains provide trade-offs between cost and precision

m relational invariants are often necessary
even to prove non-relational properties
m an abstract domain is defined by the choice of:
m some properties of interest and semantic operators (semantic part)
m data-structures and algorithms to implement them (algorithmic part)
m an analysis mixes two kinds of approximations:

m static approximations (choice of abstract properties)
m dynamic approximations (widening)
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