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• Guarantee Properties 
“something good eventually happens at least once”


• Example: Program Termination


• Recurrence Properties  
“something good eventually happens infinitely often”


• Example: Starvation Freedom

Liveness Properties

4

Amir PnueliZohar Manna

Program Termination
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Potential and Definite Termination

9

In absence of non-determinism, potential and definite termination coincide

Finite prefix trace semantics

Finite traces

Finite trace: finite sequence of elements from �

‘: empty trace (unique)

‡: trace of length 1 (assimilated to a state)

‡0, . . . , ‡n≠1: trace of length n

�n: the set of traces of length n
�Æn def= fiiÆn �i : the set of traces of length at most n
�ú def= fiiœN �i : the set of finite traces

Note: we assimilate
a set of states S ™ � with a set of traces of length 1
a relation R ™ � ◊ � with a set of traces of length 2

so, I, F, · œ P(�ú)

Course 2 Program Semantics and Properties Antoine Miné p. 15 / 98

A program with trace semantics 
 may terminate  

if and only if 
ℳ ∈ 𝒫(Σ∞)

ℳ ∩ Σ* ≠ ∅

Definition
A program with trace semantics 

 must terminate  
if and only if 
ℳ ∈ 𝒫(Σ∞)

ℳ ⊆ Σ*

Definition
A program with trace semantics 

 must terminate  
if and only if 
ℳ ∈ 𝒫(Σ∞)

ℳ ⊆ Σ*

Definition
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Abstract Interpretation Recipe

mathematical models  
of the program behavior

algorithmic approaches  
to decide program properties

practical tools  
targeting specific programs
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Abstracting maximal traces into partial traces
Enriched hierarchy of semantics

R(I)
C(F)

forward/backward statesTp(I)

–p

OO

Ts (F)

–p

OO

prefix/su�x finite traces
T

–I

cc

–F

;;

partial finite traces
TŒ

–ú

OO

partial traces
MŒ

–∞

OO

maximal traces

See [Cous02] for more semantics in this diagram.Course 2

Program Semantics and Properties

Antoine Miné
p. 85 / 98

Hierarchy of Semantics

maximal trace semantics

termination semantics

termination trace semantics

ℳ∞

𝒯m 𝒯M

ℛm ℛM

α* α*

αMαm
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Definite Termination  
Trace Semantics
Definite Termination Abstraction

⟨𝒫(Σ∞), ⊑ ⟩ ⟨𝒫(Σ*), ⊆ ⟩

α*







α*(T ) def= {t ∈ T ∩ Σ* ∣ nhdb(t, T ∩ Σω) = ∅}

nhdb(t, T ) def= {t′ ∈ T ∣ pf(t) ∩ pf(t′ ) ≠ ∅}

pf(t) def= {t′ ∈ Σ∞∖{ϵ} ∣ ∃t′ ′ ∈ Σ∞ : t = t′ ⋅ t′ ′ }

Example:  
 since α*({ab, aba, bb, baω}) = {ab, aba} pf(bb) ∩ pf(baω) = {b} ≠ ∅
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Let  and 
 be complete 

lattices, let  and  
be monotonic functions, and let 

 be an abstraction function 
that is a complete -morphism 
( ) 
and that satisfies  and 
the post-fixpoint correspondence 

 
 (i.e., 

each abstract post-fixpoint of  is the 
abstraction by  of some concrete 
post-fixpoint of ). Then, we have the 
fixpoint abstraction .

⟨C, ≤ , ∨ , ∧ , ⊥ , ⊤ ⟩
⟨A, ⊑ , ⊔ , ⊓ , ⊥# , ⊤# ⟩

f : C → C f # : A → A

α : C → A
∧

∀S ⊆ C : f(∧S) = ⊓ {f(s) ∣ s ∈ S}
f # ∘ α ⊑ α ∘ f

∀a# ∈ A : f #(a#) ⊑ a# ⇒
∃a ∈ C : f(a) ≤ d ∧ α(a) = a#

f #

α
f

α(lfp≤ f ) = lfp⊑ f #

Theorem
Tarskian Fixpoint Transfer
•  

•  
 

•  

•

⟨𝒫(Σ∞), ⊑ , ⊔ , ⊓ ,Σω, Σ*⟩

ℳ∞
def= lfp⊑ Fs

Fs(T ) def= ℬ ∪ τ⌢T

⟨𝒫(Σ*), ⊆ , ∪ , ∩ ,∅, Σ*⟩

α* : 𝒫(Σ∞) → 𝒫(Σ*)


𝒯M
def= α*(ℳ∞) = lfp⊆ F*

F*(T ) def= ℬ ∪ ((τ⌢T ) ∩ (Σ+∖(τ⌢(Σ+∖T )))))

Definite Termination  
Trace Semantics

(see proof in [Cousot02])
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Ranking Abstraction
Definite Termination Semantics

33

⟨𝒫(Σ*), ⊆ ⟩ ⟨Σ ⇀ 𝕆, ⪯ ⟩

αm









αM(T ) def= αV(→α (T ))

αV(∅) def= ·∅
αV(r)σ def= {0 ∀σ′ ∈ Σ : (σ, σ′ ) ∉ r

sup{αV(r)σ′ + 1 ∣ σ′ ∈ dom(αV(r)) ∧ (σ, σ′ ) ∈ r} otherwise

→α (T ) def= {(σ, σ′ ) ∈ Σ × Σ ∣ ∃t ∈ Σ*, t′ ∈ Σ∞ : tσσ′ t′ ∈ T}

count execution steps backwards

0 
1 
x

2 
x3 

x
4 
x

…

f1 ⪯ f2
def= dom( f1) ⊆ dom( f2) ∧ ∀x ∈ dom( f1) : f1(x) ≤ f2(x)
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Definite Termination Semantics

34


ℛM
def= αM(𝒯M) = lfp⪯ FM

FM( f )σ def=
0 σ ∈ ℬ
sup{f(σ′ ) + 1 ∣ (σ, σ′ ) ∈ τ} σ ∈ ∼

preτ(dom( f ))
undefined otherwise

0 

0 

✔

✘

A program must terminate for traces starting from a 
set of initial states  if and only if  ℐ ℐ ⊆ dom(ℛM)

Theorem

0 

1 
0 0 

1 

0 
2 

0 
1 

0 
2 
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Programs and executions
Language syntax

¸stat¸ ::= ¸X Ω exp¸

(assignment)

| ¸if exp ÛÙ 0 then ¸stat¸

(conditional)

| ¸while ¸exp ÛÙ 0 do ¸stat¸ done¸

(loop)

| ¸stat; ¸stat¸

(sequence)

exp ::= X

(variable)

| ≠exp

(negation)

| exp ù exp

(binary operation)

| c

(constant c œ Z)

| [c, c Õ]
(random input, c, c Õ œ Z fi { ±Œ })

Simple structured, numeric language
X œ V, where V is a finite set of program variables

¸ œ L, where L is a finite set of control points

numeric expressions: ÛÙ œ {=, Æ, . . .}, ù œ { +, ≠, ◊, / }

random inputs: X Ω [c, c Õ]
model environment, parametric programs, unknown functions, . . .

Course 2

Program Semantics and Properties

Antoine Miné
p. 3 / 98

36

Denotational Definite 
Termination Semantics
We define the definite termination semantics 

 by partitioning with respect 
to the program control points, i.e., 

.

Thus, for each program instruction , we 
define a transformer 

:


• 


• 


• 


•

ℛM : Σ ⇀ 𝕆
ℛM : ℒ → (ℰ ⇀ 𝕆)

𝗌𝗍𝖺𝗍
ℛM[[𝗌𝗍𝖺𝗍]] : (ℰ ⇀ 𝕆) → (ℰ ⇀ 𝕆)

ℛM[[ℓX ← e]]

ℛM[[if .ℓ e ⋈ 0 then s]]

ℛM[[while .ℓ e ⋈ 0 do s done]]

ℛM[[s1; s2]]
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Denotational Definite 
Termination Semantics

The definite termination semantics   
of a program  is:





where  is  
the definite termination semantics of each program instruction 

ℛM[[𝗌𝗍𝖺𝗍ℓ]] : ℰ ⇀ 𝕆
𝗌𝗍𝖺𝗍ℓ

ℛM[[𝗌𝗍𝖺𝗍ℓ]] def= ℛM[[𝗌𝗍𝖺𝗍]](λρ.0)

ℛM[[𝗌𝗍𝖺𝗍]] : (ℰ ⇀ 𝕆) → (ℰ ⇀ 𝕆)
𝗌𝗍𝖺𝗍

Definition

A program  must terminate for traces starting from a set of initial 
states  if and only if 

𝗌𝗍𝖺𝗍ℓ

ℐ ℐ ⊆ dom(ℛm[[𝗌𝗍𝖺𝗍ℓ]])

Theorem
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Abstract Interpretation Recipe

mathematical models  
of the program behavior

algorithmic approaches  
to decide program properties

practical tools  
targeting specific programs
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Concretization-Based  
Piecewise Abstraction

⟨ℰ ⇀ 𝕆, ≼ ⟩ ⟨𝒜, ≼A ⟩

γA

ℛM[[𝗌𝗍𝖺𝗍ℓ]] : ℰ ⇀ 𝕆 f1 ≼ f2
def= dom( f1) ⊇ dom( f2) ∧ ∀x ∈ dom( f1) : f1(x) ≤ f2(x)

approximation order

ℛ#
M[[𝗌𝗍𝖺𝗍ℓ]] ∈ 𝒜

Caterina UrbanTermination AnalysisLesson 8

Definite Termination Semantics

34


ℛM
def= αM(𝒯M) = lfp⪯ FM

FM( f )σ def=
0 σ ∈ ℬ
sup{f(σ′ ) + 1 ∣ (σ, σ′ ) ∈ τ} σ ∈ ∼preτ(dom( f ))
undefined otherwise

0 

0 

✔

✘

A program must terminate for traces starting from a 
set of initial states  if and only if  ℐ ℐ ⊆ dom(ℛM)

Theorem

0 

1 
0 0 

1 

0 
2 

0 
1 

0 
2 

f1 ⪯ f2
def= dom( f1) ⊆ dom( f2) ∧ ∀x ∈ dom( f1) : f1(x) ≤ f2(x)

computational order
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Concretization-Based  
Piecewise Abstraction

⟨ℰ ⇀ 𝕆, ≼ ⟩ ⟨𝒜, ≼A ⟩

γA

ℛM[[𝗌𝗍𝖺𝗍ℓ]] : ℰ ⇀ 𝕆 f1 ≼ f2
def= dom( f1) ⊇ dom( f2) ∧ ∀x ∈ dom( f1) : f1(x) ≤ f2(x)

approximation order

ℛ#
M[[𝗌𝗍𝖺𝗍ℓ]] ∈ 𝒜

⟨ℒ → (ℰ ⇀ 𝕆), ·≼ ⟩ ⟨ℒ → 𝒜, ·≼A ⟩

·γA

ℛM : ℒ → (ℰ ⇀ 𝕆) ℛ#
M : ℒ → 𝒜

By pointwise lifiting we obtain an abstraction  of :ℛ#
M ℛM



Caterina UrbanTermination AnalysisLesson 8 46

Piecewise-Defined Ranking 
Functions Abstract Domain
Linear Constraints Auxiliary Abstract Domain

x. 1λ

x  0≥

x - 3  0≥

x - 4  0≥

x - 6  0≥

x. 3λ

x. 7λ

x. 9λ

x. 5λ

• Parameterized by an underlying numerical abstract domain  
(i.e., intervals, octagons, or polyhedra):

⟨𝒟, ⊑D ⟩

⟨𝒫(𝒞/ ≡C ), ⊑D ⟩ ⟨𝒟, ⊑D ⟩

αC

γC



     
𝒞 def= {c1 ⋅ X1 + ck ⋅ Xk + ck+1 ≥ 0 ∣ X1, …, Xk ∈ 𝕍

∧ c1, …, ck+1 ∈ ℤ ∧ gcd( |c1 | , …, |ck+1 | ) = 1}

•  is a set of linear constraints  
in canonical form, equipped with a total order :
𝒞

≤C
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Piecewise-Defined Ranking 
Functions Abstract Domain
Functions Auxiliary Abstract Domain

x. 1λ

x  0≥

x - 3  0≥

x - 4  0≥

x - 6  0≥

x. 3λ

x. 7λ

x. 9λ

x. 5λ

•  
 
We consider affine functions: 

ℱ def= { ⊥F } ∪ (ℤ|𝕍| → ℕ) ∪ { ⊤F }

ℱA
def= { ⊥F } ∪ {f : ℤ|𝕍| → ℕ ∣

f(X1, …, Xk) =
k

∑
i=1

mi ⋅ Xi + q

} ∪ { ⊤F }

• Parameterized by an underlying numerical abstract domain ⟨𝒟, ⊑D ⟩
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• 𝒜 def= {𝖫𝖤𝖠𝖥 : f ∣ f ∈ ℱ} ∪ {𝖭𝖮𝖣𝖤{c}: t1; t2 ∣ c ∈ 𝒞 ∧ t1, t2 ∈ 𝒜}

50

Piecewise-Defined Ranking 
Functions Abstract Domain

• concretization function :  
 

 
 
where : 

 
 

 
and : 

 
 

γA : 𝒜 → (ℰ ⇀ 𝕆)

γA(t) def= γA[∅](t)

γA : 𝒫(𝒞/ ≡C ) → 𝒜 → (ℰ ⇀ 𝕆)
γA[C](𝖫𝖤𝖠𝖥 : f ) def= γF[αC(C)]( f )
γA[C](𝖭𝖮𝖣𝖤{c}: t1; t2)

def= γA[C ∪ {c}](t1) ·∪ γA[C ∪ {¬c}](t2)

γF : 𝒟 → ℱ → (ℰ ⇀ 𝕆)
γF[D]( ⊥F ) def= ·∅
γF[D]( f ) def= λρ ∈ γD(D) : f(…, ρ(Xi), …)
γF[D]( ⊤F ) def= ·∅
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Piecewise-Defined Ranking 
Functions Abstract Domain
Abstract Domain Operators

• They manipulate elements in 


• The binary operators rely on a tree unification algorithm

• approximation order  and computational order 

• approximation join  and computational join 

• meet 

• widening 


• The unary operators rely on a tree pruning algorithm

• assignment 

• test 

𝒜𝖭𝖨𝖫
def= {𝖭𝖨𝖫} ∪ 𝒜

≼A ⊑A
⋎A ⊔A

⋏A
▿A

⟵𝖠𝖲𝖲𝖨𝖦𝖭A[[X ← e]]
𝖥𝖨𝖫𝖳𝖤𝖱A[[e]]
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Piecewise-Defined Ranking 
Functions Abstract Domain
Widening

98 5. Piecewise-Defined Ranking Functions

0 0 0

1
1

3 2

(a) Most precise ranking function.

2 2 22

0 0 0

1
1

A B C

(b) Unsound abstraction.

Figure 5.10: Unsound abstraction (b) of a most precise ranking function (a).

on which it is not yet defined. The only requirement is that, when the iter-
ation sequence with widening is stable for the computational order, its limit
is a sound abstraction of the termination semantics with respect to the ap-
proximation order. In the following, we discuss in detail how the widening
guarantees the soundness of the analysis.

As running example, let us consider Figure 5.10. In Figure 5.10a we de-
pict a transition system and the value of the termination semantics for the
well-founded part of its transition relation. In Figure 5.10b we represent the
concretization of a possible iterate of the analysis: we assume that the first
iterate has individuated the states marked with value zero, the second iter-
ate has individuated the states marked with value one, and the widening at
the third iterate has extrapolated the ranking function over the states marked
with value two. In this case the abstraction both under-approximates the
value of the termination semantics (on the second state from the left — case
B) and over-approximates its domain of definition (including the first and the
last state from the left — case A and C, respectively). In case A, the non-
terminating loop is outside the domain of definition of the unsound abstract
function, while in case C the loop is inside. The analysis continues iterating
until all these discrepancies are solved and, in the following, we explain and
justify why this works in general.

For a loop while lbexp do stmt od, given a sound over-approximation
R 2 D of ⌧I(l), we define the iteration sequence with widening as follows:

y0
def

= ?T

yn+1

def

=

(
yn �\

Mt
(yn) vT [R] yn ^ �\

Mt
(yn) 4T [R] yn

yn OT �\
Mt

(yn) otherwise

(5.2.24)

Goal: try to predict a valid ranking function

The prediction can (temporarily) be wrong!, i.e.,

• under-approximates the value of 

and/or

• over-approximates the domain  of 

ℛM

dom(ℛM) ℛM
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Figure 5.10: Unsound abstraction (b) of a most precise ranking function (a).

on which it is not yet defined. The only requirement is that, when the iter-
ation sequence with widening is stable for the computational order, its limit
is a sound abstraction of the termination semantics with respect to the ap-
proximation order. In the following, we discuss in detail how the widening
guarantees the soundness of the analysis.

As running example, let us consider Figure 5.10. In Figure 5.10a we de-
pict a transition system and the value of the termination semantics for the
well-founded part of its transition relation. In Figure 5.10b we represent the
concretization of a possible iterate of the analysis: we assume that the first
iterate has individuated the states marked with value zero, the second iter-
ate has individuated the states marked with value one, and the widening at
the third iterate has extrapolated the ranking function over the states marked
with value two. In this case the abstraction both under-approximates the
value of the termination semantics (on the second state from the left — case
B) and over-approximates its domain of definition (including the first and the
last state from the left — case A and C, respectively). In case A, the non-
terminating loop is outside the domain of definition of the unsound abstract
function, while in case C the loop is inside. The analysis continues iterating
until all these discrepancies are solved and, in the following, we explain and
justify why this works in general.

For a loop while lbexp do stmt od, given a sound over-approximation
R 2 D of ⌧I(l), we define the iteration sequence with widening as follows:

y0
def

= ?T

yn+1

def

=

(
yn �\

Mt
(yn) vT [R] yn ^ �\

Mt
(yn) 4T [R] yn

yn OT �\
Mt

(yn) otherwise

(5.2.24)

Example

ℛM ℛ#
M
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Piecewise-Defined Ranking 
Functions Abstract Domain
Widening (continue)

1. Check for case A (i.e., wrong domain predictions)


2. Perform domain widening 

3. Check for case B or C (i.e., wrong value predictions)


4. Perform value widening

98 5. Piecewise-Defined Ranking Functions

0 0 0

1
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3 2

(a) Most precise ranking function.
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0 0 0

1
1

A B C

(b) Unsound abstraction.

Figure 5.10: Unsound abstraction (b) of a most precise ranking function (a).

on which it is not yet defined. The only requirement is that, when the iter-
ation sequence with widening is stable for the computational order, its limit
is a sound abstraction of the termination semantics with respect to the ap-
proximation order. In the following, we discuss in detail how the widening
guarantees the soundness of the analysis.

As running example, let us consider Figure 5.10. In Figure 5.10a we de-
pict a transition system and the value of the termination semantics for the
well-founded part of its transition relation. In Figure 5.10b we represent the
concretization of a possible iterate of the analysis: we assume that the first
iterate has individuated the states marked with value zero, the second iter-
ate has individuated the states marked with value one, and the widening at
the third iterate has extrapolated the ranking function over the states marked
with value two. In this case the abstraction both under-approximates the
value of the termination semantics (on the second state from the left — case
B) and over-approximates its domain of definition (including the first and the
last state from the left — case A and C, respectively). In case A, the non-
terminating loop is outside the domain of definition of the unsound abstract
function, while in case C the loop is inside. The analysis continues iterating
until all these discrepancies are solved and, in the following, we explain and
justify why this works in general.

For a loop while lbexp do stmt od, given a sound over-approximation
R 2 D of ⌧I(l), we define the iteration sequence with widening as follows:

y0
def

= ?T

yn+1

def

=

(
yn �\

Mt
(yn) vT [R] yn ^ �\

Mt
(yn) 4T [R] yn

yn OT �\
Mt

(yn) otherwise

(5.2.24)
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1x  [- , + ]  
2y  [- , + ]  
0while 3(x  0) do 
        4x  x - y  
od5

← ∞ ∞
← ∞ ∞

>
←

Abstract Definite 
Termination Semantics
Example

x - y  0≤

x  0≤

1

3 ⊤F

x - y  0≤

x  0≤

1

3
x

y

x

y

x

y
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Precise Widening Operators
for Convex Polyhedra⋆

Roberto Bagnara1, Patricia M. Hill2, Elisa Ricci1, and Enea Zaffanella1

1 Department of Mathematics, University of Parma, Italy
{bagnara,ericci,zaffanella}@cs.unipr.it

2 School of Computing, University of Leeds, UK
hill@comp.leeds.ac.uk

Abstract. Convex polyhedra constitute the most used abstract domain
among those capturing numerical relational information. Since the do-
main of convex polyhedra admits infinite ascending chains, it has to be
used in conjunction with appropriate mechanisms for enforcing and ac-
celerating convergence of the fixpoint computation. Widening operators
provide a simple and general characterization for such mechanisms. For
the domain of convex polyhedra, the original widening operator proposed
by Cousot and Halbwachs amply deserves the name of standard widening
since most analysis and verification tools that employ convex polyhedra
also employ that operator. Nonetheless, there is demand for more precise
widening operators that still has not been fulfilled. In this paper, after
a formal introduction to the standard widening where we clarify some
aspects that are often overlooked, we embark on the challenging task
of improving on it. We present a framework for the systematic defini-
tion of new and precise widening operators for convex polyhedra. The
framework is then instantiated so as to obtain a new widening operator
that combines several heuristics and uses the standard widening as a last
resort so that it is never less precise. A preliminary experimental evalu-
ation has yielded promising results. We also suggest an improvement to
the well-known widening delay technique that allows to gain precision
while preserving its overall simplicity.

1 Introduction

An ability to reason about numerical quantities is crucial for increasing numbers
of applications in the field of automated analysis and verification of complex
systems. Of particular interest are representations that capture relational infor-
mation, that is, information relating different quantities such as, for example,
the length of a buffer and the contents of a program variable, or the number of
agents in different states in the modeling of a distributed protocol.

⋆ This work has been partly supported by MURST projects “Aggregate- and number-
reasoning for computing: from decision algorithms to constraint programming with
multisets, sets, and maps” and “Constraint Based Verification of Reactive Systems”.

O
P1

P2

P1 ∇ P2

O
P1

P2

hr(P1,P2)

P1 ∇ P2

Fig. 2. The heuristics hr improving on the standard widening.

Proposition 3. Let P1,P2 ∈ CPn, where P1 ⊂ P2, aff.hull(P1) = aff.hull(P2)
and lin.space(P1) = lin.space(P2). Then, for each technique h ∈ {hc, hp, hr},
P2 ⊆ h(P1,P2) ⊆ P1 ∇ P2.

Proof. Let Pt = h(P1,P2). Consider first the case when h = hc and assume the
notation introduced in Definition 5. The proof for Pt ⊆ P1 ∇ P2 is immediate,
since Pt is defined by a constraint system C∇∪C⊕ including all of the constraints
defining P1 ∇P2. To prove that P2 ⊆ Pt we show that P2 ⊆ con

(
{β}

)
, for each

constraint β ∈ C∇ ∪ C⊕ defining Pt. Clearly, if β ∈ C∇ then the inclusion holds
by the fact that the standard widening is an upper bound operator, i.e., by
Theorem 2. If otherwise β ∈ C⊕, then, for some Cp ⊆ ineq(C2), β = ⊕(Cp), so
that P2 ⊆ con(Cp) ⊆ con

(
{β}

)
.

Next, consider the cases when h ∈ {hp, hr} and assume the notation intro-
duced in Definitions 6 and 8. Let G ′ = (L2, R2 ∪ R, P2) and P ′ = gen(G′); then
Pt = P ′ ∩ (P1 ∇P2). Thus Pt ⊆ P1 ∇P2. As G2 ≼ G′, we obtain P2 ⊆ P ′. More-
over, by Theorem 2, we also have P2 ⊆ P1 ∇P2. Therefore, by the monotonicity
of set intersection, we conclude P2 ⊆ Pt. ⊓⊔

The new widening operator is obtained by instantiating the framework of the
previous section using the four heuristic techniques presented above.

Definition 9. (The ∇̂ widening.) Let P1,P2 ∈ CPn, where P1 ⊂ P2. Then

P1 ∇̂ P2
def=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P2, if P1 ! P2;
hc(P1,P2), if P1 ! hc(P1,P2) ⊂ P1 ∇ P2;
hp(P1,P2), if P1 ! hp(P1,P2) ⊂ P1 ∇ P2;
hr(P1,P2), if P1 ! hr(P1,P2) ⊂ P1 ∇ P2;
P1 ∇ P2, otherwise.

It can be seen that ∇̂ is an instance of the framework proposed in the previous
section: in particular, when applying the first heuristics, the omission of the ap-
plicability condition P2 ⊂ P1 ∇P2 is a simple and inconsequential optimization.
Thus the following result is a direct consequence of Theorem 3 and Proposition 3.

Proposition 4. The ∇̂ operator is a widening at least as precise as ∇.
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Precise Widening Operators
for Convex Polyhedra⋆

Roberto Bagnara1, Patricia M. Hill2, Elisa Ricci1, and Enea Zaffanella1

1 Department of Mathematics, University of Parma, Italy
{bagnara,ericci,zaffanella}@cs.unipr.it

2 School of Computing, University of Leeds, UK
hill@comp.leeds.ac.uk

Abstract. Convex polyhedra constitute the most used abstract domain
among those capturing numerical relational information. Since the do-
main of convex polyhedra admits infinite ascending chains, it has to be
used in conjunction with appropriate mechanisms for enforcing and ac-
celerating convergence of the fixpoint computation. Widening operators
provide a simple and general characterization for such mechanisms. For
the domain of convex polyhedra, the original widening operator proposed
by Cousot and Halbwachs amply deserves the name of standard widening
since most analysis and verification tools that employ convex polyhedra
also employ that operator. Nonetheless, there is demand for more precise
widening operators that still has not been fulfilled. In this paper, after
a formal introduction to the standard widening where we clarify some
aspects that are often overlooked, we embark on the challenging task
of improving on it. We present a framework for the systematic defini-
tion of new and precise widening operators for convex polyhedra. The
framework is then instantiated so as to obtain a new widening operator
that combines several heuristics and uses the standard widening as a last
resort so that it is never less precise. A preliminary experimental evalu-
ation has yielded promising results. We also suggest an improvement to
the well-known widening delay technique that allows to gain precision
while preserving its overall simplicity.

1 Introduction

An ability to reason about numerical quantities is crucial for increasing numbers
of applications in the field of automated analysis and verification of complex
systems. Of particular interest are representations that capture relational infor-
mation, that is, information relating different quantities such as, for example,
the length of a buffer and the contents of a program variable, or the number of
agents in different states in the modeling of a distributed protocol.

⋆ This work has been partly supported by MURST projects “Aggregate- and number-
reasoning for computing: from decision algorithms to constraint programming with
multisets, sets, and maps” and “Constraint Based Verification of Reactive Systems”.
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P1 ∇ P2, otherwise.

It can be seen that ∇̂ is an instance of the framework proposed in the previous
section: in particular, when applying the first heuristics, the omission of the ap-
plicability condition P2 ⊂ P1 ∇P2 is a simple and inconsequential optimization.
Thus the following result is a direct consequence of Theorem 3 and Proposition 3.

Proposition 4. The ∇̂ operator is a widening at least as precise as ∇.
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Example

int : x , y

while 1(x > 0) do
2x := x � y

od3

1

2 3

x  0

x := x � y x > 0

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 NODE{�y0}

LEAF: 2x+1 LEAF: ?

x

y

0
0the analysis gives the weakest

precondition x  0 _ y > 0
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Programs and executions
Language syntax

¸stat¸ ::= ¸X Ω exp¸

(assignment)

| ¸if exp ÛÙ 0 then ¸stat¸

(conditional)

| ¸while ¸exp ÛÙ 0 do ¸stat¸ done¸

(loop)

| ¸stat; ¸stat¸

(sequence)

exp ::= X

(variable)

| ≠exp

(negation)

| exp ù exp

(binary operation)

| c

(constant c œ Z)

| [c, c Õ]
(random input, c, c Õ œ Z fi { ±Œ })

Simple structured, numeric language
X œ V, where V is a finite set of program variables

¸ œ L, where L is a finite set of control points

numeric expressions: ÛÙ œ {=, Æ, . . .}, ù œ { +, ≠, ◊, / }

random inputs: X Ω [c, c Õ]
model environment, parametric programs, unknown functions, . . .

Course 2

Program Semantics and Properties

Antoine Miné
p. 3 / 98
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Abstract Definite 
Termination Semantics
For each program instruction , we define 

a transformer :


• 


•  



•  
where 


•

𝗌𝗍𝖺𝗍
ℛ#

M[[𝗌𝗍𝖺𝗍]] : 𝒜 → 𝒜

ℛ#
M[[ℓX ← e]]t def= ⟵𝖠𝖲𝖲𝖨𝖦𝖭A[[X ← e]]t

ℛ#
M[[if .ℓ e ⋈ 0 then s]]t def=

𝖥𝖨𝖫𝖳𝖤𝖱A[[e ⋈ 0]](ℛ#
M[[s]]t) ⋎T 𝖥𝖨𝖫𝖳𝖤𝖱A[[e /⋈ 0]]t

ℛ#
M[[while .ℓ e ⋈ 0 do s done]]t def= lfp#F#

M
F#

M(x) def= 𝖥𝖨𝖫𝖳𝖤𝖱A[[e ⋈ 0]](ℛ#
M[[s]]x) ⋎T 𝖥𝖨𝖫𝖳𝖤𝖱A[[e /⋈ 0]](t)

ℛ#
M[[s1; s2]]t

def= ℛ#
M[[s1]](ℛ#

M[[s2]]t)
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A program  must terminate for 
traces starting from a set of initial states 

 if 

𝗌𝗍𝖺𝗍ℓ

ℐ ℐ ⊆ dom(γA(ℛ#
M[[𝗌𝗍𝖺𝗍ℓ]]))

Corollary (Soundness)

84

Abstract Definite 
Termination Semantics

The abstract definite termination semantics   
of a program  is:





where  is the abstract definite termination semantics  
of each program instruction 

ℛ#
M[[𝗌𝗍𝖺𝗍ℓ]] ∈ 𝒜

𝗌𝗍𝖺𝗍ℓ

ℛ#
M[[𝗌𝗍𝖺𝗍ℓ]] def= ℛ#

M[[𝗌𝗍𝖺𝗍]](𝖫𝖤𝖠𝖥 : λX1, …, Xk.0)

ℛ#
M[[𝗌𝗍𝖺𝗍]] : 𝒜 → 𝒜

𝗌𝗍𝖺𝗍

Definition

ℛM[[𝗌𝗍𝖺𝗍ℓ]] ≼ γA(ℛ#
M[[𝗌𝗍𝖺𝗍ℓ]])

Theorem (Soundness)
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𝒲 def= { ⊥W } ∪ {

∑
i

ωi ⋅ fi ∣ fi ∈ ℱ∖{ ⊥F , ⊤F }

} ∪ { ⊤W }

•  𝒲 def= { ⊥W } ∪ {

102

Piecewise-Defined Ranking 
Functions Abstract Domain
Ordinal-Valued Functions Auxiliary Domain

x. 1λ

x  0≥

x - 3  0≥

x - 4  0≥

x - 6  0≥

x. 3λ

x. 7λ

x. 9λ

x. 5λ

• Parameterized by the underlying functions auxiliary domain ⟨ℱ, ⊑F ⟩

Cantor Normal Form 
ωβ1 ⋅ n1 + … + ωβk ⋅ nk
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Piecewise-Defined Ranking 
Functions Abstract Domain
Abstract Domain Operators

• They manipulate elements in 


• The binary operators rely on a tree unification algorithm

• approximation order  and computational order 

• approximation join  and computational join 

• meet 

• widening 


• The unary operators rely on a tree pruning algorithm

• assignment 

• test 

𝒜𝖭𝖨𝖫
def= {𝖭𝖨𝖫} ∪ 𝒜

≼A ⊑A
⋎A ⊔A

⋏A
▿A

⟵𝖠𝖲𝖲𝖨𝖦𝖭A[[X ← e]]
𝖥𝖨𝖫𝖳𝖤𝖱A[[e]]
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Abstract Interpretation Recipe

mathematical models  
of the program behavior

algorithmic approaches  
to decide program properties

practical tools  
targeting specific programs
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Abstract Interpretation Recipe

mathematical models  
of the program behavior

algorithmic approaches  
to decide program properties

practical tools  
targeting specific programs

Caterina Urban

Termination Analysis

Lesson 8

63

Piecewise-Defined Ranking 
Functions Abstract Domain
Widening

98

5. Piecewise-Defined Ranking Functions

0
0

0

1 1

3
2

(a) Most precise ranking function.

2
2

2

2

0
0

0

11

A
B

C

(b) Unsound abstraction.

Figure 5.10: Unsound abstraction (b) of a most precise ranking function (a).

on which it is not yet defined. The only requirement is that, when the iter-

ation sequence with widening is stable for the computational order, its limit

is a sound abstraction of the termination semantics with respect to the ap-

proximation order. In the following, we discuss in detail how the widening

guarantees the soundness of the analysis.

As running example, let us consider Figure 5.10. In Figure 5.10a we de-

pict a transition system and the value of the termination semantics for the

well-founded part of its transition relation. In Figure 5.10b we represent the

concretization of a possible iterate of the analysis: we assume that the first

iterate has individuated the states marked with value zero, the second iter-

ate has individuated the states marked with value one, and the widening at

the third iterate has extrapolated the ranking function over the states marked

with value two. In this case the abstraction both under-approximates the

value of the termination semantics (on the second state from the left — case

B) and over-approximates its domain of definition (including the first and the

last state from the left — case A and C, respectively). In case A, the non-

terminating loop is outside the domain of definition of the unsound abstract

function, while in case C the loop is inside. The analysis continues iterating

until all these discrepancies are solved and, in the following, we explain and

justify why this works in general.
For a loop while lbexp do stmt od, given a sound over-approximation

R 2 D of ⌧I(l), we define the iteration sequence with widening as follows:

y0
def= ?

T

yn+1
def=

(
yn

�\
Mt(yn) v

T [R] yn ^ �\
Mt(yn) 4

T [R] yn

yn O
T �\

Mt(yn) otherwise
(5.2.24)

Goal: try to predict a valid ranking function
The prediction can (temporarily) be wrong!, i.e.,


• under-approximates the value of 

and/or
• over-approximates the domain 

 of 

ℛM

dom(ℛM) ℛM
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on which it is not yet defined. The only requirement is that, when the iter-

ation sequence with widening is stable for the computational order, its limit

is a sound abstraction of the termination semantics with respect to the ap-

proximation order. In the following, we discuss in detail how the widening

guarantees the soundness of the analysis.

As running example, let us consider Figure 5.10. In Figure 5.10a we de-

pict a transition system and the value of the termination semantics for the

well-founded part of its transition relation. In Figure 5.10b we represent the

concretization of a possible iterate of the analysis: we assume that the first

iterate has individuated the states marked with value zero, the second iter-

ate has individuated the states marked with value one, and the widening at

the third iterate has extrapolated the ranking function over the states marked

with value two. In this case the abstraction both under-approximates the

value of the termination semantics (on the second state from the left — case

B) and over-approximates its domain of definition (including the first and the

last state from the left — case A and C, respectively). In case A, the non-

terminating loop is outside the domain of definition of the unsound abstract

function, while in case C the loop is inside. The analysis continues iterating

until all these discrepancies are solved and, in the following, we explain and

justify why this works in general.
For a loop while lbexp do stmt od, given a sound over-approximation

R 2 D of ⌧I(l), we define the iteration sequence with widening as follows:

y0
def= ?

T

yn+1
def=

(
yn

�\
Mt(yn) v

T [R] yn ^ �\
Mt(yn) 4

T [R] yn

yn O
T �\

Mt(yn) otherwise
(5.2.24)

Example

ℛM

ℛ#
M
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Concretization-Based  

Piecewise Abstraction

⟨ℰ ⇀ 𝕆, ≼ ⟩ ⟨𝒜, ≼A ⟩

γA

ℛM[[𝗌𝗍𝖺𝗍ℓ]] : ℰ ⇀ 𝕆
f1 ≼ f2

def= dom( f1) ⊇ dom( f2) ∧ ∀x ∈ dom( f1) : f1(x) ≤ f2(x)

approximation order

ℛ#
M[[𝗌𝗍𝖺𝗍ℓ]] ∈ 𝒜

Caterina Urban

Termination Analysis

Lesson 8

Definite Termination Semantics

34




ℛM
def= αM(𝒯M) = lfp⪯ FM

FM( f )σ def=
0

σ ∈ ℬ

sup{f(σ′ ) + 1 ∣ (σ, σ′ ) ∈ τ} σ ∈
∼

preτ(dom( f ))

undefined
otherwise

0 

0 ✔

✘

A program must terminate for traces starting from a 

set of initial states  if and only if  
ℐ

ℐ ⊆ dom(ℛM)
Theorem

0 

1 

0 

0 

1 

0 
2 

0 

1 

0 
2 

f1 ⪯ f2
def= dom( f1) ⊆ dom( f2) ∧ ∀x ∈ dom( f1) : f1(x) ≤ f2(x)

computational order
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• Guarantee Properties 
“something good eventually happens at least once”


• Example: Program Termination


• Recurrence Properties  
“something good eventually happens infinitely often”


• Example: Starvation Freedom

Liveness Properties

Amir PnueliZohar Manna
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Computation Tree Logic (CTL)

E. Allen EmersonEdmund Clarke

Branching Temporal Logic

𝖠𝖥ϕ ≡ 𝖠(true 𝖴 ϕ)

ϕ ::= a ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ ∣ 𝖠𝖷ϕ ∣ 𝖠𝖦ϕ ∣ 𝖠(ϕ𝖴ϕ) ∣ 𝖤𝖷ϕ ∣ 𝖤𝖦ϕ ∣ 𝖤(ϕ𝖴ϕ)

𝖤𝖥ϕ ≡ 𝖤(true 𝖴 ϕ)

𝖠𝖦ϕ 𝖠𝖥ϕ

𝖤𝖦ϕ 𝖤𝖥ϕ

ϕ

ϕ

ϕϕ

ϕ

ϕϕ

ϕ

ϕ

ϕ

ϕϕ

ϕ ϕ
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Guarantee Properties
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Guarantee Properties

ϕ ::= e ⋈ 0 ∣ ℓ : e ⋈ 0 ∣ ϕ ∧ ϕ | ϕ ∨ ϕ ℓ ∈ ℒ

“something good eventually happens at least once”

1x  [- , + ]  
0while 2(x  0) do 
        3x  x + 1  
od4 
0while 5(0  0) do 
        if 6(x  10) do 
                7x  x + 1  
        else  
                8x  -x 
od9

← ∞ ∞
≥

←

≥
≤

←

←

Example:
 is satisfied for 𝖠𝖥 (x = 3) ℐ def= {(1,ρ) ∈ Σ ∣ ρ(x) ≤ 3}

𝖠𝖥 ϕ

ϕ

ϕ ϕ
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Abstract Interpretation Recipe

mathematical models  
of the program behavior

algorithmic approaches  
to decide program properties

practical tools  
targeting specific programs
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Guarantee Semantics

ℛφ

G
def= lfp⪯ FG[{σ ∈ Σ ∣ σ ⊧ φ}]

FG[S] f def= λσ .
0 σ ∈ S
sup{f(σ′ ) + 1 ∣ (σ, σ′ ) ∈ τ} σ ∉ S ∧ σ ∈ ∼

preτ(dom( f ))
undefined otherwise

0 

0 

0 ✔

A program satisfies a guarantee property  for traces starting  
from a set of initial states  if and only if  

𝖠𝖥 φ
ℐ ℐ ⊆ dom(ℛφ

G)

Theorem

0 

0 
1 

2 

0 

0 
1 

2 

0 

0 
1 
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Abstract Interpretation Recipe

mathematical models  
of the program behavior

algorithmic approaches  
to decide program properties

practical tools  
targeting specific programs
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Abstract Guarantee Semantics
For each program instruction , we define :


• 


•  
where 


•  
where  




•

𝗌𝗍𝖺𝗍 ℛφ#
G [[𝗌𝗍𝖺𝗍]] : 𝒜 → 𝒜

ℛφ#
G [[ℓX ← e]]t def= 𝖱𝖤𝖲𝖤𝖳G

A[[φ]]( ⟵𝖠𝖲𝖲𝖨𝖦𝖭A[[X ← e]]t)

ℛφ#
G [[if .ℓ e ⋈ 0 then s]]t def= 𝖱𝖤𝖲𝖤𝖳G

A[[φ]](X)
X def= 𝖥𝖨𝖫𝖳𝖤𝖱A[[e ⋈ 0]](ℛφ#

G [[s]]t) ⋎T 𝖥𝖨𝖫𝖳𝖤𝖱A[[e /⋈ 0]]t)

ℛφ#
G [[while .ℓ e ⋈ 0 do s done]]t def= lfp#Fφ#

G
Fφ#

G (x) def= 𝖱𝖤𝖲𝖤𝖳G
A[[φ]](X)

X def= 𝖥𝖨𝖫𝖳𝖤𝖱A[[e ⋈ 0]](ℛφ#
G [[s]]x) ⋎T 𝖥𝖨𝖫𝖳𝖤𝖱A[[e /⋈ 0]](t))

ℛφ#
G [[s1; s2]]t

def= ℛφ#
G [[s1]](ℛφ#

G [[s2]]t)
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Abstract Guarantee Semantics

44

Example

int : x , y

while 1(x � 0) do
2x := x + 1

od

while 3( true ) do

if 4( x  10 )
5x := x + 1

else
6x := �x

od7

1

2

3

4

5 6

7

x < 0x � 0x := x + 1

false

true

x  10 x > 10

x := x + 1
x := �x

x

0 10

50

0

𝖠𝖥 (x = 3)
Property



Caterina UrbanAnalysis of Liveness and CTL PropertiesLesson 9 46

Abstract Guarantee Semantics

46

1

2

3

4

5 6

7

x < 0x � 0x := x + 1

false

true

x  10 x > 10

x := x + 1
x := �x

Example

int : x , y

while 1(x � 0) do
2x := x + 1

od

while 3( true ) do

if 4( x  10 )
5x := x + 1

else
6x := �x

od7

x

0 10

50

0

x

0 10

50

0 x

0 10

50

0

𝖠𝖥 (x = 3)
Property
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Abstract Guarantee Semantics

47

1

2

3

4

5 6

7

x < 0x � 0x := x+ 1

false

true

x  10 x > 10

x := x + 1
x := �x

Example

int : x , y

while 1(x � 0) do
2x := x + 1

od

while 3( true ) do

if 4( x  10 )
5x := x + 1

else
6x := �x

od7

x

0 10

50

0

x

0 10

50

0 x

0 10

50

0

x

0 10

50

0

𝖠𝖥 (x = 3)
Property
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Abstract Guarantee Semantics

48

1

2

3

4

5 6

7

x < 0x � 0x := x + 1

false

true

x  10 x > 10

x := x + 1
x := �x

Example

int : x , y

while 1(x � 0) do
2x := x + 1

od

while 3( true ) do

if 4( x  10 )
5x := x + 1

else
6x := �x

od7

x

0 10

50

0 x

0 10

50

0

x

0 10

50

0

x

0 10

50

0

𝖠𝖥 (x = 3)
Property



Caterina UrbanAnalysis of Liveness and CTL PropertiesLesson 9 49

Abstract Guarantee Semantics

49

1

2

3

4

5 6

7

x < 0x � 0x := x+ 1

false

true

x  10 x > 10

x := x + 1
x := �x

Example

int : x , y

while 1(x � 0) do
2x := x + 1

od

while 3( true ) do

if 4( x  10 )
5x := x + 1

else
6x := �x

od7

x

0 10

50

0

x

0 10

50

0

x

0 10

50

0

𝖠𝖥 (x = 3)
Property
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Abstract Guarantee Semantics

50

1

2

3

4

5 6

7

x < 0x � 0x := x + 1

false

true

x  10 x > 10

x := x + 1
x := �x

Example

int : x , y

while 1(x � 0) do
2x := x + 1

od

while 3( true ) do

if 4( x  10 )
5x := x + 1

else
6x := �x

od7

x

0 10

50

0

x

0 10

50

0

x

0 10

50

0

𝖠𝖥 (x = 3)
Property
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Abstract Guarantee Semantics

52

Example

int : x , y

while 1(x � 0) do
2x := x + 1

od

while 3( true ) do

if 4( x  10 )
5x := x + 1

else
6x := �x

od7

1

2

3

4

5 6

7

x < 0x � 0x := x + 1

false

true

x  10 x > 10

x := x + 1
x := �x

x

0 10

50

0

x

0 10

50

0

the analysis gives x  3 as
su�cient precondition

𝖠𝖥 (x = 3)
Property
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Abstract Guarantee Semantics

A program  satisfies a guarantee property  for traces starting 
from a set of initial states  if 

𝗌𝗍𝖺𝗍ℓ 𝖠𝖥 φ
ℐ ℐ ⊆ dom(γA(ℛφ#

G [[𝗌𝗍𝖺𝗍ℓ]]))

Corollary (Soundness)

The abstract guaranteee semantics   
of a program  is:





where  is the abstract guarantee semantics  
of each program instruction 

ℛφ#
G [[𝗌𝗍𝖺𝗍ℓ]] ∈ 𝒜

𝗌𝗍𝖺𝗍ℓ

ℛφ#
G [[𝗌𝗍𝖺𝗍ℓ]] def= ℛφ#

G [[𝗌𝗍𝖺𝗍]](𝖱𝖤𝖲𝖤𝖳G
A[[φ]](𝖫𝖤𝖠𝖥 : ⊥F ))

ℛφ#
G [[𝗌𝗍𝖺𝗍]] : 𝒜 → 𝒜

𝗌𝗍𝖺𝗍

Definition

53
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Recurrence Properties
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Recurrence Properties

ϕ ::= e ⋈ 0 ∣ ℓ : e ⋈ 0 ∣ ϕ ∧ ϕ | ϕ ∨ ϕ ℓ ∈ ℒ

1x  [- , + ]  
0while 2(x  0) do 
        3x  x + 1  
od4 
0while 5(0  0) do 
        if 6(x  10) do 
                7x  x + 1  
        else  
                8x  -x 
od9

← ∞ ∞
≥

←

≥
≤

←

←

Example:
 is satisfied for 𝖠𝖦 𝖠𝖥 (x = 3) ℐ def= {(1,ρ) ∈ Σ ∣ ρ(x) < 0}

𝖠𝖦 𝖠𝖥 ϕ

“something good eventually happens infinitely often”
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Abstract Interpretation Recipe

mathematical models  
of the program behavior

algorithmic approaches  
to decide program properties

practical tools  
targeting specific programs
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Recurrence Semantics

A program satisfies a recurrence property  for traces starting  
from a set of initial states  if and only if  

𝖠𝖦 𝖠𝖥 φ
ℐ ℐ ⊆ dom(ℛφ

R)

Theorem


ℛφ
R

def= gfpℛφ
G

⪯ FR

FR( f )σ def= {f(σ) σ ∈ dom( f ) ∩ ∼
preτ(dom( f ))

undefined otherwise

0 

0 

0 

1 
2 ✔

0 

0 

1 
2 

0 
1 

0 
1 
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Abstract Interpretation Recipe

mathematical models  
of the program behavior

algorithmic approaches  
to decide program properties

practical tools  
targeting specific programs
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Abstract Recurrence Semantics
For each program instruction , we define :


• 


•  
where 


•  
where  

 



•

𝗌𝗍𝖺𝗍 ℛφ#
G [[𝗌𝗍𝖺𝗍]] : 𝒜 → 𝒜

ℛφ#
R [[ℓX ← e]]t def= 𝖱𝖤𝖲𝖤𝖳R

A[[φ]]( ⟵𝖠𝖲𝖲𝖨𝖦𝖭A[[X ← e]]t)

ℛφ#
R [[if .ℓ e ⋈ 0 then s]]t def= 𝖱𝖤𝖲𝖤𝖳R

A[[φ]](X)
X def= 𝖥𝖨𝖫𝖳𝖤𝖱A[[e ⋈ 0]](ℛφ#

G [[s]]t) ⋎T 𝖥𝖨𝖫𝖳𝖤𝖱A[[e /⋈ 0]]t)

ℛφ#
R [[while .ℓ e ⋈ 0 do s done]]t def= gfp#

G(t)F
φ#
R

G def= ℛφ#
G [[while .ℓ e ⋈ 0 do s done]]

Fφ#
R (x) def= 𝖱𝖤𝖲𝖤𝖳R

A[[φ]](X)
X def= 𝖥𝖨𝖫𝖳𝖤𝖱A[[e ⋈ 0]](ℛφ#

R [[s]]x) ⋎T 𝖥𝖨𝖫𝖳𝖤𝖱A[[e /⋈ 0]](t))

ℛφ#
R [[s1; s2]]t

def= ℛφ#
R [[s1]](ℛφ#

R [[s2]]t)



Introduction

Termination

Guarantee and Recurrence

Conclusion

Guarantee Properties

Recurrence Properties

Implementation

Dual Widening

Definition

Let hD,vi be a poset. A dual widening Ō : D ⇥D ! D obeys:

(1) for all element x , y 2 D, we have x w x Ō y and y w x Ō y

(2) for all decreasing chains x0 w x1 w · · · w xn w · · · , the chain

y0
def
= x0 yn+1

def
= yn Ō xn+1

is ultimately stationary

Example

x
5 9

ŌOO

x
2 5 9

=

x
5 9

26 / 33
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1

2

3

4

5 6

7

x < 0x � 0x := x + 1

false

true

x  10 x > 10

x := x + 1
x := �x

Example

int : x , y

while 1(x � 0) do
2x := x + 1

od

while 3( true ) do

if 4( x  10 )
5x := x + 1

else
6x := �x

od7

x

0 10

50

0

𝖠𝖦𝖠𝖥 (x = 3)
Property

Abstract Recurrence Semantics
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Abstract Recurrence Semantics

63

1

2

3

4

5 6

7

x < 0x � 0x := x + 1

false

true

x  10 x > 10

x := x + 1
x := �x

Example

int : x , y

while 1(x � 0) do
2x := x + 1

od

while 3( true ) do

if 4( x  10 )
5x := x + 1

else
6x := �x

od7

x

0 10

50

0

x

0 10

50

0

𝖠𝖦𝖠𝖥 (x = 3)
Property
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Abstract Recurrence Semantics

64

1

2

3

4

5 6

7

x < 0x � 0x := x+ 1

false

true

x  10 x > 10

x := x + 1
x := �x

Example

int : x , y

while 1(x � 0) do
2x := x + 1

od

while 3( true ) do

if 4( x  10 )
5x := x + 1

else
6x := �x

od7

x

0 10

50

0

x

0 10

50

0

x

0 10

50

0

𝖠𝖦𝖠𝖥 (x = 3)
Property
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Abstract Recurrence Semantics

65

1

2

3

4

5 6

7

x < 0x � 0x := x + 1

false

true

x  10 x > 10

x := x + 1
x := �x

Example

int : x , y

while 1(x � 0) do
2x := x + 1

od

while 3( true ) do

if 4( x  10 )
5x := x + 1

else
6x := �x

od7

x

0 10

50

0

x

0 10

50

0

x

0 10

50

0

𝖠𝖦𝖠𝖥 (x = 3)
Property
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Abstract Recurrence Semantics

67

1

2

3

4

5 6

7

x < 0x � 0x := x + 1

false

true

x  10 x > 10

x := x + 1
x := �x

Example

int : x , y

while 1(x � 0) do
2x := x + 1

od

while 3( true ) do

if 4( x  10 )
5x := x + 1

else
6x := �x

od7

x

0 10

50

0

x

0 10

50

0

the analysis gives x < 0 as
su�cient precondition

𝖠𝖦𝖠𝖥 (x = 3)
Property
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Abstract Recurrence Semantics

A program  satisfies a recurrence property  for traces 
starting from a set of initial states  if 

𝗌𝗍𝖺𝗍ℓ 𝖠𝖦 𝖠𝖥 φ
ℐ ℐ ⊆ dom(γA(ℛφ#

R [[𝗌𝗍𝖺𝗍ℓ]]))

Corollary (Soundness)

The abstract recurrence semantics   
of a program  is:





where  is the abstract recurrence semantics  
of each program instruction 

ℛφ#
R [[𝗌𝗍𝖺𝗍ℓ]] ∈ 𝒜

𝗌𝗍𝖺𝗍ℓ

ℛφ#
R [[𝗌𝗍𝖺𝗍ℓ]] def= ℛφ#

R [[𝗌𝗍𝖺𝗍]](𝖫𝖤𝖠𝖥 : ⊥F )

ℛφ#
R [[𝗌𝗍𝖺𝗍]] : 𝒜 → 𝒜

𝗌𝗍𝖺𝗍

Definition
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Abstract Interpretation Recipe

mathematical models  
of the program behavior

algorithmic approaches  
to decide program properties

practical tools  
targeting specific programs
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CTL Properties



Caterina UrbanAnalysis of Liveness and CTL PropertiesLesson 9 72

Computation Tree Logic (CTL)
Branching Temporal Logic

ϕ ::= a ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ ∣ 𝖠𝖷ϕ ∣ 𝖠𝖦ϕ ∣ 𝖠(ϕ𝖴ϕ) ∣ 𝖤𝖷ϕ ∣ 𝖤𝖦ϕ ∣ 𝖤(ϕ𝖴ϕ)

Caterina UrbanAnalysis of Liveness and CTL PropertiesLesson 9 55

Recurrence Properties

ϕ ::= e ⋈ 0 ∣ ℓ : e ⋈ 0 ∣ ϕ ∧ ϕ | ϕ ∨ ϕ ℓ ∈ ℒ

1x  [- , + ]  
0while 2(x  0) do 
        3x  x + 1 
od4 
0while 5(0  0) do 
        if 6(x  10) do 
                7x  x + 1  
        else 
                8x  -x 
od9

← ∞ ∞
≥

←

≥
≤

←

←

Example:
 is satisfied for 𝖠𝖦 𝖠𝖥 (x = 3) ℐ def= {(1,ρ) ∈ Σ ∣ ρ(x) < 0}

𝖠𝖦 𝖠𝖥 ϕ

“something good eventually happens infinitely often”

Caterina UrbanAnalysis of Liveness and CTL PropertiesLesson 9 37

Guarantee Properties

ϕ ::= e ⋈ 0 ∣ ℓ : e ⋈ 0 ∣ ϕ ∧ ϕ | ϕ ∨ ϕ ℓ ∈ ℒ

“something good eventually happens at least once”

1x  [- , + ] 
0while 2(x  0) do 
        3x  x + 1 
od4 
0while 5(0  0) do 
        if 6(x  10) do 
                7x  x + 1 
        else 
                8x  -x 
od9

← ∞ ∞
≥

←

≥
≤

←

←

Example:
 is satisfied for 𝖠𝖥 (x = 3) ℐ def= {(1,ρ) ∈ Σ ∣ ρ(x) ≤ 3}

𝖠𝖥 ϕ

ϕ

ϕ ϕ
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Abstract Interpretation Recipe

mathematical models  
of the program behavior

algorithmic approaches  
to decide program properties

practical tools  
targeting specific programs
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Recurrence Semantics

A program satisfies a recurrence property  for traces starting  
from a set of initial states  if and only if  

𝖠𝖦 𝖠𝖥 φ
ℐ ℐ ⊆ dom(ℛφ

R)

Theorem


ℛφ
R

def= gfpℛφ
G

⪯ FR

FR( f )σ def= {f(σ) σ ∈ dom( f ) ∩ ∼
preτ(dom( f ))

undefined otherwise

0 

0 

0 

1 
2 ✔

0 

0 

1 
2 

0 
1 

0 
1 

build upon the semantics of sub-formulas
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Atomic Propositions
CTL Abstraction

75

αa(T ) def= λs ∈ st(T ) . {0 s ⊧ a
undefined otherwise

ϕ ::= a ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ ∣ 𝖠𝖷ϕ ∣ 𝖠𝖦ϕ ∣ 𝖠(ϕ𝖴ϕ) ∣ 𝖤𝖷ϕ ∣ 𝖤𝖦ϕ ∣ 𝖤(ϕ𝖴ϕ)
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Negation Formulas
CTL Abstraction

76

α¬ϕ(T ) def= λs ∈ st(T ) . {0 s ∉ dom(αϕ(T ))
undefined otherwise

ϕ ::= a ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ ∣ 𝖠𝖷ϕ ∣ 𝖠𝖦ϕ ∣ 𝖠(ϕ𝖴ϕ) ∣ 𝖤𝖷ϕ ∣ 𝖤𝖦ϕ ∣ 𝖤(ϕ𝖴ϕ)
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Conjunction Formulas
CTL Abstraction

77

αϕ1∧ϕ2
(T ) def= λs ∈ st(T ) . {sup{f1(s), f2(s)} s ∈ dom( f1) ∩ dom( f2)

undefined otherwise

ϕ ::= a ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ ∣ 𝖠𝖷ϕ ∣ 𝖠𝖦ϕ ∣ 𝖠(ϕ𝖴ϕ) ∣ 𝖤𝖷ϕ ∣ 𝖤𝖦ϕ ∣ 𝖤(ϕ𝖴ϕ)

f1
def= αϕ1

(T )
f2

def= αϕ2
(T )
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Disjunction Formulas
CTL Abstraction

78

αϕ1∧ϕ2
(T ) def= λs ∈ st(T ) .

sup{f1(s), f2(s)} s ∈ dom( f1) ∩ dom( f2)
f1(s) s ∈ dom( f1)∖dom( f2)
f2(s) s ∈ dom( f2)∖dom( f1)
undefined otherwise

ϕ ::= a ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ ∣ 𝖠𝖷ϕ ∣ 𝖠𝖦ϕ ∣ 𝖠(ϕ𝖴ϕ) ∣ 𝖤𝖷ϕ ∣ 𝖤𝖦ϕ ∣ 𝖤(ϕ𝖴ϕ)

f1
def= αϕ1

(T )
f2

def= αϕ2
(T )
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Next Formulas
CTL Abstraction

79

α𝖠𝖷ϕ(T ) def= λs ∈ st(T ) . {0 s ∈ ∼pre(dom(αϕ(T )))
undefined otherwise

ϕ ::= a ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ ∣ 𝖠𝖷ϕ ∣ 𝖠𝖦ϕ ∣ 𝖠(ϕ𝖴ϕ) ∣ 𝖤𝖷ϕ ∣ 𝖤𝖦ϕ ∣ 𝖤(ϕ𝖴ϕ)

α𝖤𝖷ϕ(T ) def= λs ∈ st(T ) . {0 s ∈ pre(dom(αϕ(T )))
undefined otherwise
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Globally Formulas
CTL Abstraction

80

F𝖠𝖦ϕ( f ) def= λs . {f(s) s ∈ dom( f ) ∩ ∼pre(dom( f ))
undefined otherwise

ϕ ::= a ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ ∣ 𝖠𝖷ϕ ∣ 𝖠𝖦ϕ ∣ 𝖠(ϕ𝖴ϕ) ∣ 𝖤𝖷ϕ ∣ 𝖤𝖦ϕ ∣ 𝖤(ϕ𝖴ϕ)

α𝖠𝖦ϕ(T ) def= gfp⪯
αϕ(T ) F𝖠𝖦ϕ

Caterina UrbanAnalysis of Liveness and CTL PropertiesLesson 9 57

Recurrence Semantics

A program satisfies a recurrence property  for traces starting  
from a set of initial states  if and only if  

𝖠𝖦 𝖠𝖥 φ
ℐ ℐ ⊆ dom(ℛφ

R)

Theorem


ℛφ
R

def= gfpℛφ
G

⪯ FR

FR( f )σ def= {f(σ) σ ∈ dom( f ) ∩ ∼preτ(dom( f ))
undefined otherwise

0 

0 

0 

1 
2 ✔

0 

0 

1 
2 

0 
1 

0 
1 

F𝖤𝖦ϕ( f ) def= λs . {f(s) s ∈ dom( f ) ∩ pre(dom( f ))
undefined otherwise

α𝖤𝖦ϕ(T ) def= gfp⪯
αϕ(T ) F𝖤𝖦ϕ
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Until Formulas (1)
CTL Abstraction

81

αsq
𝖤(ϕ1𝖴ϕ2)(T ) def= α𝖤(ϕ1𝖴ϕ2)[dom(αϕ1

(T ))][dom(αϕ2
(T ))]T

ϕ ::= a ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ ∣ 𝖠𝖷ϕ ∣ 𝖠𝖦ϕ ∣ 𝖠(ϕ𝖴ϕ) ∣ 𝖤𝖷ϕ ∣ 𝖤𝖦ϕ ∣ 𝖤(ϕ𝖴ϕ)

α𝖤(ϕ1𝖴ϕ2)(T ) def= αv(→α (αsq
𝖤(ϕ1𝖴ϕ2)(T )))

α𝖤(ϕ1𝖴ϕ2)[S1][S2]T
def= {σs ∈ sq(T ) σ ∈ (S1∖S2)*, s ∈ S2}

Caterina UrbanTermination AnalysisLesson 8

Potential Ranking Abstraction
Potential Termination Semantics

30

⟨𝒫(Σ*), ⊆ ⟩ ⟨Σ ⇀ 𝕆, ⪯ ⟩

αm









αm(T ) def= αv(→α (T ))

αv(∅) def= ·∅
αv(r)σ def= {0 ∀σ′ ∈ Σ : (σ, σ′ ) ∉ r

inf{αv(r)σ′ + 1 ∣ σ′ ∈ dom(αv(r)) ∧ (σ, σ′ ) ∈ r} otherwise
→α (T ) def= {(σ, σ′ ) ∈ Σ × Σ ∣ ∃t ∈ Σ*, t′ ∈ Σ∞ : tσσ′ t′ ∈ T}

count execution steps backwards

0 
1 
x

2 
x3 

x
4 
x

…
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Until Formulas (2)
CTL Abstraction

82

αsq
𝖠(ϕ1𝖴ϕ2)(T ) def= α𝖠(ϕ1𝖴ϕ2)[dom(αϕ1

(T ))][dom(αϕ2
(T ))]T

ϕ ::= a ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ ∣ 𝖠𝖷ϕ ∣ 𝖠𝖦ϕ ∣ 𝖠(ϕ𝖴ϕ) ∣ 𝖤𝖷ϕ ∣ 𝖤𝖦ϕ ∣ 𝖤(ϕ𝖴ϕ)

α𝖠(ϕ1𝖴ϕ2)(T ) def= αV(→α (αsq
𝖠(ϕ1𝖴ϕ2)(T )))

α𝖠(ϕ1𝖴ϕ2)[S1][S2]T
def= {σs ∈ sq(T )

σ ∈ (S1∖S2)*, s ∈ S2,
nbhd(σ, sf(T ) ∩ S2

+∞) = ∅,
nbhd(σ, sf(T ) ∩ Z) = ∅

}
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Definite Termination  
Trace Semantics
Definite Termination Abstraction

⟨𝒫(Σ∞), ⊑ ⟩ ⟨𝒫(Σ*), ⊆ ⟩

α*







α*(T ) def= {t ∈ T ∩ Σ* ∣ nhdb(t, T ∩ Σω) = ∅}

nhdb(t, T ) def= {t′ ∈ T ∣ pf(t) ∩ pf(t′ ) ≠ ∅}

pf(t) def= {t′ ∈ Σ∞∖{ϵ} ∣ ∃t′ ′ ∈ Σ∞ : t = t′ ⋅ t′ ′ }

Example:  
 since α*({ab, aba, bb, baω}) = {ab, aba} pf(bb) ∩ pf(baω) = {b} ≠ ∅

Analysis of Liveness and CTL PropertiesLesson 9
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Ranking Abstraction
Definite Termination Semantics
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⟨𝒫(Σ*), ⊆ ⟩ ⟨Σ ⇀ 𝕆, ⪯ ⟩

αm









αM(T ) def= αV(→α (T ))

αV(∅) def= ·∅
αV(r)σ def= {0 ∀σ′ ∈ Σ : (σ, σ′ ) ∉ r

sup{αV(r)σ′ + 1 ∣ σ′ ∈ dom(αV(r)) ∧ (σ, σ′ ) ∈ r} otherwise
→α (T ) def= {(σ, σ′ ) ∈ Σ × Σ ∣ ∃t ∈ Σ*, t′ ∈ Σ∞ : tσσ′ t′ ∈ T}

count execution steps backwards

0 
1 
x

2 
x3 

x
4 
x

…

f1 ⪯ f2
def= dom( f1) ⊆ dom( f2) ∧ ∀x ∈ dom( f1) : f1(x) ≤ f2(x)

Z def= {σsσ′ ∈ Σ+∞ ∣ σ ∈ Σ* ∧ s ∈ S1 ∪ S2 ∧ σ′ ∈ Σ+∞}
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Given a CTL formula                                                                                 
and the corresponding CTL abstraction ,                                                                           
the program semantics  for  is defined as:


ϕ
αϕ : 𝒫(Σ∞) → (Σ ⇀ 𝕆)

ℛϕ : Σ ⇀ 𝕆 ϕ

ℛϕ def= αϕ(ℳ∞)

Definition

A program satisfies a CTL property  for traces starting  
from a set of initial states  if and only if  

ϕ
ℐ ℐ ⊆ dom(ℛϕ)

Theorem
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Abstract Interpretation Recipe

mathematical models  
of the program behavior

algorithmic approaches  
to decide program properties

practical tools  
targeting specific programs
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Abstract Interpretation of CTL Properties

Caterina Urban, Samuel Ueltschi, and Peter Müller

Department of Computer Science
ETH Zurich, Switzerland

Abstract. CTL is a temporal logic commonly used to express program
properties. Most of the existing approaches for proving CTL properties
only support certain classes of programs, limit their scope to a subset of
CTL, or do not directly support certain existential CTL formulas. This
paper presents an abstract interpretation framework for proving CTL
properties that does not su↵er from these limitations. Our approach au-
tomatically infers su�cient preconditions, and thus provides useful infor-
mation even when a program satisfies a property only for some inputs.
We systematically derive a program semantics that precisely captures
CTL properties by abstraction of the operational trace semantics of a
program. We then leverage existing abstract domains based on piecewise-
defined functions to derive decidable abstractions that are suitable for
static program analysis. To handle existential CTL properties, we aug-
ment these abstract domains with under-approximating operators.
We implemented our approach in a prototype static analyzer. Our exper-
imental evaluation demonstrates that the analysis is e↵ective, even for
CTL formulas with non-trivial nesting of universal and existential path
quantifiers, and performs well on a wide variety of benchmarks.

1 Introduction

Computation tree logic (CTL) [6] is a temporal logic introduced by Clarke and
Emerson to overcome certain limitations of linear temporal logic (LTL) [33]
for program specification purposes. Most of the existing approaches for proving
program properties expressed in CTL have limitations that restrict their ap-
plicability: they are limited to finite-state programs [7] or to certain classes of
infinite-state programs (e.g., pushdown systems [36]), they limit their scope to a
subset of CTL (e.g., the universal fragment of CTL [11]), or support existential
path quantifiers only indirectly by considering their universal dual [8].

In this paper, we propose a new static analysis method for proving CTL
properties that does not su↵er from any of these limitations. We set our work
in the framework of abstract interpretation [16], a general theory of semantic
approximation that provides a basis for various successful industrial-scale tools
(e.g., Astrée [3]). We generalize an existing abstract interpretation framework
for proving termination [18] and other liveness properties [41].

Following the theory of abstract interpretation [14], we abstract away from
irrelevant details about the execution of a program and systematically derive
a program semantics that is sound and complete for proving a CTL property.
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