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Introduction

Concurrent programming

Principle: decompose a program into a set of (loosely) interacting processes.

m exploit parallelism in current computers
(multi-processors, multi-cores, hyper-threading)

“Free lunch is over” (change in Moore’s law, X2 transistors every 2 years)
m exploit several computers (distributed computing)

m ease of programming (GUI, network code, reactive programs)

But concurrent programs are hard to program and hard to verify:

m combinatorial exposition of execution paths (interleavings)
m errors lurking in hard-to-find corner cases (race conditions)

® unintuitive execution models (weak memory consistency)
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Introduction

In this course:  static thread model
m implicit communications through shared memory
m explicit communications through synchronisation primitives
m fixed number of threads (no dynamic creation of threads)

® numeric programs (real-valued variables)

Goal: static analysis

m infer numeric program invariants

m parameterized by a choice of numeric abstract domains

m discover run-time errors (e.g., divisions by 0)
m discover data-races (unprotected accesses by concurrent threads)
m discover deadlocks (some threads block each other indefinitely)

Course 5a ea dular Analysis of Concurrent s Antoine Miné



Introduction

Outline

m Simple concurrent language

m Non-modular concurrent semantics

Simple interference thread-modular concurrent semantics

Weakly consistent memories

Locks and synchronization

Abstract rely-guarantee thread-modular concurrent semantics

m Relational interference abstractions
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Language and semantics

Language and semantics
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Language and semantics

Structured numeric language

m finite set of (toplevel) threads: stmt; to stmt,
m finite set of numeric program variables V € V
m finite set of statement locations / € £

m locations with possible run-time errors w € Q (divisions by zero)

prog = estmtlé || . || estmt,,é (parallel composition)
‘stmt’ = V¢« expe (assignment)
| i exp X 0 then ‘stmt’ £fi’ (conditional)
|  ‘while ‘exp <0 do ‘stmt’ done’ (loop)
| Estmt; ‘stmt’ (sequence)
exp 2= V/|[c,c]| —exp|expoexp

¢, ERU{+00,—0}, o€ {+,—, %,/ }, xe{=<,...}
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Language and semantics Trace-based semantic model

Multi-thread execution model

t1 t2
‘! while random do | “ while random do
2 if x < y then ® q y < 100 then
Bx—x+1 © v« y+ [1,3]

Execution model:

m finite number of threads
m the memory is shared (x,y)
m each thread has its own program counter

m execution interleaves steps from threads t; and t
assignments and tests are assumed to be atomic

= we have the global invariant 0 < x < y <102
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Language and semantics Trace-based semantic model

Semantic model: labelled transition systems

simple extension of transition systems

Labelled transition system: (X, .A,7,7)

m X set of program states

m A: set of actions

m7CY X AxX: transition relation we note (5,2,6') € T as 0 >, o
m 7 C X: initial states

Labelled traces: sequences of states interspersed with actions

a a a,
denoted as g9 = 01 > -+ 0p 3 Ony1

T is omitted on — for traces for simplicity
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Language and semantics Trace-based semantic model

From concurrent programs to labelled transition systems

= given: prog ::= “stmt, " [l -l Crstmt, '

= threads are numbered: T < {1,...,n}

Program states: Y = (T - £) x &

m a control state L(t) € £ for each thread t € T and

® a single shared memory state p e & £V — Z

Initial states:
threads start at their first control point £, variables are set to 0:

T = {(At.L, AV.0) )}

Actions:  actions are thread identifiers: A %
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Language and semantics Trace-based semantic model

From concurrent programs to labelled transition systems

Transition relation: 7CYX xAx X

(L p) 5 (L ) 5 (L(2), p) = rfsrme (L' (2), P') A
YVu # t: L(u) = L'(u)

m based on the transition relation of individual threads seen as sequential
processes stmt;: 7[stmt,] C (L x &) x (L x &)

m choose a thread t to run
= update p and L(t)
= leave L(u) intact for u # t

see course 2 for the full definition of [stmt]

= each transition 0 —[gtne,] o’ leads to many transitions — !
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Language and semantics Trace-based semantic model

Interleaved trace semantics

Maximal and finite prefix trace semantics are as before:

t
Blocking states: B = {o|Vo':Vt:o /. o'}

Maximal traces: M, (finite or infinite)

def [ th—1 t;
Moo = {0‘0—0>*'~ = on|n>0N00 ETANG, EBAYI < nio; 5, i1} U

1 t;
{0'0—0>0'1... [n>0A00 ETAVI <wioj . 0i11}

Finite prefix traces: 7,

€ tn* . i,
To d:f{aot4~~ —>la,,|n20/\00GI/\VI<n:U,-i>,.U,-+1}

th_
T, = Ifp Fp where Fp(X) =T U {003 - B opia [n>0A003 - 5 0y € XAop By 0par }
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Language and semantics Trace-based semantic model

Fairness

Fairness conditions: avoid threads being denied to run forever

def

Given enabled(o,t) <% 3o’ € Y0 5, o
an infinite trace og LN s op I s

u weakly fair if Vt € T:

3i:Vj > i:enabled(cj,t) = Vi:3j > iaj =1t

no thread can be continuously enabled without running
m strongly fair if Vt € T:

Vi:3j > i:enabled(oj,t) = Vi:3j > iaj =t

no thread can be infinitely often enabled without running

Proofs under fairness conditions  given:

m the maximal traces M, of a program

m a property X to prove (as a set of traces)

m the set F of all (weakly or strongly) fair and of finite traces
= prove M, N F C X instead of M, C X
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Language and semantics Trace-based semantic model

Fairness (cont.)

Example: while x >0 do x < x+ 1 done || x + =2
E may not terminate without fairness

m always terminates under weak and strong fairness

Finite prefix trace abstraction

Moo N F C X is abstracted into testing cvu<x(Moo N F) C a<(X)
for all fairness conditions F, ct,<(Moc N F) = au<(Moo) = Tp

recall that o, <(T) def {te X" |3ue T:t = u}is the finite prefix abstraction
and T = a,< (M)

—> fairness-dependent properties cannot be proved with finite prefixes only

In the rest of the course, we ignore fairness conditions

Antoine Miné
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Language and semantics Trace-based semantic model

Reachability semantics for concurrent programs

Reminder : Reachable state semantics: R € P(X)

Reachable states in any execution:

R = {o| In>0,00,...,00
UoEI,Vi<n:HtET:a,-—t>Ta,-+1/\U:an}

R =Ifp Fr where FR(X) =ZU{o |30’ € X,t eT:io’ 5, 0}

Can prove (non-)reachability, but not ordering, termination, liveness
and cannot exploit fairness.

Abstraction of the finite trace semantics.

R = ap(Tp) where ap(X) d:ef{o'|3n20,002>-~a’n€X:0:a,,}
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Language and semantics Reminders: sequential semantics

Reminders: sequential semantics
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Language and semantics Reminders: sequential semantics

Equational state semantics of sequential program

m see Ifp f as the least solution of an equation x = f(x)
m partition states by control: P(L x &) ~ L — P(E)
Xe € P(E): invariant at £ € £
VeeLl:X, = {mec&|({,m)eR}

— set of recursive equations on X}

Example:
i 2
2 . Xy =1
Z3n<.—[—£40<.3,+oo], Xy =Cli+2]x
wh1g.e i< n do X3 = C[n <+ [—o0, +0]] X>
“if [0,1] = O then X4=XEUX7]]
0, . Xs =Cli<n]A,
. i—i+1 X = Xs
g X=X UCLi—i+1] X
8done Xg=C[i>n] X,
i
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Language and semantics Reminders: sequential semantics

Denotational state semantics

Alternate view as an input-output state function C[[ stmt |

Clstmt] : P(E) — P(E)

C[X <+ elR = {p[X—=v]|lpe R, veE[e]p}
Clex<0]R = {peR|IveE[e]pvix0}
C[if exOthensfi]R = (C[s] oC[e=0])RUC[etk0]R
C[s1; 2] L[] oC[s:]

ef

C[while ed0do sdone] R = Cler4a 0] (IfpAY.RU(C[s] o C[e0])Y)
®m mutate memory states in £
m structured: nested loops yield nested fixpoints
m big-step: forget information on intermediate locations ¢

®m mimics an actual interpreter
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Language and semantics Reminders: sequential semantics

Equational vs. denotational form

Equational: Denotational:

i=0;
while (i < nb)

ali] =12;
I++;
}

ili;__r(x) C[while c do b done ] X def
X§;F§(Xi) Cl—-c](fpAY.XUC[b](C[c]Y))

Cl[if cthen t fi] X def
Clt](C[e]X)uC[—c] X

m linear memory in program length m linear memory in program depth
m flexible solving strategy m fixed iteration strategy
flexible context sensitivity fixed context sensitivity

(follows the program structure)
m easy to adapt to concurrency,

using a product of CFG = no inductive definition of the product

= thread-modular analysis
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Language and semantics Non-modular concurrent semantics

Non-modular concurrent semantics
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Language and semantics Non-modular concurrent semantics

Equational concurrent state semantics

Equational form:

m for each L € T — L, a variable X} with value in £
m equations are derived from thread equations eq(stmt;) as:
Xy, = UteT{ F(XL,, . X)) |
(X, = F(Xey, - -+ Xep)) € eq(stmte):
Vi < N:Li(t) =4, Yu # t: Li(u) = L1(u) }
Join with U equations from eq(stmt;) updating a single thread t € T.

(see course 2 for the full definition of eq(stmt))
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Language and semantics Non-modular concurrent semantics

Equational state semantics (illustration)

b gy

88
8

/N ’
8—8

Product of control-flow graphs:

m control state = tuple of program points
= combinatorial explosion of abstract states

m transfer functions are duplicated
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Language and semantics Non-modular concurrent semantics

Equational state semantics (example)

‘! while random do | “ while random do
2 if x < y then ® qg y < 100 then
By x+1 © v« y+ [1,3]

Equation system:

Xi4a=1T
Xo4 = X174 U ClIX > y]]X2,4 U C[[X <—X+1]]X3y4
X34:C[[x<y]]X24
X15:X14UClIy>100]]X15UC|Iy<7y+[1 3]]]X15
X25—X15UCHX>y]]X25UCHX<—X+1]]X35U

X4 UC[y >100] Xo5 UC[y < y+[1,3]] Xa6
X3y5 =C|IX < y]]X2,5 U X3,4 U C[[y > 100]]?(‘3,5 U C[[y —y+ [1,3]]]X3y6
X176 = C[[y < 100]] XI,S
XZ,G = Xl’ﬁ U ClIX > y]]XZ,G U C[[X <—X+1]]X376 U ClIy < 100]])(‘2’5
X36 :CHX <y]]X2,5 @] C[[y < 100]]X3y5
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Language and semantics Non-modular concurrent semantics

Equational state semantics (example)

‘! while random do | “ while random do
2 if x < y then ® qg y < 100 then
By x+1 © v« y+ [1,3]

Pros:
m easy to construct
m easy to further abstract in an abstract domain £*

Cons:
m explosion of the number of variables and equations

m explosion of the size of equations
= efficiency issues

m the equation system does not reflect the program structure
(not defined by induction on the concurrent program)
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Language and semantics Non-modular concurrent semantics

Wish-list

We would like to:

m keep information attached to syntactic program locations
(control points in £, not control point tuples in T — L)

m be able to abstract away control information
(precision/cost trade-off control)

m avoid duplicating thread instructions

m have a computation structure based on the program syntax
(denotational style)

Ideally: thread-modular denotational-style semantics

analyze each thread independently by induction on its syntax

but remain sound with respect to all interleavings |
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Simple interference semantics

Simple interference semantics
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Simple interference semantics Intuition

Thread-modular analysis with simple interferences

while (i < nb) while (i < nb)
{
afi] - ali] ++;
I++; i++;
} }

Principle:

m analyze each thread in isolation
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Simple interference semantics Intuition

Thread-modular analysis with simple interferences

while (i < nb) while (i < nb)

afi] - afi] ++;
i++; i++;
} }

el

m analyze each thread in isolation

m gather the values written into each variable by each thread

= so-called interferences
suitably abstracted in an abstract domain, such as intervals

Principle:

Antoine Miné
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Simple interference semantics Intuition

Thread-modular analysis with simple interferences

while (i < nb)

while (i < nb)

ali] ++;
i++;

ali] --;
i++;

} }

Principle:
m analyze each thread in isolation

m gather the values written into each variable by each thread
= so-called interferences

suitably abstracted in an abstract domain, such as intervals

m reanalyze threads, injecting these values at each read
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Simple interference semantics Intuition

Thread-modular analysis with simple interferences

while (i < nb)

ali]
i++;

while (i < nb)

ali] ++;
i++;

} }

Principle:
m analyze each thread in isolation

m gather the values written into each variable by each thread
= so-called interferences
suitably abstracted in an abstract domain, such as intervals

m reanalyze threads, injecting these values at each read

m iterate until stabilization while widening interferences
= one more level of fixpoint iteration
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Simple interference semantics Intuition

Example

“l while random do “ while random do
2 if x < y then B a5 y < 100 then
B xex+1 © Yy y+11,3]
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Simple interference semantics Intuition

Example

“l while random do “ while random do
2 if x < y then B a5 y < 100 then
23

X+ x+1 é6y<—y—|—[1,3]

Analysis of t; in isolation

x=y=0 Xx1=1
@:x=y=0 X=X1U(C[x+x+1]XUC[x>y]X>
@l Xz=C[x <yl
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Simple interference semantics

Example

Intuition

while random do
2 if x < y then
B xe—x+1

Analysis of t, in isolation

y:O Xy =1
0,y €[0,102]
=0, y €[0,99]

(4): x
(5): X
(6): X

output interferences: y < [1,102]

Course 5a Thread-Modular Analys oncurrent

“ while random do
 if y < 100 then
©yey+[L3]

Xs =X, UC[y ¢ y+[1,3]] X% UC[y > 100] Xs
Xo=C[y < 100] Xs
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Simple interference semantics Intuition

Example

while random do “ while random do

2 if x < y then B a5 y < 100 then
B xex+1 © Yy y+11,3]

Re-analysis of t; with interferences from t,
input interferences: y < [1,102]

1):x=y=0 Xi=1
:x €[0,102], y =0 Xo =X UC[x+ x+1]XUC[x > (v|[1,102])] &>
3):x €[0,102], y =0 Xz =C[x < (y|[1,102]) ] A2

output interferences: x «+ [1,102]

subsequent re-analyses are identical (fixpoint reached)
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Simple interference semantics Intuition

Example

“l while random do “ while random do
2 if x < y then B a5 y < 100 then
B xex+1 © Yy y+11,3]

Derived abstract analysis:

m similar to a sequential program analysis, but iterated
can be parameterized by arbitrary abstract domains

m efficient few reanalyses are required in practice

m interferences are non-relational and flow-insensitive
limit inherited from the concrete semantics

Limitation:

we get x,y € [0,102]; we don't get that x <y

simplistic view of thread interferences (volatile variables)

based on an incomplete concrete semantics (we'll fix that later)
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Simple interference semantics Formalizing the simple interference semantics

Formalizing the simple interference semantics
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Simple interference semantics Formalizing the simple interference semantics

Denotational semantics with interferences

Interferences in | = T x V x R
(t, X, v) means that t can store the value v into the variable X

We define the analysis of a thread t
with respect to a set of interferences / C I.

Expressions : E¢[exp] : £ x P(1) = P(R) x P(Q) for thread t
m add interference / € 1, as input
m add error information w € Q as output

locations of / operators that can cause a division by 0

Example:
W Apply interferences to read variables:

def

E[X](p, 1) = ({p(X)}U{v|3ut:(u X, v)el}, 0)

M Pass recursively | down to sub-expressions:
def
El—el(p, 1) = let (V, 0) =E[e] (p, 1) in ({~v|veEV}, O)

m etc.
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Simple interference semantics Formalizing the simple interference semantics

Denotational semantics with interferences (cont.)

Statements with interference: for thread t

Cfstmt] : P(E) x P(Q) x P(1) = P(E) x P(Q) x P(I)

m pass interferences to expressions
m collect new interferences due to assignments
m accumulate interferences from inner statements

m collect and accumulate errors from expressions

CGIX < e] (R, 0, 1) &

(0,0, 1) U || op ({pX > Vv EV, }, Opy { (1 X V) [VEV, )

Clsi; ] € cls]oCls]

noting (V,,, 0,) = Ee] (p, 1)
LI is now the element-wise U in P(E) x P(Q2) x P(I)
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Simple interference semantics Formalizing the simple interference semantics

Denotational semantics with interferences (cont.)

Program semantics: P[prog] € Q

Given prog ::= stmty || --- || stmt,, we compute:

Plprog] ' [pA(O, 1) Lier [l stme. ] (&0, 0, Dlgy|_

= each thread analysis starts in an initial environment set & = {AV.0}

= [X]q.1 projects X € P(€) x P(Q2) x P(I) on P(Q) x P(I)
and interferences and errors from all threads are joined

the output environments from a thread analysis are not easily exploitable

m P[prog] only outputs the set of possible run-time errors

We will need to prove the soundness of P[ prog]
with respect to the interleaving semantics. . .
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Simple interference semantics Formalizing the simple interference semantics

Interference abstraction

Abstract interferences |*

P(I) = P(T x V x R) is abstracted as I! = (T x V) — Rf
where RF abstracts P(R) (e.g. intervals)

Abstract semantics with interferences C/[s]

derived from C*[s] in a generic way:

Example: CI[X « e] (R¥, @, I¥)
. - #
m for each Y in e, get its interference Yfz = |_|R {Fu, YY|lu#t}
w if Yfz # 1% replace Y in e with get( Y, R*) I_lg2 Y%
get(Y, R*) extracts the abstract values variable Y from R* ¢ £F
= compute (R, O') = C*[e] (R*, O)

= enrich I¥(t, X ) with get(X, R*')
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Simple interference semantics Formalizing the simple interference semantics

Static analysis with interferences

PH[prog] & [nm MO, 1.0, )7 ey [Cilstmte] (&5, 0, )], ]Q
effective analysis by structural induction
P#[prog] is sound with respect to P[prog]

termination ensured by a widening

parameterized by a choice of abstract domains Rf, £*

interferences are flow-insensitive and non-relational in Rf

thread analysis remains flow-sensitive and relational in &£*

reminder: [X]o, [Y], 4 keep only X's component in ©, Y's components in Q and 14
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Simple interference semantics Path-based soundness proof

Path-based soundness proof
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Simple interference semantics Path-based soundness proof

Control paths of a sequential program

atomic ::= X < exp | exp <1 0

m : stmt — P(atomic™)

T(X—e) © {X<« e}
m(if ex10thens fi) & ({e0} - w(s))U{erk0}
e o5 0 6o & deng)) 2 (Uizo({eN0}~7r(s))i) {esk0}

(st 82) E w(s1) - 7w(s2)

m(stmt) is a (generally infinite) set of finite control paths

eg. m(i < 0; while i < 10do i< i+ 1ldone; x < i)=i<+0-(i<10-i<i+1)" -x<+i
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Simple interference semantics Path-based soundness proof

Path-based concrete semantics of sequential programs

Join-over-all-path semantics
[P]:(P(E)xP(Q) — (PE)xP(Q) P C atomic*

[PI(R, O)= || (Clsw]o---oCls])(R, O)

S1-...-5,€EP

Clstmt] = [n(stmt)]

no longer true in the abstract
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Simple interference semantics Path-based soundness proof

Path-based concrete semantics of concurrent programs

7. = {interleavings of 7(stmt,), t € T}

= {p € atomic* |Vt € T, proj,(p) € m(stmt,) }

Interleaving program semantics

def
P.lprog] = [ [m](&, 0)]q
(proj.(p) keeps only the atomic statement in p coming from thread t)

(=~ sequentially consistent executions [Lamport 79])

Issues:
m too many paths to consider exhaustively

m no induction structure to iterate on
— abstract as a denotational semantics
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Simple interference semantics Path-based soundness proof

Soundness of the interference semantics

P.[prog] C P[prog]

Proof sketch:

w define ([PIX = | | {Celsii--.is] X[si-...-sn€ P},

then ([7(s)] =Ce[s];
= given the interference fixpoint / C | from P[prog],
prove by recurrence on the length of p € 7, that:

mVpe[ [pl(&, D) VteT,

p" €[ e[ proj.(p)[(&o, 0, )] such that
VX eV, p(X)=p'(X) or (u, X, p(X)) € I for some u # t.

= [ [pI{&, D)o € User[ c[pProje(p)1( &0, B, 1q

Notes:
m sound but not complete

m can be extended to soundness proof under weakly consistent memories
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Weakly consistent memories

Weakly consistent memories
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Weakly consistent memories

Issues with weak consistency

program written

F1 = 1; F2 = 1;

if F, = 0 then | if F; = 0 then
Si S

fi fi

(simplified Dekker mutual exclusion algorithm)

51 and S, cannot execute simultaneously.
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Weakly consistent memories

Issues with weak consistency

program written program executed

Fi +1; F+1; — if F, =0 then | if F; = 0 then
if F, =0 then | if F; = 0 then F <+ 1, F, <+ 1;

51 52 51 s2
fi fi fi fi

(simplified Dekker mutual exclusion algorithm)

51 and S, can execute simultaneously.

Not a sequentially consistent behavior!

Caused by:
m write FIFOs, caches, distributed memory
m hardware or compiler optimizations, transformations
E...

behavior accepted by Java [Mans05]
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Weakly consistent memories

Hardware memory model example: TSO

threadl thread2

[ il )

2| | ]

y« 12 y« 12

X5 Xe5

x « 10 x « 10
bufferl buffer2

x=0 y=99

shared memory

Total Store Ordering: model for intel x86

m each thread writes to a FIFO queue
m queues are flushed non-deterministically to the shared memory

m a thread reads back from its queue if possible
and from shared memory otherwise
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Weakly consistent memories

Out of thin air principle

original program

Rl + X; ‘R(—Y;

Y < R1 X < R2

(example from causality test case #4 for Java by Pugh et al.)

We should not have R; = 42.
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Weakly consistent memories

Out of thin air principle

original progra “optimized” program
~

R1 < X; | R < V; ¥ 42
; ; R1 « X; | R2 & Y;
Y(—Rl‘X<—R2 Y« mi | X o Ro

(example from causality test case #4 for Java by Pugh et al.)

We should not have R; = 42.

Possible if we allow speculative writes!
— we disallow this kind of program transformations.

(also forbidden in Java)
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Weakly consistent memories

Atomicity and granularity

(o] al program

X X+1 | X+ X+1

We assumed that assignments are atomic. ..
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Weakly consistent memories

Atomicity and granularity

original program

X X+1 | X+ X+1

executed program
R

n<+ X+1 <+ X+1
X<+ n X<+ n

We assumed that assignments are atomic. ..
but that may not be the case

The second program admits more behaviors

e.g.: X =1 at the end of the program
[Reyn04]
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Weakly consistent memories

Path-based definition of weak consistency

Acceptable control path transformations: p ~ g

only reduce interferences and errors

m Reordering: Xy e - Xo e ~ Xo— e -X; < ¢
(if X1 & var(ez), Xo ¢ var(er), and e; does not stop the program)

m Propagation: X <—e-s ~» X <« e-s[e/X]
(if X ¢ var(e), var(e) are thread-local, and e is deterministic)

m Factorization: sy ... s, ~» X< e-s[X/e]-...-s,[X/€]
(if X is fresh, Vi, var(e) N Ival(s;) = @, and e has no error)

m Decomposition: X < e;+e ~ T+ e - X+ T+ e
(change of granularity)

but NOT:
m “out-of-thin-air” writes: X <— e ~~ X <+ 42- X + e
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Weakly consistent memories

Soundness of the interference semantics

Interleaving semantics of transformed programs P/, [prog]

def

w7'(s) = {p|3p €n(s):p’ ~ “p}
m . = {interleavings of 7/(stmt,), t € T}

= Pllprog] = [ [7l](&, 0)]q

P.Iprog] C P[prog]

— the interference semantics is sound
wrt. weakly consistent memories and changes of granularity
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Locks and synchronization

Locks and synchronization
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Locks and synchronization

Scheduling

stmt = lock(m)
| unlock(m)

m € M : finite set of non-recursive mutexes

Scheduling

mutexes ensure mutual exclusion

at each time, each mutex can be locked by a single thread
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Locks and synchronization

Mutual exclusion

lock(m) unlock(m)
W W A\

R R W R
lock(m) unlock(m)

We use a refinement of the simple interference semantics
by partitioning wrt. an abstract local view of the scheduler C
BE ~ ExXC, & ~ Co &t

def def

Bl =TxVXR ~» I =TxCxVxR,
= (TxV)=sRE - IFZ (TxCxV) = R
C = Crae U Csync separates
m data-race writes C, e

m well-synchronized writes Cgypc
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Locks and synchronization

Mutual exclusion

lock(m) unlock(m)

Data-race effects C,,.. ~ P(M)

Across read / write not protected by a mutex.
Partition wrt. mutexes M C M held by the current thread t.

m G[X <+ e]{p, M, I)adds {(t, M, X, v) |vEE[X](p, M, )} tol
s E[X]{p, M, 1) ={p(X)JU{vI|{t, M , X, vyel, t£t, MM =0}

Bonus: we get a data-race analysis for free!
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Locks and synchronization

Mutual exclusion

lock(m) unlock(m)

Pl — @@

lock(m) unlock(m)

Well-synchronized effects C,,,c ~ M x P(M)

m last write before unlock affects first read after lock
m partition interferences wrt. a protecting mutex m (and M)
m Ci[unlock(m)] (p, M, I') stores p(X) into |
m Ci[Llock(m)]{p, M, I) imports values form [ into p
m imprecision: non-relational, largely flow-insensitive
= C ~ P(M) x ({data — race} UM)
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Locks and synchronization

Example analysis

abstract consumer/producer

consumer | producer
while random do while random do
lock(m); ‘! lock(m);
if X>0 then ““X«X-1 fi; X—X+1;
unlock(m) ; if X>100 then X<—100 fi;
R unlock(m)
done done
m no data-race interference (proof of absence of data-race)

m well-synchronized interferences:
consumer: x «+ [0,99]
producer: x < [1,100]

®m — we can prove that y € [0, 100]

without locks, we cannot get y < 100

Can be generalized to several consumers and producers.
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Locks and synchronization

Deadlock checking

t1 | ty

lock(a) lock(a)
lock(c) lock(b)
unlock(c) | unlock(a)
lock(b) lock(a)
unlock(b) unlock(a)

unlock(a) unlock(b)

During the analysis, gather:
m all reachable mutex configurations: R C T x P(M)

m lock instructions from these configurations R x M

Antoine Miné
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Locks and synchronization

Deadlock checking

e e
v a .
f | t lock(a) blocks
lock(a) lock(a) |,
lock(c) lock(b)
unlock(c) | unlock(a) a0\ ©2 [\
lock(b) lock(a) \ay ba =z w
unlock(b) unlock(a)
unlock(a) unlock(b) e

lock(b) blocks

During the analysis, gather:
m all reachable mutex configurations: R C T x P(M)

m lock instructions from these configurations R x M

Then, construct a blocking graph between lock instructions
u ((t,m), £) blocks ((¢',m'), ¢') if
t # tand mnm' =0 (configurations not in mutual exclusion)
ltem (blocking lock)

A deadlock is a cycle in the blocking graph.

generalization to larger cycles, with more threads involved in a deadlock, is easy

Antoine Miné
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Beyond non-relational interferences

Beyond non-relational interferences
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Beyond non-relational interferences Inspiration from program logics

Inspiration from program logics
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Beyond non-relational interferences Inspiration from program logics

Reminder: Floyd—Hoare logic

Logic to prove properties about sequential programs [Hoar69].

Hoare triples: {P}stmt{Q}
m annotate programs with logic assertions {P} stmt {Q}

(if P holds before stmt, then Q holds after stmt)

m check that {P}stmt{Q} is derivable with the following rules
(the assertions are program invariants)
{PAexi0}s{Q} PAerk0=Q

{Ple/X]} X « e{P} {P}if e 0 then s fi {Q}
{P}s1 {Q} {Q}={R} {PAex0}s{P}
{P}si;2{R} {P} while e >1 0 do s done {P A e ¥ 0}

{P}s{Q'} P=P Q' =0Q
{P}s{Q}

Link with abstract interpretation:

m the equations reachability semantics (X¢)¢ec provides the most precise Hoare triples in fixpoint
constructive form
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Beyond non-relational interferences Inspiration from program logics

Jones’ rely-guarantee proof method

Idea: explicit interferences with (more) annotations [Jone81].
Rely-guarantee “quintuples”: R, G {P} stmt {Q}

m if P is true before stmt is executed

m and the effect of other threads is included in R (rely)

m then Q is true after stmt

m and the effect of stmt is included in G (guarantee)

where:
m P and Q are assertions on states (in P(T))

m R and G are assertions on transitions  (in P(Z x A x ¥))

The parallel composition rule is:

RV GQ,Gl F {Pl}sl{Ql} RV G17G2F{P2}52{Q2}
R, GV G {Pl A P2}51 || S> {Ql A QQ}
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Beyond non-relational interferences Inspiration from program logics

Rely-guarantee example

‘! while random do “ while random do

2 if x < y then % if y < 100 then
B g xH gy« y+ [1,3]

fi fi

done done

/1: x=y=0 atl4d: x=y =0

£2: x,y €0,102], x <y at /5: x,y € [0,102], x <y

£3: x €[0,101], y € [1,102], x < y at (6 : x € [0,99], y €[0,99], x <y

Course 5a ea ar Ana f Concurrent
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Beyond non-relational interferences Inspiration from program logics

Rely-guarantee example

‘! yhile random do | x unchanged y unchanged 4 yhile random do

2 4f x < y then | y incremented 0<x<y % a0 y < 100 then
B x — x+1 0<y<102 vy« y+ [1,3]

fi fi

done done

/1: x=y=0 atl4: x=y =0

£2: x,y €0,102], x <y at /5: x,y € [0,102], x <y

£3: x €[0,101], y € [1,102], x < y at (6 : x € [0,99], y €[0,99], x <y

In this example:
m guarantee exactly what is relied on  (Ry = G; and R, = Gp)

m rely and guarantee are global assertions

Benefits of rely-guarantee:

®m more precise: can prove x < y
® invariants are still local to threads

m checking a thread does not require looking at other threads,
only at an abstraction of their semantics
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Beyond non-relational interferences Rely-guarantee as abstract interpretation

Rely-guarantee as abstract interpretation
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Beyond non-relational interferences

Rely-guarantee as abstract interpretation

Modularity: main idea

b b a
a
[ ; @ @ ] ® @
' v ! ,’
e -
.
Thread
x=0
while x<y
X++;
/* bla bla */

Main idea: separate execution steps

m from the current thread a

m found by analysis by induction on the syntax of a
m from other threads b

m given as parameter in the analysis of a
m inferred during the analysis of b

— express the semantics from the point of view of a single thread

Course 5a
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Beyond non-relational interferences Rely-guarantee as abstract interpretation

Trace decomposition

Reachable states projected on thread t: RI(t)

m attached to thread control point in £, not control state in T — L

m remember other thread’s control point as “auxiliary variables”
(required for completeness)
def

RI(t) = m(R) CLXx(VU{pcy|t#t €T})—=R
where 7,(R) = { (L(t), p[Vt' # t:pc, — L]V (L, p) € R}
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Beyond non-relational interferences Rely-guarantee as abstract interpretation

Trace decomposition

Interferences generated by t: A(t) (~ guarantees on transitions)

Extract the transitions with action t observed in 7,

(subset of the transition system, containing only transitions actually used in reachability)
def |
A(t) = a(Tp)(t)
an—1

where o' (X)(t) = { (0}, 0ix1)|Foo B oy B o, e Xia =1t}
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Beyond non-relational interferences

Rely-guarantee as abstract interpretation

Thread-modular concrete semantics

Thread

x=0
while x<y
X4+

/*blabla*/

We express RI(t) and A(t) directly from the transition system, without computing 7,
States: R/
Interleave:

m transitions from the current thread t

m transitions from interferences A by other threads
RI(t) = Ifp R:(A), where
R(V(X) X 7() U {me(o”) | 3me(o) € X0 4, o’ J U
{me(o’) | Ime(o) € X: 3t #t: (o, 0’) € Y(t')}

= similar to reachability for a sequential program, up to A

Course 5a e dular Analysi:

f Concurrent P
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Beyond non-relational interferences Rely-guarantee as abstract interpretation

Thread-modular concrete semantics

Thread

a
x=0
while x<y )
X++;

/* bla bla */

We express RI(t) and A(t) directly from the transition system, without computing 7,

Interferences: A

Collect transitions from a thread t and reachable states R:
A(t) = B(RI)(t), where
B(Z2)(t) = {(0,0") |m(0) € Z(t) Ao =5, o' }

Course 5a
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Beyond non-relational interferences

Rely-guarantee as abstract interpretation

Thread-modular concrete semantics

Thread

a
x=0
while x<y )
X++;

/* bla bla */

We express RI(t) and A(t) directly from the transition system, without computing 7,
Recursive definition:

= RI(t) = Ifp R:(A)

m A(t) = B(RI)(t)
—> express the most precise solution as nested fixpoints:

RI = Ifp AZ.At. Ifp Ri(B(Z))

|
Completeness: Vt: RI(t) ~ R

(7¢ is bijective thanks to auxiliary variables)
any property provable with the interleaving semantics
can be proven with the thread-modular semantics!

Course 5a
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Beyond non-relational interferences Rely-guarantee as abstract interpretation

Fixpoint form

Constructive fixpoint form:

Use Kleene's iteration to construct fixpoints:

mRI=Ifp H=],.n H'(At.0)

in the pointwise powerset lattice HtET {t} = P(Xe)

= H(Z)(t) = Ifp R(B(Z)) = U,en(Re(B(2)))"(0)

in the powerset lattice P(X¢)

(similar to the sequential semantics of thread t in isolation)

— nested iterations
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Beyond non-relational interferences Rely-guarantee as abstract interpretation

Abstract rely-guarantee

Suggested algorithm:  nested iterations with acceleration

once abstract domains for states and interferences are chosen

= start from R 2 AL & Ae Lt

= while A? is not stable
def

= compute Vt € T: 7?/,'f+1(t) = Ifp RI(A%)
by iteration with widening v

(=~ separate analysis of each thread)
def

= compute A' | = ALV BY(RIL,)
m when A% = A‘,iH_l, return R/%
—> thread-modular analysis

parameterized by abstract domains (only source of approximation)
able to easily reuse existing sequential analyses
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Beyond non-relational interferences Retrieving thread-modular abstractions

Retrieving thread-modular abstractions
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Beyond non-relational interferences Retrieving thread-modular abstractions

Flow-insensitive abstraction

Flow-insensitive abstraction:

m reduce as much control information as possible

m but keep flow-sensitivity on each thread's control location

Local state abstraction: remove auxiliary variables

o (X) = {4 p) {6 p) eXFUX

Interference abstraction:  remove all control state

aff (V) = {(p, )| 3LL €T L((L p), (L',p)) €Y}
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Beyond non-relational interferences Retrieving thread-modular abstractions

Flow-insensitive abstraction (cont.)

Flow-insensitive fixpoint semantics:

We apply ag’{ and a/’;"f to the nested fixpoint semantics.

R i AZ At Ifp R (B (Z)), where

= B(2)(6) ' {(p, 0 ) 1300 € L: (L, p) € Z() A (L p) = (€, ')}

(extract interferences from reachable states)
def
= RI(YVX) = RO UAT(Y)(X)
(interleave steps)
def i
B RPX) S {0, AV.0) UL, p') |34, p) € X: (8, p) = (£, ')}
(thread step)

= AT E {8 0 [3p, u t (L p) EXA(p, p') € Y(1)}
(interference step)

Cost/precision trade-off:

m less variables
= subsequent numeric abstractions are more efficient

m insufficient to analyze x <~ x+ 1 || x + x+1
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Beyond non-relational interferences Retrieving thread-modular abstractions

Retrieving the simple interference-based analysis

Cartesian abstraction: on interferences

m forget the relations between variables
m forget the relations between values before and after transitions (input-output

relationship)

m only remember which variables are modified, and their value:

o (V) EAV{x € V[3(p, o)) € Yip(V) £ x A p/ (V) = x}

m to apply interferences, we get, in the nested fixpoint form:
AT(YV)X) S0 IV s ) (6 p) €X,V EV,Fu#tiv e Y(u)(V)}

m no modification on the state
(the analysis of each thread can still be relational)

— we get back our simple interference analysis!

Finally, use a numeric abstract domain o : P(V — R) — Df
for interferences, V — P(R) is abstracted as V — D
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Beyond non-relational interferences Retrieving thread-modular abstractions

A note on unbounded thread creation

Extension: relax the finiteness constraint on T
m there is still a finite syntactic set of threads T,

m some threads T, C T can have several instances

(possibly an unbounded number)

Flow-insensitive analysis:

m local state and interference domains have finite dimensions
(&t and (L x ) x (L x &), as opposed to € and € x &)

m all instances of a thread t € T, are isomorphic
= iterate the analysis on the finite set T (instead of T)

= we must handle self-interferences for threads in To:
AF(Y)(X) =
{(60)]3p, u(u#tVviEeT)A(lp) € XN (p,p") € Y(u)}
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Beyond non-relational interferences Retrieving thread-modular abstractions

From traces to thread-modular analyses

abstract states abstract interferences

static analyzer
T el

Tae

non-relational interferences

(Txc)— &l

ag —@ — @ -
T = PE)
pox
local states flow-insensitive interferences rely-guarantee
o0 e o—0 06— o o o (without aux. variables)
(Tx L) — P(&) T = PE XE)
a% 1\&21‘
local states interferences rely-guarantee
- ® ® ® © e o o e (with aux. variables)
R H!GT {t} = P(5r) ALT = P(E x T)
,T,rt ’Taitf
interleaved execution trace prefixes concrete executions

® & ® @ 7,crr
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Beyond non-relational interferences Relational thread-modular abstractions

Relational thread-modular abstractions
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Beyond non-relational interferences Relational thread-modular abstractions

Fully relational interferences with numeric domains

Reachability : RI(t) : £L — P(V, — Z)
approximated as usual with one numeric abstract element per label

auxiliary variables pc, € V, are kept (program labels as numbers)

Interferences : A(t) € P(X x X)
a numeric relation can be expressed in a classic numeric domain
as P((Vo = Z) x (Vo — Z)) 2 P((V.UV}) — 2)
m X €V, value of variable X or auxiliary variable in the pre-state
m X' €V, value of variable X or auxiliary variable in the post-state

eg.: {(x,x+1)|x €[0,10] } is represented as x’ = x + 1 A x € [0, 10]
== use one global abstract element per thread

Benefits and drawbacks:

m simple: reuse stock numeric abstractions and thread iterators
m precise: the only source of imprecision is the numeric domain

m costly: must apply a (possibly large) relation at each program step
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Beyond non-relational interferences Relational thread-modular abstractions

Experiments with fully relational int

6000
@227
P2 T
g e

84} = -e"

-
5 P
—"‘"
.
.
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

number of threads

ty [%]

while z < 10000 while z < 10000
z+z+1 z+z+1
ify<ctheny <+ y+1 if x < y then x — x+1

done done

Experiments by R. Monat
Scalability in the number of threads (assuming fixed number of variables)
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Beyond non-relational interferences Relational thread-modular abstractions

Partially relational interferences

Abstraction: keep relations maintained by interferences

m remove control state in interferences (i)
m keep mutex state M (set of mutexes held)
m forget input-output relationships

m keep relationships between variables

Al (Y) E LM, p) 307 (M, p), (M, o)) €YV ((M, p'), (M, p)) €Y}

(M, p) € alN(Y) = (M, p) € al¥(Y) after any sequence of interferences from Y

Lock invariant:
{p|3teT,M:(M,p)ecad(l(t)), m¢& M}
m property maintained outside code protected by m
m possibly broken while m is locked

m restored before unlocking m
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Beyond non-relational interferences Relational thread-modular abstractions

Relational lock invariants

lock unlock
t1

lock unlock

Improved interferences: mixing simple interferences and lock invariants
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Beyond non-relational interferences Relational thread-modular abstractions

Relational lock invariants

lock unlock
t1

non-rel l

lock unlock

Improved interferences: mixing simple interferences and lock invariants

m apply non-relational data-race interferences
unless threads hold a common lock (mutual exclusion)

Course 5a e ar Ana f Concurrent Pra s Antoine Miné



Beyond non-relational interferences Relational thread-modular abstractions

Relational lock invariants

lock unlock

Improved interferences: mixing simple interferences and lock invariants

m apply non-relational data-race interferences
unless threads hold a common lock (mutual exclusion)

m apply non-relational well-synchronized interferences at lock points
then intersect with the lock invariant

m gather lock invariants for lock / unlock pairs
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Beyond non-relational interferences Relational thread-modular abstractions

Relational lock invariants

lock unlock
1 .
\\@\V
non-rel l
t2

lock unlock

Improved interferences: mixing simple interferences and lock invariants

m apply non-relational data-race interferences
unless threads hold a common lock (mutual exclusion)

m apply non-relational well-synchronized interferences at lock points
then intersect with the lock invariant

m gather lock invariants for lock / unlock pairs
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Beyond non-relational interferences Relational thread-modular abstractions

Monotonicity abstraction

Abstraction:
map variables to /' monotonic or T don't know

def

a3 (Y) AV V(p, p') € Yip(V) < (V) then 7 else T

m keep some input-output relationships
m forgets all relations between variables

m flow-insensitive

Inference and use

u gather:
AT () (V) =/ =
all assignments to V in t have the form V < V + e, with e > 0
m use: combined with non-relational interferences
if Ve: A (t)(V) =/
then any test with non-relational interference C[ X < (V/|[a, b])] can be
strengthened into C[ X < V]
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Beyond non-relational interferences Relational thread-modular abstractions

Weakly relational interference example

analyzing t; analyzing t,

t1 | to t1 | t
while random do x unchanged y unchanged while random do
lock(m); y incremented 0<x,x<y lock(m) ;
if x < y then 0 <y < 102 if y < 100 then
X +— x + 1; y < y + [1,3];
unlock(m) unlock(m)

Using all three interference abstractions:
m non-relational interferences (0 <y <102,0 < x)
m lock invariants, with the octagon domain (x < y)

m monotonic interferences (y monotonic)

we can prove automatically that x < y holds
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