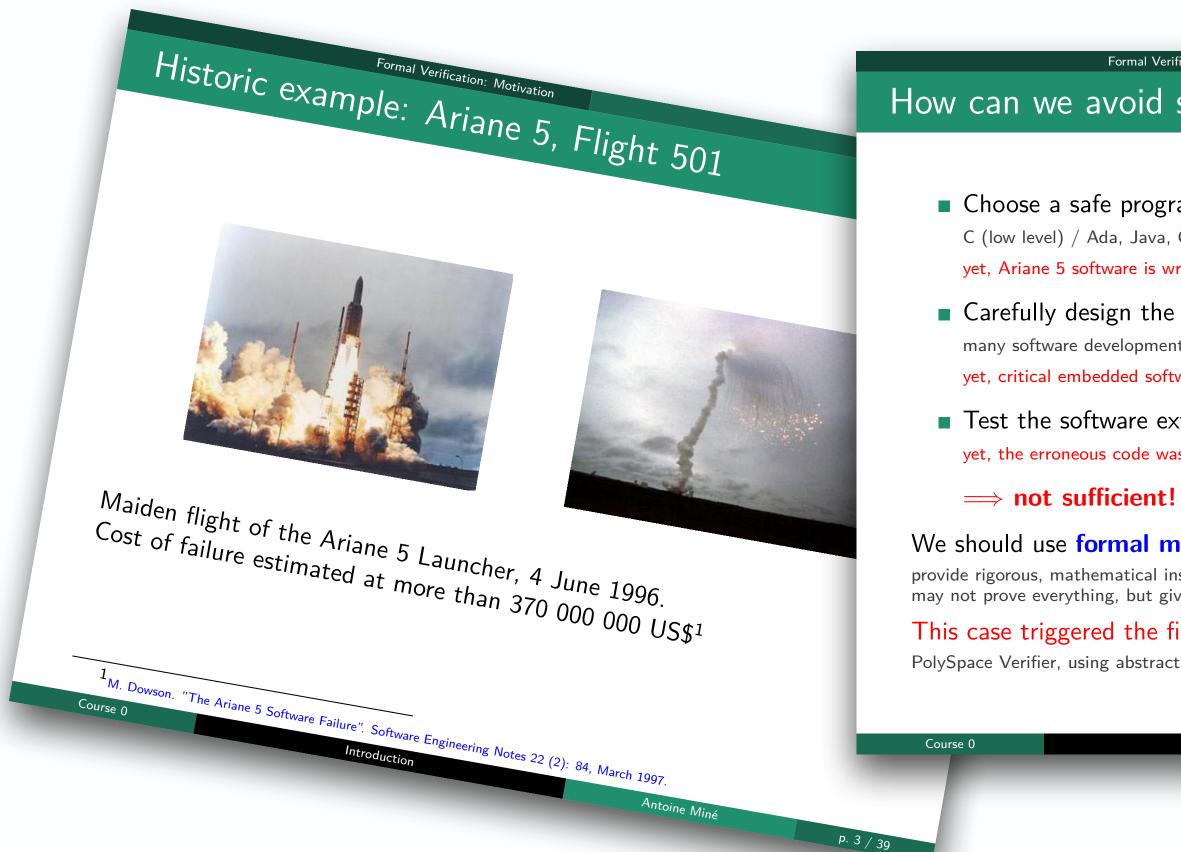
Termination Analysis MPRI 2-6: Abstract Interpretation, **Application to Verification and Static Analysis**

Caterina Urban

November 4th, 2024

So far, we have focused on using static analysis to avoid software failures



that is, for proving Safety Properties

Termination Analysis

Lesson 7

Formal Verification: Motivation How can we avoid such failures? • Choose a safe programming language. C (low level) / Ada, Java, OCaml (high level) yet, Ariane 5 software is written in Ada Carefully design the software. many software development methods exist yet, critical embedded software follow strict development processes • Test the software extensively. yet, the erroneous code was well tested... on Ariane 4 We should use **formal methods**. provide rigorous, mathematical insurance of correctness may not prove everything, but give a precise notion of what is proved This case triggered the first large scale static code analysis PolySpace Verifier, using abstract interpretation Introduction Antoine Miné p. 5 / 39

Safety vs Liveness Properties

Safety Properties

"something <u>bad</u>" never happens"

Leslie Lamport

Lesson 7

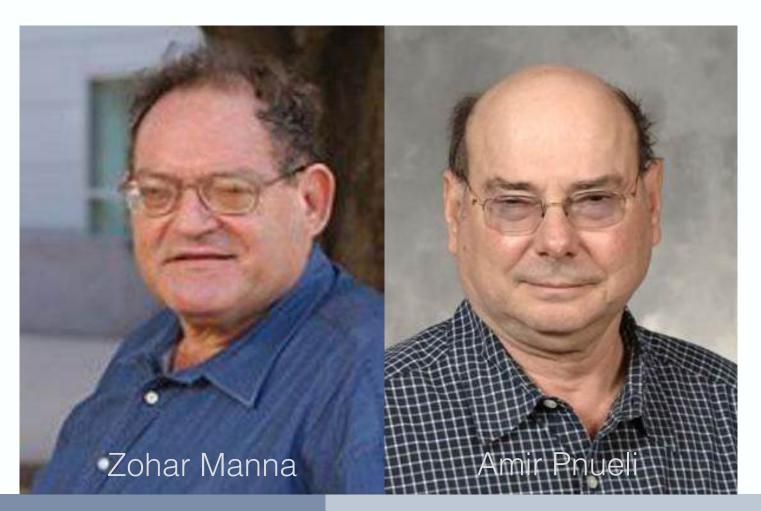
Termination Analysis

"something good eventually happens"

Liveness Properties

Liveness Properties

- **Guarantee Properties** "something good eventually happens at least once"
 - **Example: Program Termination**
- Recurrence Properties "something good eventually happens infinitely often"
 - Example: Starvation Freedom



Lesson 7

Termination Analysis

Program Termination

Lesson 7

Termination Analysis

The Zune Bug **31 December 2008**

It seems that a random bug is affecting a bunch, a bunch of Zune 30s just stopped working. No of might have a gadget Y2K going on here. Fan boar same mantra saying that at 2:00 AM this morning fully reboot. We're sure Microsoft will get flooded lines open up for the last time in 2008. More as w

Update 2: The solution is ... kind of weak: let your you wake up tomorrow and charge it.

Earlier today, the sound of thousands of the blogosphere. The response from Mid You're probably wondering, what kind of

Well, I've got the code here and it's very s programming class, you'll see the error

```
year = ORIGINYEAR; /* = 1980 */
 while (days > 365)
     if (IsLeapYear(year))
         if (days > 366)
             days -= 366;
             year += 1;
     30
     else
         days -= 365;
        year += 1;
You can see the details here, but the imp
```

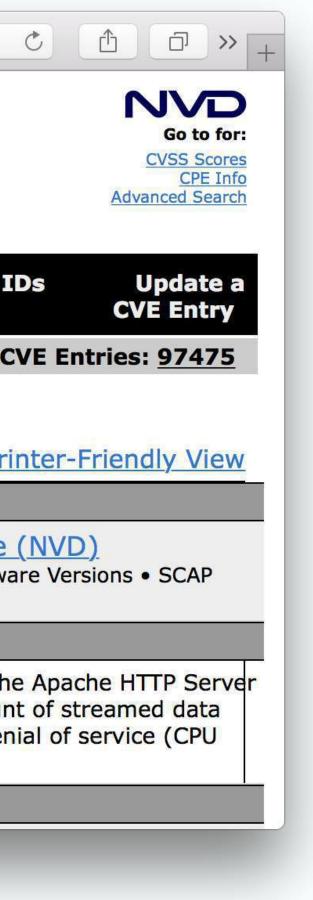
unresponsive Systems

			R _M
1/zune-bug-explained-in-detail/	ŝ	Q , ©	Ξ
d in detail			
			_
		Next Sto	ory 🔪
f <mark>Zune owners crying out in terror made ripp</mark> l	es acr	oss	
crosoft is to wait until tomorrow and all will b	e well.		
f bug fixes itself?			
simple, really; if you've taken an introductory			
right away.			
portant bit is that today, the day count is 366.	As you	O Follo	w

Apache HTTP Server Versions <2.3.3

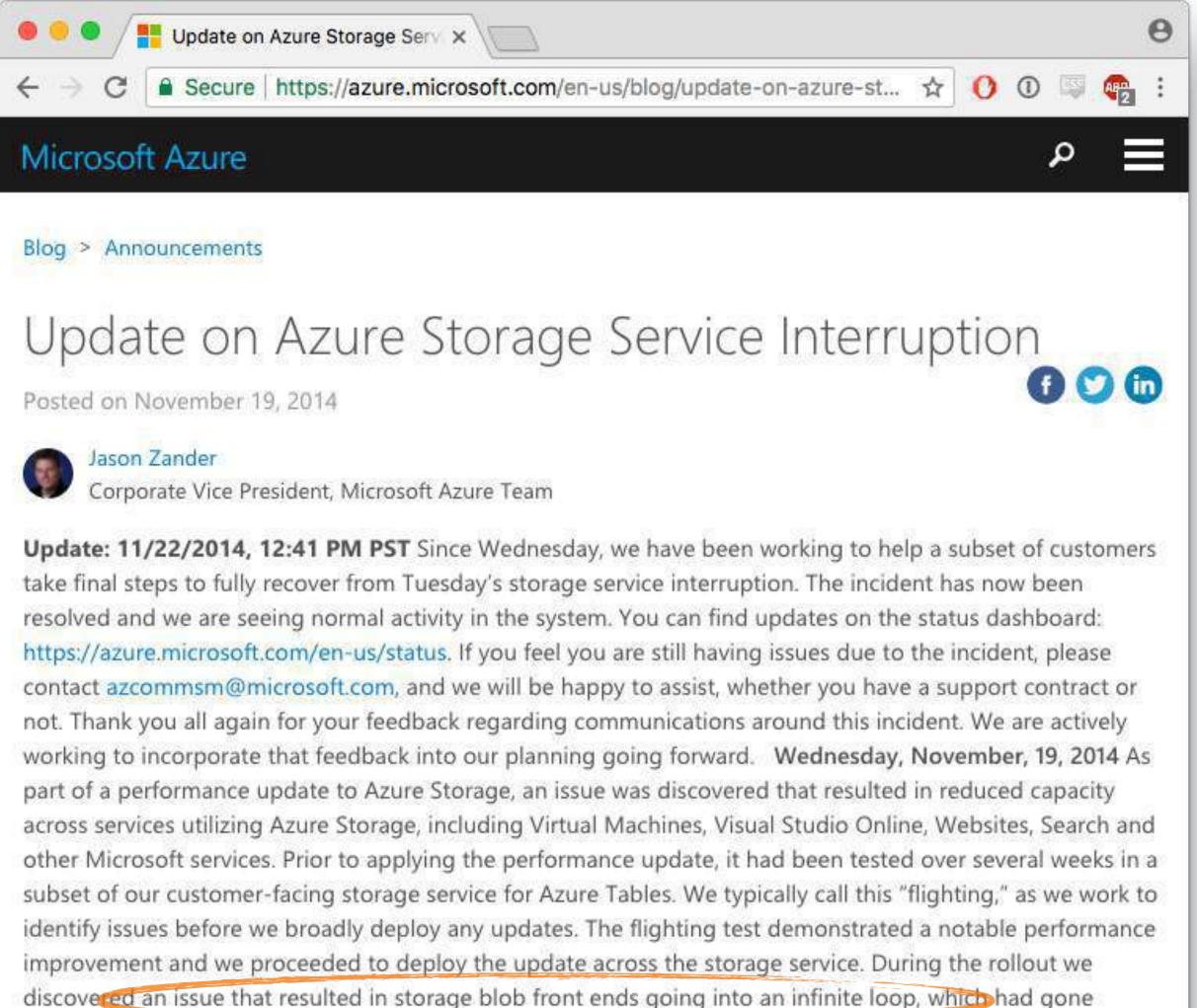
			cve.mitre.org
	CVE List Ab	CNAs	Board News & Blog
Common Vulnerabilities and Exposures Search CVE List Do	wnload CVE	Data Feed	s Request CVE
			TOTAL
			IVIAL
OME > CVE > CVE-2009-189	90		TOTAL
OME > CVE > CVE-2009-189	9.0		Pr
OME > CVE > CVE-2009-189	9.0		
	Learn more	Rating • Fix Info	
CVE-ID	Learn more • CVSS Severity	Rating • Fix Info	Pr Jinerability Database
CVE-ID CVE-2009-1890	Learn more • CVSS Severity Mappings • CPE ction in mod_pro e proxy is config ength value, which	Rating • Fix Infor Information xy_http.c in the ured, does not p	Pr Unerability Database rmation • Vulnerable Softw mod_proxy module in the properly handle an amou

7



Azure Storage Service

19 November 2014



undetected during flighting. The net result was an inability for the front ends to take on further traffic, which

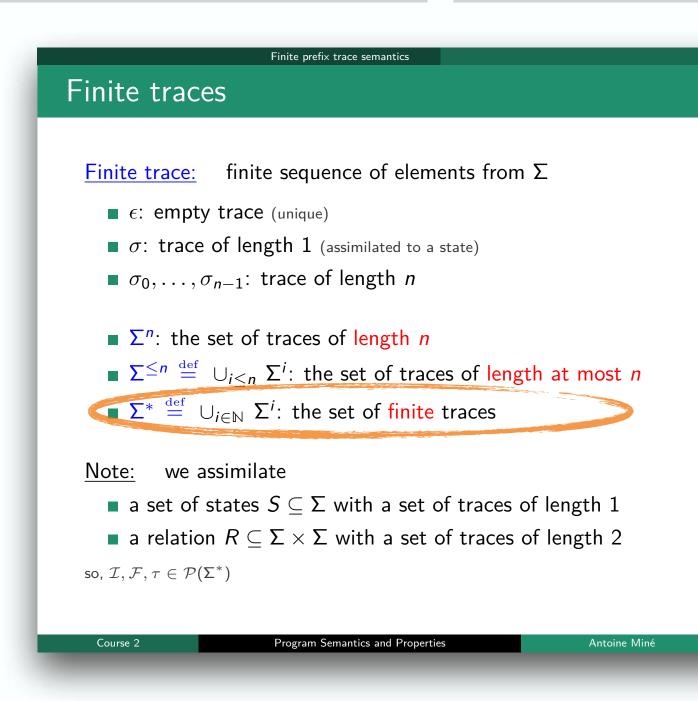
Potential and Definite Termination

Definition

A program with trace semantics $\mathcal{M} \in \mathscr{P}(\Sigma^{\infty})$ may terminate if and only if $\mathcal{M} \cap \Sigma^* \neq \emptyset$

Definition

A program with trace semantics $\mathcal{M} \in \mathscr{P}(\Sigma^{\infty})$ must terminate if and only if $\mathscr{M} \subseteq \Sigma^*$

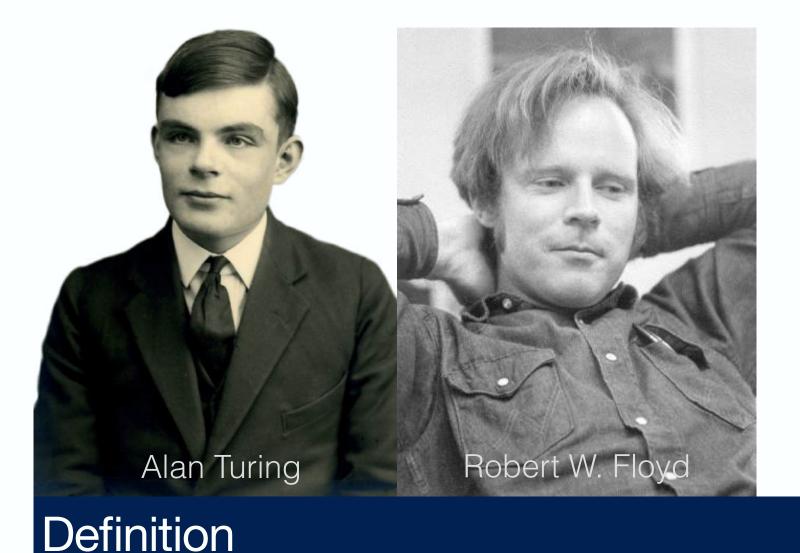


In absence of non-determinism, potential and definite termination coincide

Lesson 7

Termination Analysis

Definite Termination Ranking Functions

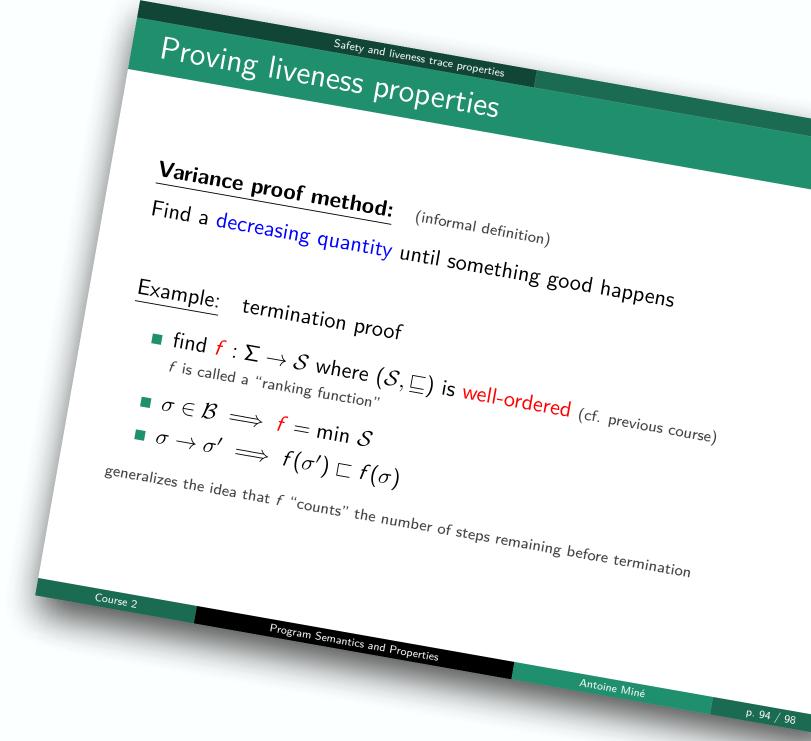


Given a transition system $\langle \Sigma, \tau \rangle$, a **ranking function** is a partial function $f: \Sigma \to \mathcal{W}$ from the set of program states Σ into a well-ordered set $\langle \mathcal{W}, \leq \rangle$ whose value strictly decreases through transitions between states, that is, $\forall \sigma, \sigma' \in \operatorname{dom}(f) \colon (\sigma, \sigma') \in \tau \Rightarrow f(\sigma') < f(\sigma)$

The best known well-ordered sets are **naturals** (\mathbb{N}, \leq) and **ordinals** (\mathbb{O}, \leq)

Lesson 7

Termination Analysis



Ranking Functions Example

 $^{1}x \leftarrow [-\infty, +\infty]$ while $^{2}(1 - x < 0)$ do ³x ← x − 1 od⁴

Programs and executions	
$ \begin{array}{c} {}^{\ell} stat^{\ell} ::= {}^{\ell} X \leftarrow exp^{\ell} \\ {}^{\ell} if \ exp \bowtie 0 \ then \ \ell stat^{\ell} \\ {}^{\ell} while \ \ell exp \bowtie 0 \ do \ \ell stat^{\ell} \ done^{\ell} \\ {}^{\ell} stat; \ \ell \ stat^{\ell} \end{array} $	(assignmen (conditional
$ \begin{array}{c} -exp\\ exp \diamond exp\\ c\\ c\\$	(loop) (sequence) (variable) (negati
Simple structured, numeric lange $(random input, c, c' \in X \in X)$	"ary operat:
• \mathcal{L} , where \mathcal{L} is a finite set of program variables • numeric expressions: $\bowtie \in \{=, \leq, \ldots\}, \diamond \in \{+, -, \times, /\}$ • \mathcal{L} and \mathcal{L} is a finite set of control points • \mathcal{L} is a finite set of control points • \mathcal{L} is a finite set of program variables • \mathcal{L} is a finite set of program variables • \mathcal{L} is a finite set of \mathcal{L} is a finite set of \mathcal{L} is a finite set of \mathcal{L} is a finit	
Program Semantics and Properties Antoine Miné	

Ranking Functions Example (continue)

 $^{1}X \leftarrow [-\infty, +\infty]$ while $^{2}(1 - x < 0)$ do $^{3}x \leftarrow x - 1$ od⁴

 $\Sigma \stackrel{\text{def}}{=} \{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}\} \times \mathscr{C}$ $\tau \stackrel{\text{def}}{=} \{ (\mathbf{1}, \rho) \to (\mathbf{2}, \rho[X \mapsto v]) \mid \rho \in \mathscr{C}, v \in \mathbb{Z} \}$ $\cup \{ (\mathbf{2}, \rho) \to (\mathbf{3}, \rho) \mid \rho \in \mathcal{E}, \exists v \in E \llbracket 1 - x \rrbracket \rho \colon v < 0 \}$ $\cup \{ (\mathbf{3}, \rho) \to (\mathbf{2}, \rho[X \mapsto v]) \mid \rho \in \mathscr{C}, v \in E[[x - 1]]\rho \}$ $\cup \{ (\mathbf{2}, \rho) \to (\mathbf{4}, \rho) \mid \rho \in \mathscr{C}, \exists v \in E[[1 - x]] \rho \colon v \not< 0 \}$

From programs to transition relations $\underline{\mathsf{Transitions:}} \quad \tau[^{\ell}\mathsf{stat}^{\ell'}] \subseteq \Sigma \times \Sigma$ $\tau[{}^{\ell 1}X \leftarrow e^{\ell 2}] \stackrel{\text{def}}{=} \{(\ell 1, \rho) \rightarrow (\ell 2, \rho[X \mapsto v]) | \rho \in \mathcal{E}, v \in E[\![e]\!] \rho\}$ $\begin{array}{l} \mathbf{u} \in \mathbf{v} \cup \mathbf{u} \in \mathbf{u} = \\ \left\{ (\ell \mathbf{1}, \rho) \to (\ell \mathbf{2}, \rho) \mid \rho \in \mathcal{E}, \exists \mathbf{v} \in \mathbf{E} \llbracket e \rrbracket \rho : \mathbf{v} \bowtie \mathbf{0} \right\} \cup \\ \left\{ (\ell \mathbf{1}, \rho) \to (\ell \mathbf{3}, \rho) \mid \rho \in \mathcal{E}, \exists \mathbf{v} \in \mathbf{E} \llbracket e \rrbracket \rho : \mathbf{v} \Join \mathbf{0} \right\} \cup \tau \begin{bmatrix} \ell \mathbf{2} \\ s \ell \mathbf{3} \end{bmatrix} \end{array}$ $\tau [^{\ell_1} \text{while } {}^{\ell_2} e \bowtie 0 \text{ do } {}^{\ell_3} s^{\ell_4} \text{ done} {}^{\ell_5}] \stackrel{\text{def}}{=}$ $\{(\ell 1, \rho) \to (\ell 2, \rho) | \rho \in \mathcal{E} \} \cup \mathcal{I}$ $\{ (\ell_1, \rho) \rightarrow (\ell_2, \rho) | \rho \in \mathcal{E} \} \cup$ $\{ (\ell_2, \rho) \rightarrow (\ell_3, \rho) | \rho \in \mathcal{E}, \exists v \in E \llbracket e \rrbracket \rho: v \bowtie 0 \} \cup \tau \llbracket \ell^3 \mathfrak{s}^{\ell_4} \rrbracket \cup$ $\{ (\ell_2, \rho) \rightarrow (\ell_2, \rho) | \rho \in \mathcal{E} \} \cup \\ \{ (\ell_2, \rho) \rightarrow (\ell_5, \rho) | \rho \in \mathcal{E}, \exists v \in E \llbracket e \rrbracket \rho: v \not\bowtie 0 \}$ $\tau[{}^{\ell_1}s_1; {}^{\ell_2}s_2{}^{\ell_3}] \stackrel{\text{def}}{=} \tau[{}^{\ell_1}s_1{}^{\ell_2}] \cup \tau[{}^{\ell_2}s_2{}^{\ell_3}]$ (expression semantics E[[e]] on next slide) Program Semantics and Properties Antoine Miné P. 8 / 98

12

Ranking Functions Example (continue)

 $^{1}X \leftarrow [-\infty, +\infty]$ while $^{2}(1 - x < 0)$ do $^{3}x \leftarrow x - 1$ od⁴

Most obvious ranking function: a mapping $f: \Sigma \rightarrow \mathbb{O}$ from each program state to (a well-chosen upper bound on) the number of steps until termination

Ranking Functions Example (continue)

 $^{1}x \leftarrow [-\infty, +\infty]$ while $^{2}(1 - x < 0)$ do $^{3}x \leftarrow x - 1$ od⁴

We define the ranking function $f: \Sigma \to \mathbb{O}$ by partitioning with respect to the program control points, i.e., $f: \mathscr{L} \to (\mathscr{E} \to \mathbb{O})$

$$f(\mathbf{4}) \stackrel{\text{def}}{=} \lambda \rho . 0$$

$$f(\mathbf{2}) \stackrel{\text{def}}{=} \lambda \rho . \begin{cases} 1 & 1 - \rho(x) \neq 0 \\ 2\rho(x) - 1 & 1 - \rho(x) < 0 \\ 2\rho(x) - 1 & 1 - \rho(x) < 0 \end{cases}$$

$$f(\mathbf{3}) \stackrel{\text{def}}{=} \lambda \rho . \begin{cases} 2 & 2 - \rho(x) \neq 0 \\ 2\rho(x) - 2 & 2 - \rho(x) < 0 \\ 2\rho(x) - 2 & 2 - \rho(x) < 0 \end{cases}$$

Potential Termination Potential Ranking Functions

For proving potential termination, we use a *weaker* notion of ranking function, which decreases along at least one transition during program execution

Definition

Given a transition system $\langle \Sigma, \tau \rangle$, a **potential ranking function** is a partial function $f: \Sigma \to \mathcal{W}$ from the set of states Σ into a well-ordered set $\langle \mathcal{W}, \leq \rangle$ whose value strictly decreases through at least one transitions from each state, that is, $\forall \sigma \in \text{dom}(f)$: $(\exists \bar{\sigma} \in \text{dom}(f))$: $(\sigma, \bar{\sigma}) \in \tau) \Rightarrow$ $\exists \sigma' \in \operatorname{dom}(f) \colon (\sigma, \sigma') \in \tau \land f(\sigma') < f(\sigma)$

Abstract Interpretation Recipe

practical tools targeting specific programs

algorithmic approaches to decide program properties

mathematical models of the program behavior

Lesson 7

Termination Analysis

þ

16

Abstract Interpretation Recipe

practical tools targeting specific programs

mathematical models of the program behavior

Lesson 7

Termination Analysis

Termination Semantics

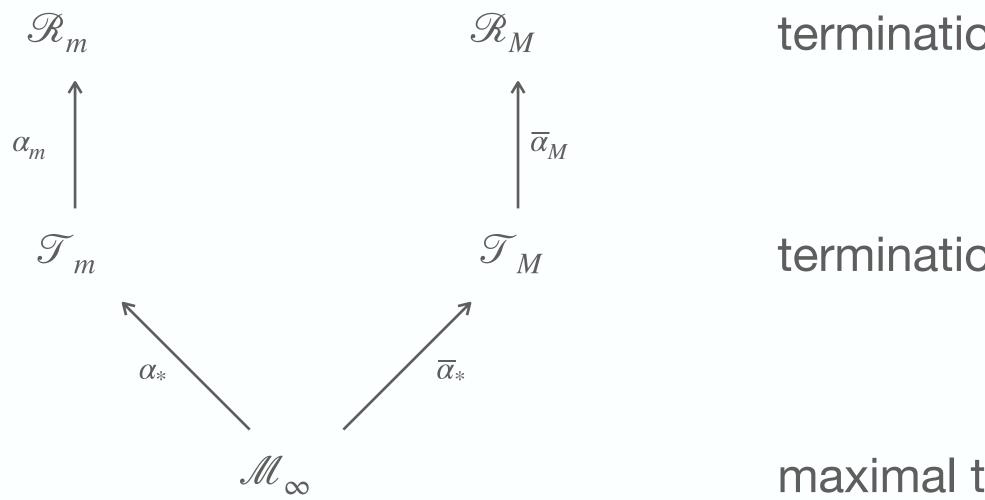
Lesson 7

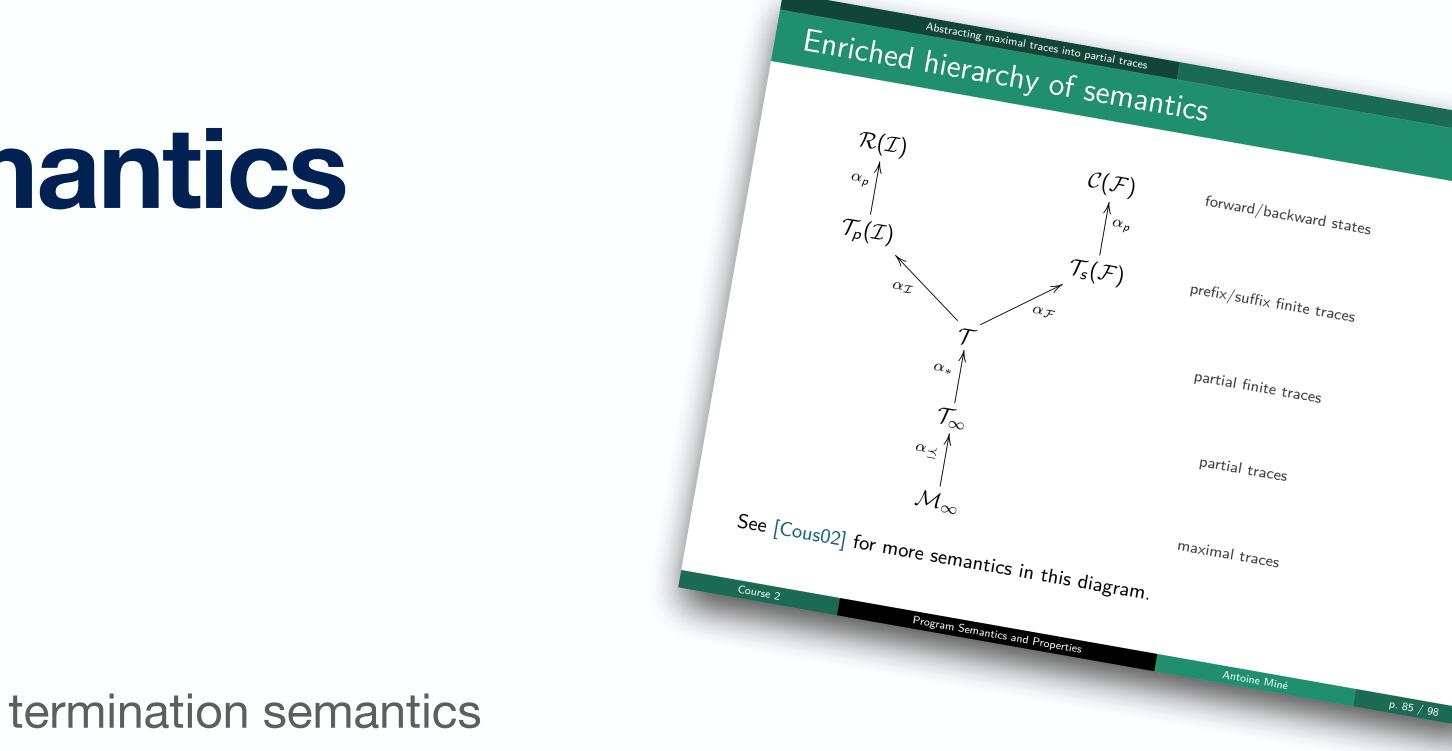
Termination Analysis

Caterina Urban

17

Hierarchy of Semantics

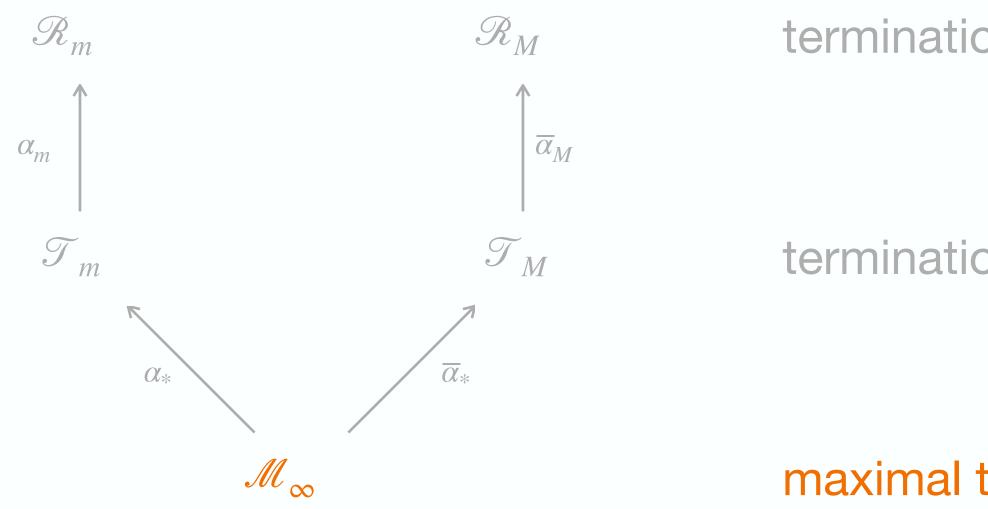


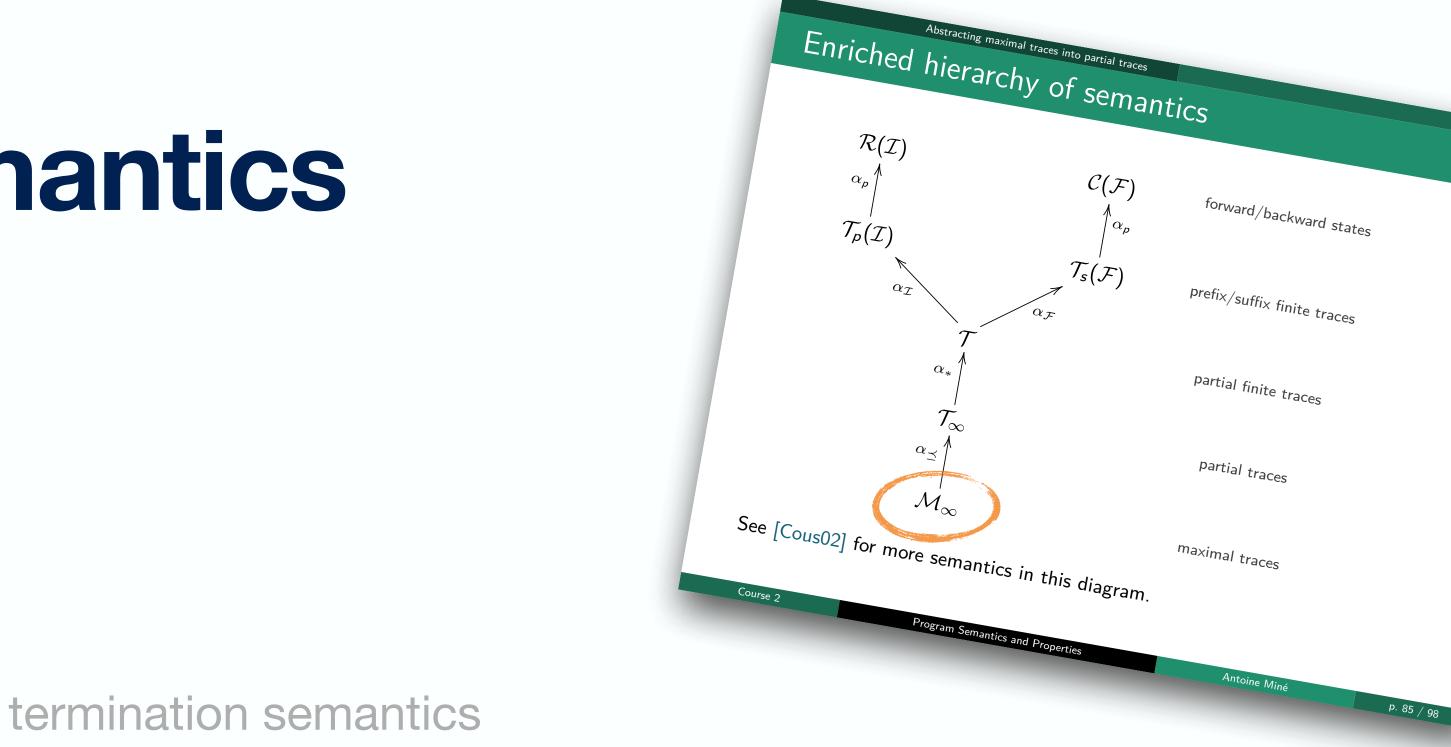


termination trace semantics

maximal trace semantics

Hierarchy of Semantics



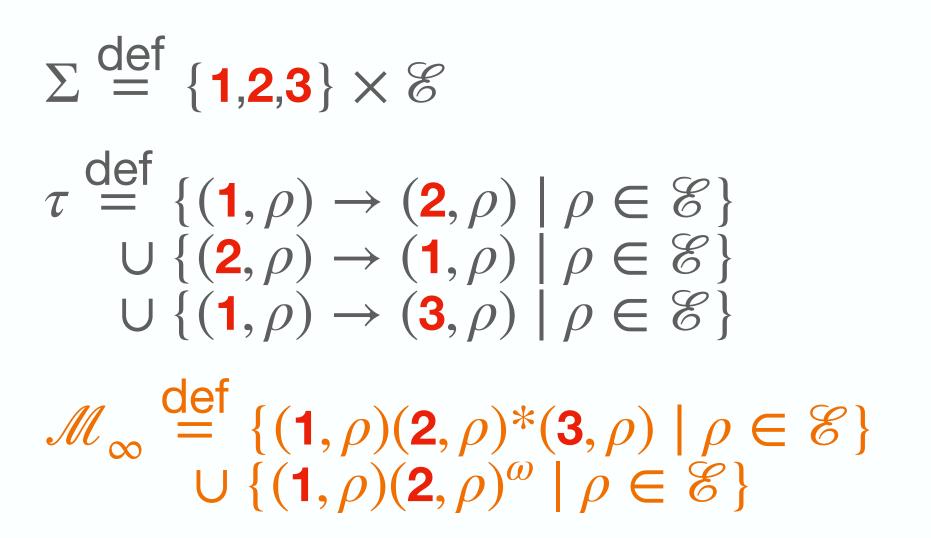


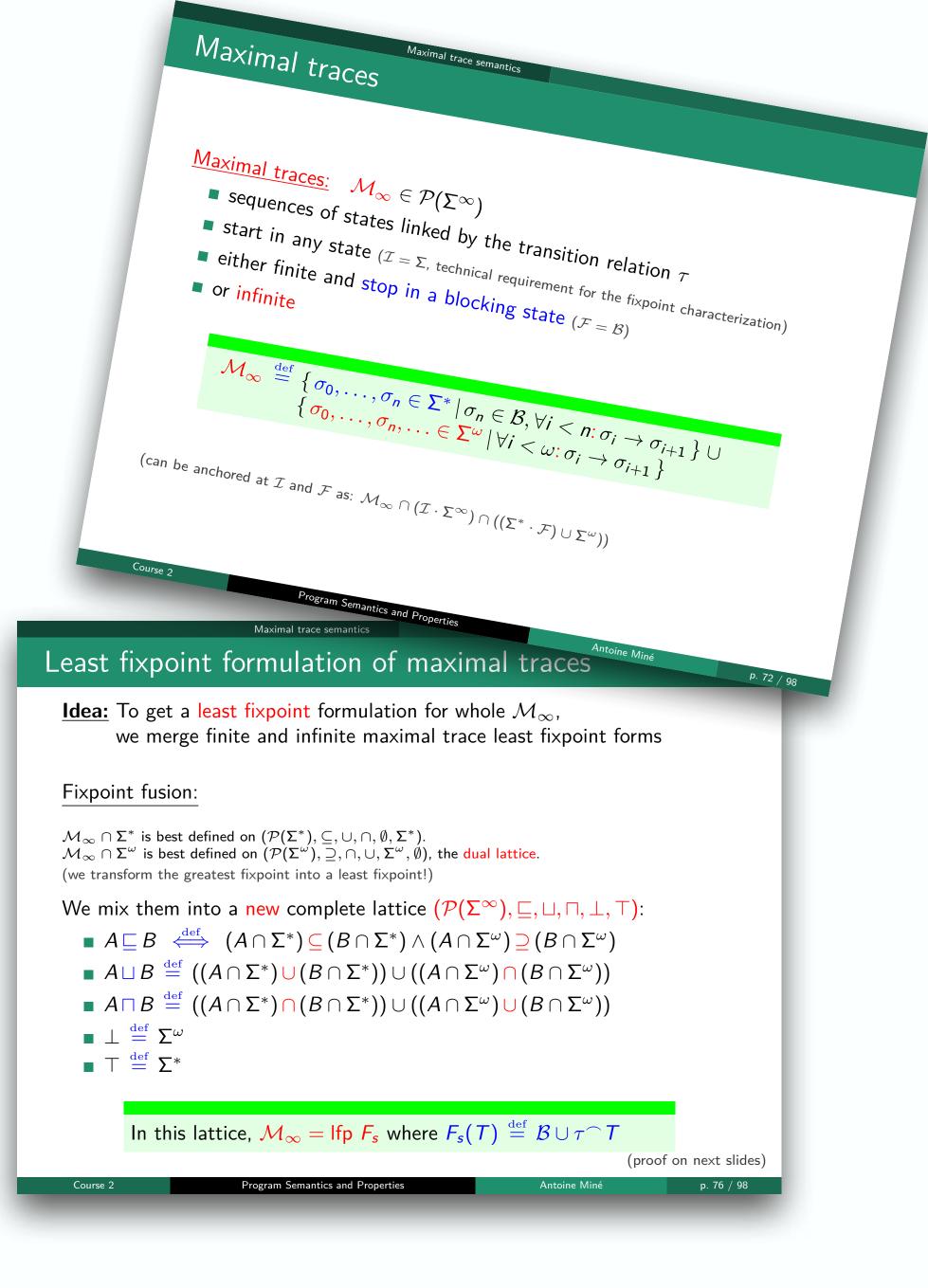
termination trace semantics

maximal trace semantics

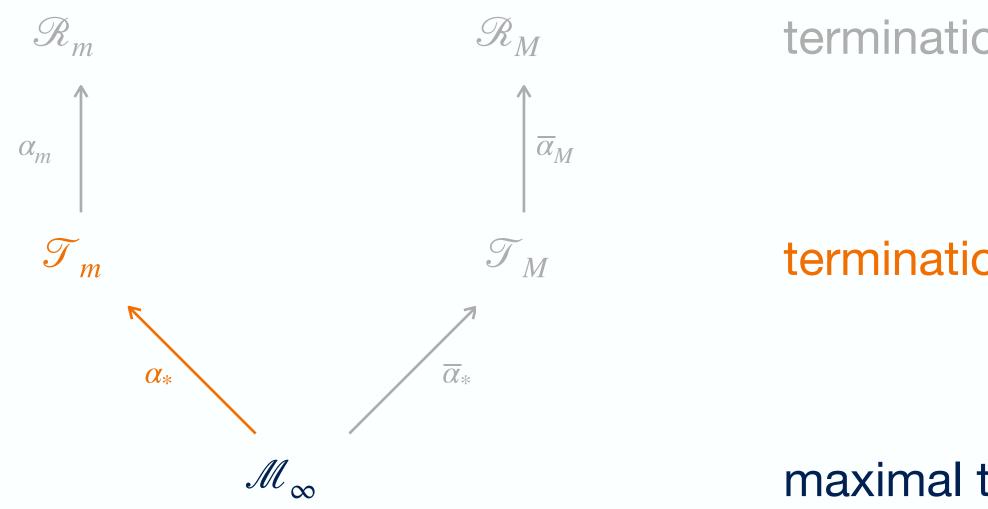
Maximal Trace Semantics Example

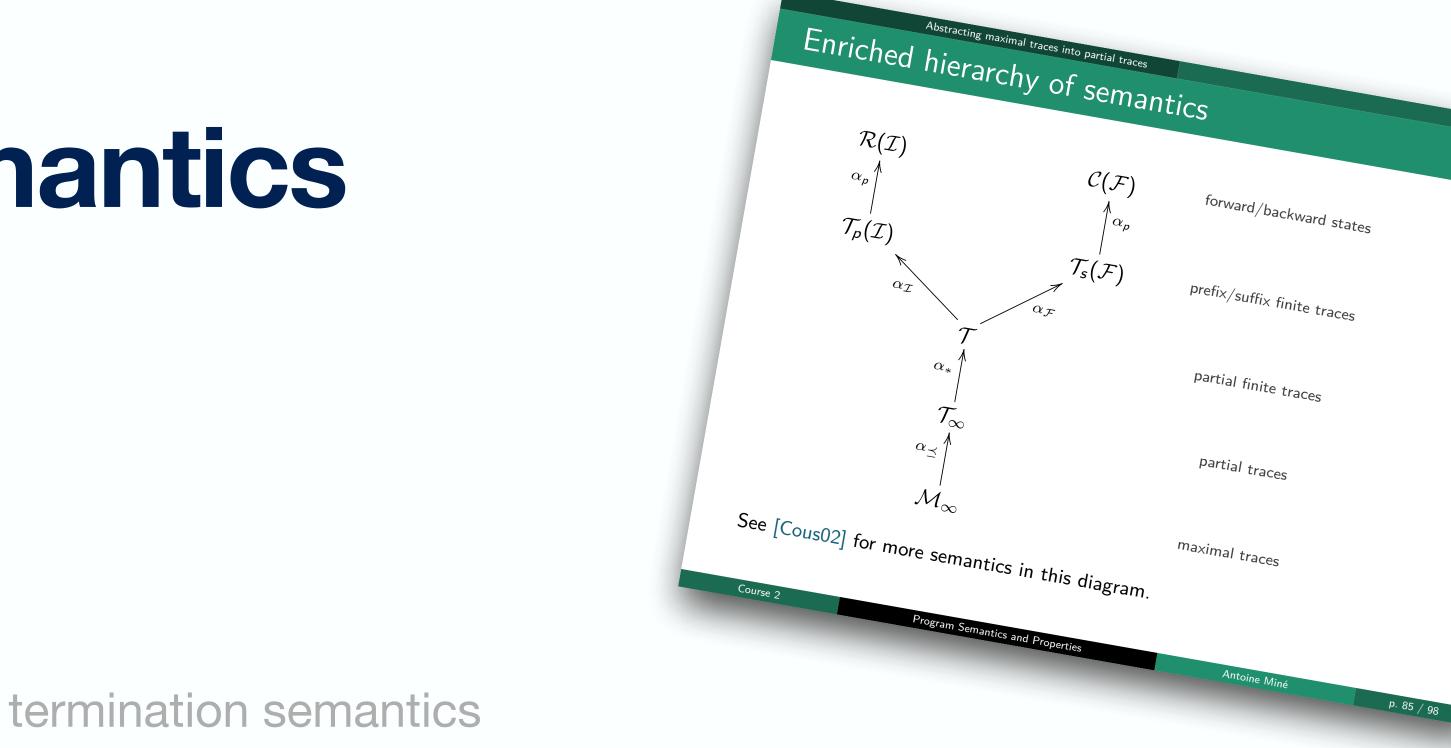
while $1([-\infty, +\infty] \neq 0)$ do 2skip od³





Hierarchy of Semantics





termination trace semantics

maximal trace semantics

Potential Termination Trace Semantics Potential Termination Abstraction

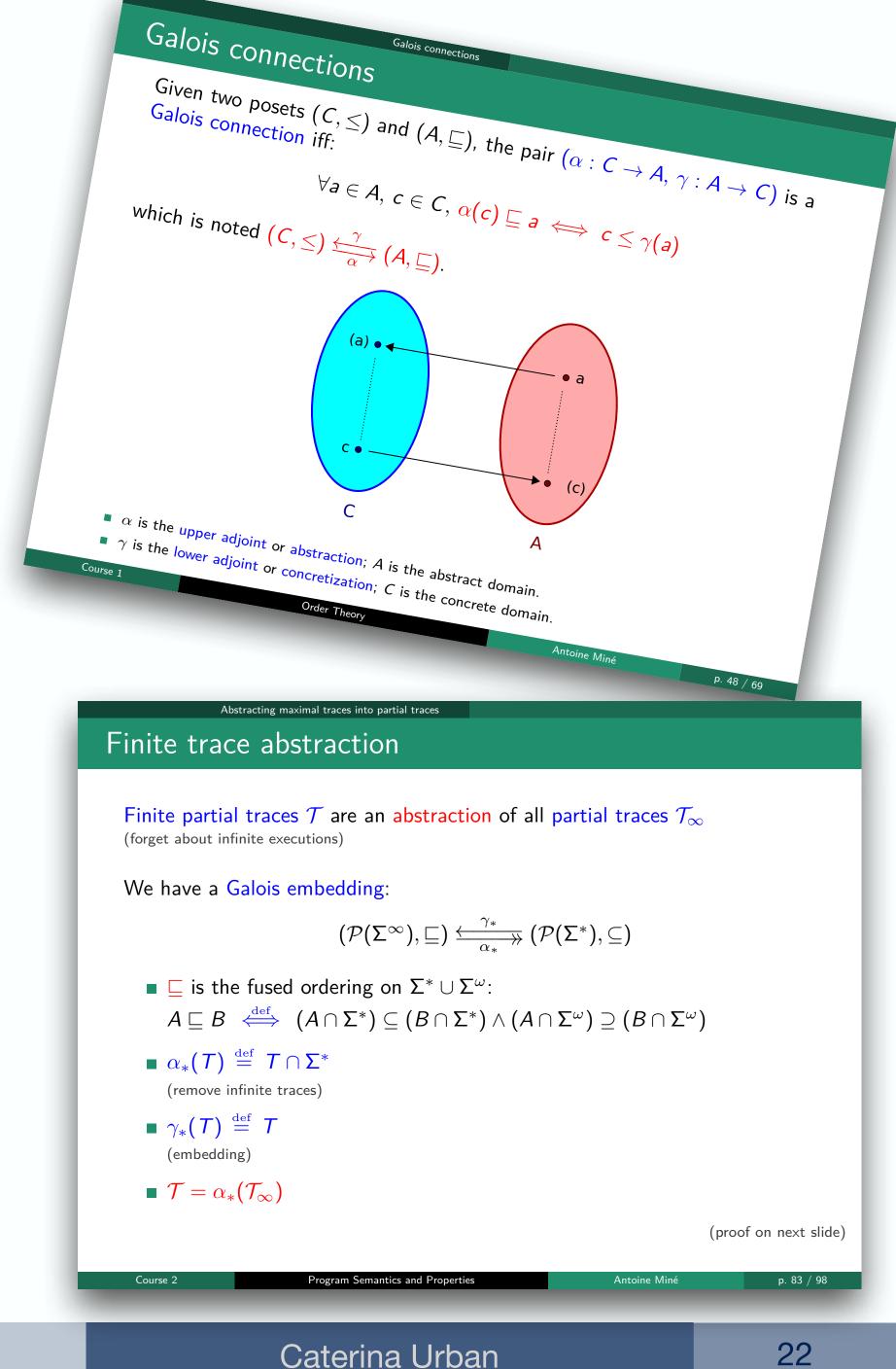
γ_*

 α_*

 $\alpha_*(T) \stackrel{\mathsf{def}}{=} T \cap \Sigma^*$ $\gamma_*(T) \stackrel{\text{def}}{=} T$

Example: $\alpha_*(\{ab, aba, bb, ba^{\omega}\}) = \{ab, aba, bb\}$

Lesson 7



$$(\mathcal{P}(\Sigma^{\infty}),\sqsubseteq) \xleftarrow{\gamma_{*}}{ \alpha_{*}} (\mathcal{P}(\Sigma^{*}),\subseteq)$$

•
$$\mathcal{T} = \alpha_*(\mathcal{T}_\infty)$$

Potential Termination Trace Semantics

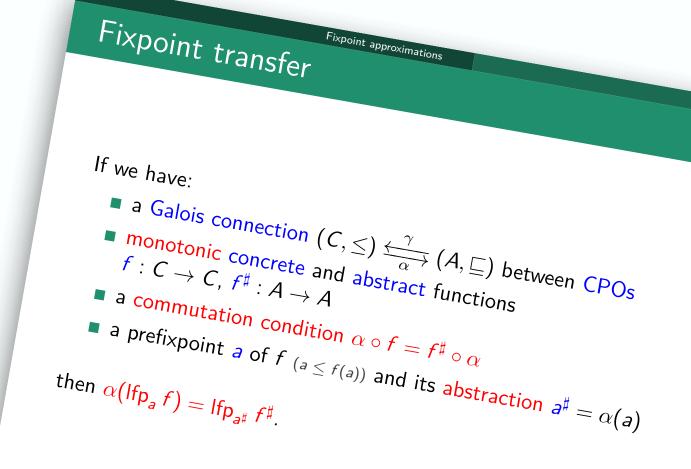
Kleenian Fixpoint Transfer

- $\langle \mathscr{P}(\Sigma^{\infty}), \sqsubseteq \rangle$
- $\mathscr{M}_{\infty} \stackrel{\text{def}}{=} \operatorname{lfp}^{\sqsubseteq} F_{s}$ $F_{s}(T) \stackrel{\text{def}}{=} \mathscr{B} \cup \tau^{\frown} T$

•
$$\langle \mathscr{P}(\Sigma^*), \subseteq \rangle$$

• $\alpha_* \colon \mathscr{P}(\Sigma^{\infty}) \to \mathscr{P}(\Sigma^*)$ $\alpha_*(T) \stackrel{\text{def}}{=} T \cap \Sigma^*$

$$\mathcal{T}_m \stackrel{\text{def}}{=} \alpha_*(\mathcal{M}_\infty) = \operatorname{lfp}^{\subseteq} F_*$$
$$F_*(T) \stackrel{\text{def}}{=} \mathcal{B} \cup \tau^{\frown} T$$



Theorem

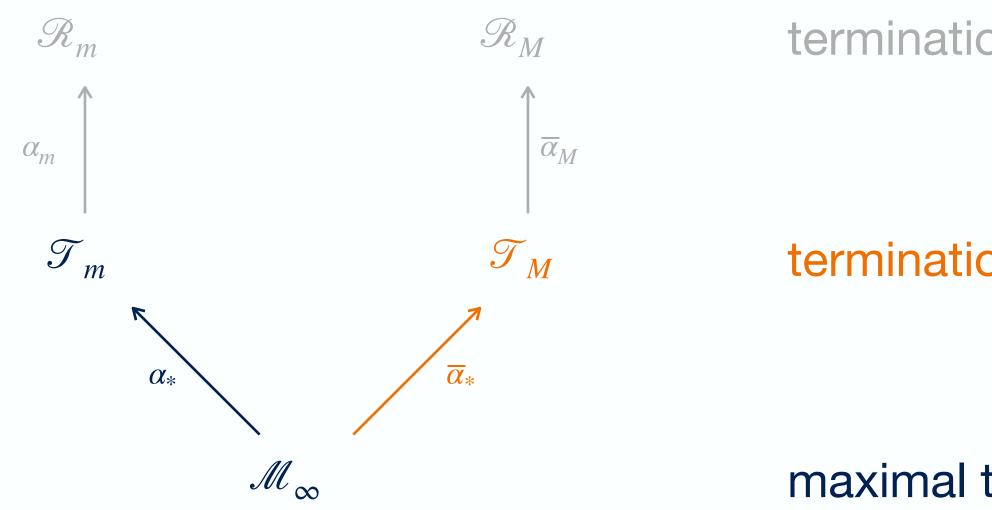
Let $\langle C, \leq \rangle$ and $\langle A, \sqsubseteq \rangle$ be complete partial orders, let $f: C \to C$ and $f^{\#}: A \to A$ be monotonic functions, and let $\alpha \colon C \to A$ be a continous abstraction function such that $\alpha(a) = a^{\#}$, for $a \in C$ and $a^{\#} \in A$, and that satisfies the commutation condition $\alpha \circ f = f^{\#} \circ \alpha$. Then, we have the fixpoint abstraction $\alpha(\mathsf{lfp}_a^{\leq} f) = \mathsf{lfp}_{a^{\#}}^{\sqsubseteq} f^{\#}.$

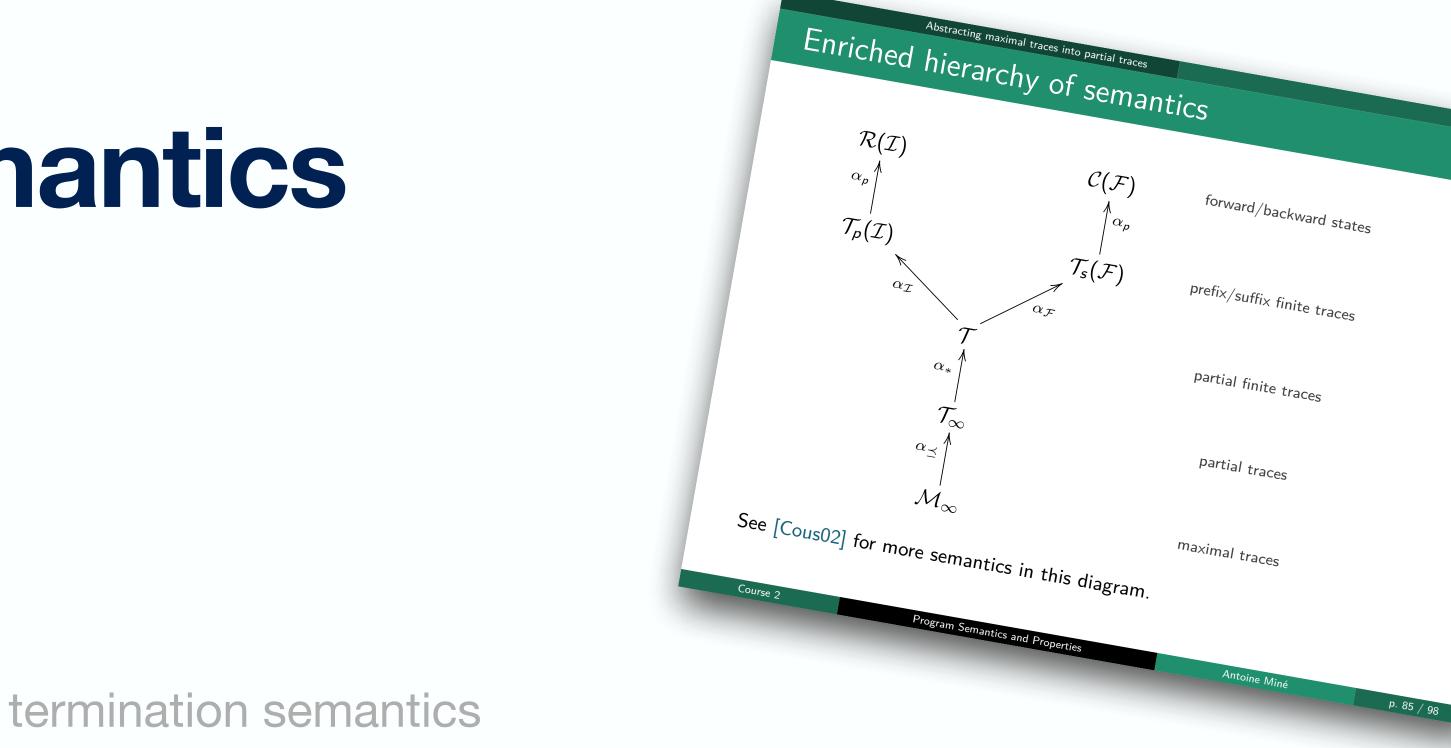
Potential Termination Trace Semantics Example

while $([-\infty, +\infty] \neq 0)$ do ²skip od³

$$\mathcal{M}_{\infty} \stackrel{\text{def}}{=} \{ (\mathbf{1}, \rho)(\mathbf{2}, \rho)^* (\mathbf{3}, \rho) \mid \rho \in \mathscr{C} \} \\ \cup \{ (\mathbf{1}, \rho)(\mathbf{2}, \rho)^{\omega} \mid \rho \in \mathscr{C} \} \\ \mathcal{T}_{m} \stackrel{\text{def}}{=} \{ (\mathbf{1}, \rho)(\mathbf{2}, \rho)^* (\mathbf{3}, \rho) \mid \rho \in \mathscr{C} \}$$

Hierarchy of Semantics

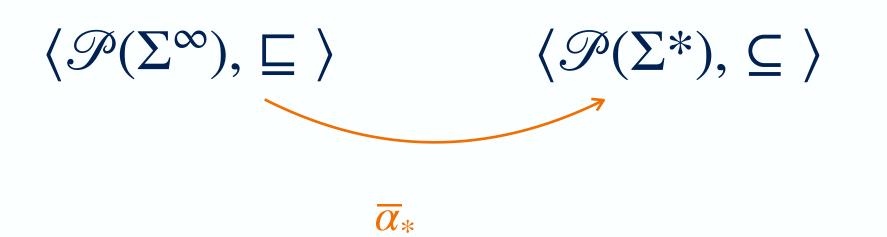




termination trace semantics

maximal trace semantics

Definite Termination Trace Semantics Definite Termination Abstraction



 $\overline{\alpha}_*(T) \stackrel{\text{def}}{=} \{ t \in T \cap \Sigma^* \mid \text{nhdb}(t, T \cap \Sigma^\omega) = \emptyset \}$ nhdb $(t, T) \stackrel{\text{def}}{=} \{t' \in T \mid pf(t) \cap pf(t') \neq \emptyset\}$ $pf(t) \stackrel{\text{def}}{=} \{t' \in \Sigma^{\infty} \setminus \{\epsilon\} \mid \exists t'' \in \Sigma^{\infty} \colon t = t' \cdot t''\}$

Example: $\alpha_*(\{ab, aba, bb, ba^{\omega}\}) = \{ab, aba\} \text{ since } pf(bb) \cap pf(ba^{\omega}) = \{b\} \neq \emptyset$

Lesson 7

Definite Termination Trace Semantics

- **Tarskian Fixpoint Transfer**
- $\langle \mathscr{P}(\Sigma^{\infty}), \sqsubseteq, \sqcup, \sqcap, \Sigma^{\omega}, \Sigma^* \rangle$
- $\mathscr{M}_{\infty} \stackrel{\text{def}}{=} \operatorname{lfp}^{\sqsubseteq} F_{s}$ $F_{s}(T) \stackrel{\text{def}}{=} \mathscr{B} \cup \tau^{\frown} T$
- $\langle \mathscr{P}(\Sigma^*), \subseteq, \cup, \cap, \emptyset, \Sigma^* \rangle$
- $\overline{\alpha}_* \colon \mathscr{P}(\Sigma^\infty) \to \mathscr{P}(\Sigma^*)$

$$\mathcal{T}_{M} \stackrel{\text{def}}{=} \overline{\alpha}_{*}(\mathcal{M}_{\infty}) = \operatorname{lfp}^{\subseteq} \overline{F}_{*}$$
$$\overline{F}_{*}(T) \stackrel{\text{def}}{=} \mathscr{B} \cup ((\tau^{\frown}T) \cap (\Sigma^{+} \setminus (\tau^{\frown}(\Sigma^{+} \setminus T)))))$$

Theorem

Let $\langle C, \leq, \vee, \wedge, \perp, \top \rangle$ and $\langle A, \sqsubseteq, \sqcup, \Pi, \bot^{\#}, T^{\#} \rangle$ be complete lattices, let $f: C \to C$ and $f^{\#}: A \to A$ be monotonic functions, and let $\alpha \colon C \to A$ be an abstraction function that is a complete \wedge -morphism $(\forall S \subseteq C \colon f(\land S) = \sqcap \{f(s) \mid s \in S\})$ and that satisfies $f^{\#} \circ \alpha \sqsubseteq \alpha \circ f$ and the post-fixpoint correspondence $\forall a^{\#} \in A \colon f^{\#}(a^{\#}) \sqsubseteq a^{\#} \Rightarrow$ $\exists a \in C : f(a) \leq d \wedge \alpha(a) = a^{\#}$ (i.e., each abstract post-fixpoint of $f^{\#}$ is the abstraction by α of some concrete post-fixpoint of *f*). Then, we have the fixpoint abstraction $\alpha(Ifp^{\leq}f) = Ifp^{\sqsubseteq}f^{\#}$.

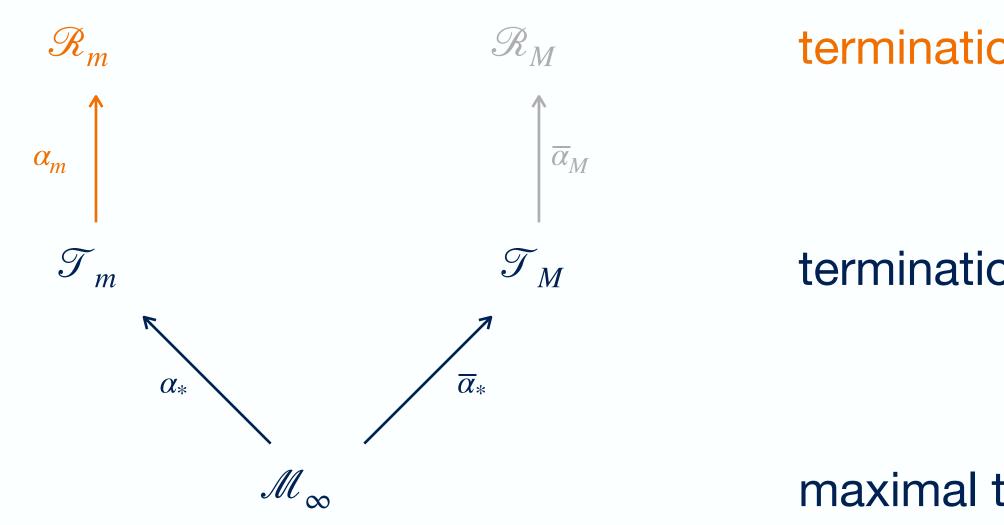
(see proof in [Cousot02])

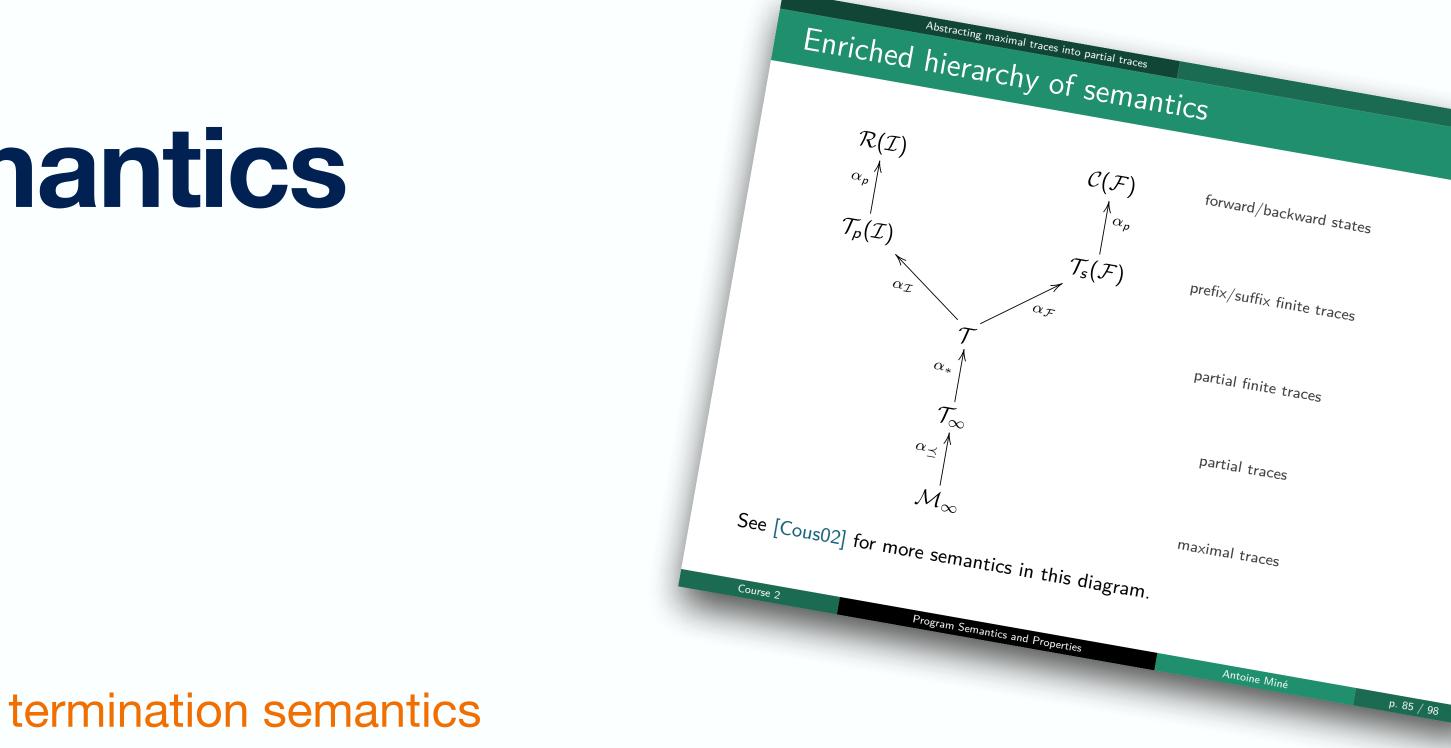
Definite Termination Trace Semantics Example

while $([-\infty, +\infty] \neq 0)$ do ²skip od³

$$\begin{aligned} \mathcal{M}_{\infty} & \stackrel{\text{def}}{=} \{ (\mathbf{1}, \rho) (\mathbf{2}, \rho)^* (\mathbf{3}, \rho) \mid \rho \in \mathscr{E} \} \\ & \cup \{ (\mathbf{1}, \rho) (\mathbf{2}, \rho)^{\omega} \mid \rho \in \mathscr{E} \} \end{aligned} \\ \\ \mathcal{T}_{M} & \stackrel{\text{def}}{=} \emptyset \end{aligned}$$

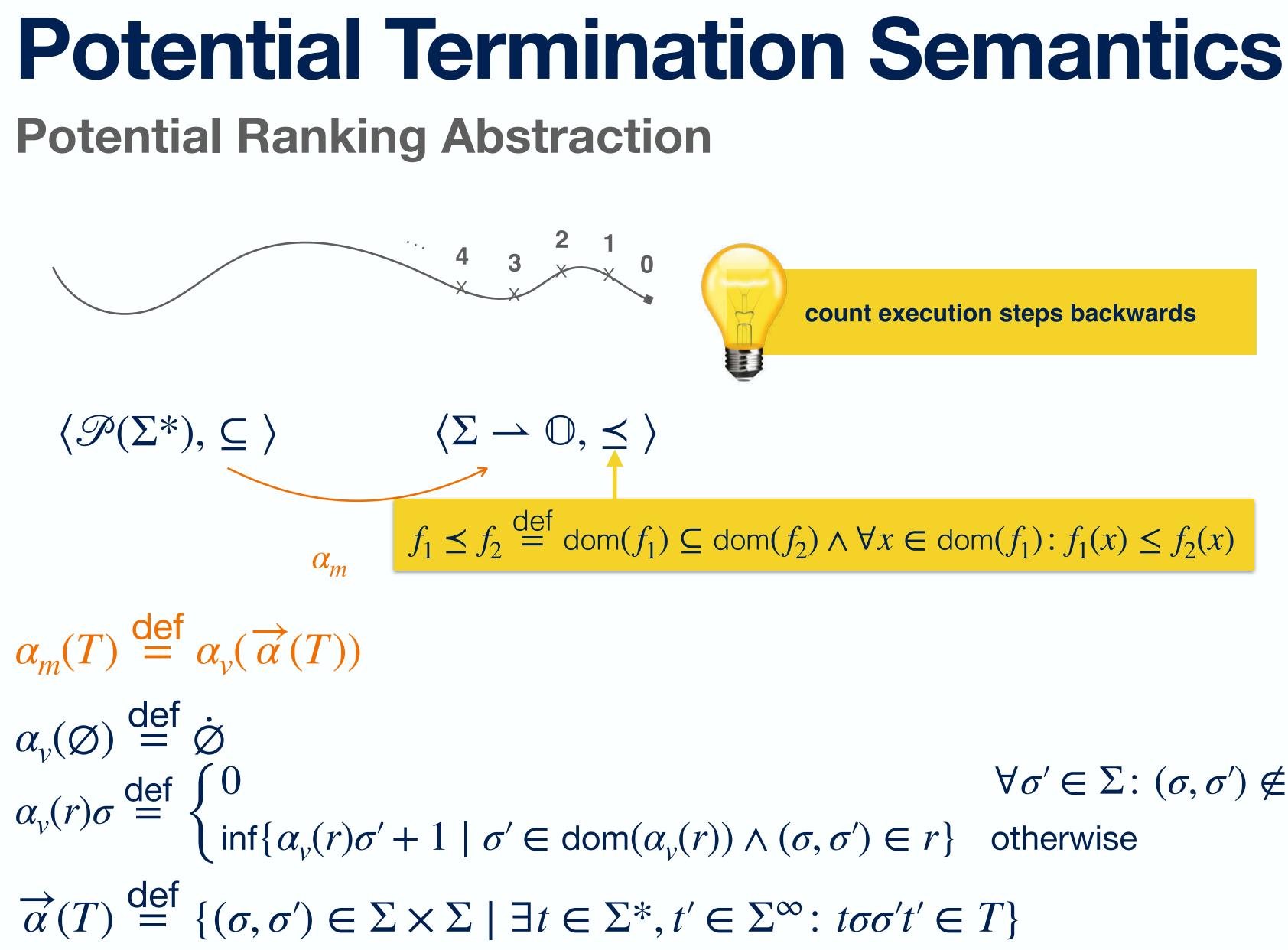
Hierarchy of Semantics





termination trace semantics

maximal trace semantics

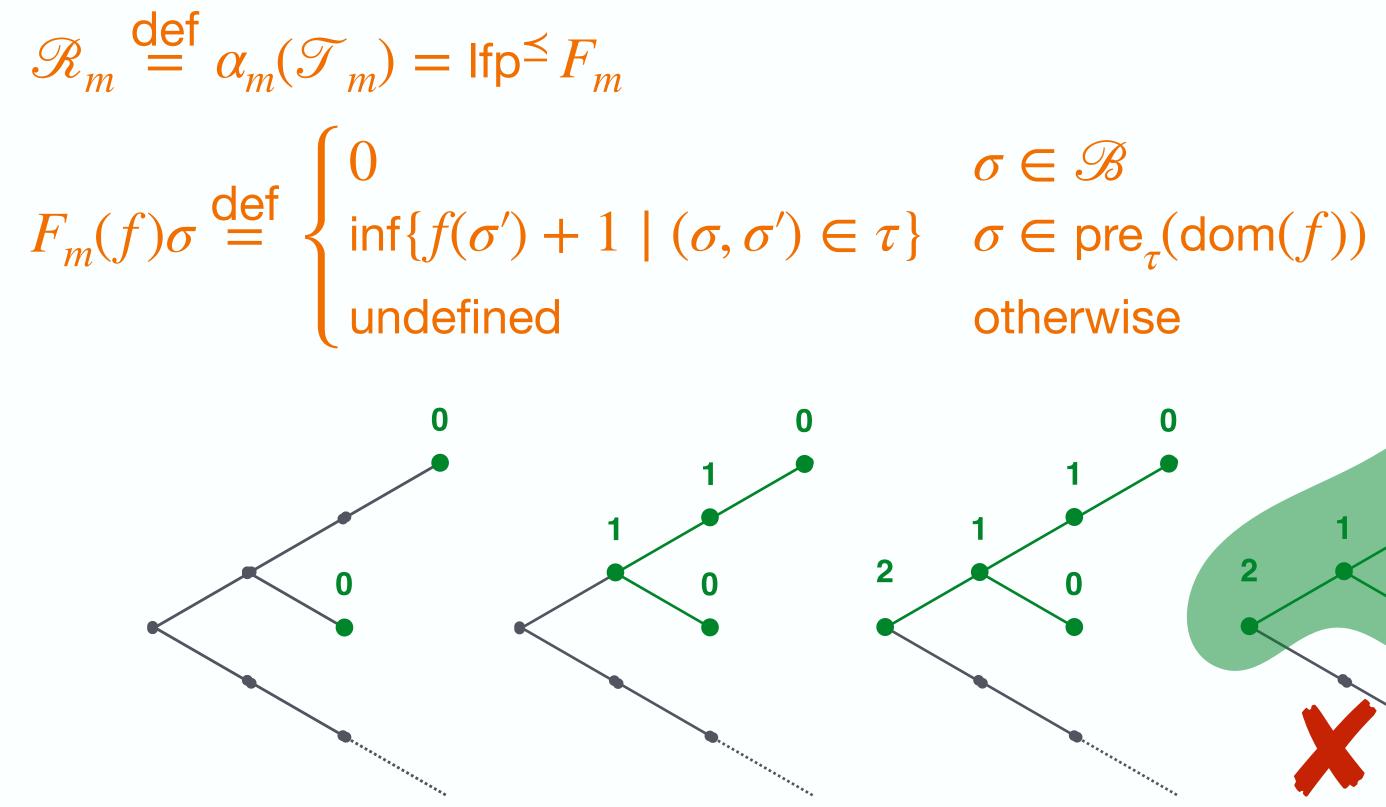


count execution steps backwards

$$\land \forall x \in \text{dom}(f_1) \colon f_1(x) \le f_2(x)$$

$\forall \sigma' \in \Sigma \colon (\sigma, \sigma') \notin r$

Potential Termination Semantics



Theorem

A program may terminate for traces starting from a set of initial state \mathscr{I} if and only if $\mathscr{I} \subseteq \operatorname{dom}(\mathscr{R}_m)$

Lesson 7

Termination Analysis

Potential Termination Semantics Exercise

Show that the following fixpoint definition of the potential termination semantics does not guarantee the existence of a least fixpoint:

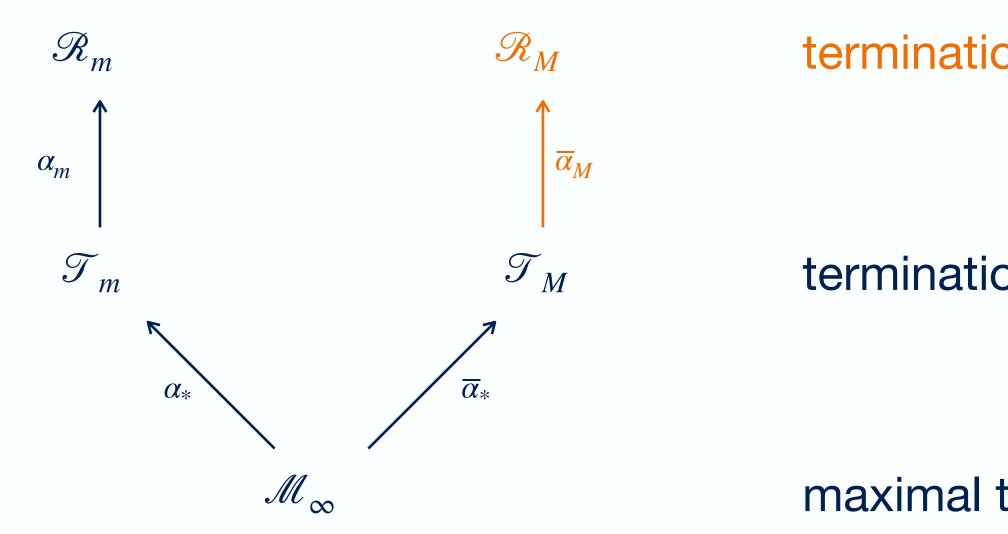
$$\mathcal{R}_{m} \stackrel{\text{def}}{=} \alpha_{m}(\mathcal{T}_{m}) = \operatorname{lfp}^{\leq} F_{m}$$

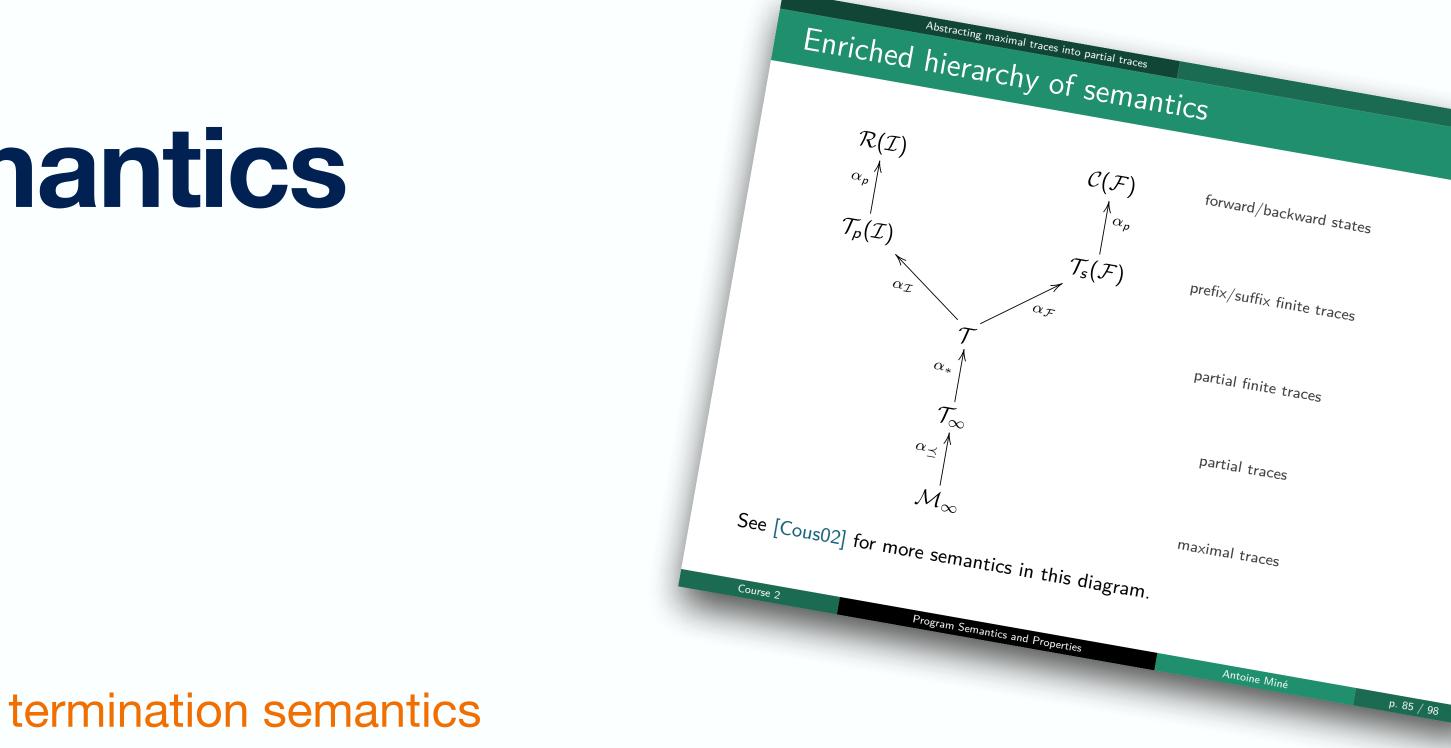
$$F_{m}(f)\sigma \stackrel{\text{def}}{=} \begin{cases} 0 \\ \sup\{f(\sigma') + 1 \mid (\sigma, \sigma') \in \tau \\ \text{undefined} \end{cases}$$

Hint: find a program for which the values of the iterates of the potential termination semantics are always increasing

- $\sigma \in \mathscr{B}$ $\sigma \in \operatorname{pre}_{\tau}(\operatorname{dom}(f))$ otherwise

Hierarchy of Semantics



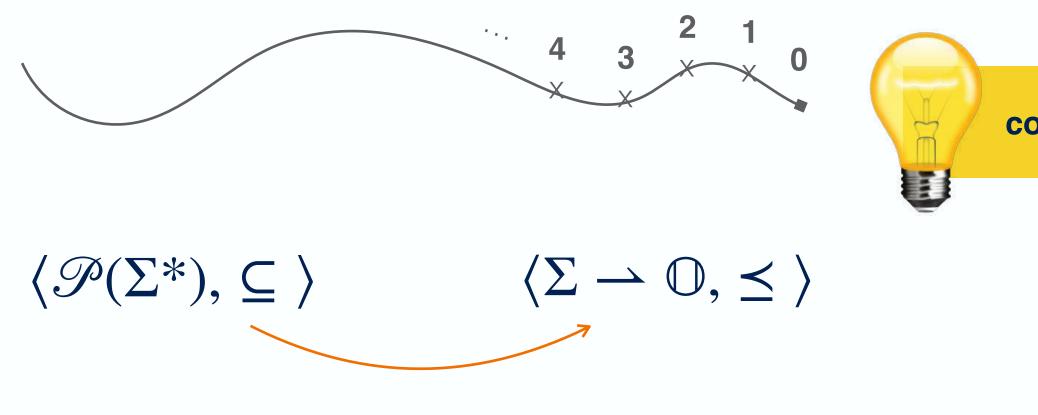


termination trace semantics

maximal trace semantics

Definite Termination Semantics

Ranking Abstraction



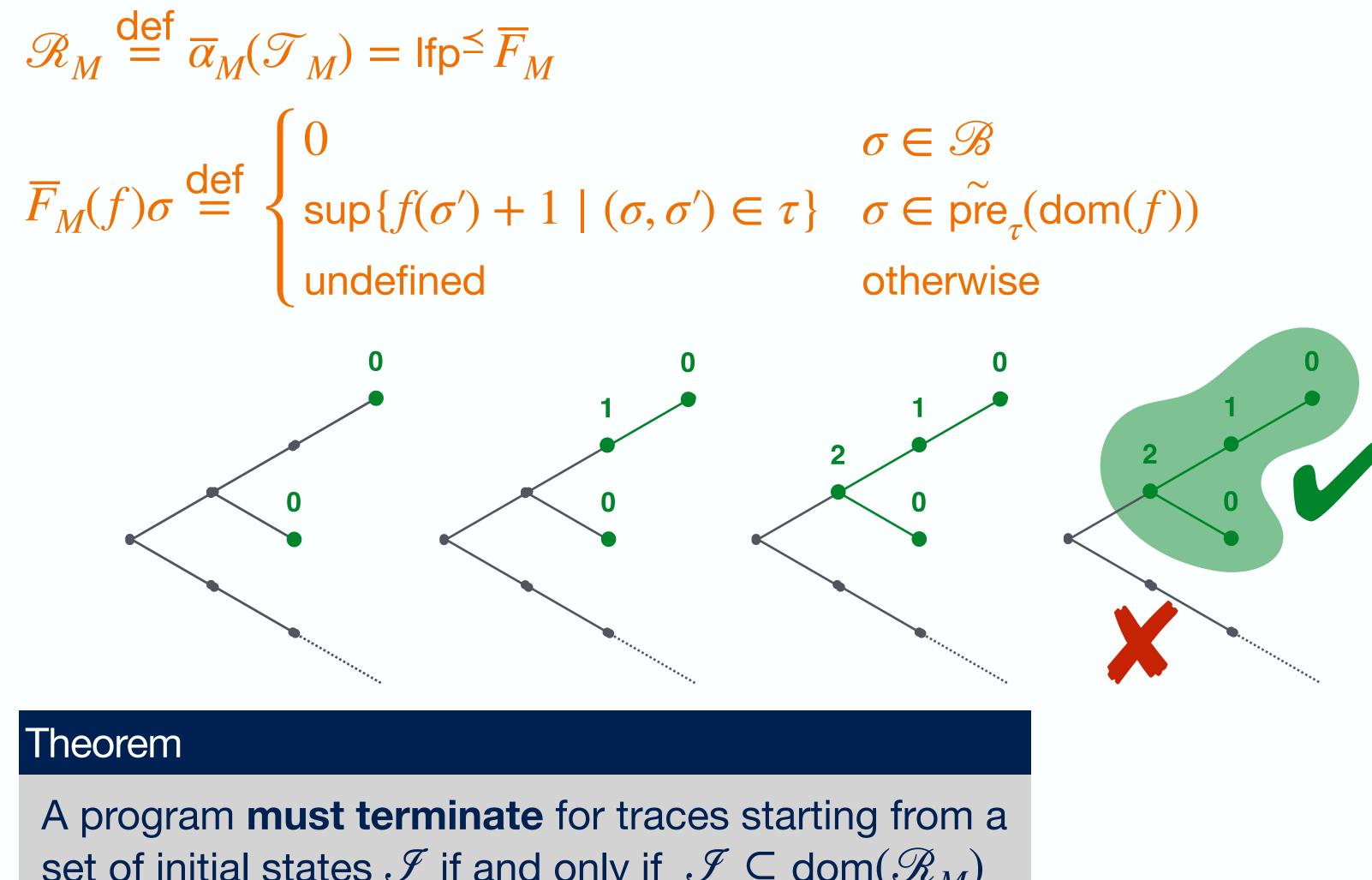
 α_m

 $\overline{\alpha}_{M}(T) \stackrel{\text{def}}{=} \overline{\alpha}_{V}(\overrightarrow{\alpha}(T))$
$$\begin{split} \overline{\alpha}_{V}(\emptyset) &\stackrel{\text{def}}{=} \dot{\emptyset} & \forall \sigma' \in \Sigma: (\\ \overline{\alpha}_{V}(r)\sigma &\stackrel{\text{def}}{=} \begin{cases} 0 & \forall \sigma' \in \Sigma: (\\ \sup\{\overline{\alpha}_{V}(r)\sigma' + 1 \mid \sigma' \in \operatorname{dom}(\overline{\alpha}_{V}(r)) \land (\sigma, \sigma') \in r\} & \text{otherwise} \end{cases} \end{split}$$
 $\overrightarrow{\alpha}(T) \stackrel{\text{def}}{=} \{ (\sigma, \sigma') \in \Sigma \times \Sigma \mid \exists t \in \Sigma^*, t' \in \Sigma^{\infty} \colon t\sigma\sigma't' \in T \}$

count execution steps backwards

$\forall \sigma' \in \Sigma \colon (\sigma, \sigma') \notin r$

Definite Termination Semantics

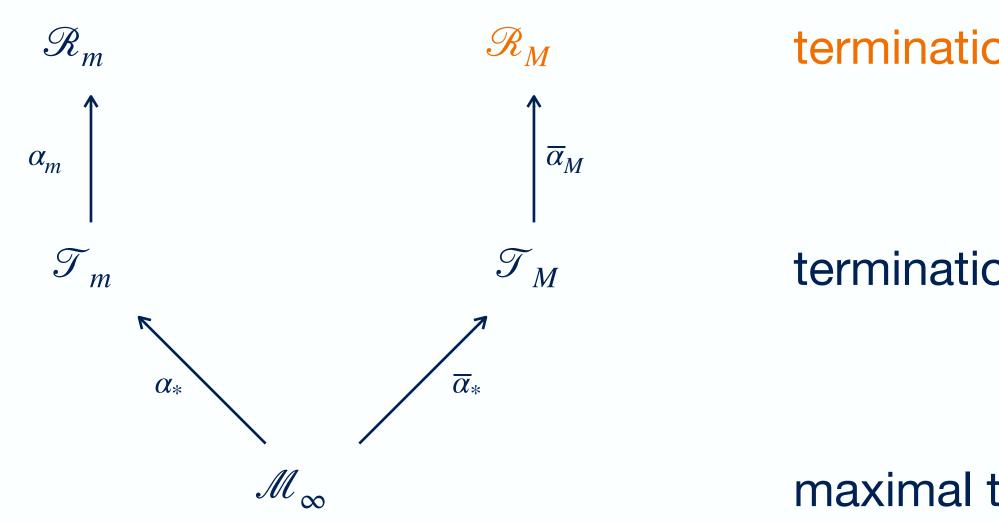


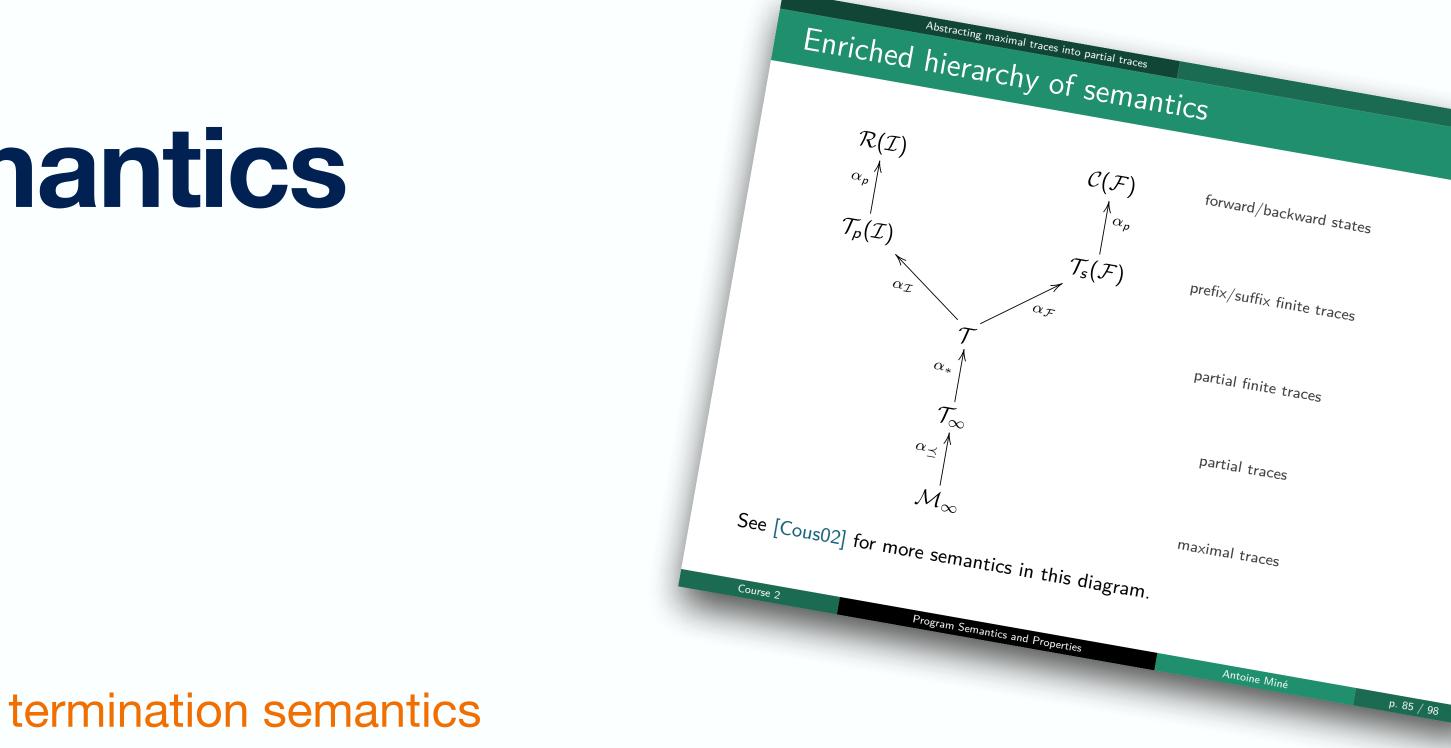
set of initial states \mathscr{I} if and only if $\mathscr{I} \subseteq \operatorname{dom}(\mathscr{R}_M)$

Lesson 7

Termination Analysis

Hierarchy of Semantics





termination trace semantics

maximal trace semantics

Denotational Definite Termination Semantics

We define the definite termination semantics $\mathscr{R}_M: \Sigma \to \mathbb{O}$ by partitioning with respect to the program control points, i.e.,

 $\mathscr{R}_M: \mathscr{L} \to (\mathscr{E} \to \mathbb{O}).$ Thus, for each program instruction stat, we define a transformer

 $\mathscr{R}_{M}[[stat]]: (\mathscr{E} \rightarrow \mathbb{O}) \rightarrow (\mathscr{E} \rightarrow \mathbb{O}):$

- $\mathscr{R}_{M}[[{}^{\ell}X \leftarrow e]]$
- \mathscr{R}_{M} [[if $\ell e \bowtie 0$ then s]]
- $\mathscr{R}_{\mathcal{M}}[[\text{while } e \bowtie 0 \text{ do } s \text{ done}]]$
- $\mathscr{R}_M[[s_1; s_2]]$

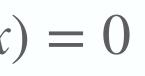
Programs and executions Language Syntax	
$ \begin{array}{c} {}^{\ell} \operatorname{stat}^{\ell} & ::= \ {}^{\ell} X \leftarrow \exp^{\ell} \\ & \ {}^{\ell} \operatorname{if} \exp \bowtie 0 \operatorname{then} {}^{\ell} \operatorname{stat}^{\ell} \\ & \ {}^{\ell} \operatorname{while} {}^{\ell} \exp \bowtie 0 \operatorname{do} {}^{\ell} \operatorname{stat}^{\ell} \\ {}^{\ell} \operatorname{stat}; {}^{\ell} \operatorname{stat}^{\ell} \\ \operatorname{exp} & ::= \ X \\ & \ {}^{-\operatorname{exp}} \\ & \ {}^{\operatorname{exp} \diamond \exp} \\ & \ {}^{\ell} \operatorname{exp} \diamond \exp \\ & \ {}^{\ell} \operatorname{exp} \diamond \exp \\ & \ {}^{\ell} \operatorname{exp} \diamond \exp \\ \\ & \ {}^{\ell} \operatorname{exp} \langle \operatorname{exp} \rangle \\ \end{array} $	(loop (sequence) (variable) (negation) (binary operation)
Simple structured, numeric language $X \in V$, where V is a finit	input, $c, c' \in \mathbb{Z} \cup \{\pm c, c\}$
$\begin{aligned} & X \in \mathbb{V}, \text{ where } \mathbb{V} \text{ is a finite set of program value} \\ & & \mathcal{X} \in \mathbb{V}, \text{ where } \mathbb{V} \text{ is a finite set of program value} \\ & & \mathcal{U} \in \mathcal{L}, \text{ where } \mathcal{L} \text{ is a finite set of control points} \\ & & \text{numeric expressions: } & & & \in \{=, \leq, \ldots\}, & & \in \{=, \leq, \ldots\}, & \in \{=, \in, \ldots\}, & \in \{=, \leq, \ldots\}, & \in \{=, \in, \ldots\}, & \in \{=, \leq, \ldots\}, & \in \{=, \leq, \ldots\}, & \in \{=, \in, \ldots\}, \\ \{=, \in, \ldots\}, \{=, \in, \ldots\}, \\ \{=, \in, \ldots\}, \\$	iables $\{x, -, \times, /\}$

Denotational Definite Termination Semantics $\mathscr{R}_{M}\llbracket^{\ell}X \leftarrow e\rrbracket$

$$\mathscr{R}_{M}\llbracket^{\mathscr{C}}X \leftarrow e\rrbracket f \stackrel{\text{def}}{=} \lambda\rho . \begin{cases} \sup\{f(\rho[X \mapsto v])+1 \mid v \in V\} \\ \forall v \in V \\ \text{undefined} \end{cases}$$

Example:
Let
$$\mathbb{V} = \{x\}$$
 and $f: \mathscr{C} \to \mathbb{O}$ defined as follows:
 $f(\rho) \stackrel{\text{def}}{=} \begin{cases} 2 & \rho(x) = 1 \\ 3 & \rho(x) = 2 \\ \text{undefined otherwise} \end{cases}$
We have
 $\mathscr{R}_M[[x \leftarrow x + [1,2]]]f \stackrel{\text{def}}{=} \lambda \rho . \begin{cases} 4 & \rho(x) \\ \text{undefined otherwise} \end{cases}$

 $\exists E[[e]]\rho \} \qquad \exists \bar{v} \in E[[e]]\rho \land$ $E[\![e]\!]\rho \colon \rho[X \mapsto v] \in \operatorname{dom}(f)$ otherwise



erwise

Denotational Definite Termination Semantics $\mathscr{R}_{M}[[\text{if } e \bowtie 0 \text{ then } s]]$

$$\mathscr{R}_{M}[[\text{if } e \bowtie 0 \text{ then } s]] f \stackrel{\text{def}}{=} \lambda \rho . \begin{cases} 1 \\ 2 \\ 3 \\ 0 \end{cases}$$
 undefined

 $\sup\{\mathscr{R}_{M}[[s]]f(\rho) + 1, f(\rho) + 1\} \quad \rho \in \operatorname{dom}(\mathscr{R}_{M}[[s]]f) \cap \operatorname{dom}(f) \land$

 $\mathscr{R}_M[[s]]f(\rho) + 1$

 $\left(\begin{array}{c} \end{array} \right)$

 $f(\rho) + 1$ 3)


```
otherwise
```

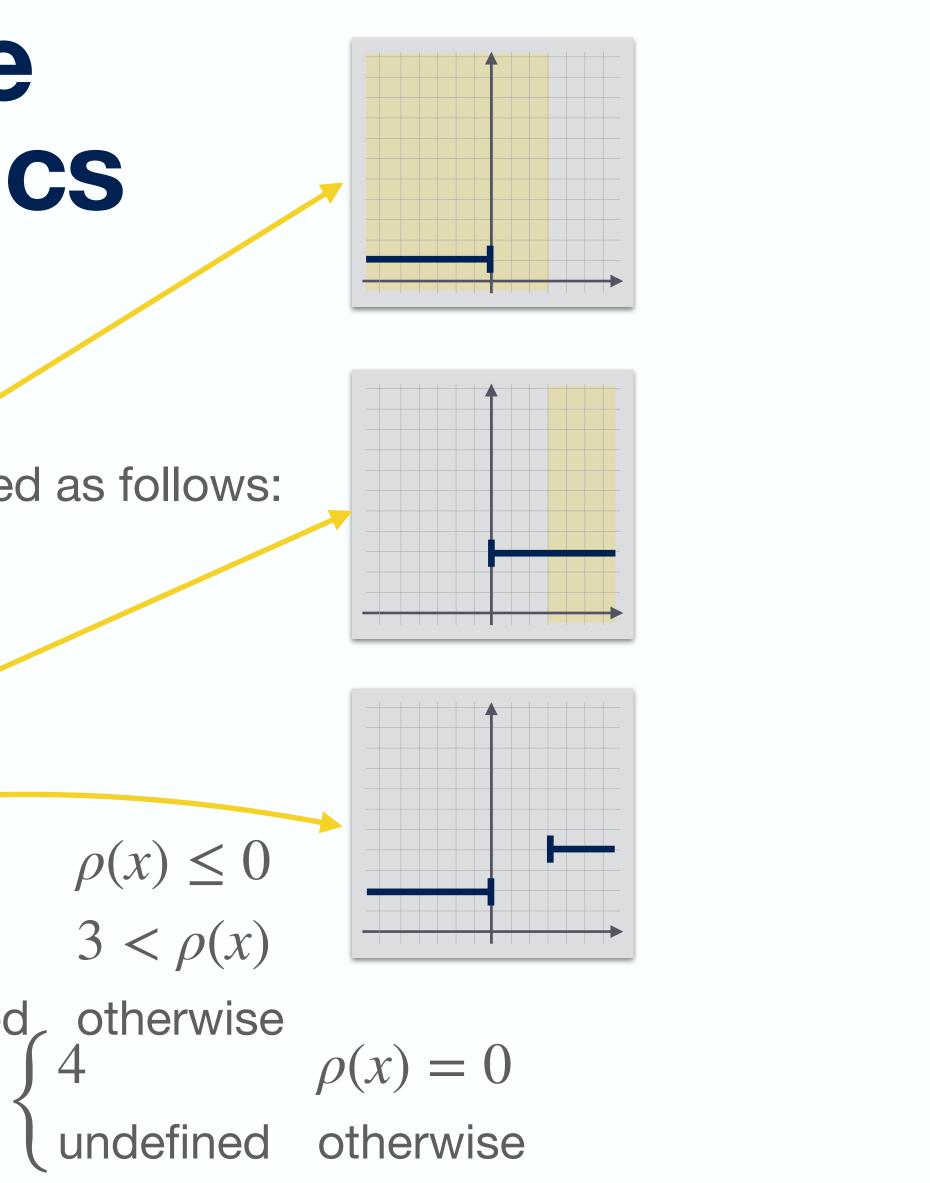
```
\exists v_1, v_2 \in E[[e]]\rho \colon v_1 \bowtie 0 \land v_2 \bowtie 0
```

```
\rho \in \operatorname{dom}(\mathscr{R}_M[[s]]f) \land
 \forall v \in E[[e]] \rho \colon v \bowtie 0
```

```
\rho \in \operatorname{dom}(f) \land \forall v \in E[[e]] \rho \colon v \bowtie 0
```


Denotational Definite Termination Semantics $\mathscr{R}_{M}[[if \ e \bowtie 0 \text{ then } s]]$ (continue)

Example:
Let
$$\mathbb{V} = \{x\}$$
 and $f: \mathscr{C} \to \mathbb{O}$, and $\mathscr{R}_{M}[s]$ define
 $f \stackrel{\text{def}}{=} \lambda \rho . \begin{cases} 1 & \rho(x) \leq 0 \\ \text{undefined otherwise} \end{cases}$
 $\mathscr{R}_{M}[s] f \stackrel{\text{def}}{=} \lambda \rho . \begin{cases} 3 & 0 \leq \rho(x) \\ \text{undefined otherwise} \end{cases}$
We have
 $\mathscr{R}_{M}[[\text{if } 3 - x < 0 \text{ then } s]] f \stackrel{\text{def}}{=} \lambda \rho . \begin{cases} 2 \\ 4 \\ \text{undefined} \end{cases}$
and $\mathscr{R}_{M}[[\text{if } [-\infty, +\infty] \neq 0 \text{ then } s]] f \stackrel{\text{def}}{=} \lambda \rho . \end{cases}$



Denotational Definite Termination Semantics \mathscr{R}_{M} [[while $\ell e \bowtie 0 \text{ do } s \text{ done}$]]

 \mathscr{R}_{M} [[while $\ell e \bowtie 0$ do s done]] $f \stackrel{\text{def}}{=} \operatorname{lfp}_{\dot{\varpi}}^{\leq} \overline{F}_{M}$

 $\sup\{\mathscr{R}_{M}[[s]]x(\rho)+1, f(\rho)+1\} \quad \rho \in \operatorname{dom}(\mathscr{R}_{M}[[s]]x) \cap \operatorname{dom}(f) \wedge$ $\exists v_1, v_2 \in E[[e]]\rho \colon v_1 \boxtimes 0 \land v_2 \boxtimes 0$

$$(2) \ \mathscr{R}_M[[s]]x(\rho) + 1$$

 $\rho \in \operatorname{dom}(\mathscr{R}_M[[s]]x) \land$ $\forall v \in E[[e]] \rho \colon v \bowtie 0$

 $f(\rho) + 1$

Lesson 7

 $(\mathbf{3})$

Termination Analysis

 $\rho \in \operatorname{dom}(f) \land \forall v \in E[[e]] \rho \colon v \bowtie 0$

Denotational Definite Termination Semantics $\mathscr{R}_M[[s_1;s_2]]$

 $\mathscr{R}_{M}[[s_{1};s_{2}]]f \stackrel{\mathsf{def}}{=} \mathscr{R}_{M}[[s_{1}]](\mathscr{R}_{M}[[s_{2}]]f)$

Denotational Definite Termination Semantics

Definition

The definite termination semantics \mathscr{R}_M [[stat^{ℓ}]]: $\mathscr{E} \to \mathbb{O}$ of a program stat^{ℓ} is:

 $\mathscr{R}_{M}[[\mathsf{stat}^{\ell}]] \stackrel{\mathsf{def}}{=} \mathscr{R}_{M}[[\mathsf{stat}]](\lambda \rho.0)$

where $\mathscr{R}_M[[stat]]: (\mathscr{E} \to \mathbb{O}) \to (\mathscr{E} \to \mathbb{O})$ is the definite termination semantics of each program instruction stat

Theorem

A program stat ℓ must terminate for traces starting from a set of initial states \mathscr{I} if and only if $\mathscr{I} \subseteq \operatorname{dom}(\mathscr{R}_m[[\operatorname{stat}^{\ell}]])$

Abstract Interpretation Recipe

practical tools targeting specific programs

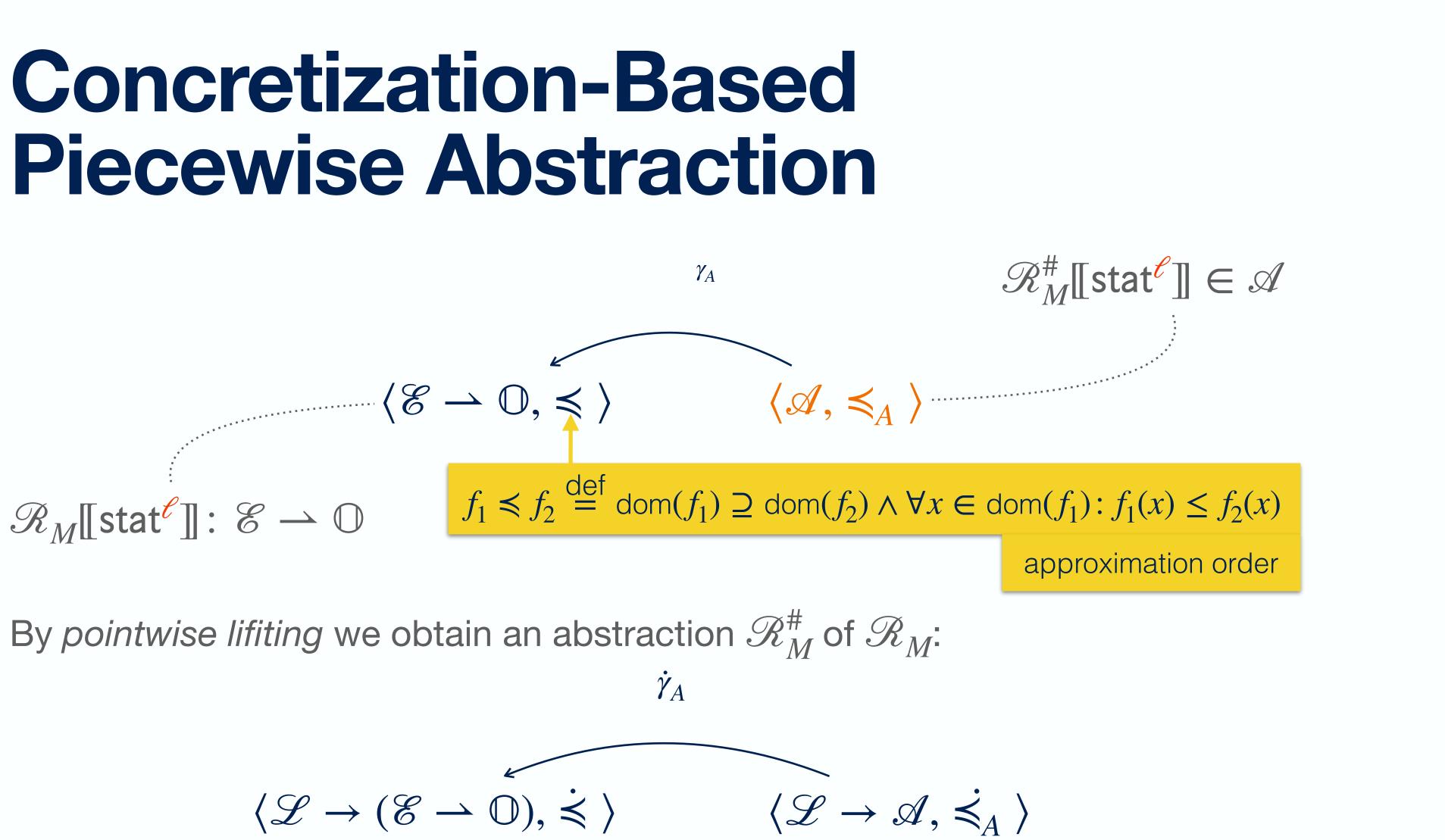
algorithmic approaches to decide program properties

mathematical models of the program behavior

Lesson 7

Termination Analysis

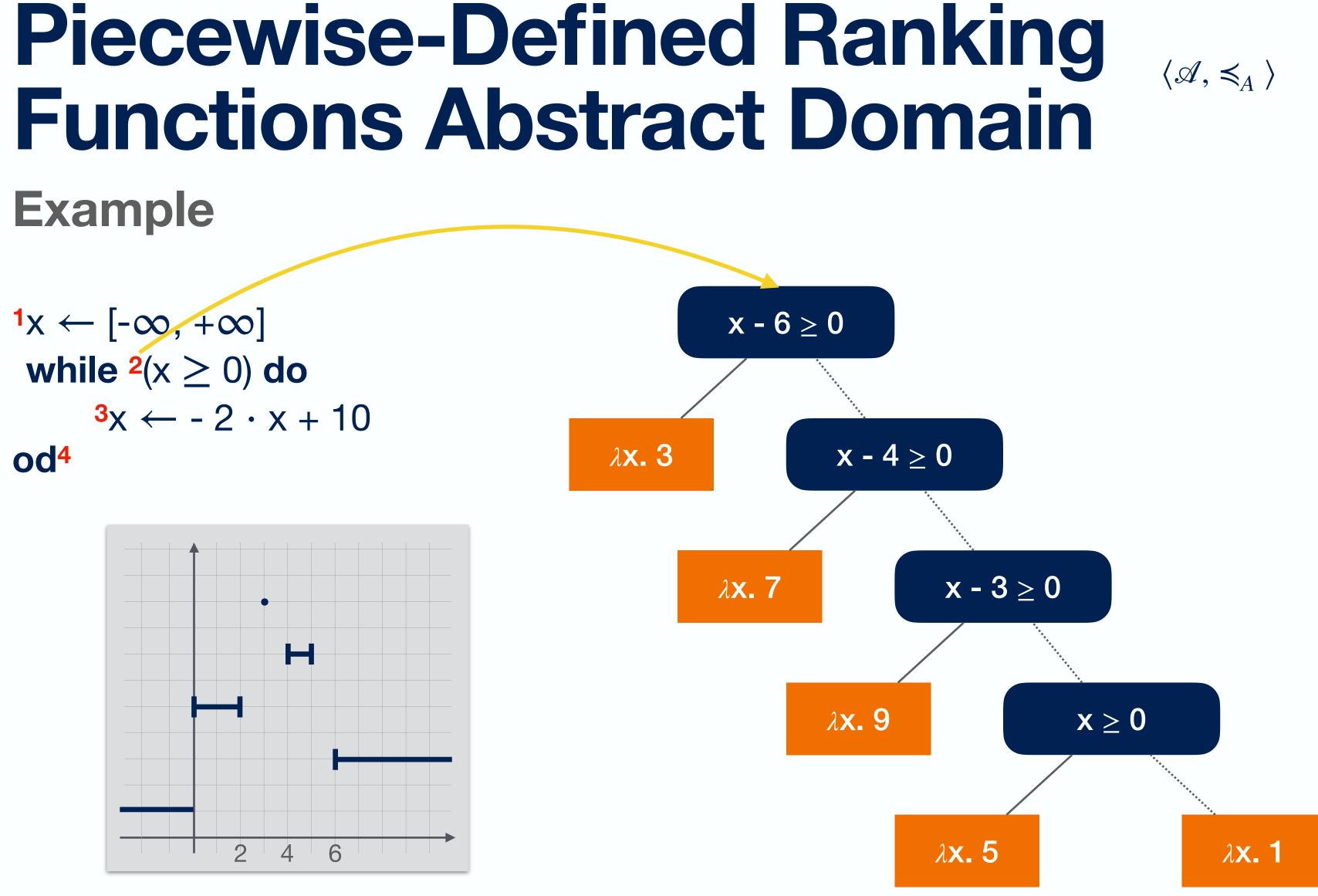
Piecewise-Defined Ranking Functions Abstract Domain



$$\mathscr{R}_M:\mathscr{L}\to(\mathscr{E}\rightharpoonup\mathbb{O})$$

Lesson 7

 $\mathscr{R}^{\#}_{M} \colon \mathscr{L} \to \mathscr{A}$



Lesson 7

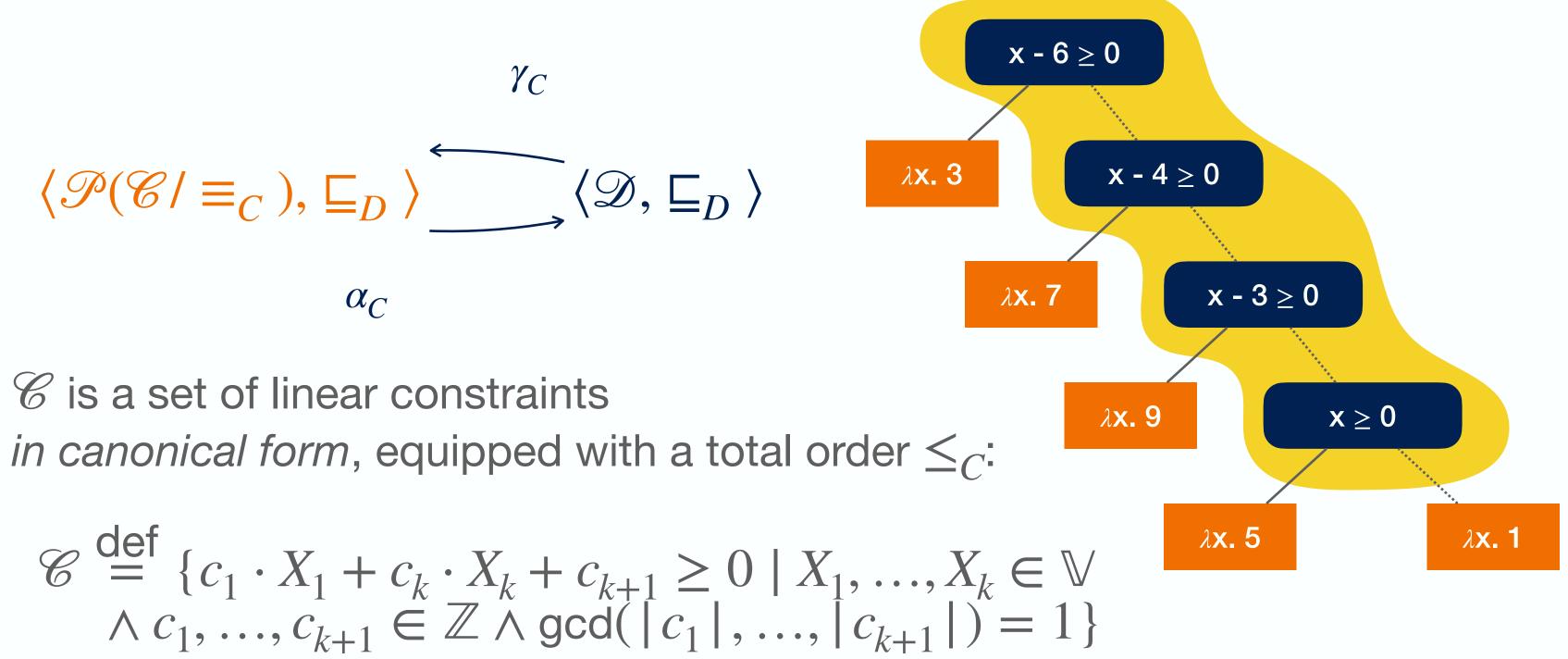
Termination Analysis

Caterina Urban

47

Piecewise-Defined Ranking Functions Abstract Domain Linear Constraints Auxiliary Abstract Domain

• Parameterized by an *underlying numerical abstract domain* $\langle \mathcal{D}, \sqsubseteq_D \rangle$ (i.e., intervals, octagons, or polyhedra):



• C is a set of linear constraints

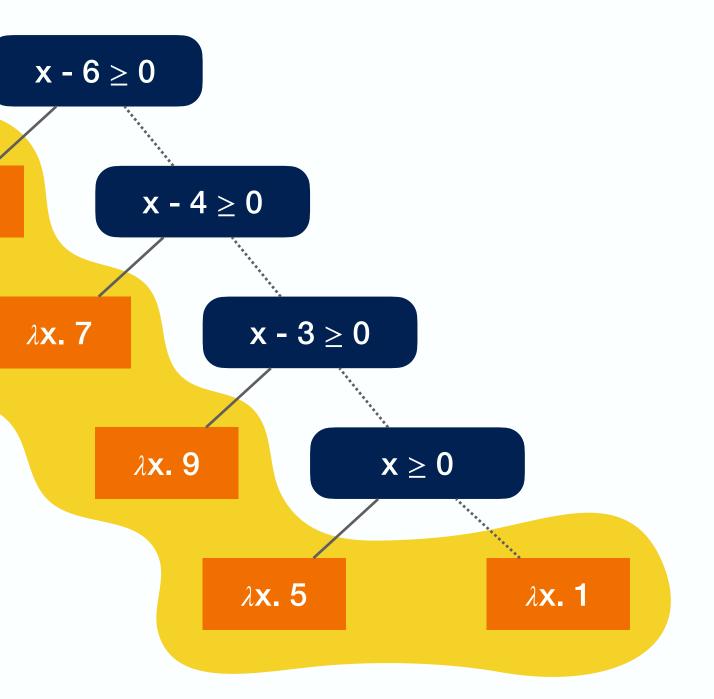
$$\mathcal{C} \stackrel{\text{def}}{=} \{c_1 \cdot X_1 + c_k \cdot X_k + c_{k+1} \ge 0 \mid X_1, \dots, X_{k+1} \in \mathbb{Z} \land gcd(|c_1|, \dots, |c_{k+1}|)\}$$

Piecewise-Defined Ranking Functions Abstract Domain Functions Auxiliary Abstract Domain

- Parameterized by an *underlying numerical abstract domain* $\langle \mathcal{D}, \sqsubseteq_D \rangle$
- $\mathscr{F} \stackrel{\text{def}}{=} \{ \perp_F \} \cup (\mathbb{Z}^{|\mathbb{N}|} \to \mathbb{N}) \cup \{ \mathsf{T}_F \}$

We consider affine functions: $\mathcal{F}_{\Lambda} \stackrel{\mathsf{def}}{=} \{ \perp_{F} \} \cup \{ f \colon \mathbb{Z}^{|\mathbb{N}|} \to \mathbb{N} \mid$ $f(X_1, \dots, X_k) = \sum^k m_i \cdot X_i + q$ i=1 $\cup \{ \mathsf{T}_F \}$

λ**x. 3**

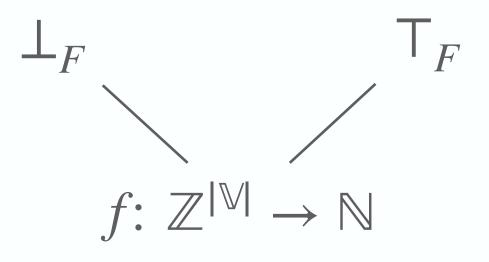


Piecewise-Defined Ranking Functions Abstract Domain Functions Auxiliary Abstract Domain (continue)

- approximation order $\leq_F [D]$, where $D \in \mathcal{D}$:
 - between <u>defined</u> leaf nodes:

$$f_1 \leq_F [D] f_2 \stackrel{\mathsf{def}}{=} \forall \rho \in \gamma_D(D) \colon f_1(\dots, \rho(X_i), \dots, \rho(X_i)) \in \mathcal{F}_1(\dots, \rho(X_i))$$

otherwise (i.e., when one or both leaf nodes are <u>undefined</u>):



 $\ldots) \leq f_2(\ldots, \rho(X_i), \ldots)$

Piecewise-Defined Ranking Functions Abstract Domain Functions Auxiliary Abstract Domain (continue)

- computational order $\sqsubseteq_F[D]$, where $D \in \mathscr{D}$:
 - between <u>defined</u> leaf nodes:

$$f_1 \sqsubseteq_F [D] f_2 \stackrel{\mathsf{def}}{=} \forall \rho \in \gamma_D(D) \colon f_1(\dots, \rho(X_i), \dots$$

otherwise (i.e., when one or both leaf nodes are <u>undefined</u>):

$$\begin{array}{c} \mathsf{T}_{F} \\ | \\ f \colon \mathbb{Z}^{|\mathbb{M}|} \to \mathbb{N} \\ | \\ \mathbb{L}_{F} \end{array}$$

 $\ldots) \leq f_2(\ldots, \rho(X_i), \ldots)$

Piecewise-Defined Ranking Functions Abstract Domain

- $\mathscr{A} \stackrel{\text{def}}{=} \{ \text{LEAF} : f \mid f \in \mathscr{F} \} \cup \{ \text{NODE} \{ c \} : t_1; t_2 \mid c \in \mathscr{C} \land t_1, t_2 \in \mathscr{A} \} \}$
- concretization function $\gamma_A \colon \mathscr{A} \to (\mathscr{E} \to \mathbb{O})$:

 $\gamma_{\Lambda}(t) \stackrel{\text{def}}{=} \overline{\gamma}_{\Lambda}[\emptyset](t)$

where $\overline{\gamma}_{A}$: $\mathcal{P}(\mathcal{C}/\equiv_{C}) \to \mathcal{A} \to (\mathcal{E} \to \mathbb{O})$: $\overline{\gamma}_{A}[C](\mathsf{LEAF}:f) \stackrel{\text{def}}{=} \gamma_{F}[\alpha_{C}(C)](f)$ $\overline{\gamma}_{A}[C](\mathsf{NODE}\{c\}:t_{1};t_{2}) \stackrel{\text{def}}{=} \overline{\gamma}_{A}[C \cup \{c\}](t_{1}) \cup \overline{\gamma}_{A}[C \cup \{\neg c\}](t_{2})$

and
$$\gamma_F: \mathscr{D} \to \mathscr{F} \to (\mathscr{E} \to \mathbb{O}):$$

 $\gamma_F[D](\perp_F) \stackrel{\text{def}}{=} \dot{\varnothing}$
 $\gamma_F[D](f) \stackrel{\text{def}}{=} \lambda \rho \in \gamma_D(D): f(\dots, \rho(X_i), \dots)$
 $\gamma_F[D](\top_F) \stackrel{\text{def}}{=} \dot{\varnothing}$

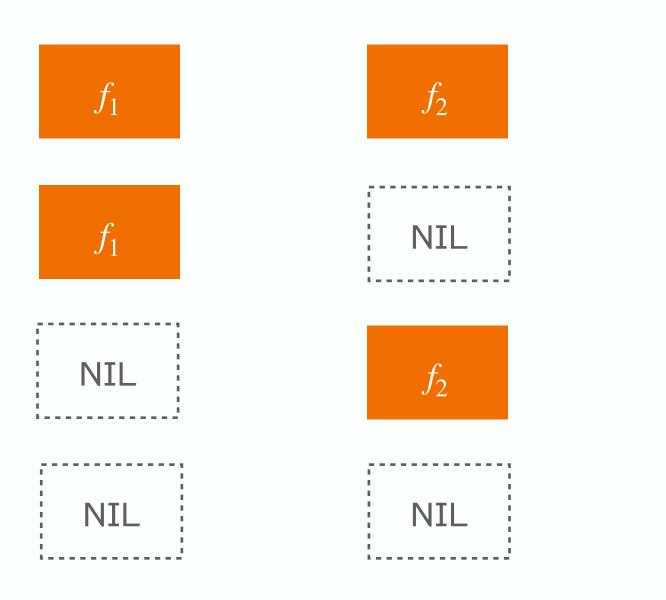
Piecewise-Defined Ranking Functions Abstract Domain Abstract Domain Operators

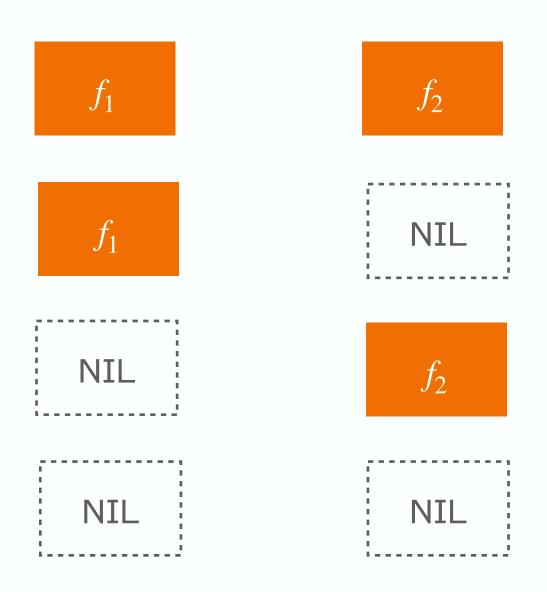
- They manipulate elements in $\mathscr{A}_{NTI} \stackrel{\text{def}}{=} \{NIL\} \cup \mathscr{A}$
- The **binary operators** rely on a <u>tree unification</u> algorithm
 - approximation order \leq_A and computational order \sqsubseteq_A
 - approximation join V_A and computational join \sqcup_A
 - meet A_A
 - widening ∇_A
- The unary operators rely on a tree pruning algorithm
 - assignment $ASSIGN_A[[X \leftarrow e]]$
 - test FILTER_A[[e]]

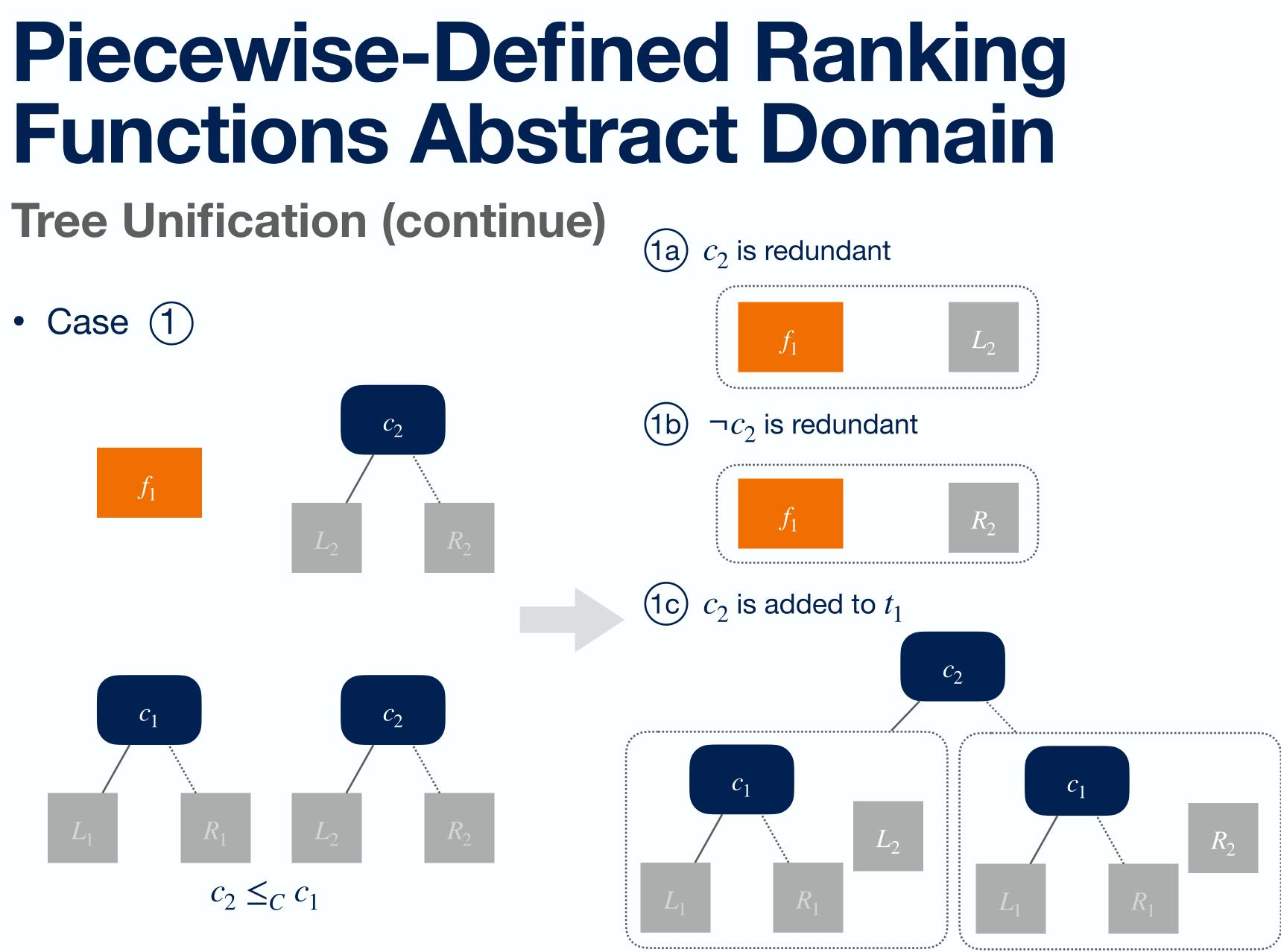
Piecewise-Defined Ranking Functions Abstract Domain Tree Unification

Goal: find a common refinement for the given decision trees

Base cases:





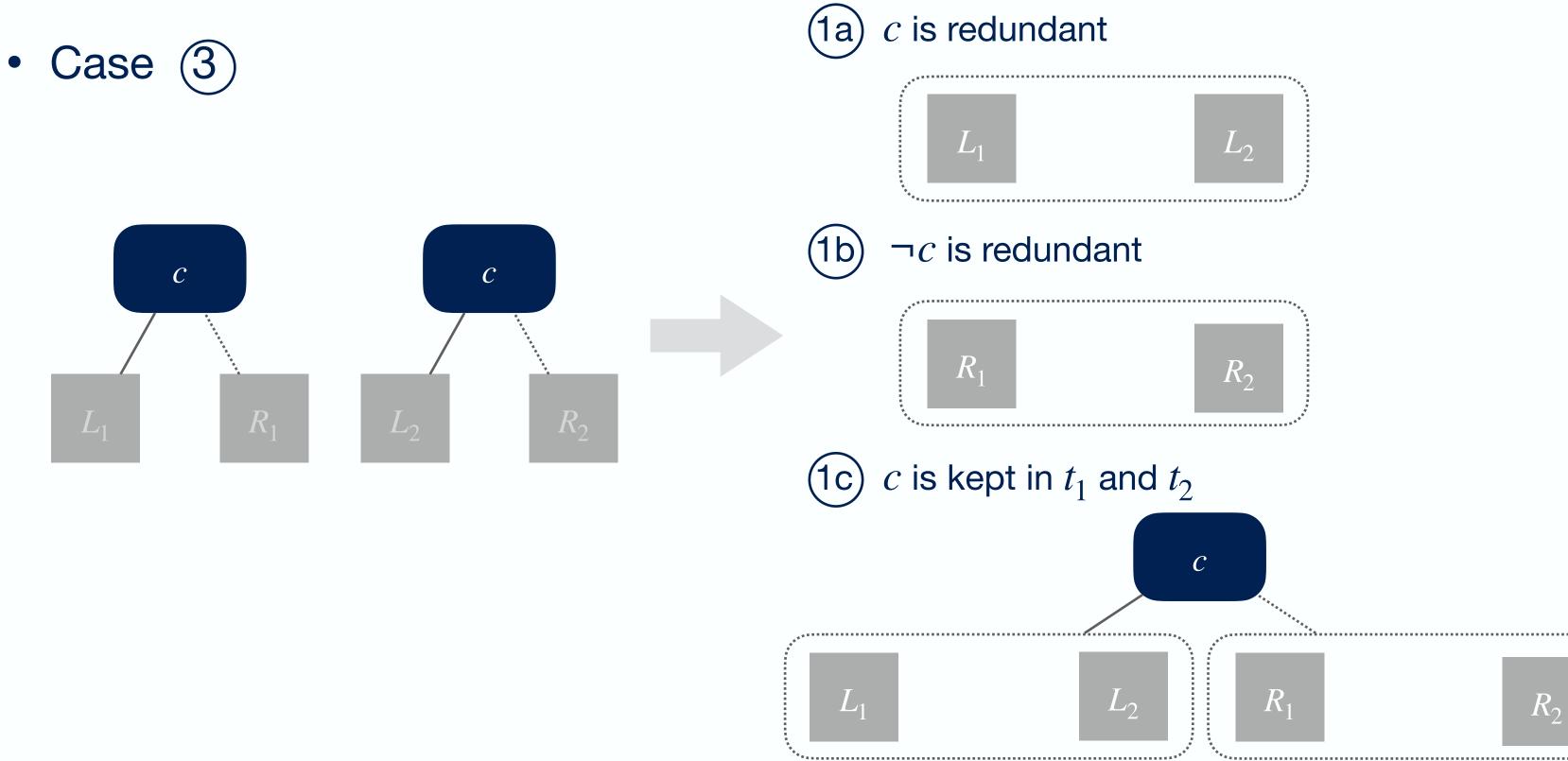


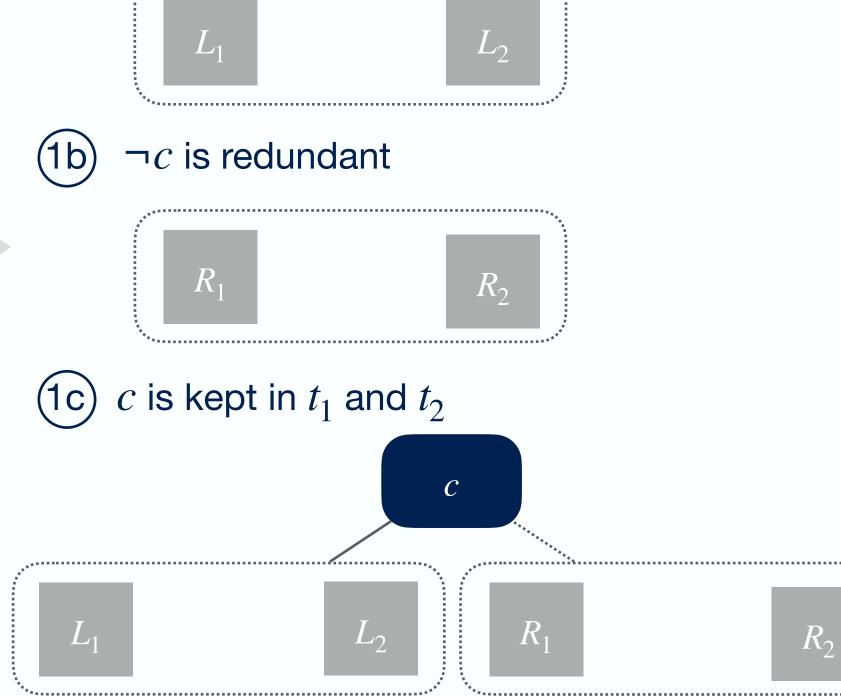
Lesson 7

Termination Analysis

Piecewise-Defined Ranking Functions Abstract Domain Tree Unification (continue)

• Case (2) (simmetric to (1))



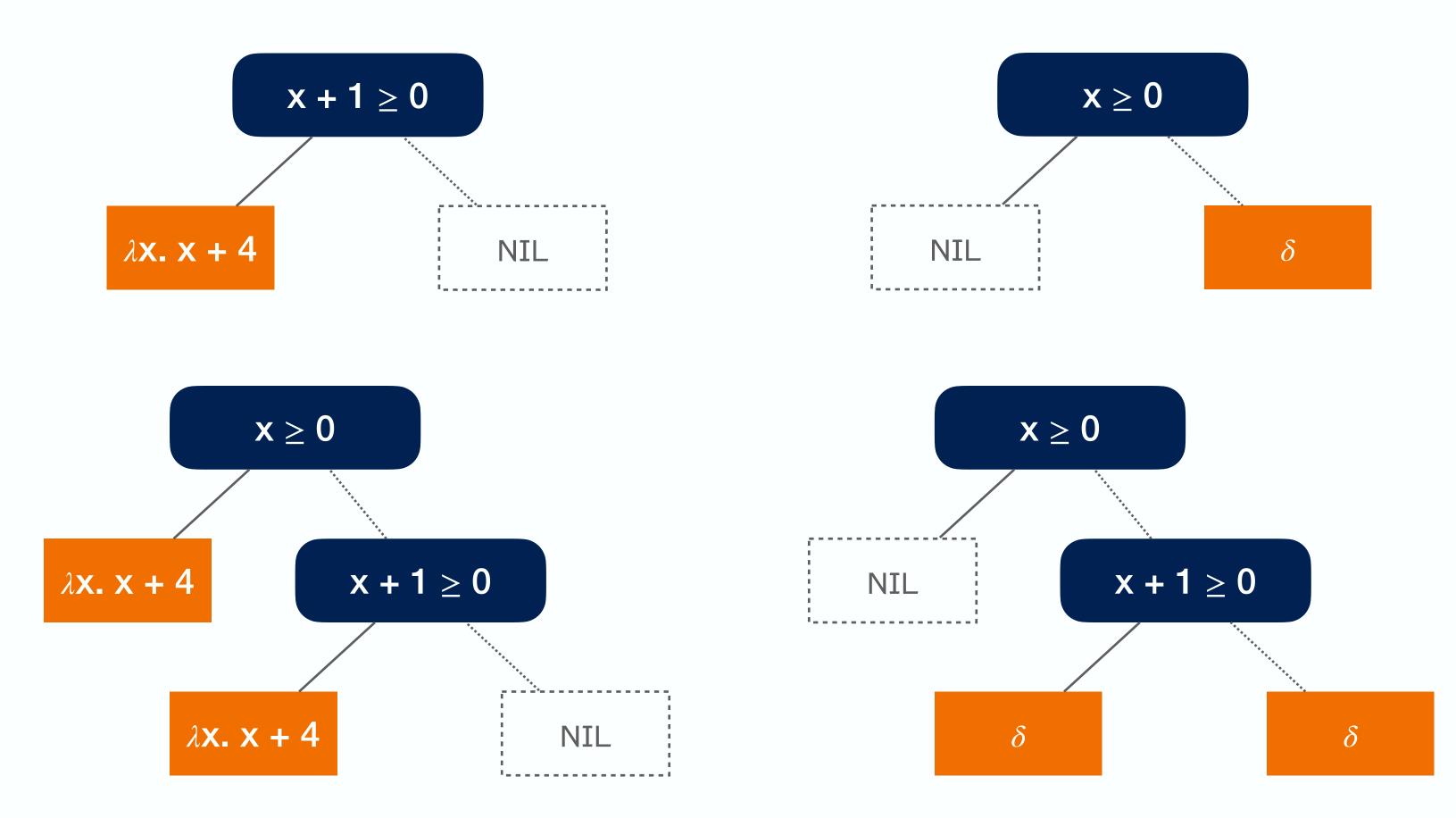


Termination Analysis

Lesson 7

Piecewise-Defined Ranking Functions Abstract Domain

Tree Unification (continue)



Example

Piecewise-Defined Ranking Functions Abstract Domain Order

- 1. Perform tree unification
- 2. Recursively descend the trees while accumulating the linear constraints encountered along the paths into a set of constraints C
- 3. Compare the leaf nodes using the **approximation order** $\leq_F [\alpha_C(C)]$ or the **computational order** $\sqsubseteq_F[\alpha_C(C)]$

The concretization function γ_A is monotonic with respect to \leq_A :

emma $\forall t_1, t_2 \in \mathscr{A} \colon t_1 \leq_A t_2 \Rightarrow \gamma_A(t_1) \leq \gamma_A(t_2)$

- 1. Perform tree unification
- 2. Recursively descend the trees while accumulating the linear constraints encountered along the paths into a set of constraints C

3. NIL
$$\forall_A t \stackrel{\text{def}}{=} t$$

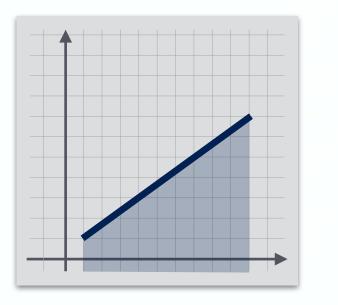
 $t \forall_A \text{NIL} \stackrel{\text{def}}{=} t$

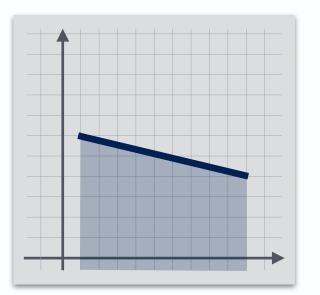
4. Join the leaf nodes using the **approximation join** $\forall_F [\alpha_C(C)]$ or the **computational join** $\sqcup_F [\alpha_C(C)]$

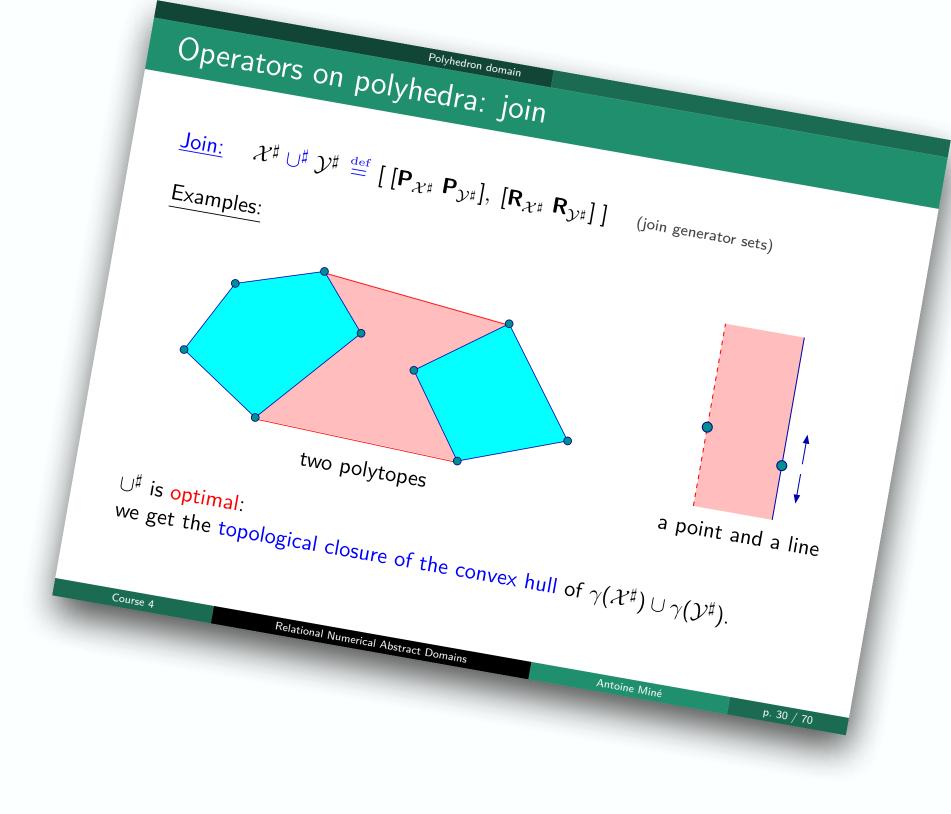
- approximation join $\forall_F [D]$, where $D \in \mathcal{D}$:
 - between <u>defined</u> leaf nodes:

$$\begin{split} f_1 & \operatorname{Y}_F \left[D \right] f_2 \stackrel{\mathrm{def}}{=} \left\{ \begin{array}{l} f & f \in \mathscr{F} \backslash \{ \perp_F, \mathsf{T}_F \} \\ \mathsf{T}_F & \text{otherwise} \end{array} \right. \\ & \text{where} \, f \stackrel{\mathrm{def}}{=} \lambda \rho \in \gamma_D(D) \colon \max(f_1(\ldots, \rho(X_i), \ldots), f_i) \in \mathcal{F}_i) \, . \end{split}$$

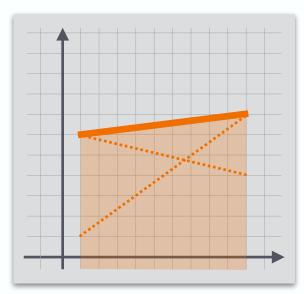
Example:







 $f_2(\ldots,\rho(X_i),\ldots))$



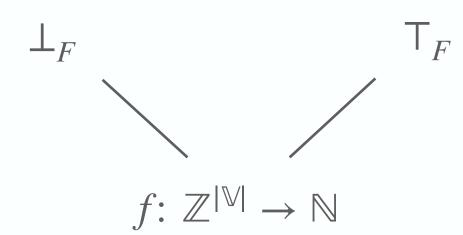
- approximation join $\forall_F [D]$, where $D \in \mathcal{D}$:
 - between <u>defined</u> leaf nodes:

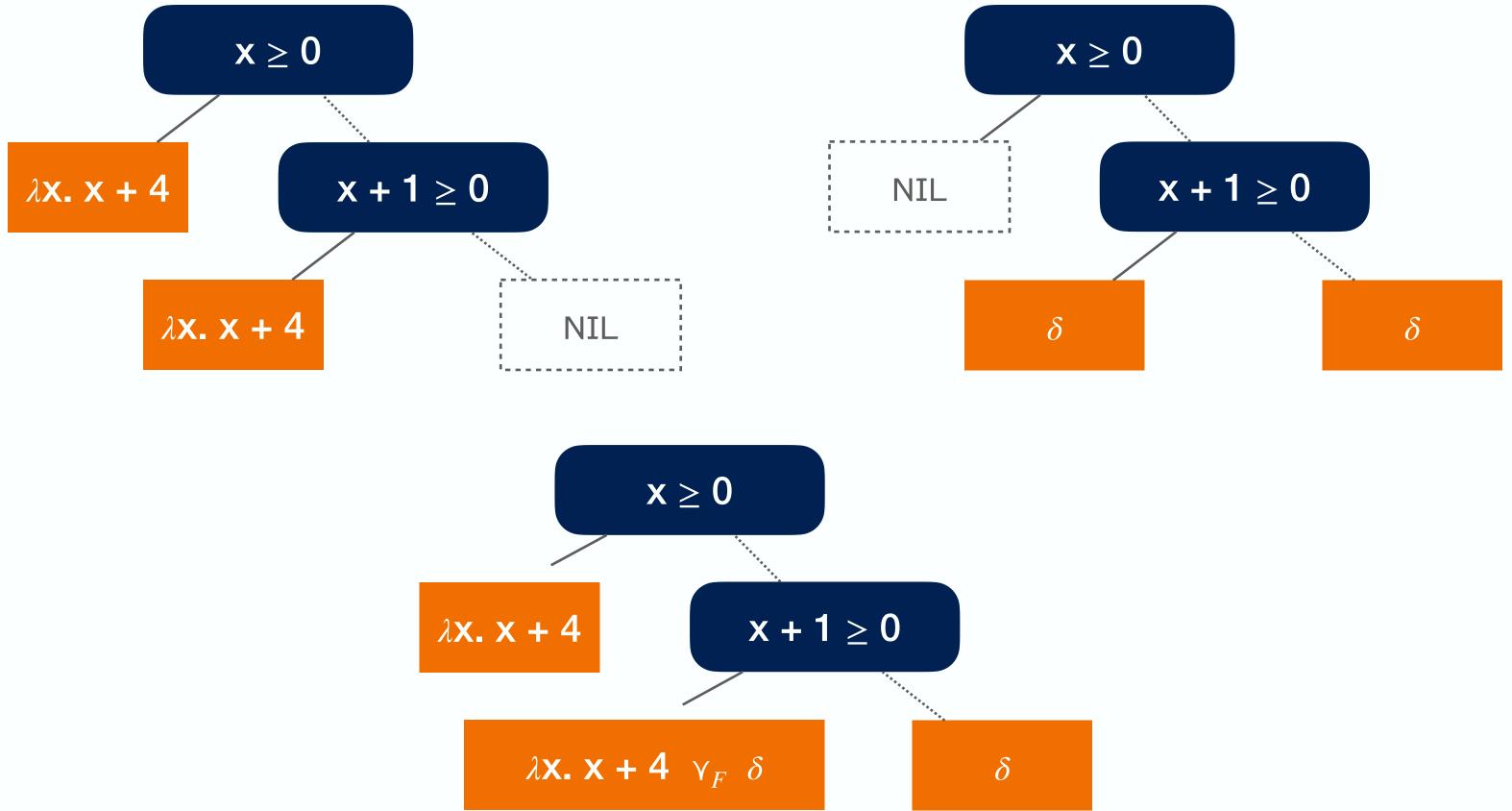
$$\begin{split} f_1 & \operatorname{Y}_F \left[D \right] f_2 \stackrel{\mathrm{def}}{=} \left\{ \begin{array}{l} f & f \in \mathscr{F} \backslash \{ \perp_F, \mathsf{T}_F \} \\ \mathsf{T}_F & \text{otherwise} \end{array} \right. \\ & \text{where} \, f \stackrel{\mathrm{def}}{=} \lambda \rho \in \gamma_D(D) \colon \max(f_1(\ldots, \rho(X_i), \ldots), f_i) \in \mathcal{F}_F) \, . \end{split}$$

otherwise (i.e., when one or both leaf nodes are <u>undefined</u>):

$$\begin{split} & \bot_{F} \mathsf{Y}_{F} [D] f \stackrel{\text{def}}{=} \bot_{F} & f \in \mathscr{F} \setminus \{ \mathsf{T}_{F} \} \\ & f \mathsf{Y}_{F} [D] \bot_{F} \stackrel{\text{def}}{=} \bot_{F} & f \in \mathscr{F} \setminus \{ \mathsf{T}_{F} \} \\ & \mathsf{T}_{F} \mathsf{Y}_{F} [D] f \stackrel{\text{def}}{=} \mathsf{T}_{F} & f \in \mathscr{F} \setminus \{ \bot_{F} \} \\ & f \mathsf{Y}_{F} [D] \mathsf{T}_{F} \stackrel{\text{def}}{=} \mathsf{T}_{F} & f \in \mathscr{F} \setminus \{ \bot_{F} \} \end{split}$$

 $f_2(\ldots,\rho(X_i),\ldots))$





Termination Analysis

Lesson 7

Example

- computational join $\sqcup_F [D]$, where $D \in \mathscr{D}$:
 - between <u>defined</u> leaf nodes:

$$\begin{split} f_1 & \operatorname{V}_F \left[D \right] f_2 \stackrel{\mathrm{def}}{=} \begin{cases} f & f \in \mathscr{F} \backslash \{ \perp_F, \top_F \} \\ \top_F & \text{otherwise} \end{cases} \\ & \text{where} \, f \stackrel{\mathrm{def}}{=} \lambda \rho \in \gamma_D(D) \colon \max(f_1(\ldots, \rho(X_i), \ldots), f_2(\ldots, \rho(X_i), \ldots)) \end{split}$$

otherwise (i.e., when one or both leaf nodes are <u>undefined</u>):

$$\begin{split} & \bot_{F} \sqcup_{F} [D] f \stackrel{\text{def}}{=} f & f \in \mathscr{F} \\ & f \sqcup_{F} [D] \bot_{F} \stackrel{\text{def}}{=} f & f \in \mathscr{F} \\ & \mathsf{T}_{F} \sqcup_{F} [D] f \stackrel{\text{def}}{=} \mathsf{T}_{F} & f \in \mathscr{F} \\ & f \sqcup_{F} [D] \mathsf{T}_{F} \stackrel{\text{def}}{=} \mathsf{T}_{F} & f \in \mathscr{F} \end{split}$$

$$\begin{array}{c} \mathsf{T}_{F} \\ | \\ f \colon \mathbb{Z}^{|\mathbb{N}|} \to \mathbb{N} \\ | \\ \mathsf{L}_{F} \end{array}$$

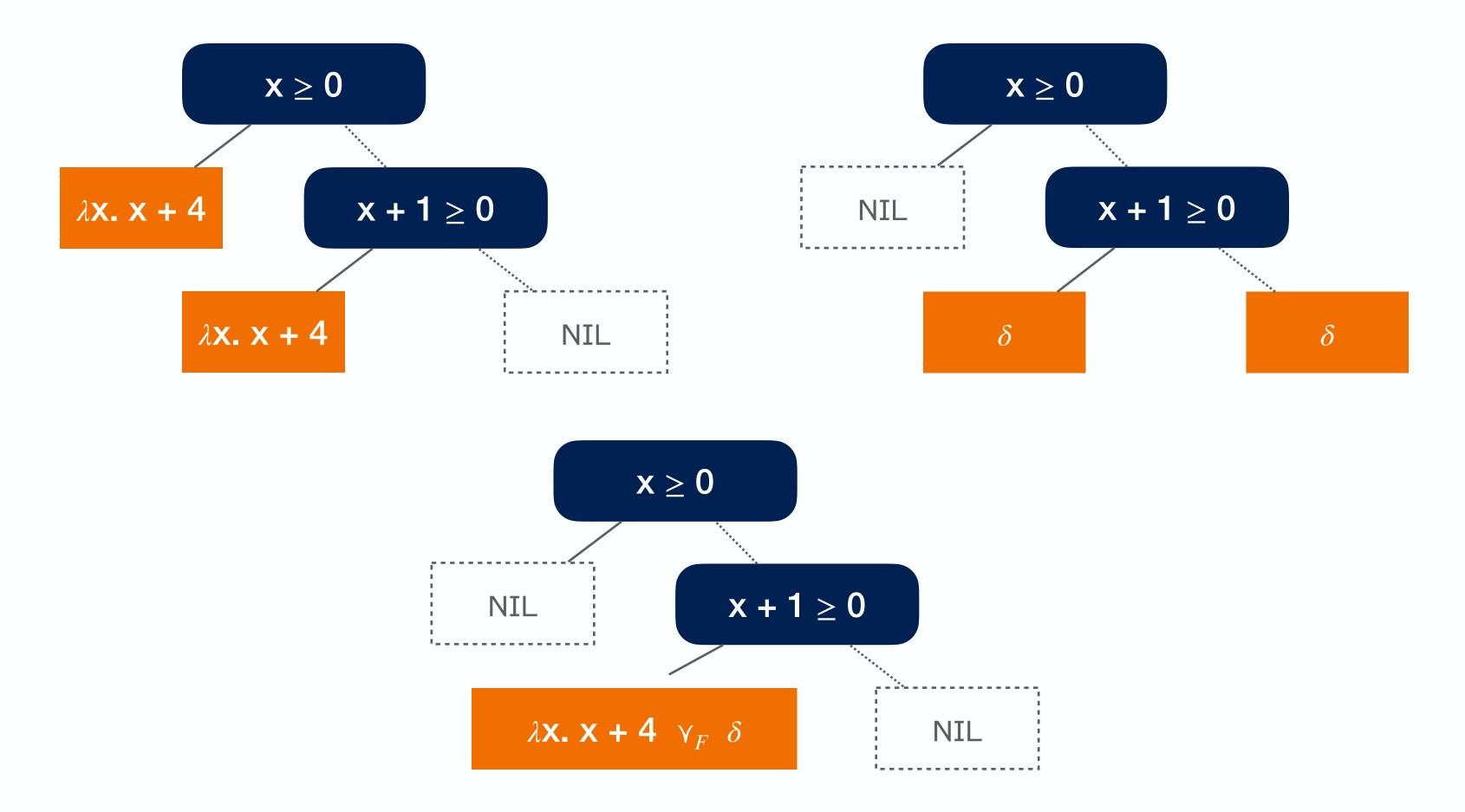
Piecewise-Defined Ranking Functions Abstract Domain Meet

- 1. Perform tree unification
- 2. Recursively descend the trees while accumulating the linear constraints encountered along the paths into a set of constraints C

3. NIL
$$Y_A t \stackrel{\text{def}}{=} \text{NIL}$$

 $t Y_A \text{NIL} \stackrel{\text{def}}{=} \text{NIL}$

4. Join the leaf nodes using the **approximation join** $\forall_F [\alpha_C(C)]$



Termination Analysis

Lesson 7

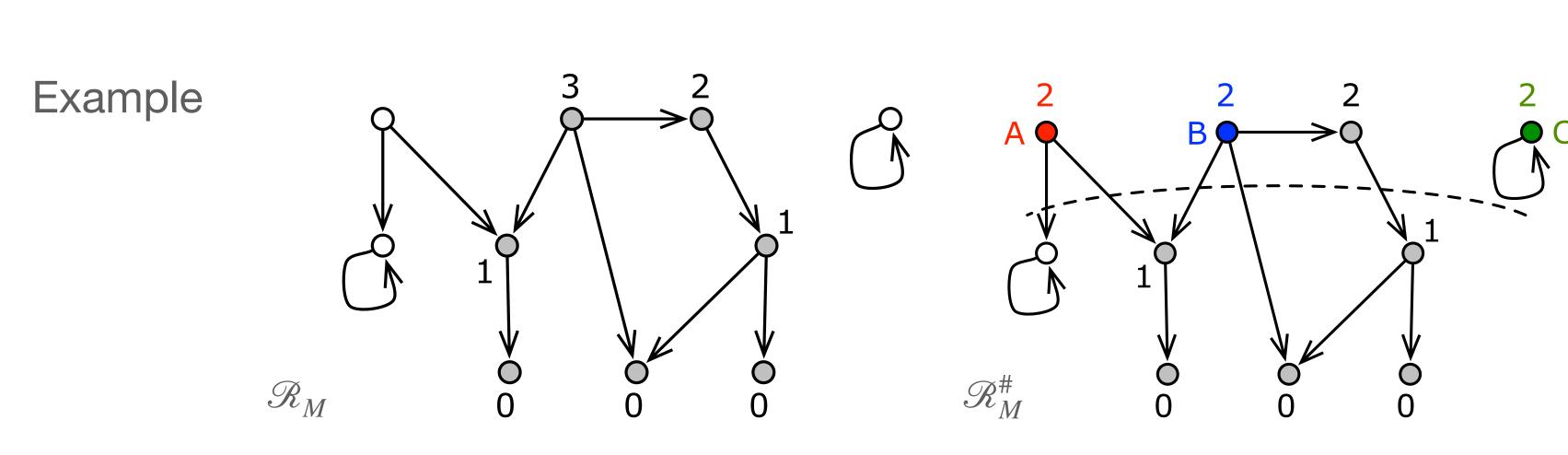
Example

P F W

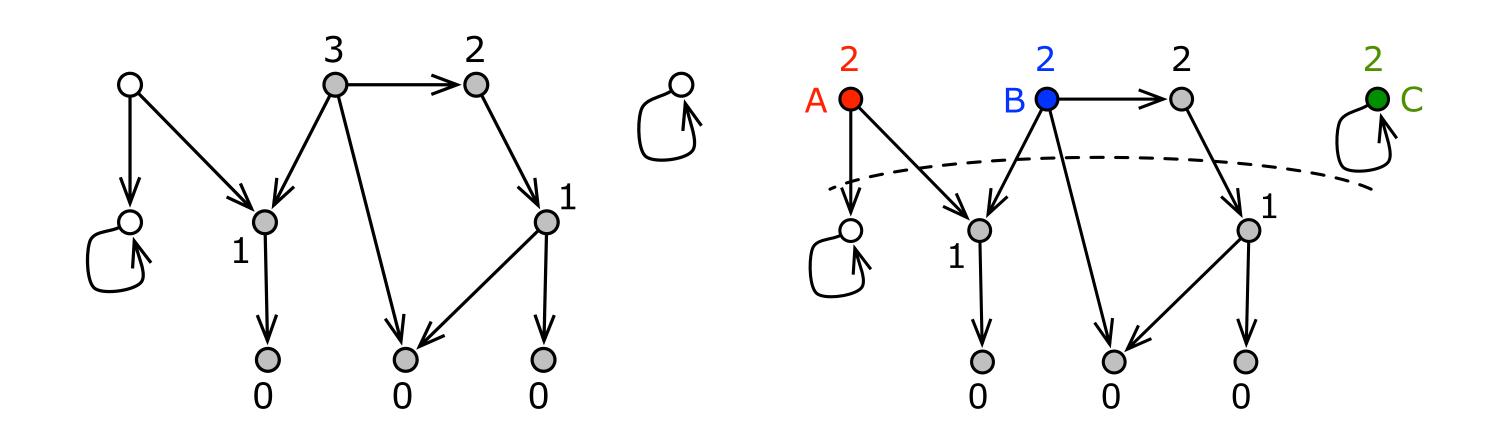
Goal: try to predict a valid ranking function

The prediction can (temporarily) be wrong!, i.e.,

- under-approximates the value of \mathcal{R}_{M} and/or
- over-approximates the domain dom(\mathscr{R}_M) of \mathscr{R}_M



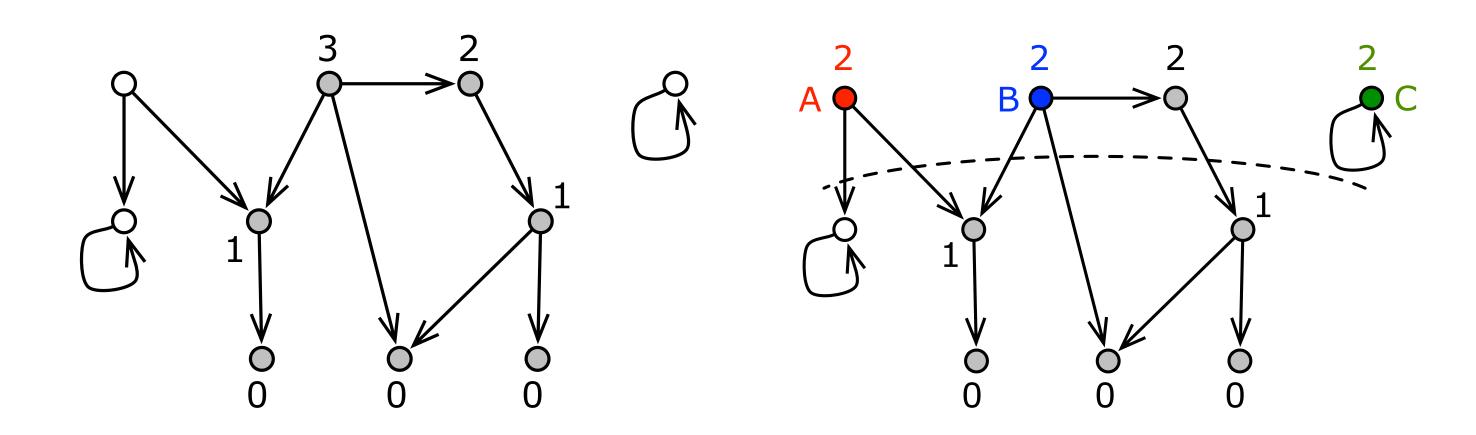
- 1. Check for case A (i.e., wrong domain predictions)
- 2. Perform domain widening
- 3. Check for case B or C (i.e., wrong value predictions)



Lemma

Let dom $(\gamma_A(\mathscr{R}^{\#n}_M(\mathscr{C})))\setminus dom(\mathscr{R}_M(\mathscr{C})) \neq \emptyset$. Then, in case A, we have dom $(\gamma_A(\mathscr{R}^{\#n+1}_M(\mathscr{C})))\setminus dom(\mathscr{R}_M(\mathscr{C})) \subset dom(\gamma_A(\mathscr{R}^{\#n}_M(\mathscr{C})))\setminus dom(\mathscr{R}_M(\mathscr{C})).$

(and proof in [] Irbon15])



Check for Case A

Lemma

Let dom $(\gamma_A(\mathscr{R}_M^{\#n}(\mathscr{C})))\setminus dom(\mathscr{R}_M(\mathscr{C})) \neq \emptyset$. Then, in case A, we have dom $(\gamma_A(\mathscr{R}_M^{\#n+1}(\mathscr{C})))\setminus dom(\mathscr{R}_M(\mathscr{C})) \subset dom(\gamma_A(\mathscr{R}_M^{\#n}(\mathscr{C})))\setminus dom(\mathscr{R}_M(\mathscr{C})).$

(see proof in [Urban15])

- 1. Perform tree unification
- 2. Recursively descend the trees while accumulating the linear constraints encountered along the paths into a set of constraints C

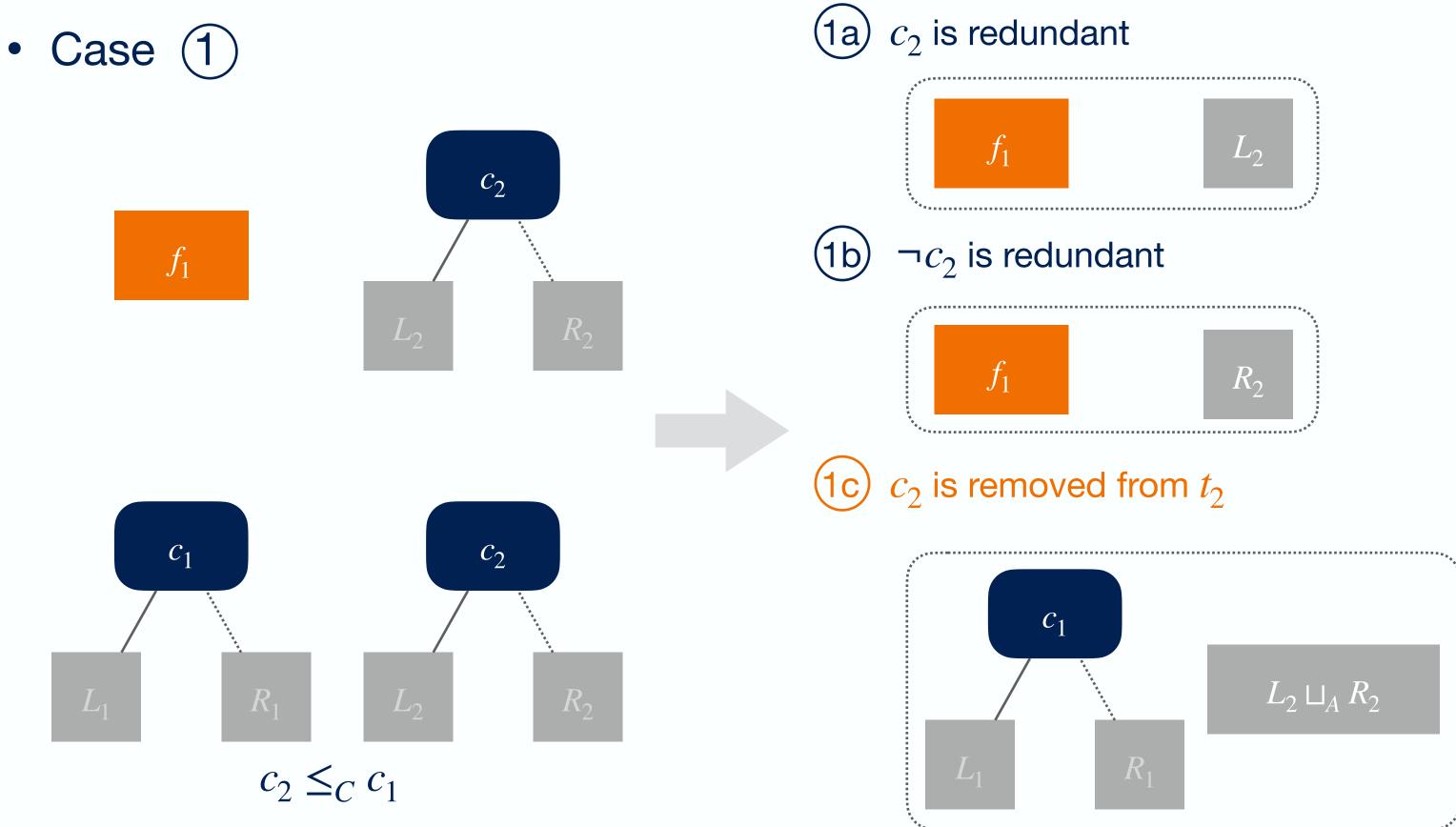
Check for Case A

Goal: **limit the size** of the decision trees

Left unification: variant of tree unification that forces the structure of t_1 on t_2

Base case:

Domain Widening



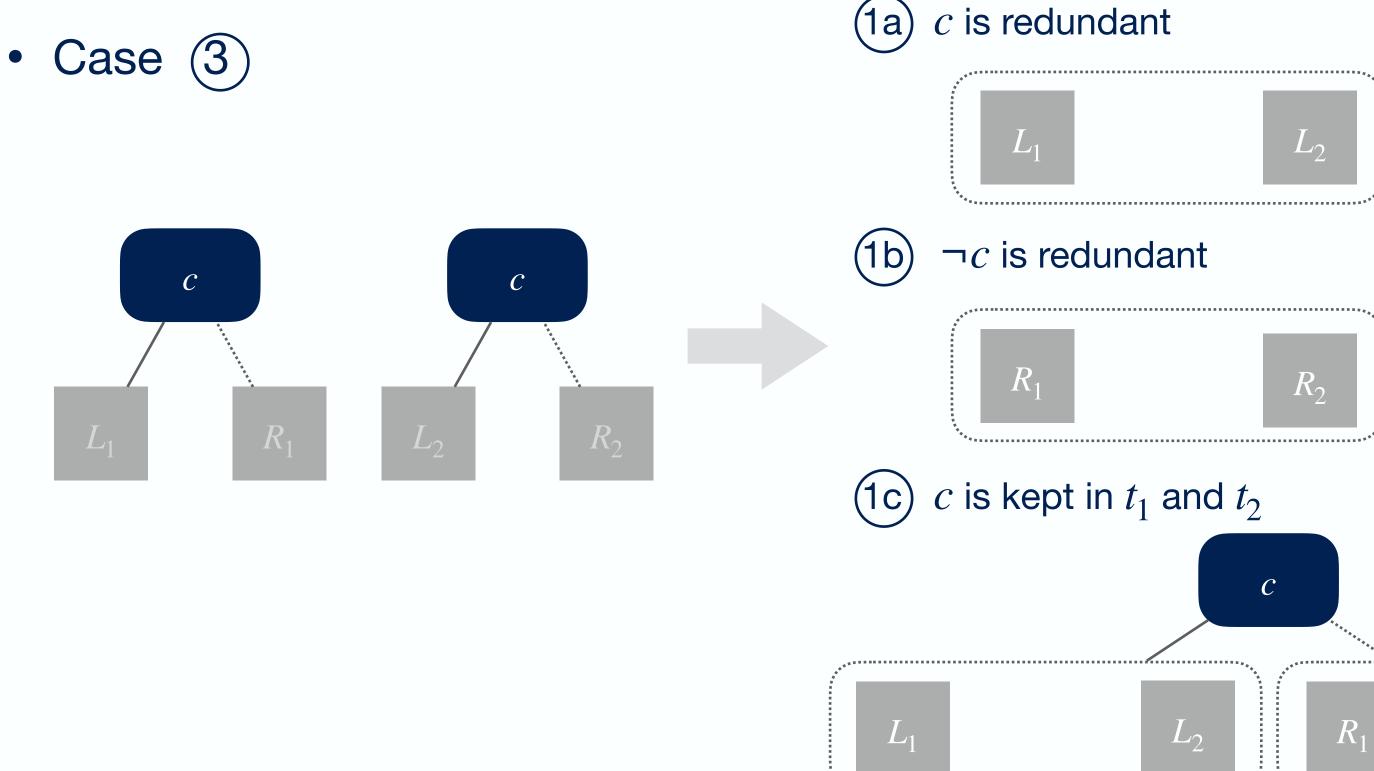
Termination Analysis

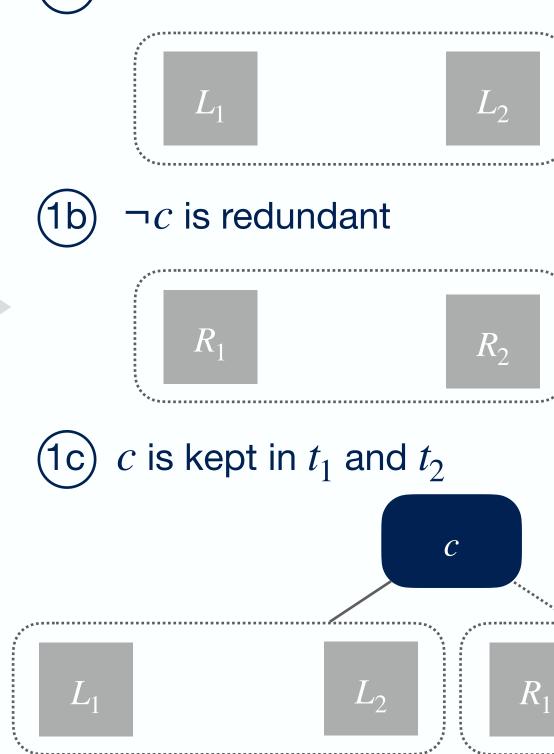
Lesson 7

Domain Widening

Piecewise-Defined Ranking Functions Abstract Domain Widening (continue)

• Case (2) (as for tree unification)





Termination Analysis

Lesson 7

Domain Widening

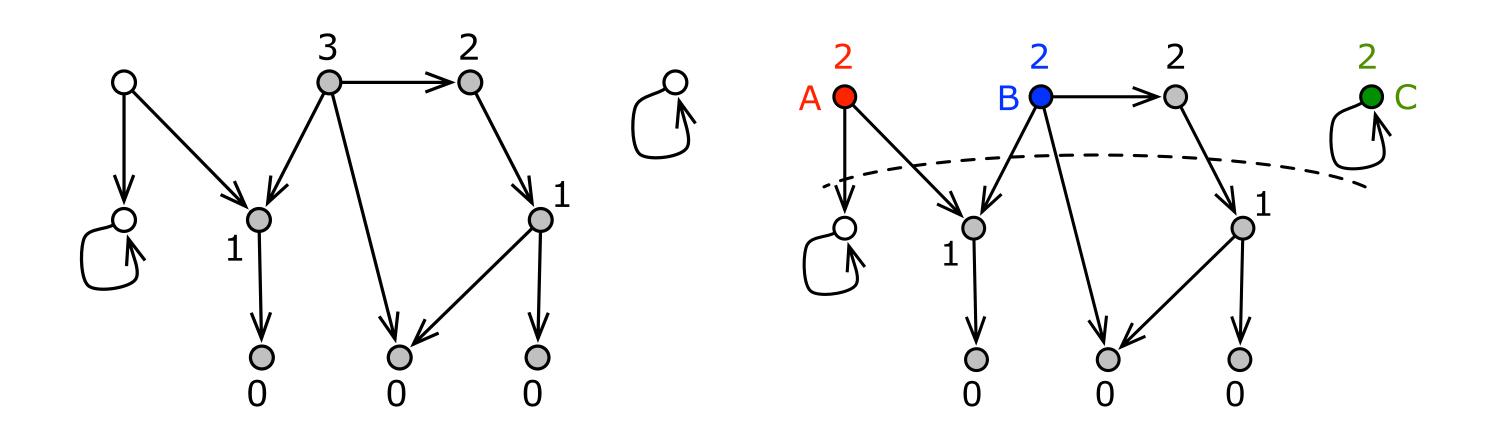
Caterina Urban

 R_2

Piecewise-Defined Ranking Functions Abstract Domain Widening (continue)

Lemma

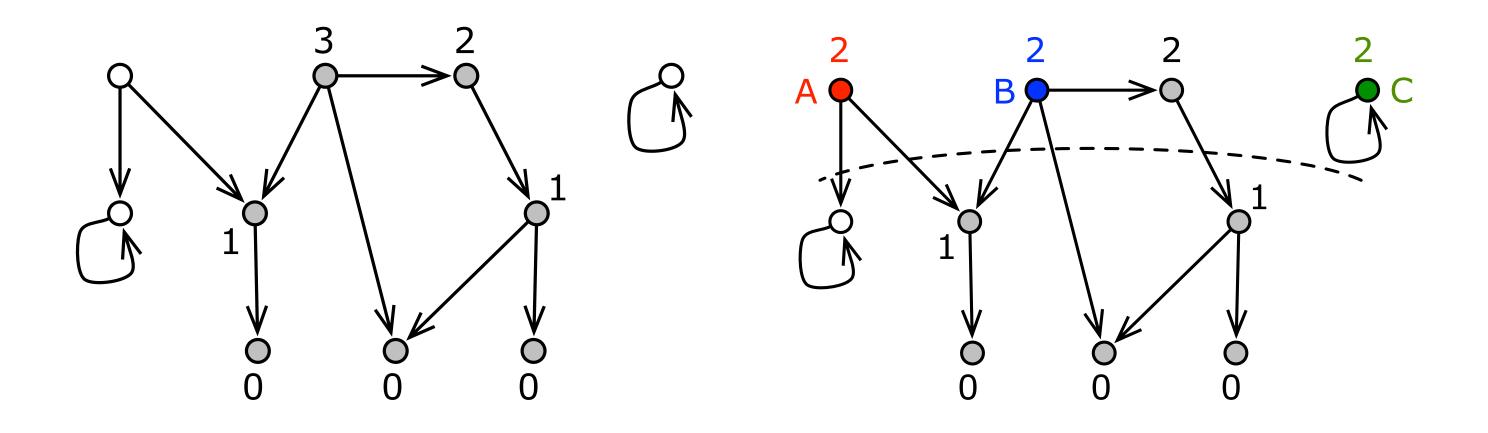
Let $\gamma_A(\mathscr{R}^{\#n}_M(\mathscr{C}))(\overline{\rho}) < \mathscr{R}_M(\mathscr{C})(\overline{\rho})$ for some $\overline{\rho} \in \operatorname{dom}(\mathscr{R}_M(\mathscr{C})) \cap \operatorname{dom}(\gamma_A(\mathscr{R}_M^{\#n})(\mathscr{C}))$ (case B). Then, there exists $\rho \in \operatorname{dom}(\gamma_A(\mathscr{R}_M^{\#n+1}(\mathscr{C}))) \cap \operatorname{dom}(\mathscr{R}_M^{\#n}(\mathscr{C}))$ such that $(\Box \# n(D))(a) < \cdots (\Box \# n+1(D))(a)$



Check for Case B or C

Piecewise-Defined Ranking Functions Abstract Domain

Widening (continue)



Check for Case R or C

Piecewise-Defined Ranking Functions Abstract Domain Widening (continue)

1. Recursively descend the trees while accumulating the linear constraints encountered along the paths into a set of constraints C

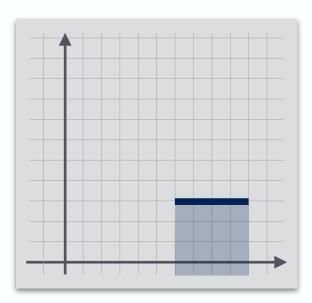


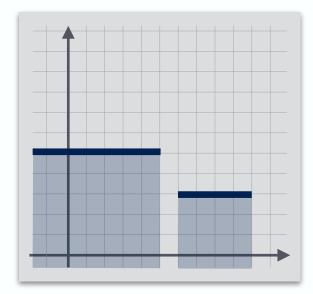
Check for Case B or C

Piecewise-Defined Ranking Functions Abstract Domain Widening (continue)

- 1. Recursively descend the trees while accumulating the linear constraints encountered along the paths into a set of constraints C
- 2. Widen each (defined) leaf node f with respect to each of their adjacent (defined) leaf node \overline{f} using the **extrapolation operator** $\mathbf{v}_F[\alpha_C(\overline{C}), \alpha_C(C)]$, where \overline{C} is the set of constraints along the path to \overline{f}

Example:

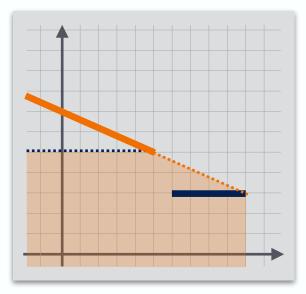




Lesson 7

Termination Analysis

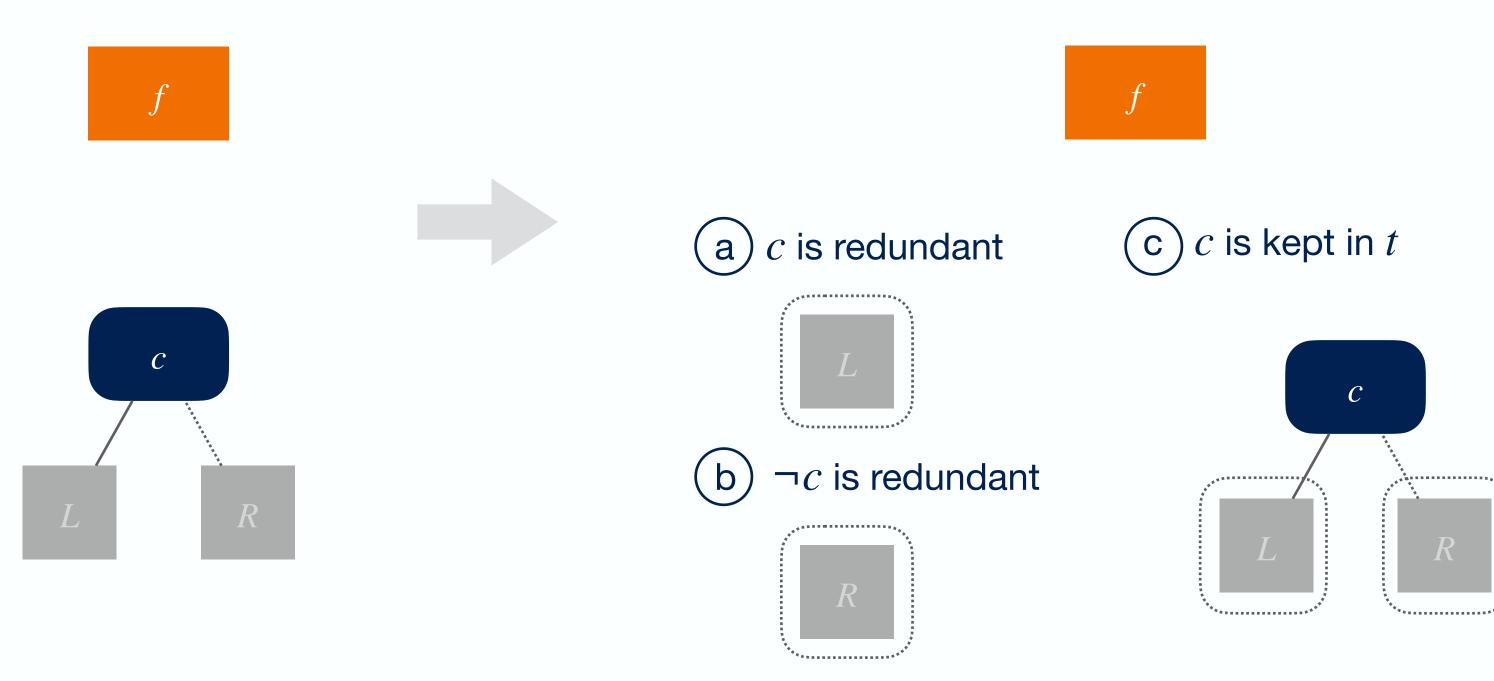
Value Widening



Piecewise-Defined Ranking Functions Abstract Domain Tree Pruning

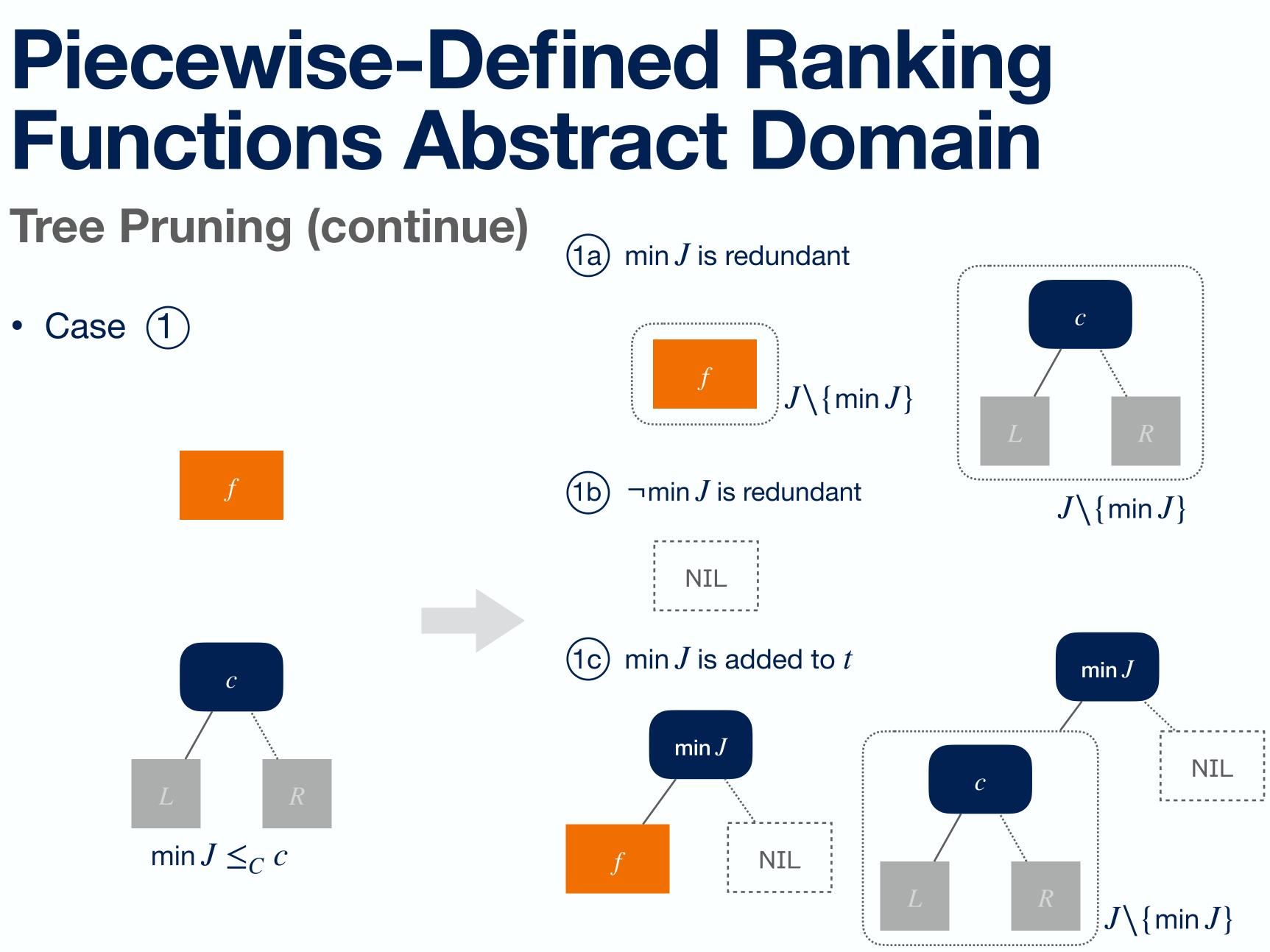
Goal: add a set J of linear constraints to the decision tree

• Base case $(J = \emptyset)$



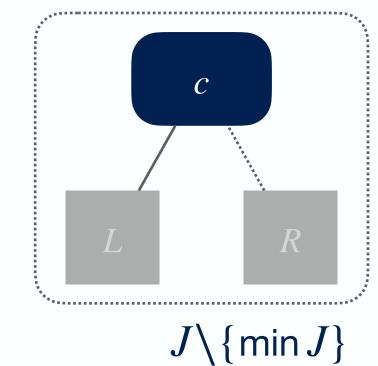
Lesson 7

Termination Analysis

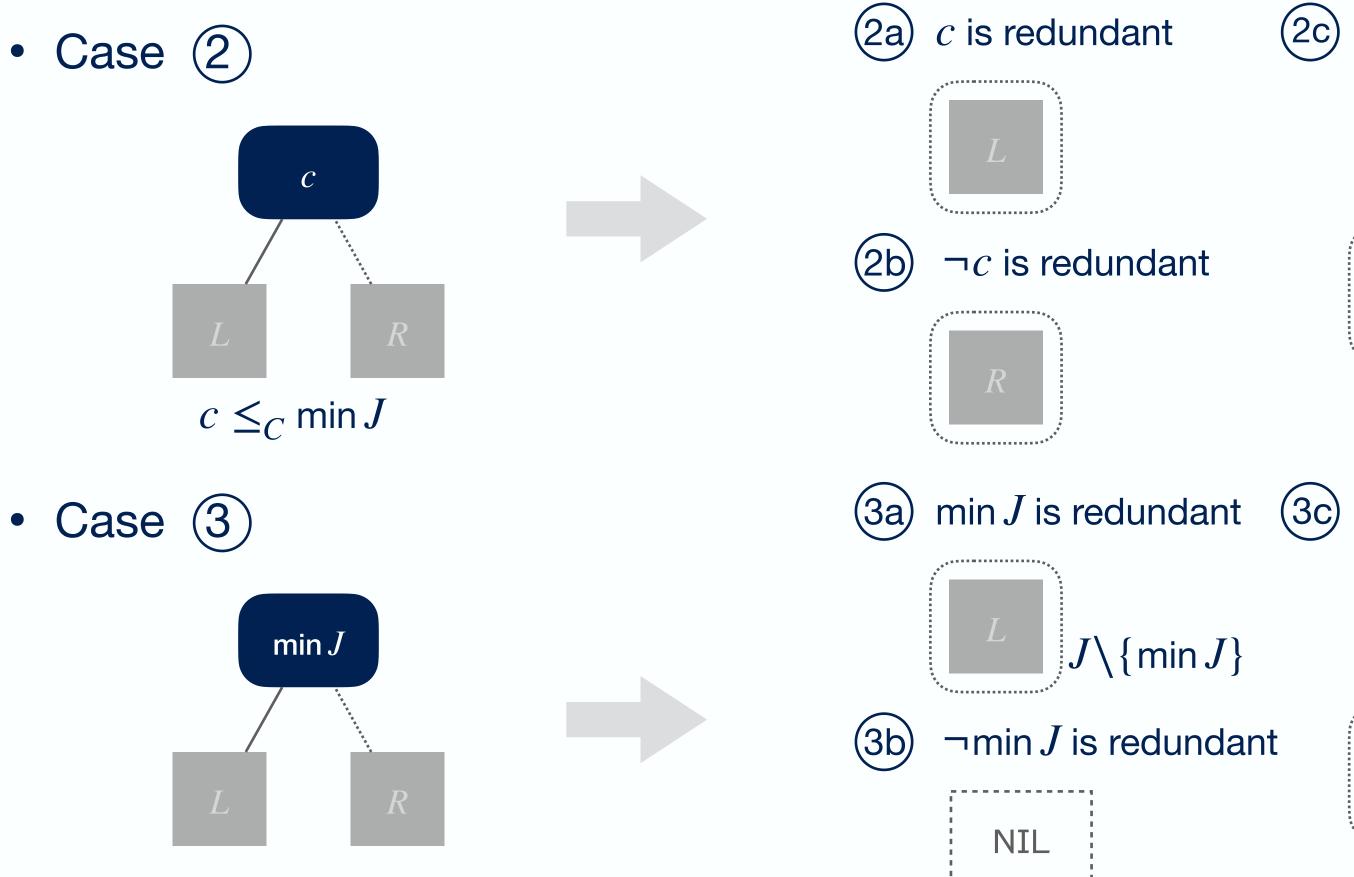


Lesson 7

Termination Analysis



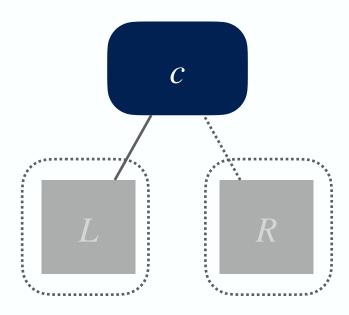
Piecewise-Defined Ranking Functions Abstract Domain Tree Pruning (continue)

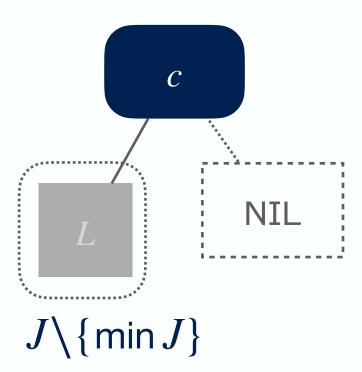


Termination Analysis

Lesson 7

c is kept in t(2c)

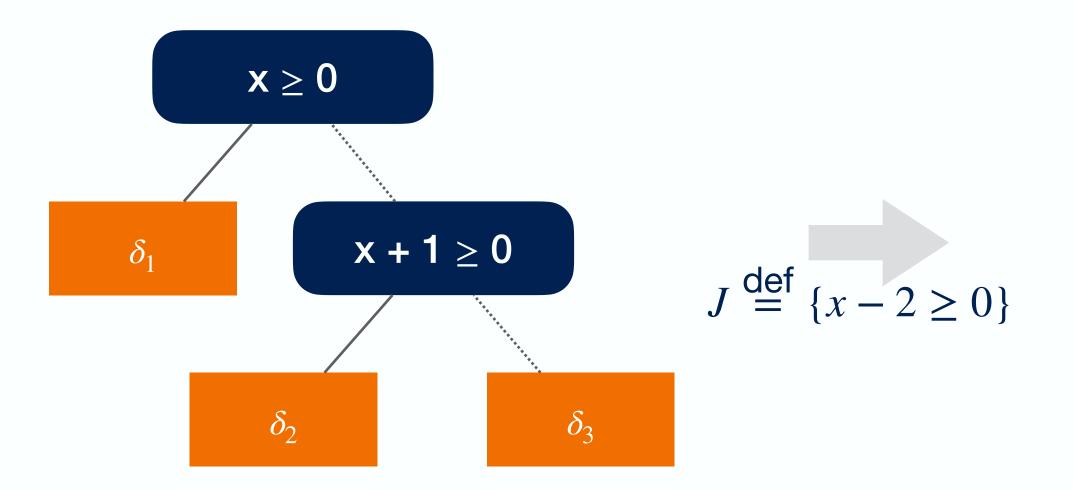




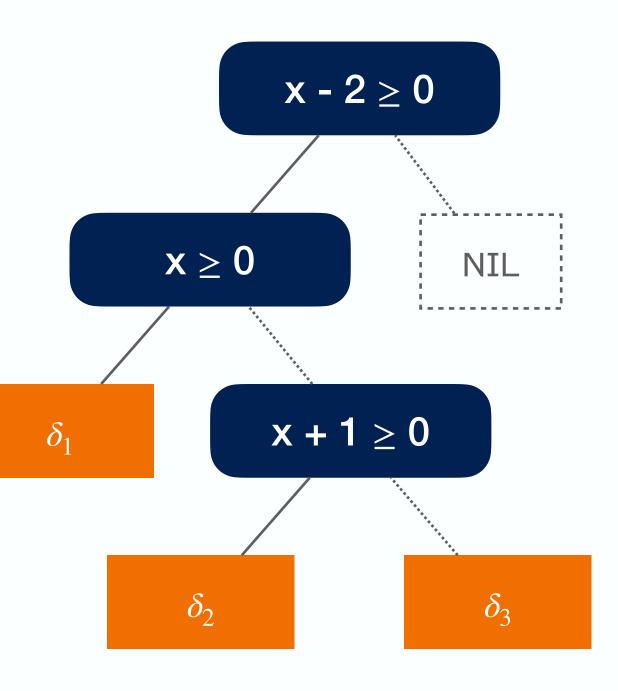
Caterina Urban

77

Piecewise-Defined Ranking Functions Abstract Domain Tree Pruning (continue)



Example



Piecewise-Defined Ranking Functions Abstract Domain Assignments

• Base case (f)

Apply $ASSIGN_F[[X \leftarrow e]][\alpha_C(C)]$ on the <u>defined</u> leaf nodes

 $\overbrace{\mathsf{ASSIGN}_F}[[X \leftarrow e]][D](f) \stackrel{\text{def}}{=} \begin{cases} \overline{f} & \overline{f} \in \mathscr{F} \setminus \{ \perp_F \\ \mathsf{T}_F & \text{otherwise} \end{cases}$

where $\overline{f}(\dots, X_i, X, \dots) \stackrel{\text{def}}{=} \max\{f(\dots, \rho(X_i), v, \dots) + 1 \mid \rho \in \gamma_D(R) \land v \in E[[e]]\rho\}$ and $R \stackrel{\text{def}}{=} \operatorname{ASSIGN}_D[[X \leftarrow e]]D$

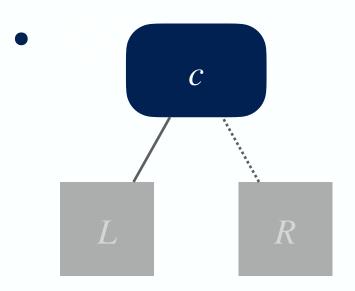
Example: $\widehat{\text{ASSIGN}_F}[[x \leftarrow x + [1,2]]][\top_D](\lambda x \cdot x + 1) =$ (since f(x + [1,2]) + 1 = x + [1,2] + 1 + 1 =

$$F_{F}, \mathsf{T}_{F} \} \qquad f \in \mathscr{F} \setminus \{ \perp_{F}, \mathsf{T}_{F} \}$$

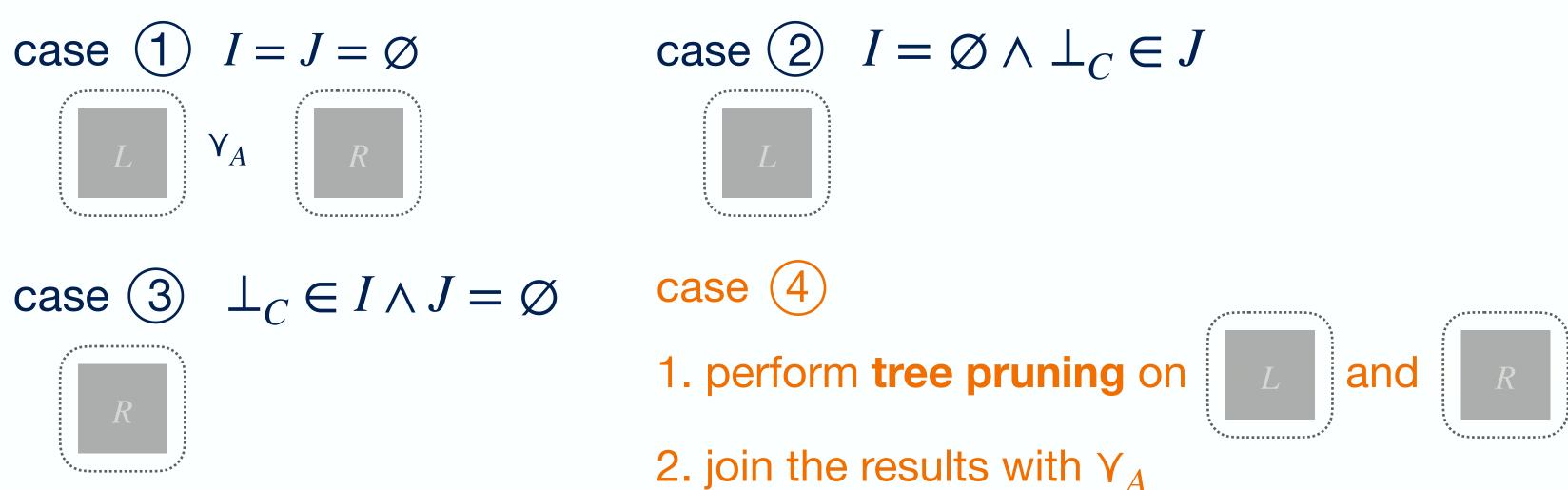
=
$$\lambda x \cdot x + 4$$

x + [3,4] and max(3,4) = 4

Piecewise-Defined Ranking Functions Abstract Domain Assignments



Convert $ASSIGN_D[[X \leftarrow e]](\alpha_C(\{c\}))$ and $ASSIGN_D[[X \leftarrow e]](\alpha_C(\{\neg c\}))$ into sets I and J of linear constraints in canonical form



Termination Analysis

Lesson 7

Piecewise-Defined Ranking Functions Abstract Domain Tests

1. Recursively descend the tree and apply $STEP_F$ on the <u>defined</u> leaf nodes to account for one more execution step needed before termination:

$$\mathsf{STEP}_F(f) \stackrel{\mathsf{def}}{=} \lambda X_1, \dots, X_k.f(X_1, \dots, X_k) + 1$$

2. Convert *e* into a set *J* of linear constraints in canonical form

Example: $\alpha_C(\text{FILTER}_D[[e]] \top_D)$ where $\langle \mathcal{D}, \sqsubseteq_D \rangle$ is the underlying numerical domain

3. Perform **tree pruning** with J

$FILTER_A[[e]]$

$$f \in \mathscr{F} \setminus \{ \perp_F, \mathsf{T}_F \}$$

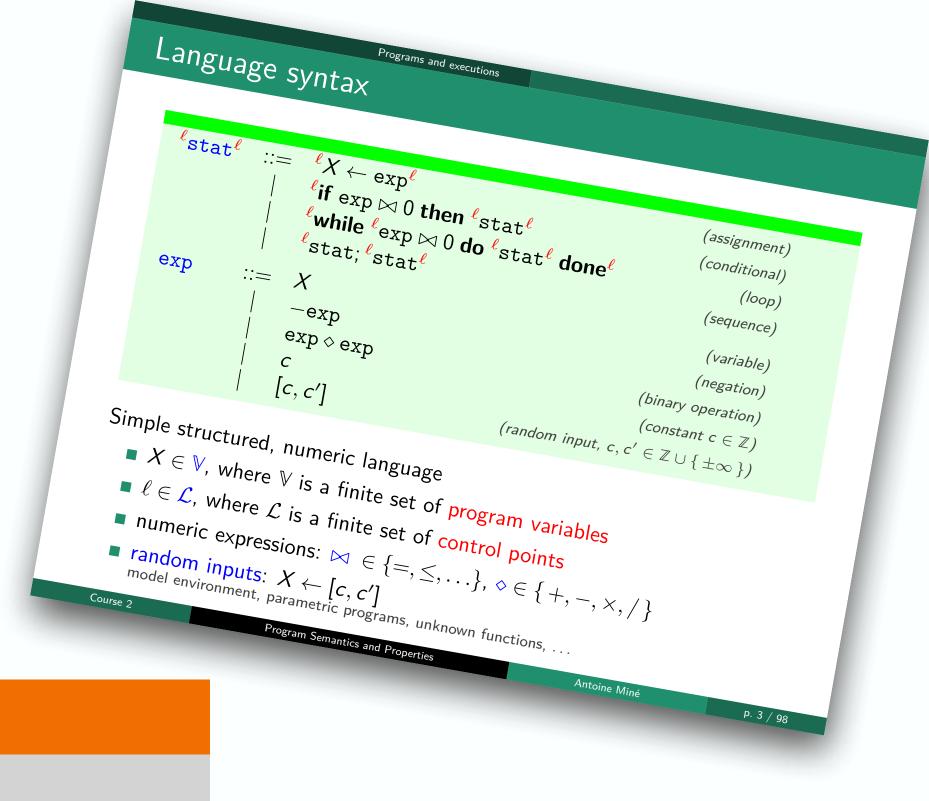
For each program instruction stat, we define a transformer $\mathscr{R}^{\#}_{M}$ [[stat]]: $\mathscr{A} \to \mathscr{A}$:

• $\mathscr{R}^{\#}_{M}[[{}^{\ell}X \leftarrow e]]t \stackrel{\text{def}}{=} \mathsf{ASSIGN}_{A}[[X \leftarrow e]]t$

Lemma (Soundness)

 $\mathscr{R}_{M}[[{}^{\ell}X \leftarrow e]]\gamma_{A}(t) \leq \gamma_{A}(\mathscr{R}_{M}^{\#}[[{}^{\ell}X \leftarrow e]]t)$

(see proof in [Urban15])



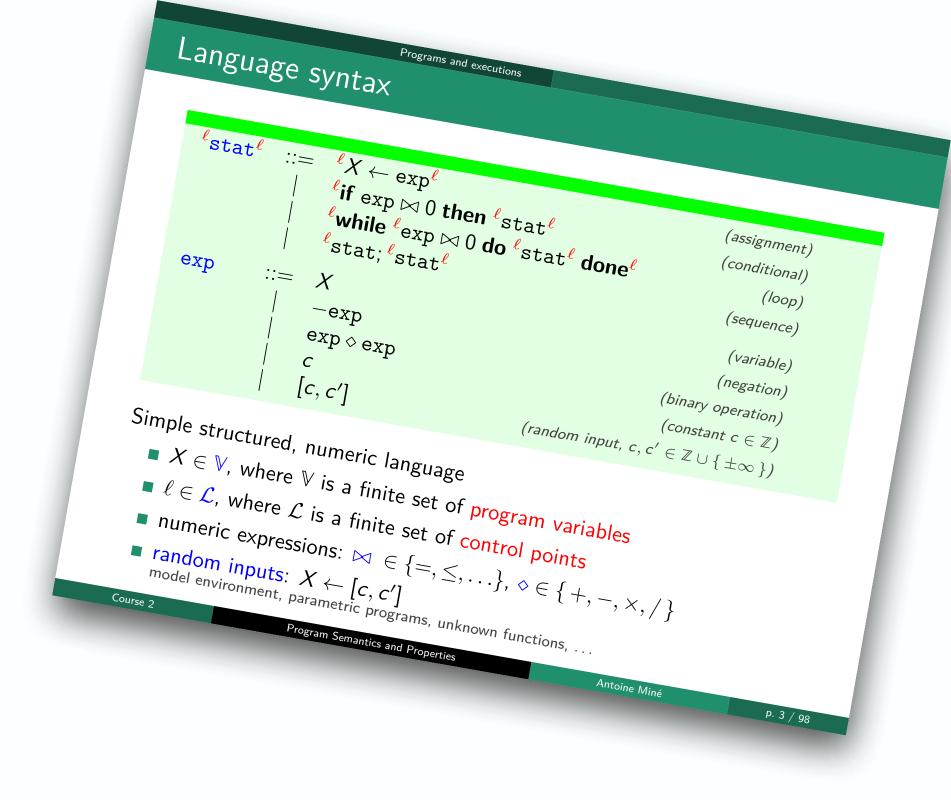
For each program instruction stat, we define a transformer $\mathscr{R}^{\#}_{M}[[stat]]: \mathscr{A} \to \mathscr{A}:$

- $\mathscr{R}^{\#}_{M}[[{}^{\ell}X \leftarrow e]]t \stackrel{\text{def}}{=} ASSIGN_{A}[[X \leftarrow e]]t$
- $\mathscr{R}^{\#}_{M}$ [[if $\ell e \bowtie 0$ then s]] $t \stackrel{\text{def}}{=}$ $\mathsf{FILTER}_{A}[[e \bowtie 0]](\mathscr{R}_{M}^{\#}[[s]]t) \lor_{T} \mathsf{FILTER}_{A}[[e \bowtie 0]]t]$

Lemma (Soundness)

 $\mathscr{R}_{M}[[\text{if } e \bowtie 0 \text{ then } s]]\gamma_{A}(t) \leq \gamma_{A}(\mathscr{R}_{M}^{\#}[[\text{if } e \bowtie 0 \text{ then } s]]t)$

(see proof in [Urban15])



For each program instruction stat, we define a transformer $\mathscr{R}^{\#}_{M}[[stat]]: \mathscr{A} \to \mathscr{A}:$

- $\mathscr{R}^{\#}_{M}[[{}^{\ell}X \leftarrow e]]t \stackrel{\text{def}}{=} \mathsf{ASSIGN}_{A}[[X \leftarrow e]]t$
- $\mathscr{R}^{\#}_{M}$ [[if $\ell e \bowtie 0$ then s]] $t \stackrel{\text{def}}{=}$ $\mathsf{FILTER}_{A}[[e \bowtie 0]](\mathscr{R}_{M}^{\#}[[s]]t) \lor_{T} \mathsf{FILTER}_{A}[[e \bowtie 0]]t]$
- $\mathscr{R}_{M}^{\#}$ [[while $\ell e \bowtie 0$ do *s* done]] $t \stackrel{\text{def}}{=} \operatorname{lfp}^{\#} \overline{F}_{M}^{\#}$ where $\overline{F}_{M}^{\#}(x) \stackrel{\text{def}}{=} \operatorname{FILTER}_{A} [[e \bowtie 0]] (\mathscr{R}_{M}^{\#} [[s]]x) \lor_{T} \operatorname{FILTER}_{A} [[e \bowtie 0]](t)$

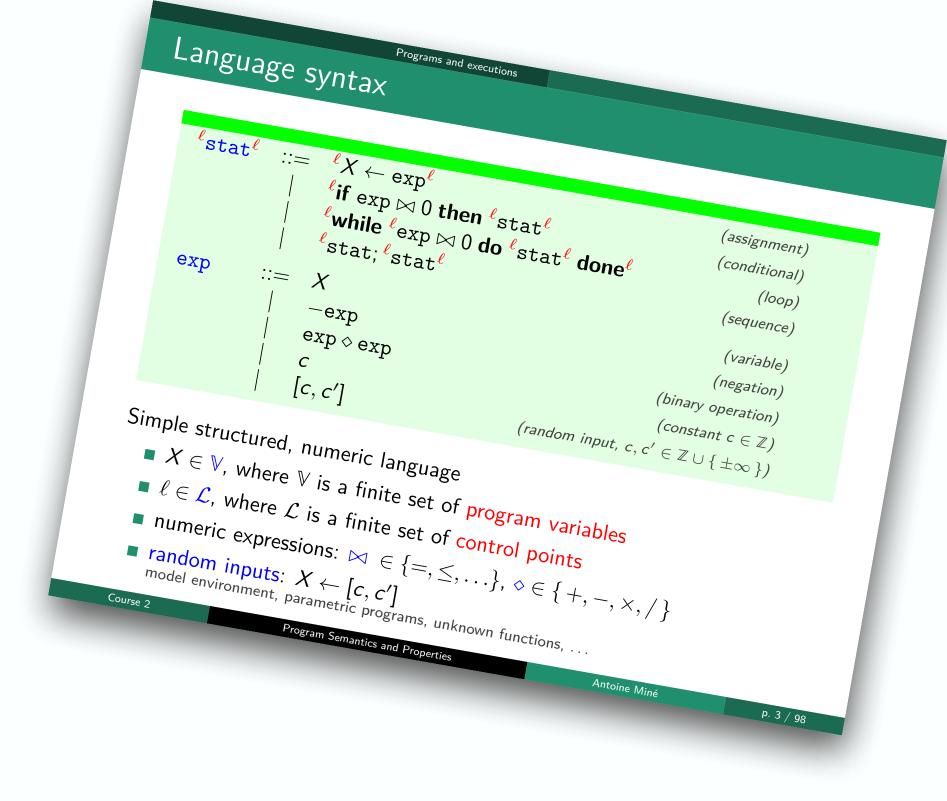
Lemma (Soundness)

 \mathscr{R}_{M} [[while $\ell e \bowtie 0$ do s done]] $\gamma_{A}(t) \leq \gamma_{A}(\mathscr{R}_{M}^{\#}$ [[while $\ell e \bowtie 0$ do s done]]t)

(see proof in [Urban15])

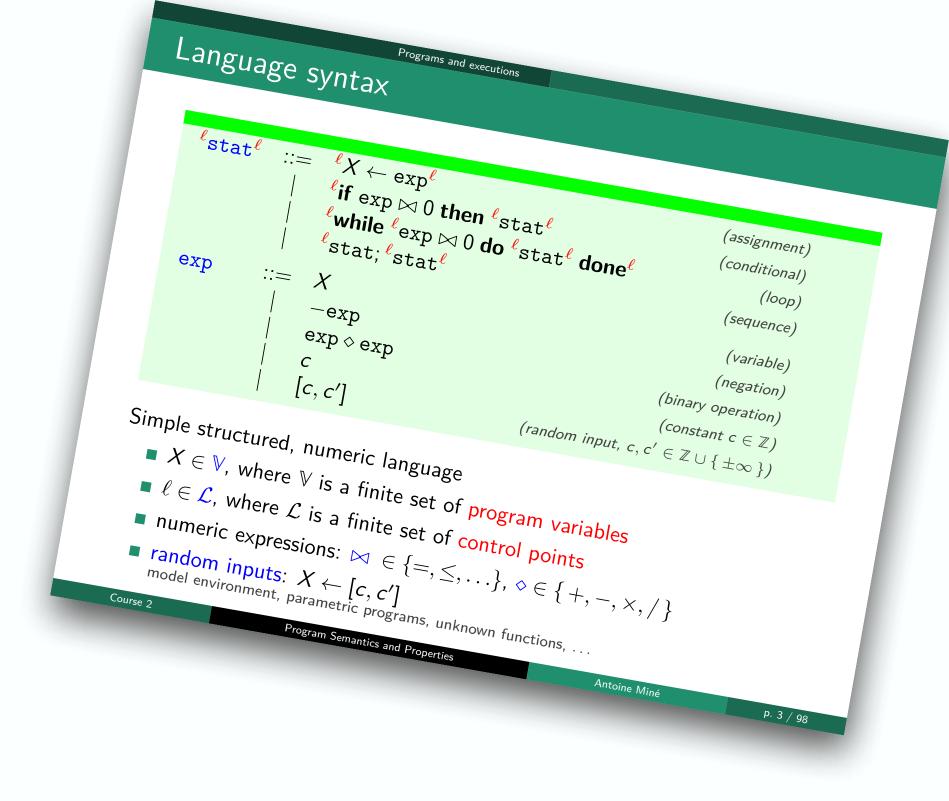
Termination Analysis

Lesson 7



For each program instruction stat, we define a transformer $\mathscr{R}^{\#}_{M}$ [[stat]]: $\mathscr{A} \to \mathscr{A}$:

- $\mathscr{R}^{\#}_{M}[[{}^{\ell}X \leftarrow e]]t \stackrel{\text{def}}{=} \mathsf{ASSIGN}_{A}[[X \leftarrow e]]t$
- $\mathscr{R}^{\#}_{M}$ [[if $\ell e \bowtie 0$ then s]] $t \stackrel{\text{def}}{=}$ $\mathsf{FILTER}_{A}[[e \bowtie 0]](\mathscr{R}_{M}^{\#}[[s]]t) \lor_{T} \mathsf{FILTER}_{A}[[e \bowtie 0]]t]$
- $\mathscr{R}_{M}^{\#}$ [[while $\ell e \bowtie 0$ do *s* done]] $t \stackrel{\text{def}}{=} \operatorname{lfp}^{\#} \overline{F}_{M}^{\#}$ where $\overline{F}_{M}^{\#}(x) \stackrel{\text{def}}{=} \operatorname{FILTER}_{A} [[e \bowtie 0]] (\mathscr{R}_{M}^{\#} [[s]]x) \lor_{T} \operatorname{FILTER}_{A} [[e \bowtie 0]](t)$
- $\mathscr{R}^{\#}_{M}[[s_{1};s_{2}]]t \stackrel{\text{def}}{=} \mathscr{R}^{\#}_{M}[[s_{1}]](\mathscr{R}^{\#}_{M}[[s_{2}]]t)$



Definition

The abstract definite termination semantics $\mathscr{R}^{\#}_{M}$ [[stat^{ℓ}]] $\in \mathscr{A}$ of a program stat^{ℓ} is:

 $\mathscr{R}^{\#}_{M}$ [[stat]] $\stackrel{\text{def}}{=} \mathscr{R}^{\#}_{M}$ [[stat]](LEAF: $\lambda X_{1}, ..., X_{k}.0$)

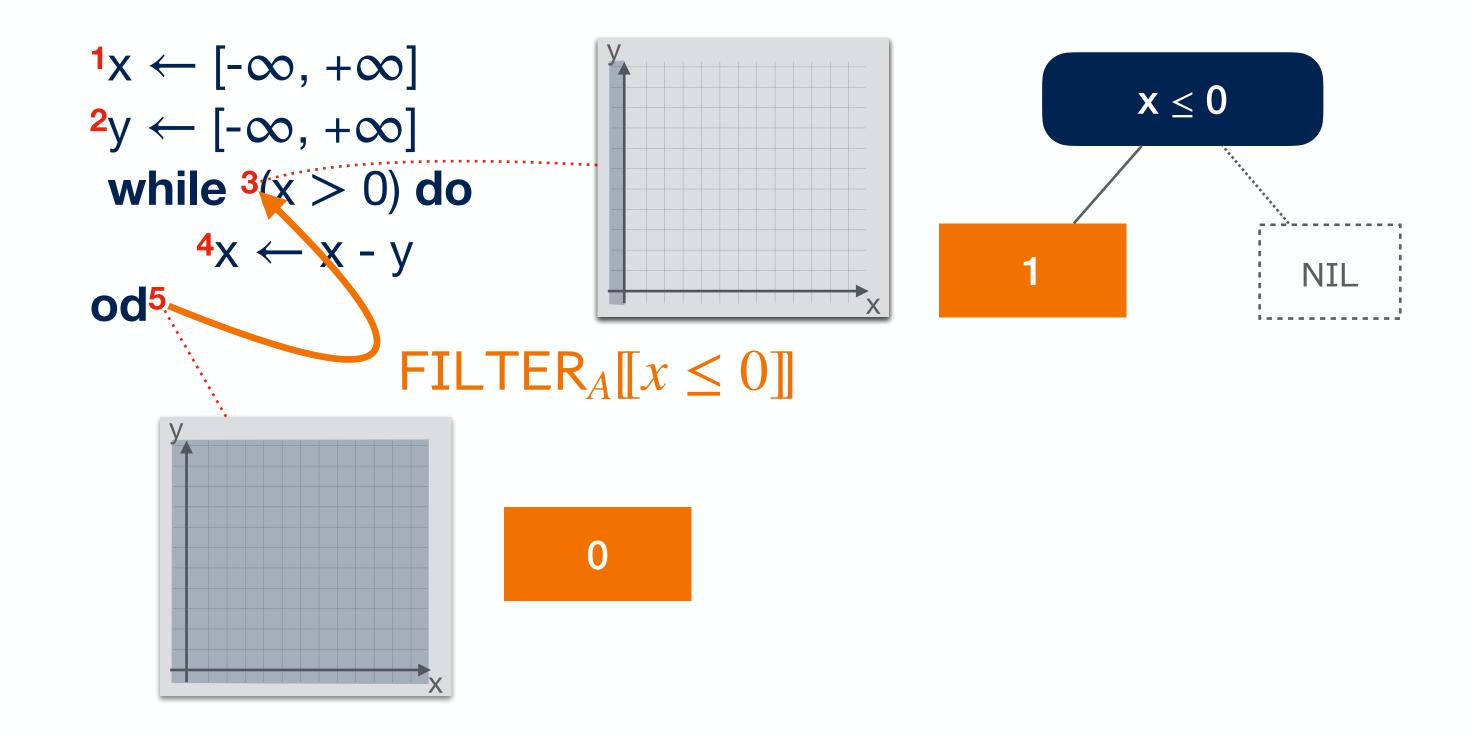
where $\mathscr{R}^{\#}_{\mathcal{M}}[[stat]]: \mathscr{A} \to \mathscr{A}$ is the abstract definite termination semantics of each program instruction stat

Theorem (Soundness)

$$\mathscr{R}_{M}[[\mathsf{stat}^{\ell}]] \preccurlyeq \gamma_{A}(\mathscr{R}_{M}^{\#}[[\mathsf{stat}^{\ell}]])$$

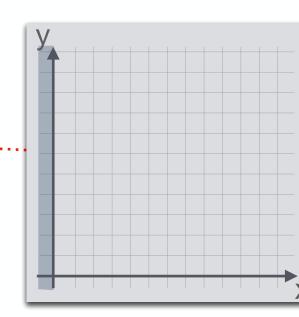
A program stat^{*ℓ*} must terminate for traces starting from a set of initial states \mathcal{I} if $\mathscr{I} \subseteq \operatorname{dom}(\gamma_A(\mathscr{R}^{\#}_M[[\operatorname{stat}^{\ell}]]))$

Corollary (Soundness)



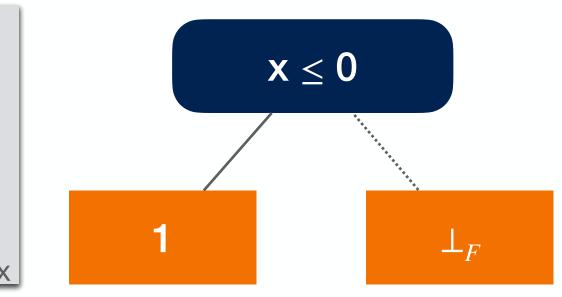
Lesson 7

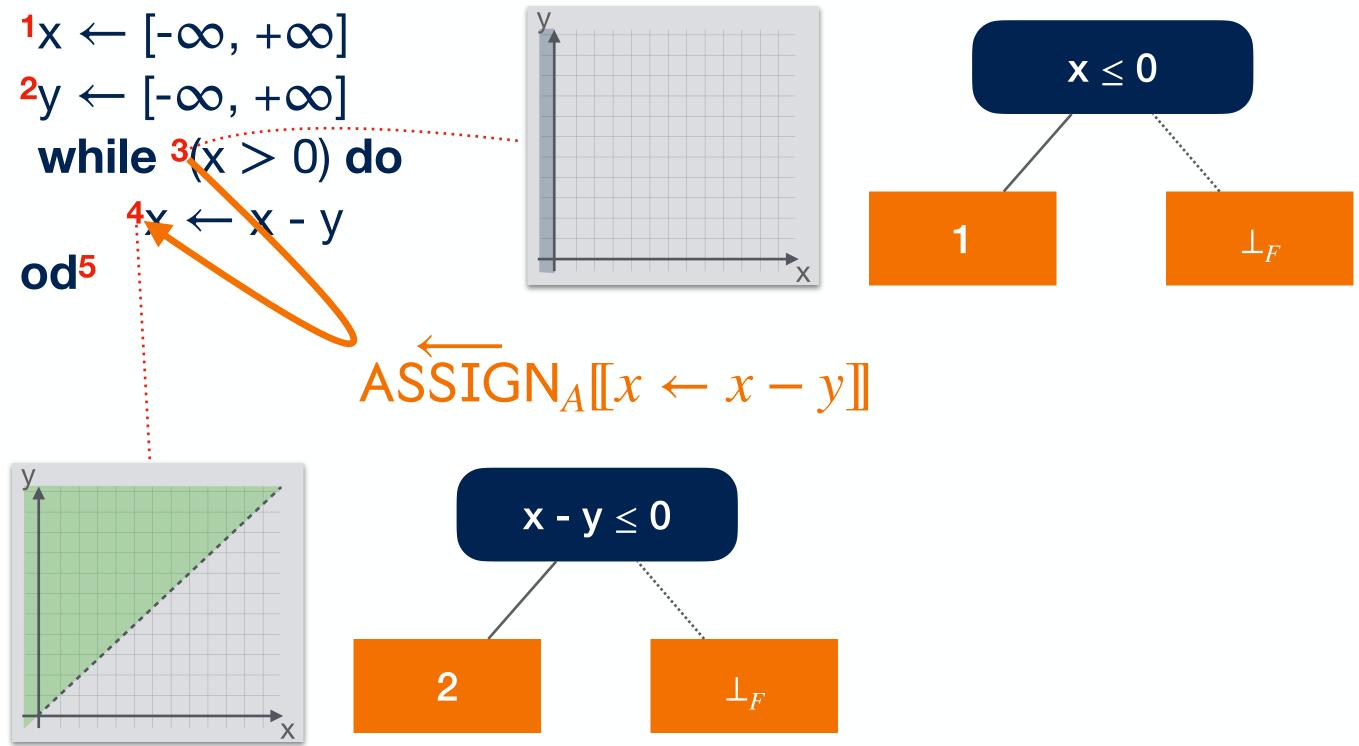
 $^{1}x \leftarrow [-\infty, +\infty]$ $^{2}y \leftarrow [-\infty, +\infty]$ while $^{3}(x > 0)$ do $4x \leftarrow x - y$ od⁵



Lesson 7

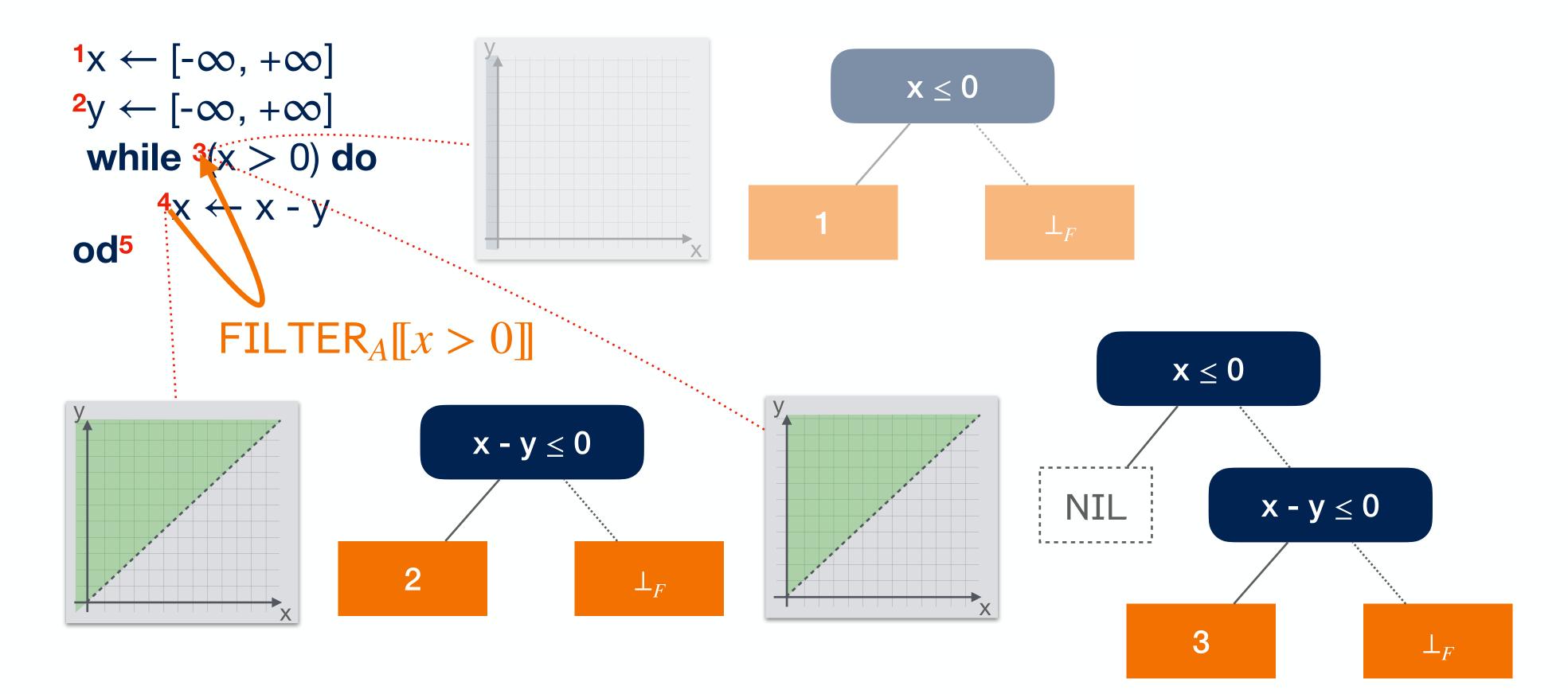
Termination Analysis





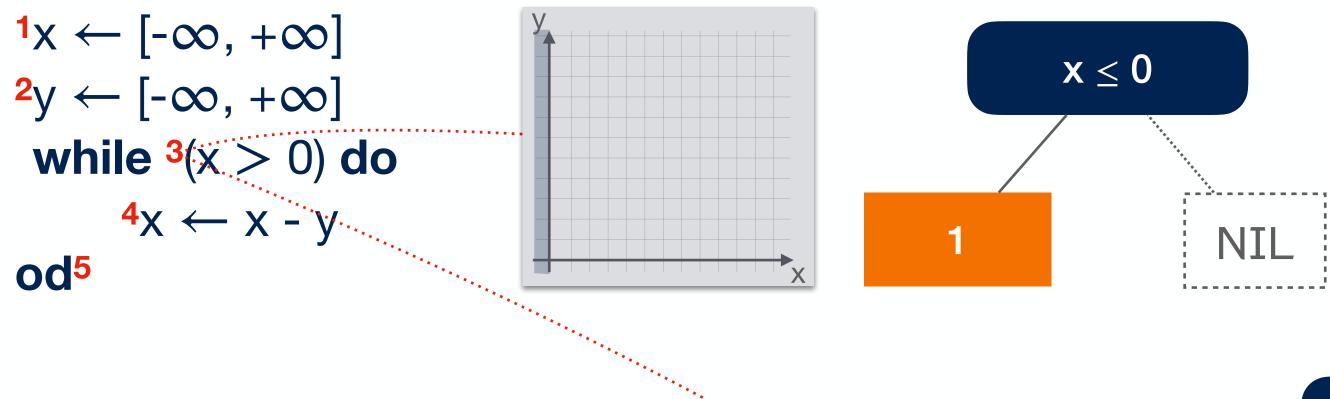
Termination Analysis

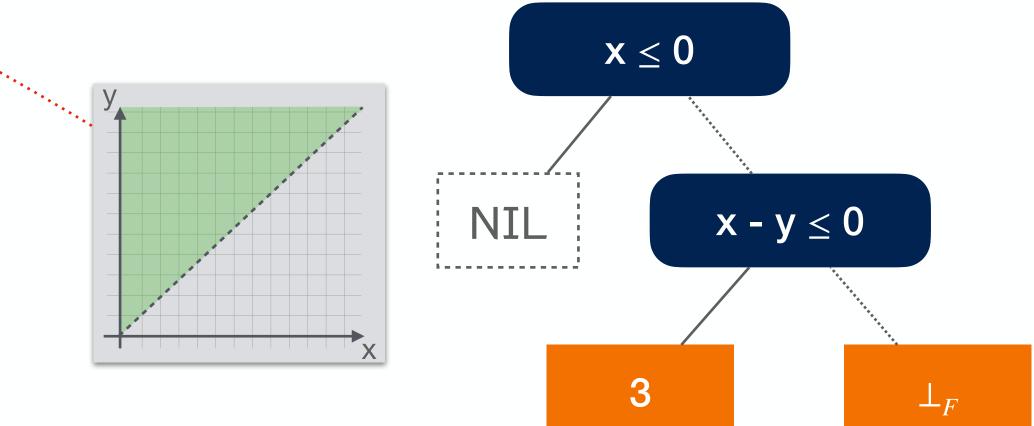
Lesson 7

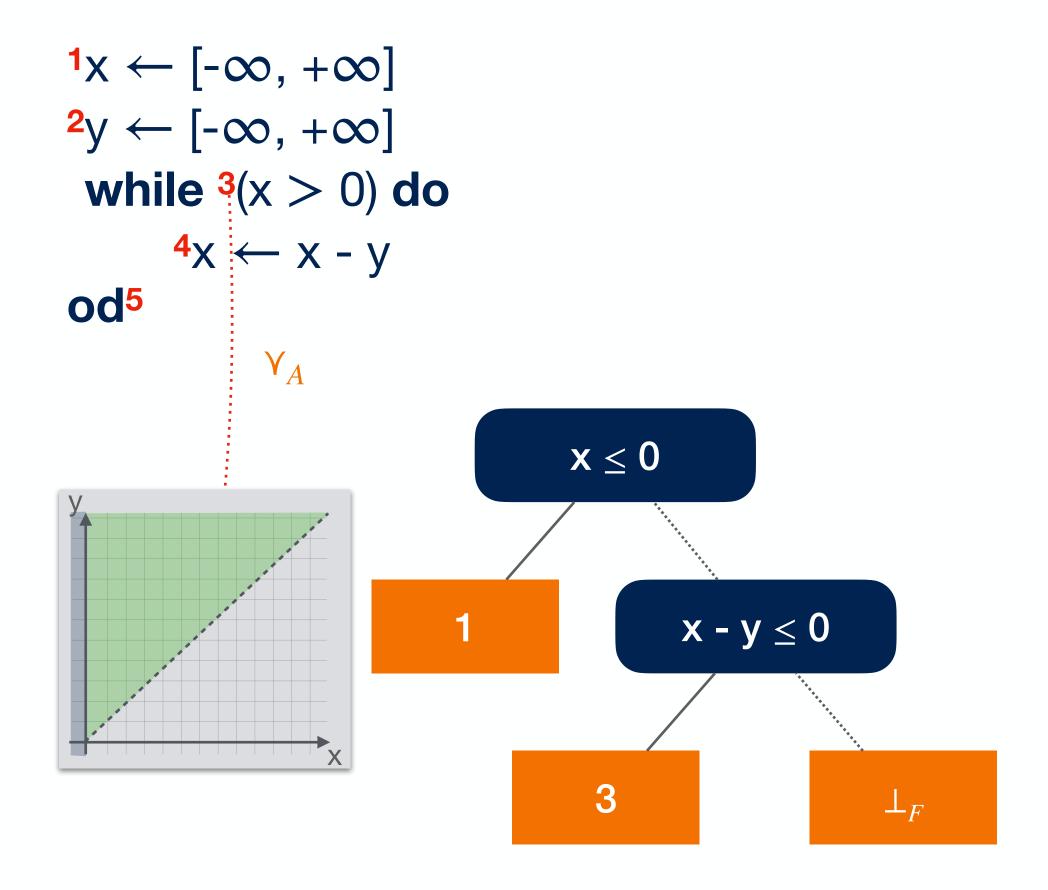


Termination Analysis

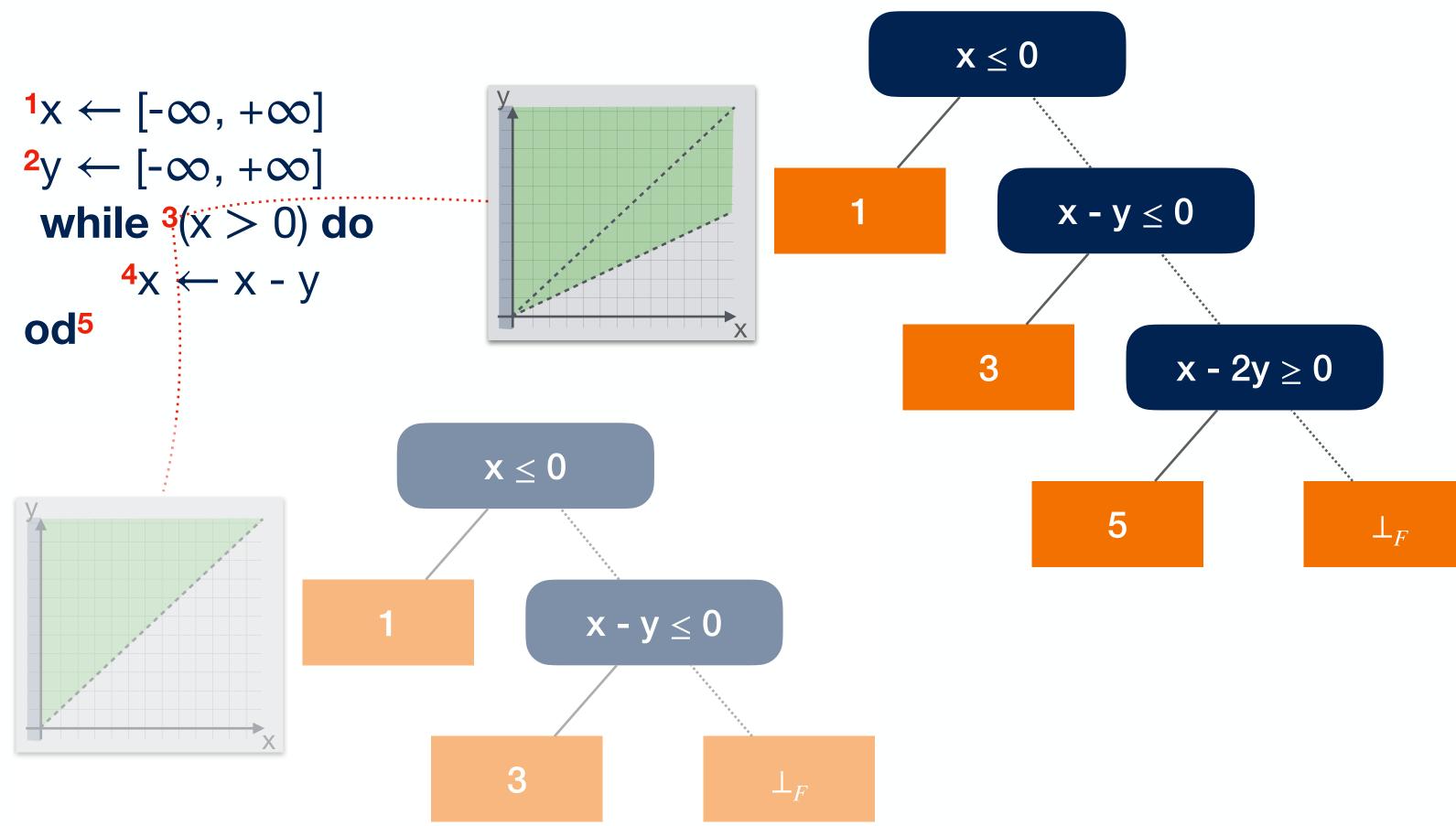
Lesson 7





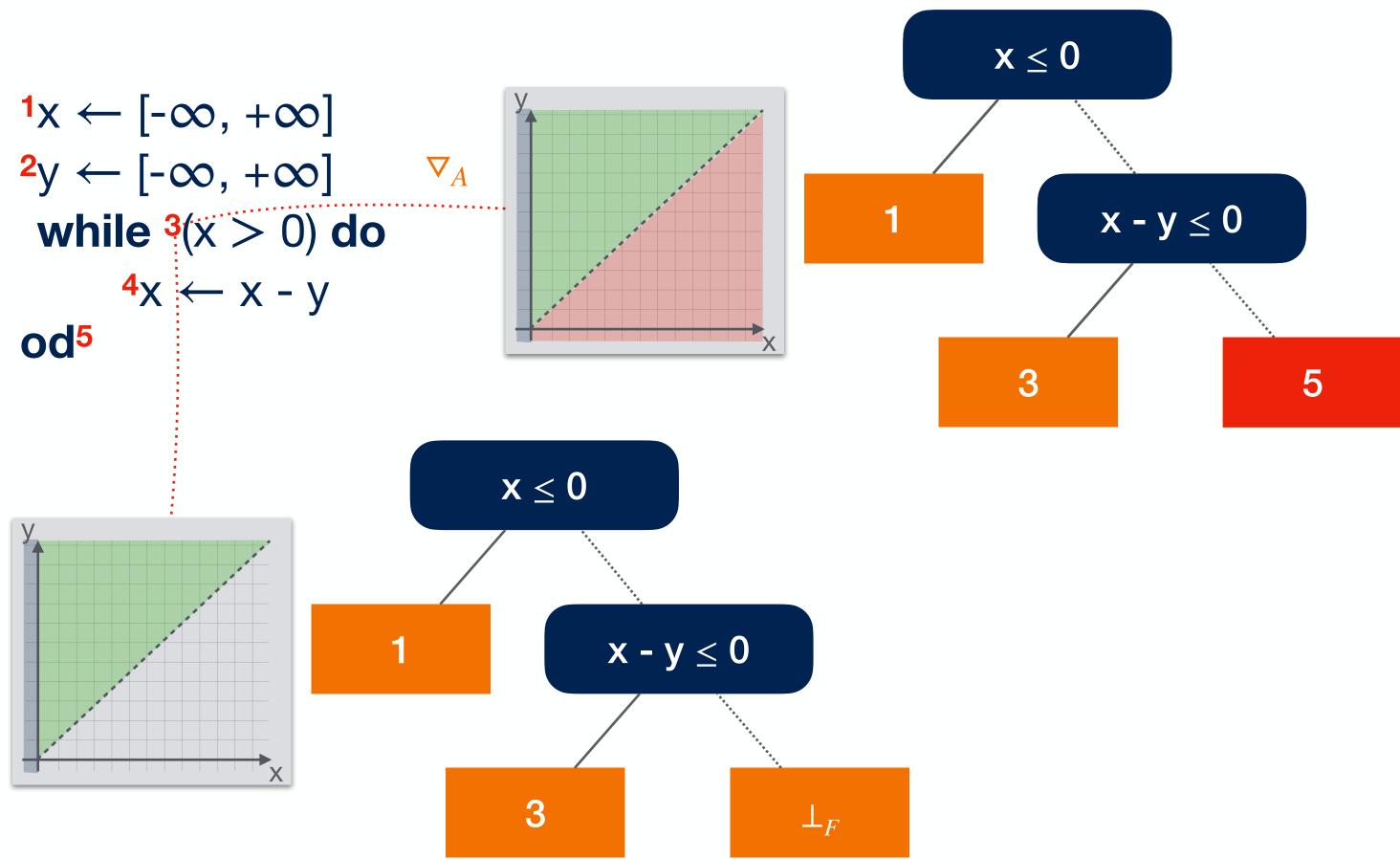


Lesson 7



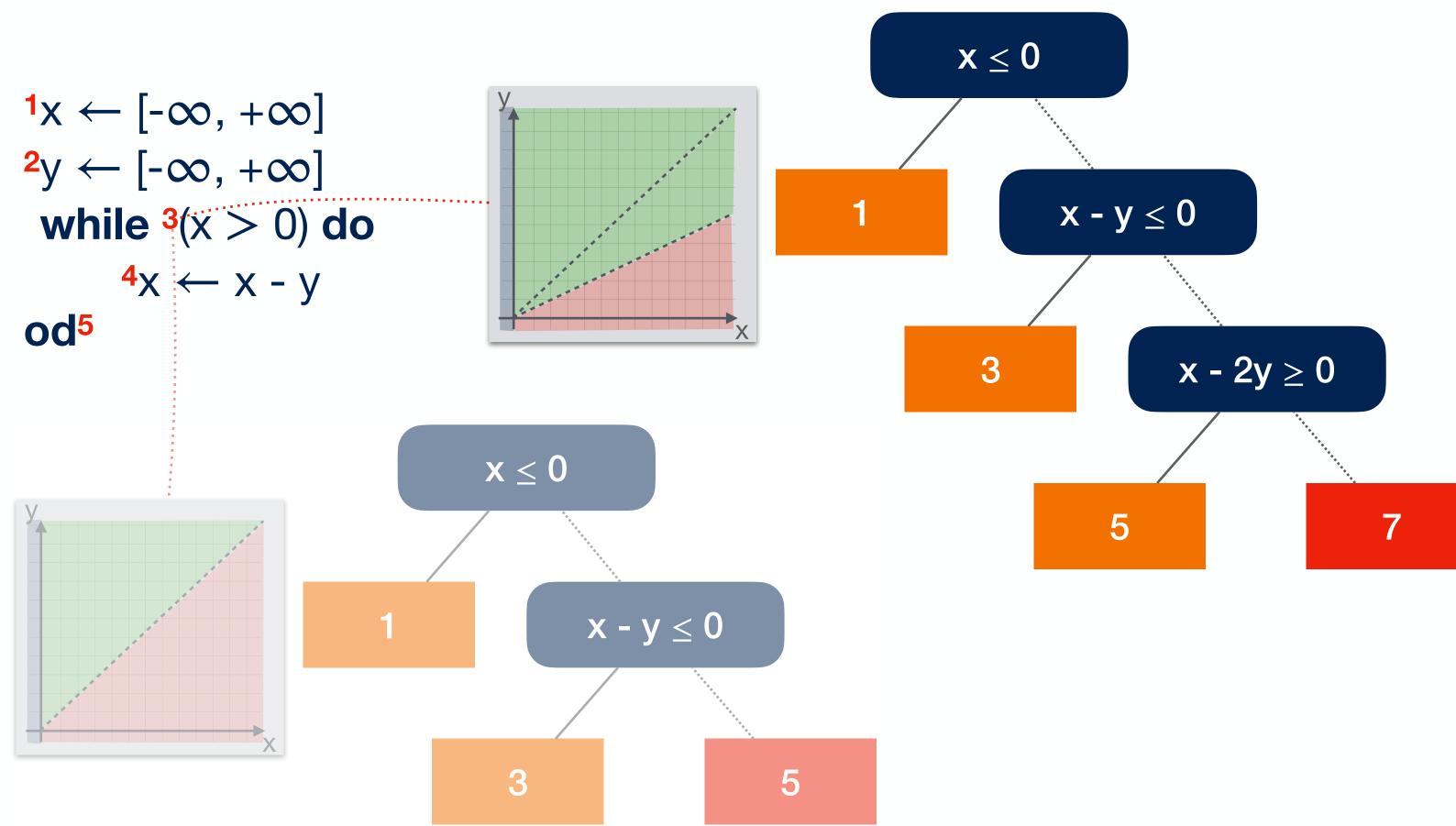
Termination Analysis

Lesson 7



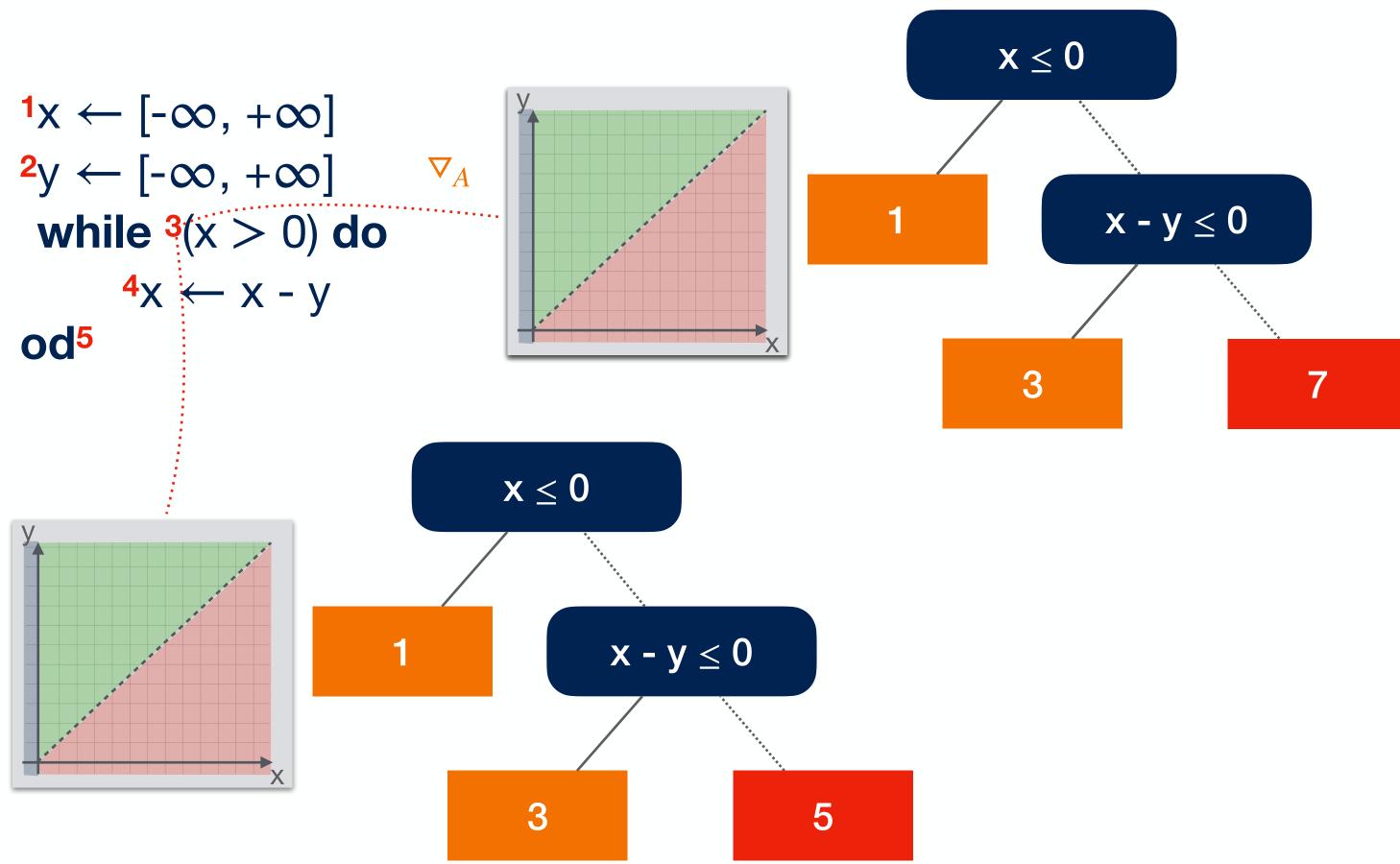
Termination Analysis

Lesson 7



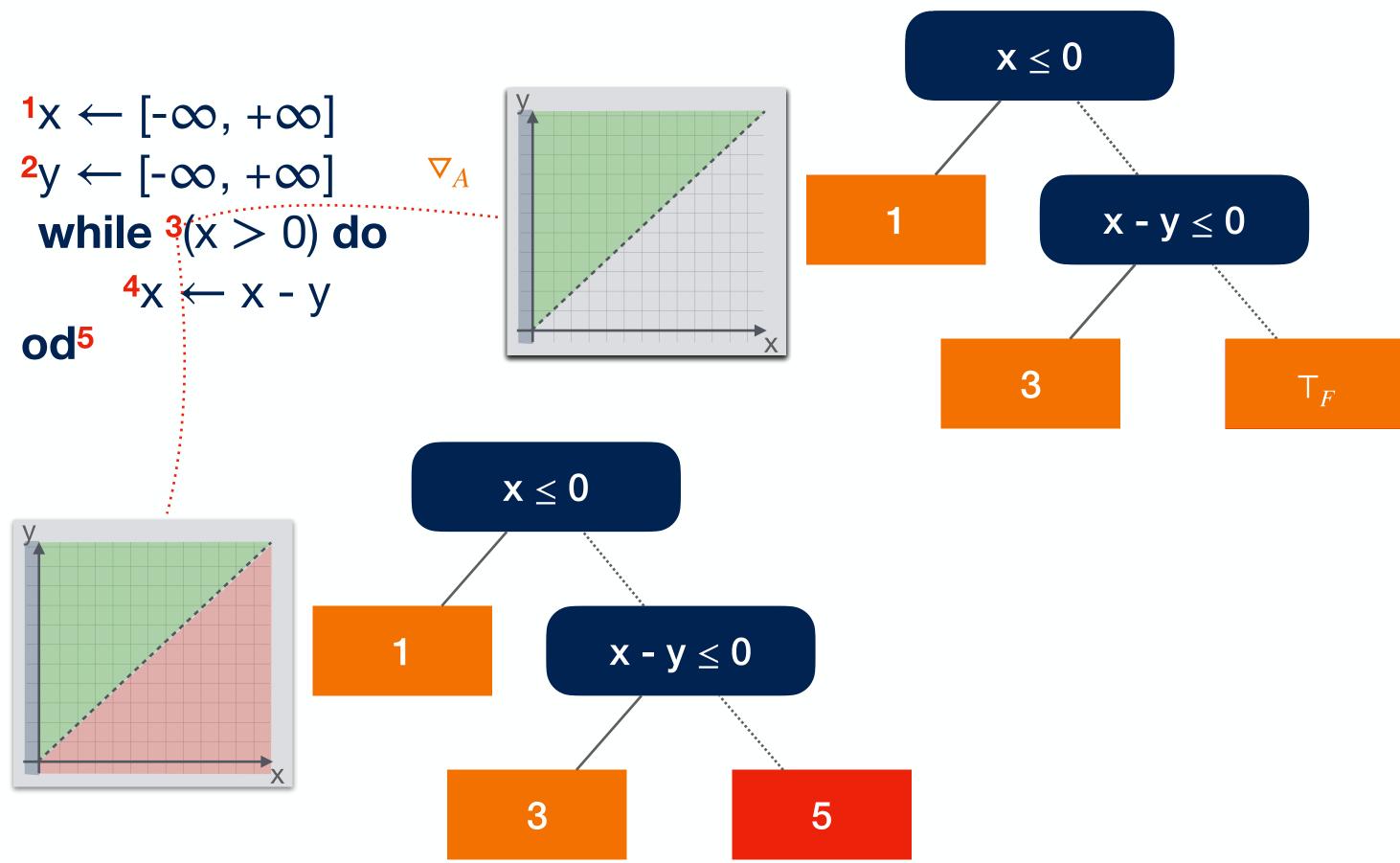
Termination Analysis

Lesson 7



Termination Analysis

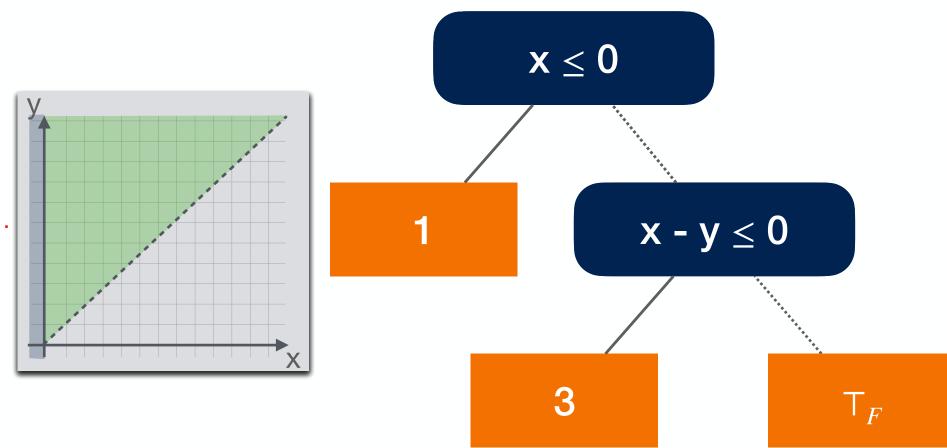
Lesson 7



Termination Analysis

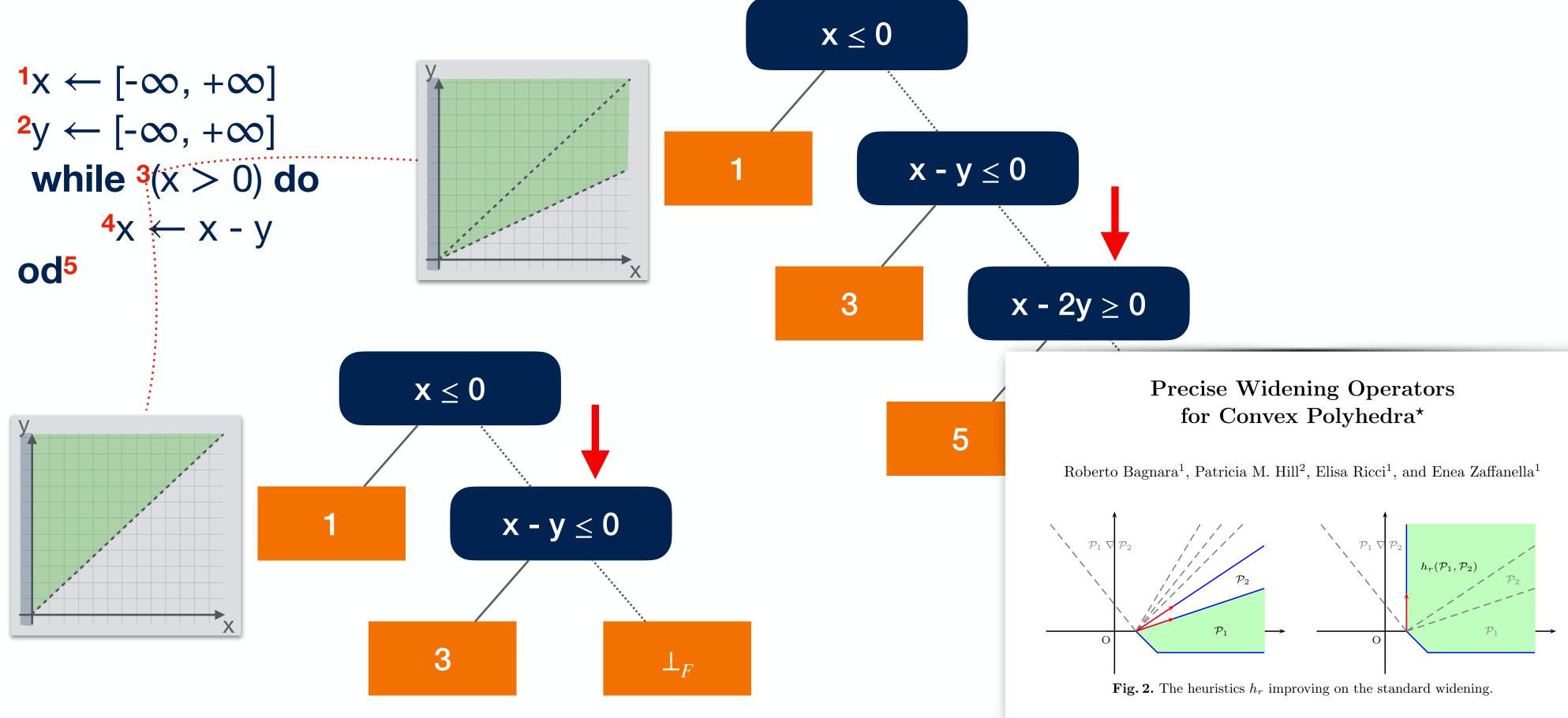
Lesson 7

 $^{1}x \leftarrow [-\infty, +\infty]$ $^{2}y \leftarrow [-\infty, +\infty]$ while $^{3}(x > 0)$ do $4x \leftarrow x - y$ od⁵



Lesson 7

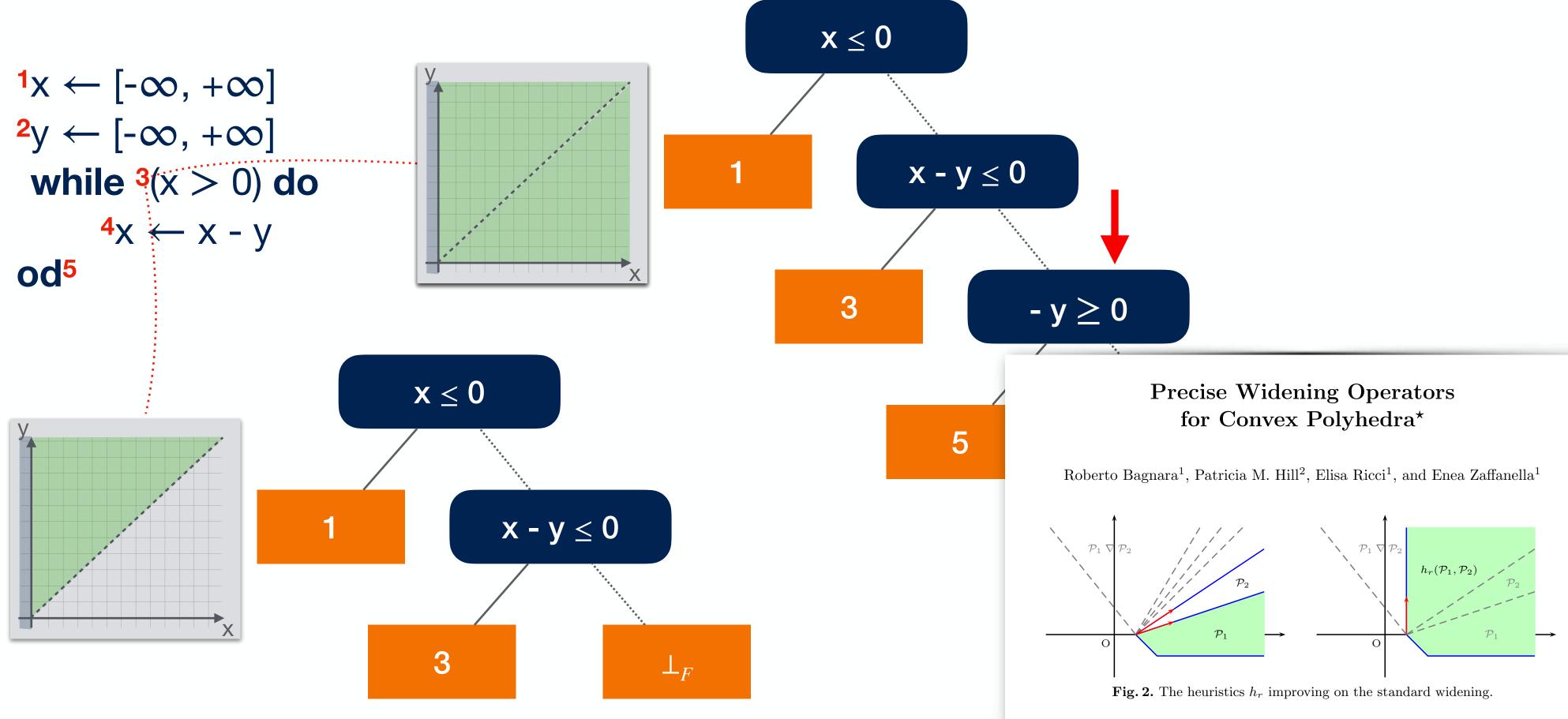
Termination Analysis



Termination Analysis

Lesson 7

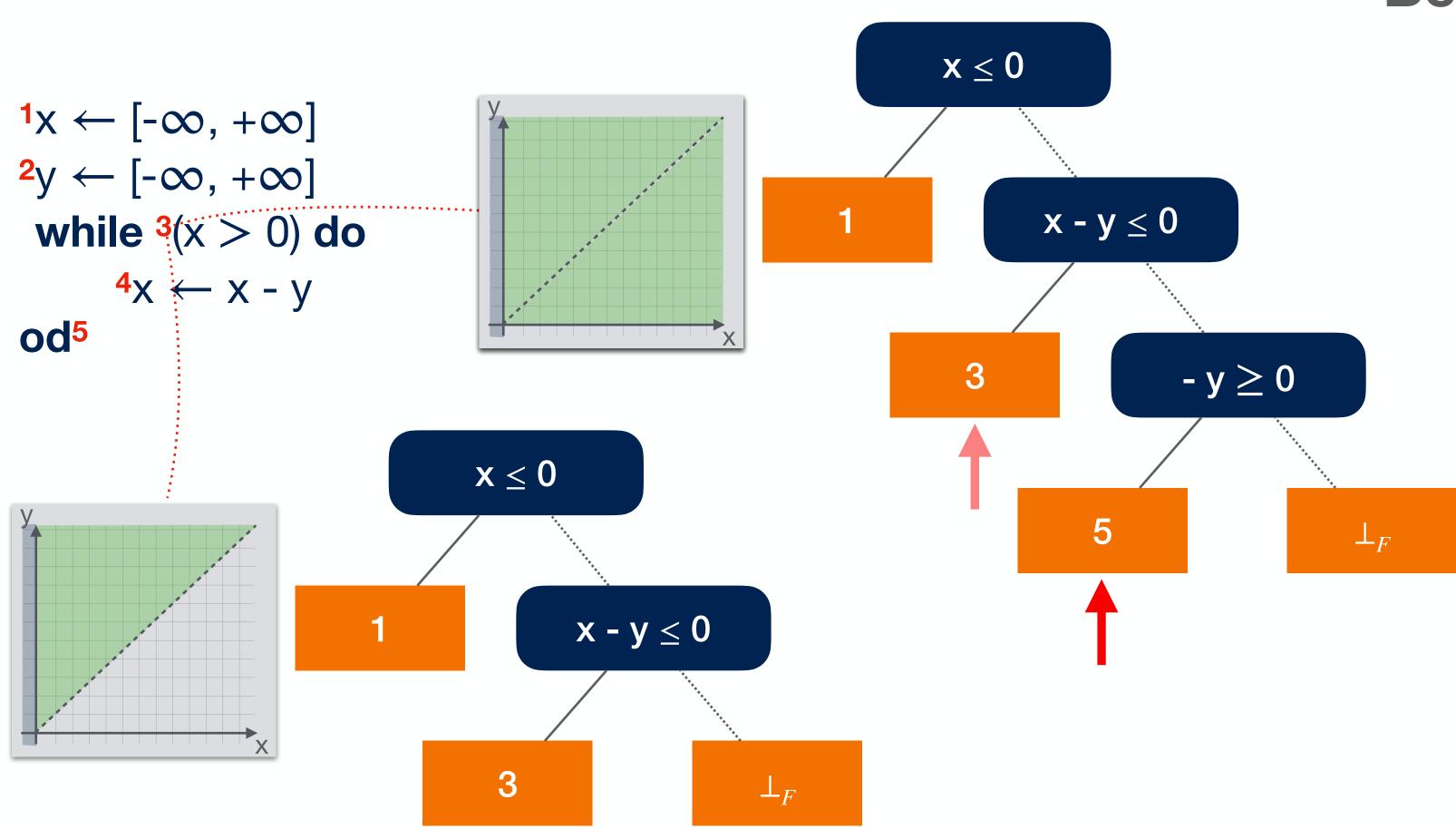
Better Widening



Termination Analysis

Lesson 7

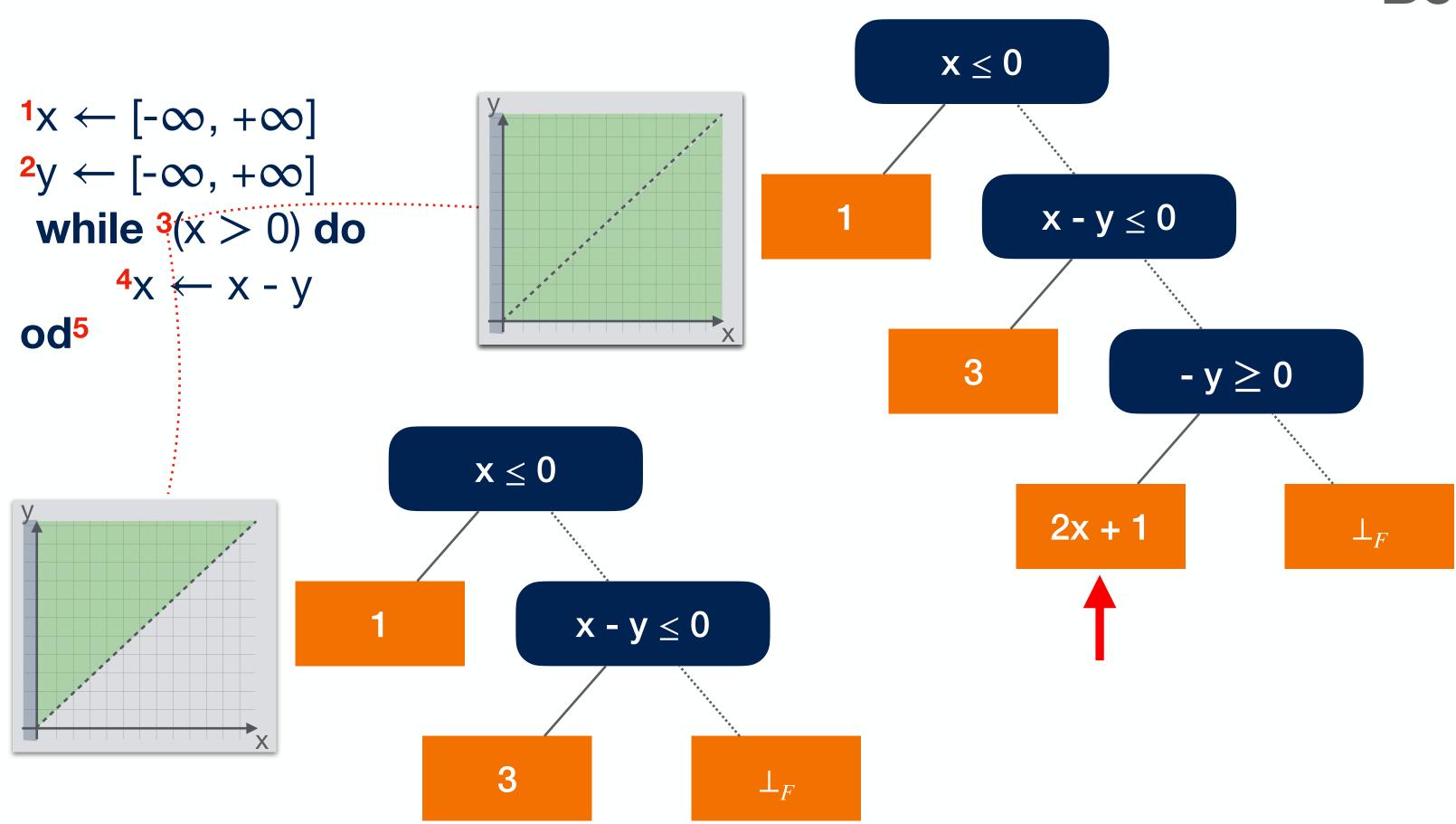
Better Widening



Termination Analysis

Lesson 7

Better Widening

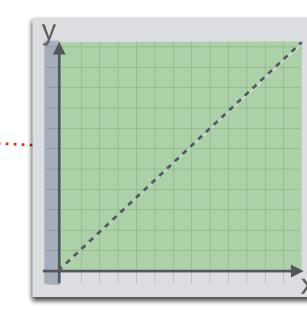


Termination Analysis

Lesson 7

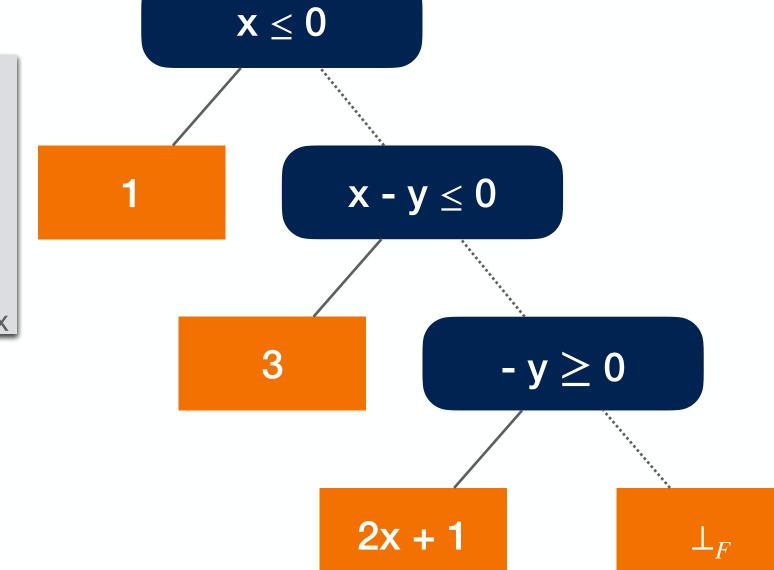
Better Widening

 $^{1}x \leftarrow [-\infty, +\infty]$ $^{2}y \leftarrow [-\infty, +\infty]$ while $^{3}(x > 0)$ do $4x \leftarrow x - y$ od⁵



Lesson 7

Termination Analysis



Ordinal-Valued Raking Functions

Lesson 7

Termination Analysis

Need for Ordinals Example

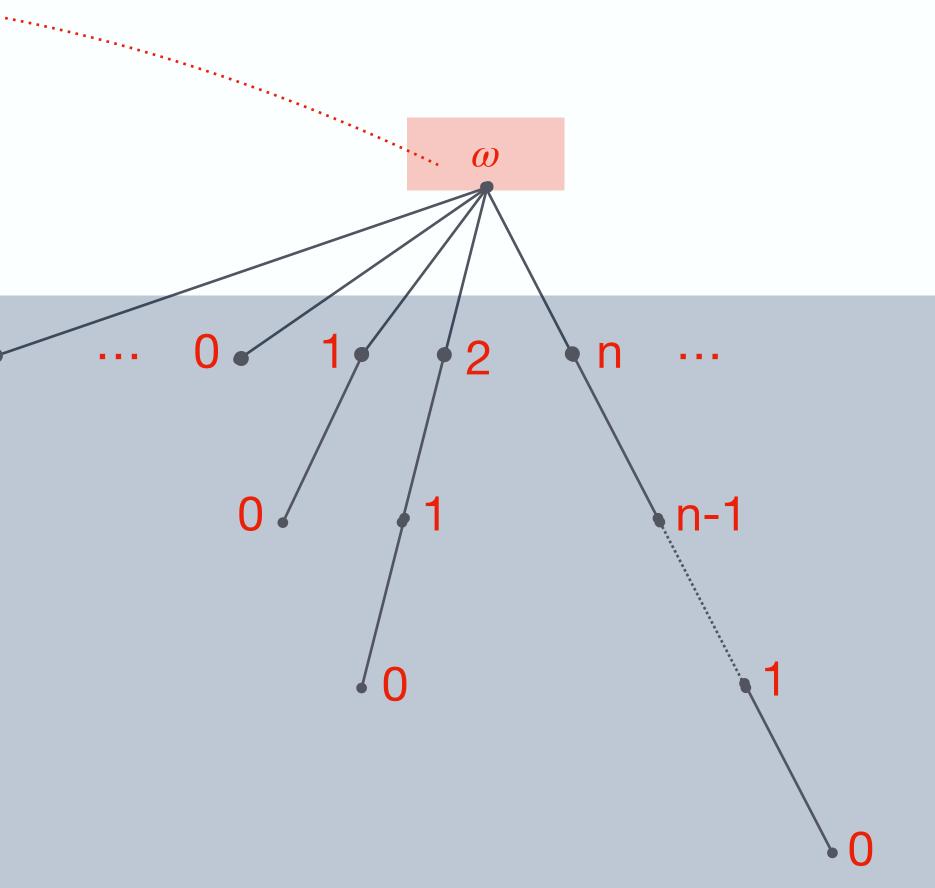
 $\mathbf{1}_{X} \leftarrow [-\infty, +\infty]$

od⁴

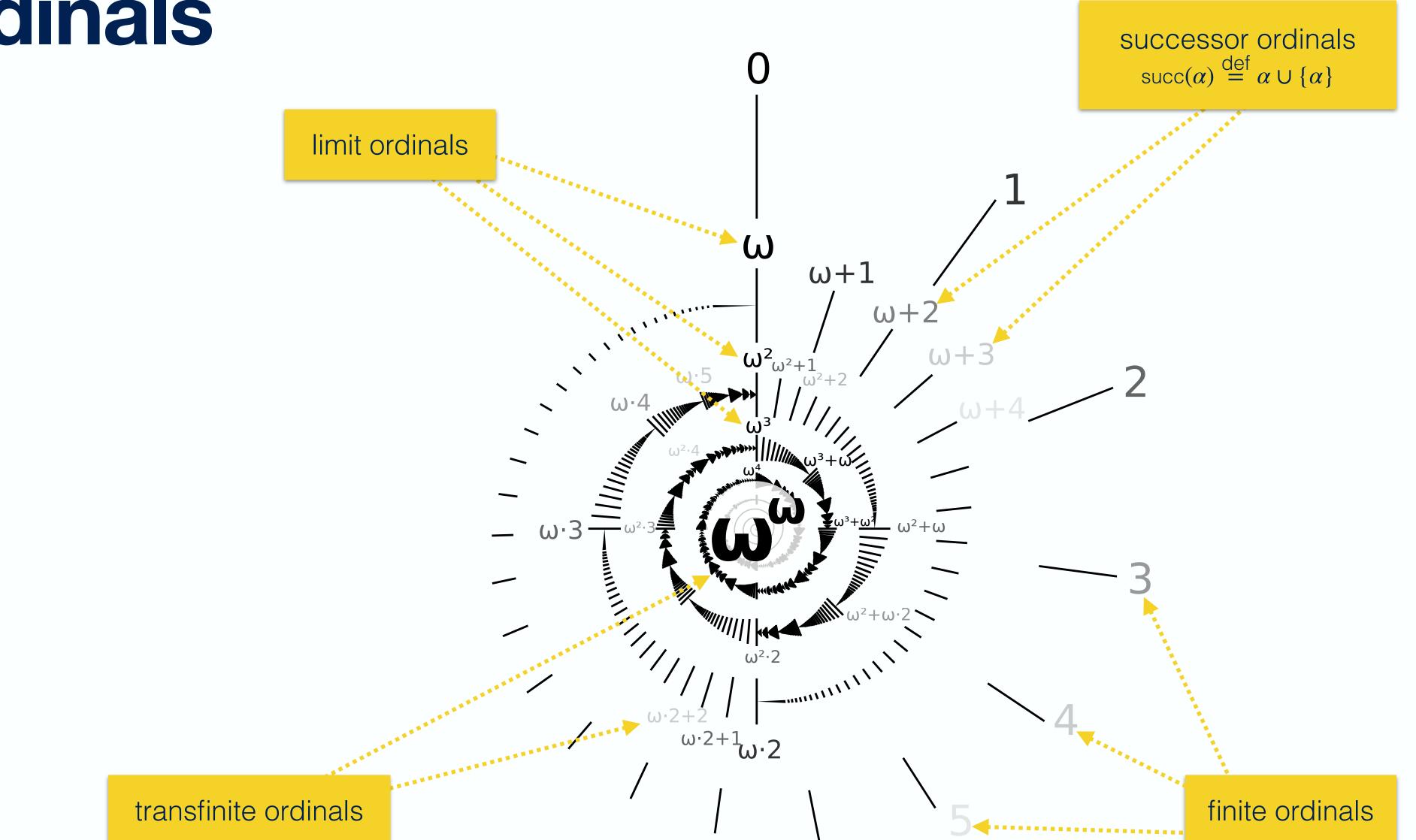
while $^{2}(x > 0)$ do

³x ← x − 1

0



Ordinals



Lesson 7

Termination Analysis

Ordinal Arithmetic Addition

 $\alpha + 0 = \alpha$ (zero case) $\alpha + \operatorname{succ}(\beta) = \operatorname{succ}(\alpha + \beta)$ (successor case) $\alpha + \beta = \bigcup (\alpha + \gamma)$ (limit case) $\gamma < \beta$

Properties

- associative
- not commutative

 $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$ $1 + \omega = \omega \neq \omega + 1$

Ordinal Arithmetic Multiplication

$$\alpha \cdot 0 = 0 \qquad (\text{zero case})$$
$$\alpha \cdot \text{succ}(\beta) = (\alpha \cdot \beta) + \alpha \qquad (\text{successor case})$$
$$\alpha \cdot \beta = \bigcup_{\gamma < \beta} (\alpha \cdot \gamma) \qquad (\text{limit case})$$

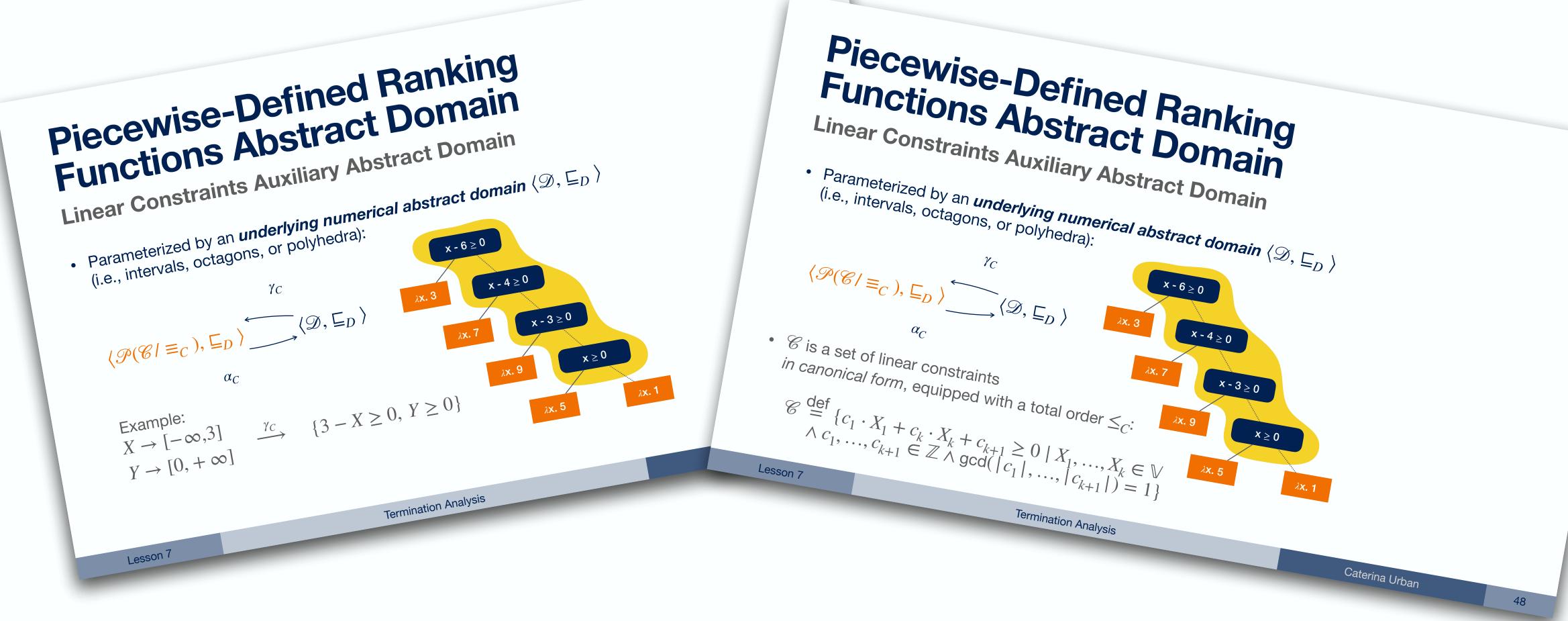
Properties

- associative
- left distributive
- not commutative
- not right distributive

 $(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$ $\alpha \cdot (\beta + \gamma) = (\alpha \cdot \beta) + \beta$ $2 \cdot \omega = \omega \neq \omega$. $(\omega + 1) \cdot \omega = \omega \cdot \omega \neq$

$$\begin{pmatrix} \alpha \cdot \gamma \\ 2 \end{pmatrix} \\ \omega \cdot \omega + \alpha$$

Piecewise-Defined Ranking Functions Abstract Domain

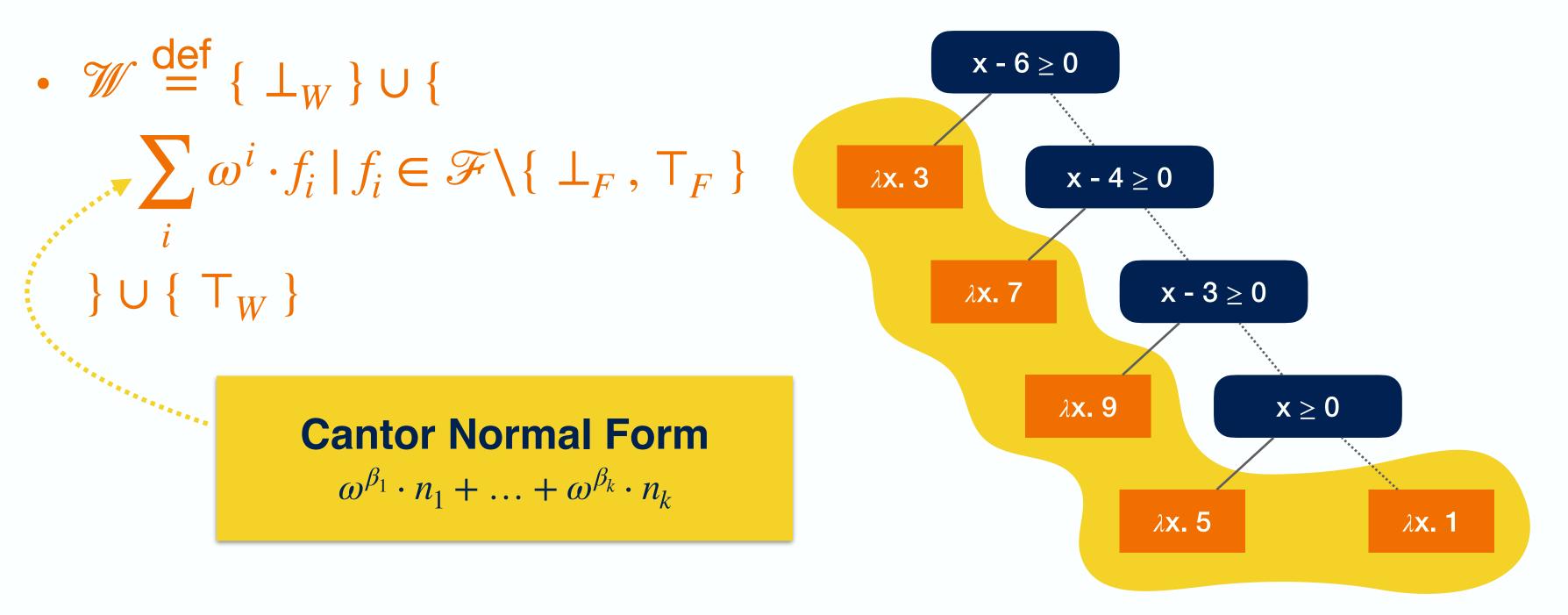


Termination Analysis

Caterina Urban

Piecewise-Defined Ranking Functions Abstract Domain Ordinal-Valued Functions Auxiliary Domain

• Parameterized by the *underlying functions auxiliary domain* $\langle \mathcal{F}, \sqsubseteq_F \rangle$



Lesson 7

Piecewise-Defined Ranking Functions Abstract Domain Ordinal-Valued Functions Auxiliary Domain (continue)

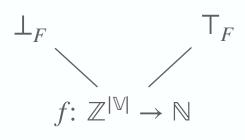
Piecewise-Defined Ranking Functions Abstract Domain

Functions Auxiliary Abstract Domain (continue)

- approximation order $\leq_F [D]$, where $D \in \mathcal{D}$:
- between <u>defined</u> leaf nodes:

 $f_1 \leq_F [D] f_2 \stackrel{\text{def}}{=} \forall \rho \in \gamma_D(D) \colon f_1(\dots, \rho(X_i), \dots) \leq f_2(\dots, \rho(X_i), \dots)$

• otherwise (i.e., when one or both leaf nodes are <u>undefined</u>):



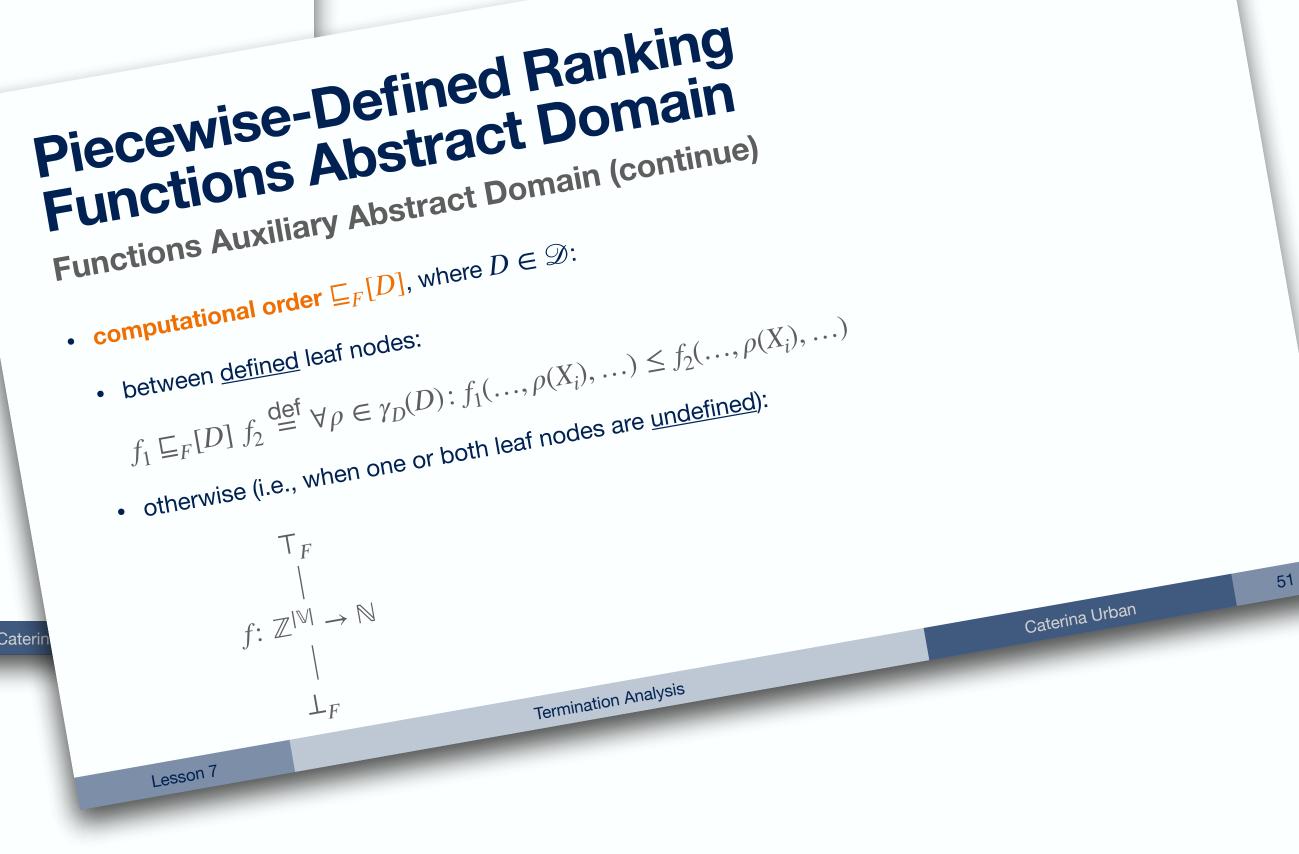
Lesson 7

Termination Analysis

Termination Analysis

Cate

Caterina Urban

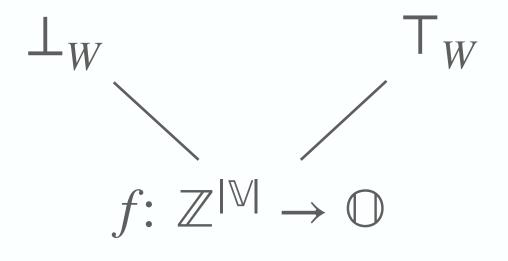


Piecewise-Defined Ranking Functions Abstract Domain Ordinal-Valued Functions Auxiliary Domain (continue)

- approximation order $\leq_W [D]$, where $D \in \mathcal{D}$:
 - between defined leaf nodes:

$$\sum_{i} \omega^{i} \cdot f_{i_{1}} \leq_{W} [D] \sum_{i} \omega^{i} \cdot f_{i_{2}} \stackrel{\text{def}}{=} \forall \rho \in \gamma_{D}(D) : \sum_{i} \omega^{i} \cdot f_{i_{1}}(\dots \rho(X_{i}) \dots) \leq \sum_{i} \omega^{i} \cdot f_{i_{2}}(\dots \rho(X_{i}) \dots)$$

• otherwise (i.e., when one or both leaf nodes are <u>undefined</u>):



Piecewise-Defined Ranking Functions Abstract Domain Ordinal-Valued Functions Auxiliary Domain (continue)

- computational order $\sqsubseteq_W[D]$, where $D \in \mathscr{D}$:
 - between <u>defined</u> leaf nodes:

$$\sum_{i} \omega^{i} \cdot f_{i_{1}} \sqsubseteq_{W} [D] \sum_{i} \omega^{i} \cdot f_{i_{2}} \stackrel{\text{def}}{=} \forall \rho \in \gamma_{D}(D) : \sum_{i} \omega^{i} \cdot f_{i_{1}}(\ldots$$

otherwise (i.e., when one or both leaf nodes are <u>undefined</u>):

$$\begin{array}{c} \mathsf{T}_{W} \\ | \\ f \colon \mathbb{Z}^{|\mathbb{M}|} \to \mathbb{O} \\ | \\ \mathsf{L}_{W} \end{array}$$

 $.\rho(X_i)\ldots) \leq \sum_i \omega^i \cdot f_{i_2}(\ldots \rho(X_i)\ldots)$

Caterina Urban

Piecewise-Defined Ranking Functions Abstract Domain

- $\mathscr{A} \stackrel{\text{def}}{=} \{ \text{LEAF} : f \mid f \in \mathscr{W} \} \cup \{ \text{NODE} \{ c \} : t_1; t_2 \mid c \in \mathscr{C} \land t_1, t_2 \in \mathscr{A} \} \}$
- concretization function $\gamma_A \colon \mathscr{A} \to (\mathscr{E} \to \mathbb{O})$:

 $\gamma_A(t) \stackrel{\text{def}}{=} \overline{\gamma}_A[\emptyset](t)$

where $\overline{\gamma}_{A} \colon \mathscr{P}(\mathscr{C} / \equiv_{C}) \to \mathscr{A} \to (\mathscr{E} \to \mathbb{O}):$ $\overline{\gamma}_{A}[C](\mathsf{LEAF}: f) \stackrel{\text{def}}{=} \gamma_{F}[\alpha_{C}(C)](f)$ $\overline{\gamma}_{A}[C](\mathsf{NODE}\{c\}: t_{1}; t_{2}) \stackrel{\text{def}}{=} \overline{\gamma}_{A}[C \cup \{c\}](t_{1}) \cup \overline{\gamma}_{A}[C \cup \{\neg c\}](t_{2})$

and
$$\gamma_F \colon \mathscr{D} \to \mathscr{W} \to (\mathscr{E} \to \mathbb{O})$$
:
 $\gamma_F[D](\perp_F) \stackrel{\text{def}}{=} \dot{\varnothing}$
 $\gamma_F[D](\sum_i \omega^i \cdot f_i) \stackrel{\text{def}}{=} \lambda \rho \in \gamma_D(D) \colon \sum_i \omega^i \cdot f_i(\gamma_F[D](\top_F)) \stackrel{\text{def}}{=} \dot{\varnothing}$

Lesson 7

 $\ldots, \rho(X_i), \ldots)$

Piecewise-Defined Ranking Functions Abstract Domain Abstract Domain Operators

- They manipulate elements in $\mathscr{A}_{NTI} \stackrel{\text{def}}{=} \{NIL\} \cup \mathscr{A}$
- The **binary operators** rely on a <u>tree unification</u> algorithm
 - approximation order \leq_A and computational order \sqsubseteq_A
 - approximation join Y_A and computational join \Box_A
 - meet A_A
 - widening ∇_A
- The unary operators rely on a tree pruning algorithm
 - assignment $ASSIGN_A[[X \leftarrow e]]$
 - test FILTER_A[[e]]

Piecewise-Defined Ranking Functions Abstract Domain Join

Piecewise-Defined Ranking Functions Abstract Domain

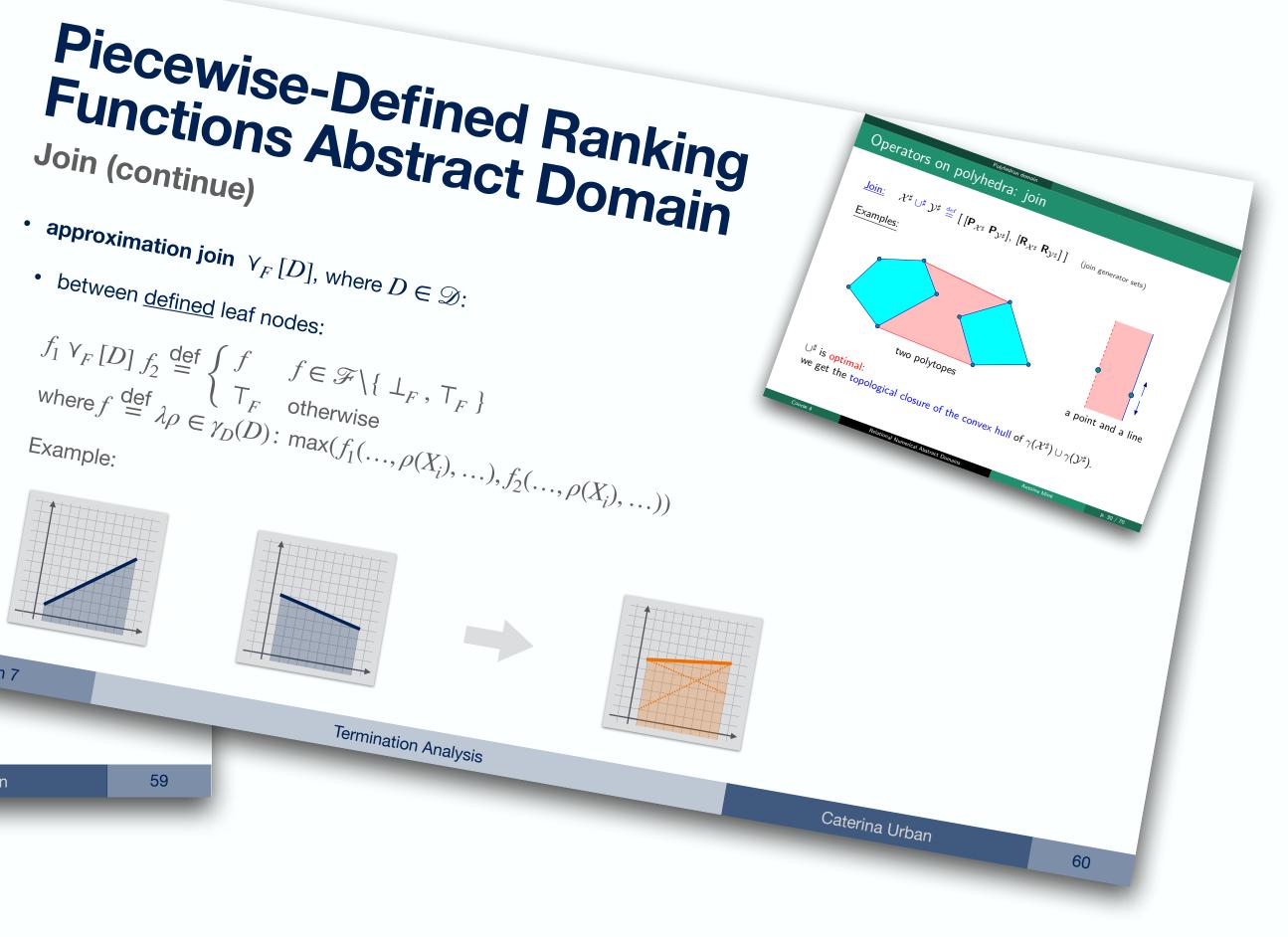
Join

- 1. Perform tree unification
- 2. Recursively descend the trees while accumulating the linear constraints encountered along the paths into a set of constraints C
- 3. NIL $\Upsilon_A t \stackrel{\text{def}}{=} t$ $t \Upsilon_A \text{NIL} \stackrel{\text{def}}{=} t$
- 4. Join the leaf nodes using the **approximation join** $\forall_F [\alpha_C(C)]$ or the **computational join** $\sqcup_F [\alpha_C(C)]$

Lesson 7

Termination Analysis

Caterina Urban



Caterina Urban

Piecewise-Defined Ranking Functions Abstract Domain Join (continue)

- approximation join $Y_W[D]$, where $D \in \mathcal{D}$:
 - between <u>defined</u> leaf nodes:

approximation join $Y_F[D]$ in ascending powers of ω

Example:

 $f_1 \equiv \omega^2 \cdot x_1 + \omega^2 \cdot x_1 + \omega^2$ $f_2 \equiv \omega^2 \cdot x_1 + \omega^2$ $f_1 \vee_W [\top_D] f_2 \equiv \omega^2 \cdot (x_1 + 1) + \omega \cdot 0 +$

$$\omega \cdot x_2 + 3$$

$$\omega \cdot (-x_2) + 4$$

$$\omega \cdot 0 + 4$$

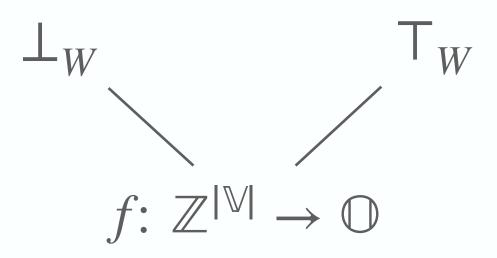
Piecewise-Defined Ranking Functions Abstract Domain Join (continue)

- approximation join $Y_W[D]$, where $D \in \mathscr{D}$:
 - between <u>defined</u> leaf nodes:

approximation join $Y_F[D]$ in ascending powers of ω

• otherwise (i.e., when one or both leaf nodes are <u>undefined</u>):

$$\begin{split} & \bot_{W} \mathsf{Y}_{W}[D] f \stackrel{\text{def}}{=} \bot_{W} \qquad f \in \mathscr{W} \setminus \{ \mathsf{T}_{W} \} \\ & f \mathsf{Y}_{W}[D] \bot_{W} \stackrel{\text{def}}{=} \bot_{W} \qquad f \in \mathscr{W} \setminus \{ \mathsf{T}_{W} \} \\ & \mathsf{T}_{W} \mathsf{Y}_{W}[D] f \stackrel{\text{def}}{=} \mathsf{T}_{W} \qquad f \in \mathscr{W} \setminus \{ \mathsf{L}_{W} \} \\ & f \mathsf{Y}_{W}[D] \mathsf{T}_{W} \stackrel{\text{def}}{=} \mathsf{T}_{W} \qquad f \in \mathscr{W} \setminus \{ \mathsf{L}_{W} \} \end{split}$$



Piecewise-Defined Ranking Functions Abstract Domain Join (continue)

- computational join $\sqcup_W [D]$, where $D \in \mathscr{D}$:
 - between defined leaf nodes:

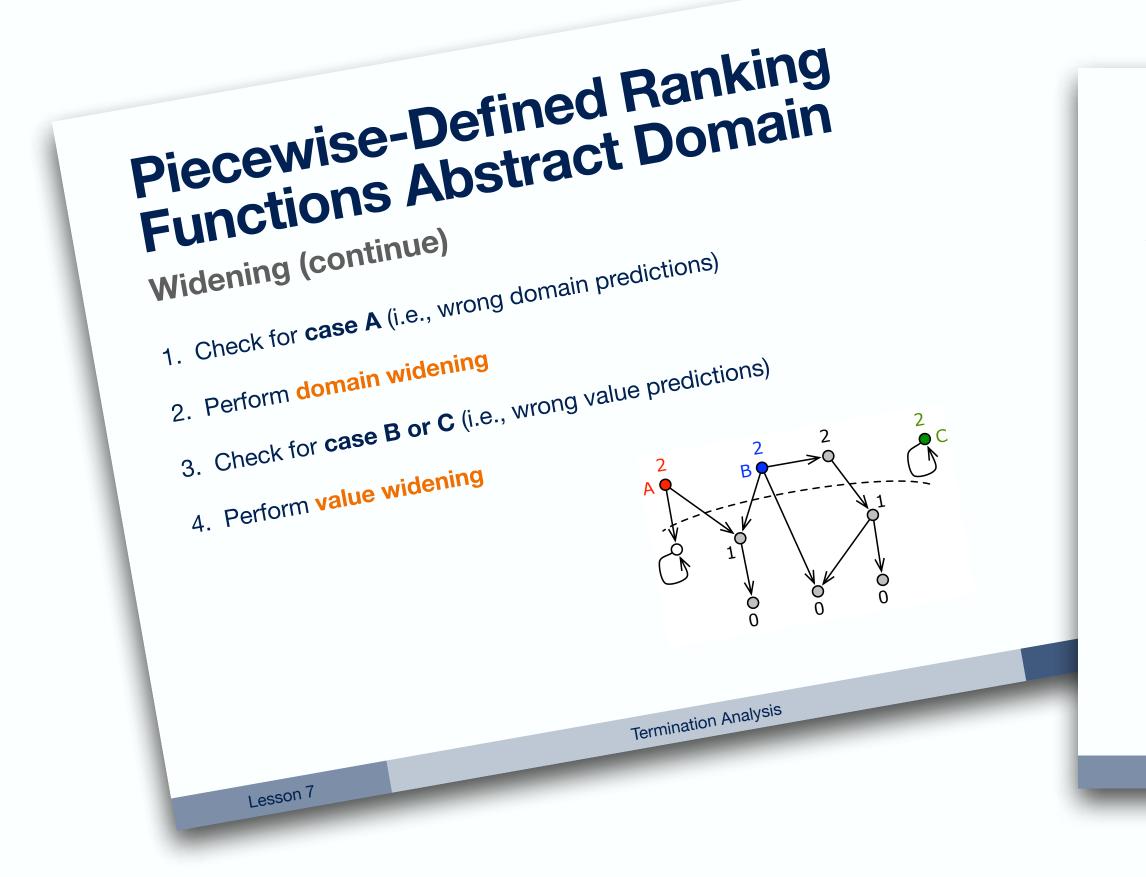
computational join $\sqcup_W[D]$ in ascending powers of ω

otherwise (i.e., when one or both leaf nodes a

$$\begin{split} \bot_{W} \sqcup_{W} [D] f & \stackrel{\text{def}}{=} f & f \in \mathscr{W} \\ f \sqcup_{W} [D] \bot_{W} & \stackrel{\text{def}}{=} f & f \in \mathscr{W} \\ \top_{W} \sqcup_{W} [D] f & \stackrel{\text{def}}{=} \top_{W} & f \in \mathscr{W} \\ f \sqcup_{W} [D] \top_{W} & \stackrel{\text{def}}{=} \top_{W} & f \in \mathscr{W} \end{split}$$

are undefined):
$$T_{W}$$
$$|$$
$$f: \mathbb{Z}^{|\mathbb{M}|} \to \mathbb{O}$$
$$|$$
$$\bot_{W}$$

Piecewise-Defined Ranking Functions Abstract Domain Widening



Lesson 7

Termination Analysis

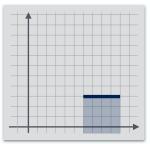
Piecewise-Defined Ranking Functions Abstract Domain

Widening (continue)

Value Widening

- 1. Recursively descend the trees while *accumulating the linear constraints* encountered along the paths into a set of constraints C
- 2. Widen each (defined) leaf node f with respect to each of their adjacent (defined) leaf node \overline{f} using the **extrapolation operator** $\mathbf{v}_F[\alpha_C(\overline{C}), \alpha_C(C)]$, where \overline{C} is the set of constraints along the path to \overline{f}

Example:





Termination Analysis

Caterina Urban

117

Lesson 7

Piecewise-Defined Ranking Functions Abstract Domain Widening (continue)

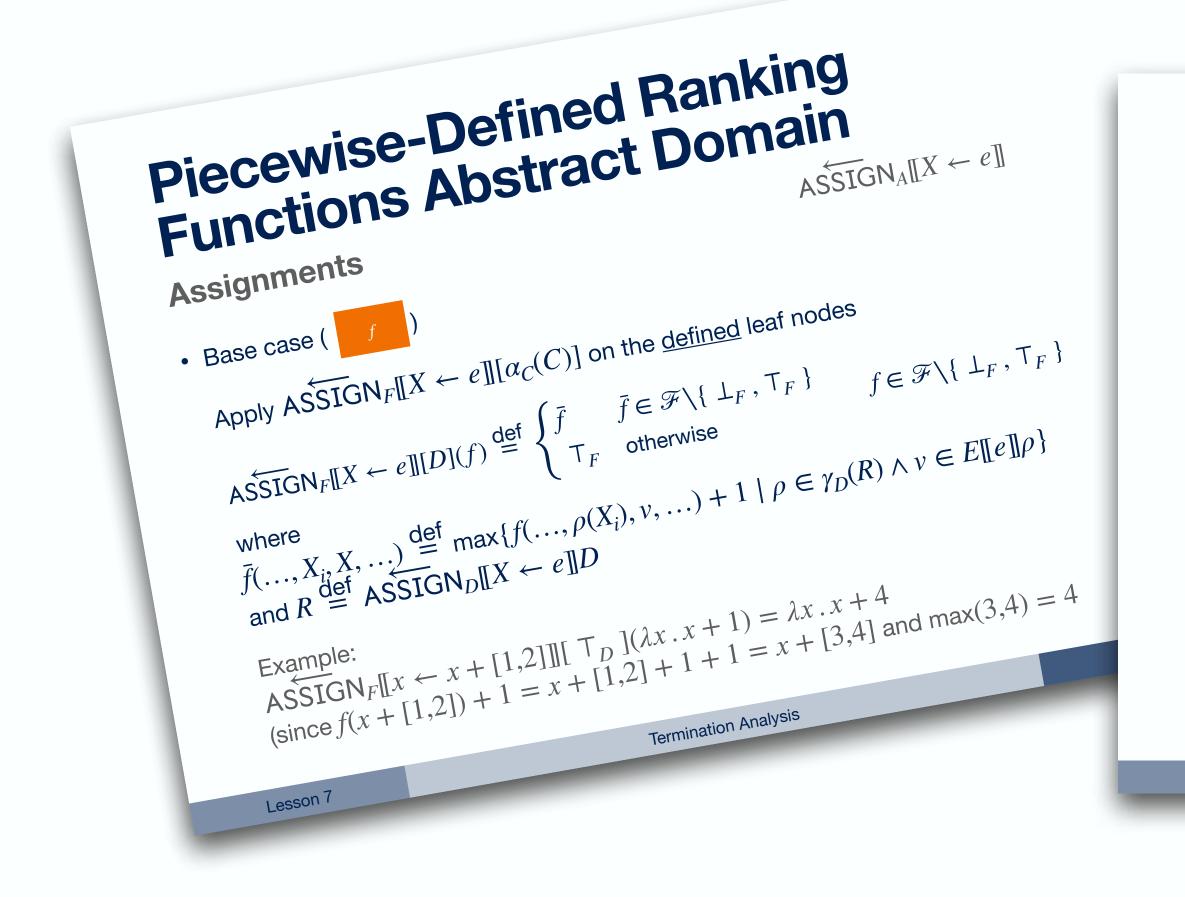
- 1. Recursively descend the trees while accumulating the linear constraints encountered along the paths into a set of constraints C
- 2. Widen each (defined) leaf node f with respect to each of their adjacent (defined) leaf node \overline{f} using the **extrapolation operator** $\mathbf{v}_F[\alpha_C(\overline{C}), \alpha_C(C)]$, where \overline{C} is the set of constraints along the path to \overline{f} , in ascending powers of ω

yield T_W when the extrapolation of natural-valued functions yields T_F

Value Widening

Caterina Urban

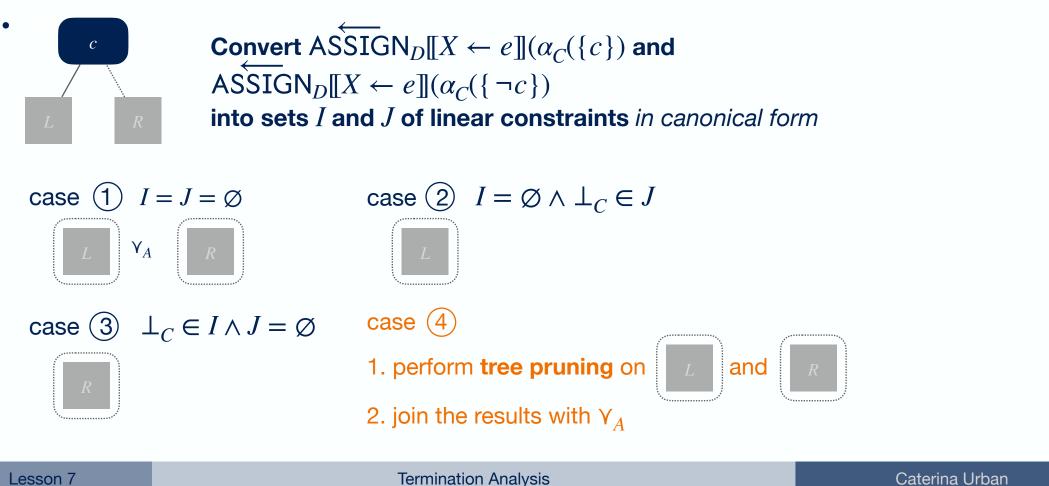
Piecewise-Defined Ranking Functions Abstract Domain Assignments



Piecewise-Defined Ranking Functions Abstract Domain

Assignments

 $ASSIGN_A[[X \leftarrow e]]$



Piecewise-Defined Ranking Functions Abstract Domain

Assignments (continue)

• Base case (f)

Apply $ASSIGN_F[[X \leftarrow e]][\alpha_C(C)]$ on the <u>defined</u> leaf nodes in ascending powers of ω

Example:

$\overrightarrow{\text{ASSIGN}}_{W}[x_{1} \leftarrow [-\infty, +\infty]] [T_{D}] \equiv \omega^{2} \cdot 1 + \omega \cdot 0 + x^{2} + 1$

 $\equiv \qquad \omega \cdot x_1 + x_2$

Caterina Urban

Abstract Definite Termination Semantics

Abstract Definite Termination Semantics Example

 $^{1}x1 \leftarrow [-\infty, +\infty]$ $^{2}x^{2} \leftarrow [-\infty, +\infty]$ while ${}^{3}(x1 > 0 \land x2 > 0)$ do $^{4}b \leftarrow [-\infty, +\infty]$ if $5(b \ge 0)$ then 6 x1 \leftarrow x1 - 1 $^{7}x2 \leftarrow [-\infty, +\infty]$ else $^{8}x2 \leftarrow x2 - 1$

od9



Abstract Interpretation Recipe

practical tools targeting specific programs

mathematical models of the program behavior

Lesson 7

Termination Analysis

🛑 🔵 🍯 打 Private < 义		🔒 github.com	5	① + 問	
Why GitHub? – Te	am Enterprise Explore – Marketp	olace Pricing ~	Search	7 Sign in Sign up	
Caterinaurban / function Public					
양 master ▾ 양 1 bra	anch 🕟 0 tags essage	Go t bdeeae1 on Aug 21, 2018	3 🕑 98 commits	escription or website provided.	
banal cfgfrontend	Changes according to f - added loop detection	eedback in pull-request: to CFG based analysis	5 years ago term	c static-analysis ocaml termination abstract-interpretation liveness	
domainsfrontend	no message - added loop detection		5 years ago	 □ Readme ☆ 7 stars ④ 1 watching ♀ 2 forks Releases No releases published Packages No packages published Languages	
maintestsutils	added time measureme more testcases with ne Moved forward analysis		4 years ago		
.gitignore.merlin		' directory to 'cfgfrontend' ' directory to 'cfgfrontend'	E		
.ocamlinitMakefile	added banal abstract de				
README.md pretty.py	- added loop detection Added CTL testcases	to CFG based analysis	5 years ago 5 years ago Lang		
P pretty cfa.pv	Implemented CFG base	d forward analysis	5 vears ago		

Lesson 7

Termination Analysis

Abstract Interpretation Recipe

practical tools targeting specific programs

algorithmic approaches to decide program properties

mathematical models of the program behavior

Termination Analysis

Lesson 7

Bibliography

[Cousot02] Patrick Cousot. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpretation. In Theoretical Computer Science 277(1-2):47–103, 2002.

[Cousot12] Patrick Cousot and Radhia Cousot. An Abstract Interpretation Framework for Termination. In POPL, pages 245–258, 2012.

[Urban15] Caterina Urban. Static Analysis by Abstract Interpretation of Functional Temporal Properties of Programs. PhD Thesis, École Normale Supérieure, 2015.

[Urban17] Nathanaëlle Courant and Caterina Urban. Precise Widening Operators for Proving Termination by Abstract Interpretation. In TACAS, 2017.

extensions with other widening heuristics

