
Caterina Urban

Termination Analysis
MPRI 2-6: Abstract Interpretation, 
Application to Verification and Static Analysis

Year 2024-2025November 4th, 2024

Caterina UrbanTermination AnalysisLesson 7 2

So far, we have focused on using static analysis to avoid software failures

Formal Verification: Motivation
Historic example: Ariane 5, Flight 501

Maiden flight of the Ariane 5 Launcher, 4 June 1996.

Cost of failure estimated at more than 370 000 000 US$1

1M. Dowson. ”The Ariane 5 Software Failure”. Software Engineering Notes 22 (2): 84, March 1997.

Course 0

Introduction

Antoine Miné
p. 3 / 39

Formal Verification: Motivation

How can we avoid such failures?

Choose a safe programming language.
C (low level) / Ada, Java, OCaml (high level)
yet, Ariane 5 software is written in Ada

Carefully design the software.
many software development methods exist
yet, critical embedded software follow strict development processes

Test the software extensively.
yet, the erroneous code was well tested. . . on Ariane 4

=⇒ not sufficient!
We should use formal methods.
provide rigorous, mathematical insurance of correctness
may not prove everything, but give a precise notion of what is proved

This case triggered the first large scale static code analysis
PolySpace Verifier, using abstract interpretation

Course 0 Introduction Antoine Miné p. 5 / 39

that is, for proving Safety Properties

Caterina UrbanTermination AnalysisLesson 7 3

Leslie Lamport

Safety Properties

“something bad
never happens”

“something good
eventually happens”

 

Liveness Properties

Safety vs Liveness Properties

Caterina UrbanTermination AnalysisLesson 7

• Guarantee Properties 
“something good eventually happens at least once”

• Example: Program Termination

• Recurrence Properties 
“something good eventually happens infinitely often”

• Example: Starvation Freedom

Liveness Properties

4

Amir PnueliZohar Manna

Caterina UrbanTermination AnalysisLesson 7 5

Program Termination

Caterina UrbanTermination AnalysisLesson 7

31 December 2008
The Zune Bug

6

unresponsive  systems

Caterina UrbanTermination AnalysisLesson 7

Versions <2.3.3
Apache HTTP Server

7

denial-of-service attacks

Caterina UrbanTermination AnalysisLesson 7

19 November 2014
Azure Storage Service

8

service  interruptions

Caterina UrbanTermination AnalysisLesson 7

Potential and Definite Termination

9

In absence of non-determinism, potential and definite termination coincide

Finite prefix trace semantics

Finite traces

Finite trace: finite sequence of elements from Σ
ϵ: empty trace (unique)

σ: trace of length 1 (assimilated to a state)

σ0, . . . , σn−1: trace of length n

Σn: the set of traces of length n
Σ≤n def= ∪i≤n Σi : the set of traces of length at most n
Σ∗ def= ∪i∈N Σi : the set of finite traces

Note: we assimilate
a set of states S ⊆ Σ with a set of traces of length 1
a relation R ⊆ Σ × Σ with a set of traces of length 2

so, I, F, τ ∈ P(Σ∗)

Course 2 Program Semantics and Properties Antoine Miné p. 15 / 98

A program with trace semantics
 may terminate  

if and only if
ℳ ∈ 𝒫(Σ∞)

ℳ ∩ Σ* ≠ ∅

Definition
A program with trace semantics

 must terminate  
if and only if
ℳ ∈ 𝒫(Σ∞)

ℳ ⊆ Σ*

Definition

Caterina UrbanTermination AnalysisLesson 7 10

Ranking Functions

Alan Turing Robert W. Floyd

The best known well-ordered sets are naturals and ordinals ⟨ℕ, ≤ ⟩ ⟨𝕆, ≤ ⟩

Given a transition system , a ranking function is a partial function
 from the set of program states into a well-ordered set

whose value strictly decreases through transitions between states, that is,

⟨Σ, τ⟩
f : Σ ⇀ 𝒲 Σ ⟨𝒲, ≤ ⟩

∀σ, σ′ ∈ dom(f) : (σ, σ′) ∈ τ ⇒ f(σ′) < f(σ)

Definition

Safety and liveness trace properties
Proving liveness properties
Variance proof method: (informal definition)

Find a decreasing quantity until something good happensExample: termination prooffind f : Σ → S where (S, ⊑) is well-ordered (cf. previous course)

f is called a “ranking function”σ ∈ B =⇒ f = min Sσ → σ ′ =⇒ f (σ ′) ! f (σ)generalizes the idea that f “counts” the number of steps remaining before termination
Course 2

Program Semantics and Properties

Antoine Miné
p. 94 / 98

Definite Termination

Caterina UrbanTermination AnalysisLesson 7

Example

11

Programs and executions
Language syntax

ℓstatℓ ::= ℓX ← expℓ

(assignment)

| ℓif exp ◃▹ 0 then ℓstatℓ

(conditional)

| ℓwhile ℓexp ◃▹ 0 do ℓstatℓ doneℓ

(loop)

| ℓstat; ℓstatℓ

(sequence)

exp ::= X

(variable)

| −exp

(negation)

| exp ⋄ exp

(binary operation)

| c

(constant c ∈ Z)

| [c, c ′]
(random input, c, c ′ ∈ Z ∪ { ±∞ })

Simple structured, numeric language
X ∈ V, where V is a finite set of program variables

ℓ ∈ L, where L is a finite set of control points
numeric expressions: ◃▹ ∈ {=, ≤, . . .}, ⋄ ∈ { +, −, ×, / }

random inputs: X ← [c, c ′]
model environment, parametric programs, unknown functions, . . .

Course 2

Program Semantics and Properties

Antoine Miné
p. 3 / 98

1x [- , +] 
0while 2(1 - x < 0) do 
 3x x - 1 
od4

← ∞ ∞

←

Ranking Functions

Caterina UrbanTermination AnalysisLesson 7

Example (continue)
Ranking Functions

12

1x [- , +] 
0while 2(1 - x < 0) do 
 3x x - 1 
od4

← ∞ ∞

←

1,2,3,4

1 2  
2 3

3 2  
2 4

Σ def= { } × ℰ

τ def= {(, ρ) → (, ρ[X ↦ v]) ∣ ρ ∈ ℰ, v ∈ ℤ}
∪ {(, ρ) → (, ρ) ∣ ∣ ρ ∈ ℰ, ∃v ∈ E[[1 − x]]ρ : v < 0}
∪ {(, ρ) → (, ρ[X ↦ v]) ∣ ρ ∈ ℰ, v ∈ E[[x − 1]]ρ}
∪ {(, ρ) → (, ρ) ∣ ∣ ρ ∈ ℰ, ∃v ∈ E[[1 − x]]ρ : v ≮ 0}

Programs and executions
From programs to transition relationsTransitions: τ [ℓstat ℓ′] ⊆ Σ × Στ [ℓ1X ← e ℓ2] def= { (ℓ1, ρ) → (ℓ2, ρ[X %→ v]) | ρ ∈ E , v ∈ E! e " ρ }

τ [ℓ1if e ◃▹ 0 then ℓ2s ℓ3] def={ (ℓ1, ρ) → (ℓ2, ρ) | ρ ∈ E , ∃v ∈ E! e " ρ: v ◃▹ 0 } ∪

{ (ℓ1, ρ) → (ℓ3, ρ) | ρ ∈ E , ∃v ∈ E! e " ρ: v ̸◃▹ 0 } ∪ τ [ℓ2s ℓ3]

τ [ℓ1while ℓ2e ◃▹ 0 do ℓ3s ℓ4 doneℓ5] def=
{ (ℓ1, ρ) → (ℓ2, ρ) | ρ ∈ E } ∪
{ (ℓ2, ρ) → (ℓ3, ρ) | ρ ∈ E , ∃v ∈ E! e " ρ: v ◃▹ 0 } ∪ τ [ℓ3s ℓ4] ∪

{ (ℓ4, ρ) → (ℓ2, ρ) | ρ ∈ E } ∪
{ (ℓ2, ρ) → (ℓ5, ρ) | ρ ∈ E , ∃v ∈ E! e " ρ: v ̸◃▹ 0 }

τ [ℓ1s1; ℓ2s2 ℓ3] def= τ [ℓ1s1 ℓ2] ∪ τ [ℓ2s2 ℓ3]
(expression semantics E! e " on next slide)
Course 2

Program Semantics and Properties

Antoine Miné
p. 8 / 98

Caterina UrbanTermination AnalysisLesson 7

Example (continue)
Ranking Functions

13

Alan Turing Robert W. Floyd

1x [- , +] 
0while 2(1 - x < 0) do 
 3x x - 1 
od4

← ∞ ∞

←

Most obvious ranking function:  
a mapping  
from each program state  
to  
(a well-chosen upper bound on)  
the number of steps until termination

f : Σ ⇀ 𝕆

Caterina UrbanTermination AnalysisLesson 7

Example (continue)
Ranking Functions

14

We define the ranking function by partitioning with respect to the
program control points, i.e.,

f : Σ ⇀ 𝕆
f : ℒ → (ℰ ⇀ 𝕆)

4

2  

3  

1

f() def= λρ.0
f() def= λρ . {1 1 − ρ(x) ≮ 0

2ρ(x) − 1 1 − ρ(x) < 0

f() def= λρ . {2 2 − ρ(x) ≮ 0
2ρ(x) − 2 2 − ρ(x) < 0

f() def= λρ . ω

1x [- , +] 
0while 2(1 - x < 0) do 
 3x x - 1 
od4

← ∞ ∞

←

Alan Turing Robert W. Floyd

Caterina UrbanTermination AnalysisLesson 7

Potential Ranking Functions
Potential Termination

15

Given a transition system , a potential ranking function is a partial
function from the set of states into a well-ordered set
whose value strictly decreases through at least one transitions from each
state, that is,

⟨Σ, τ⟩
f : Σ ⇀ 𝒲 Σ ⟨𝒲, ≤ ⟩

∀σ ∈ dom(f) : (∃σ̄ ∈ dom(f) : (σ, σ̄) ∈ τ) ⇒
∃σ′ ∈ dom(f) : (σ, σ′) ∈ τ ∧ f(σ′) < f(σ)

Definition

For proving potential termination, we use a weaker notion of ranking function,
which decreases along at least one transition during program execution

Caterina UrbanTermination AnalysisLesson 7

Abstract Interpretation Recipe

16

mathematical models
of the program behavior

algorithmic approaches
to decide program properties

practical tools
targeting specific programs

Caterina UrbanTermination AnalysisLesson 7

Abstract Interpretation Recipe

16

mathematical models
of the program behavior

algorithmic approaches
to decide program properties

practical tools
targeting specific programs

Caterina UrbanTermination AnalysisLesson 7 17

Termination Semantics

Caterina UrbanTermination AnalysisLesson 7 18

Abstracting maximal traces into partial traces
Enriched hierarchy of semantics

R(I)
C(F)

forward/backward statesTp(I)

αp

!!

Ts (F)

αp

!!

prefix/suffix finite traces
T

αI

""

αF

##

partial finite traces
T∞

α∗

!!

partial traces
M∞

α≼

!!

maximal traces

See [Cous02] for more semantics in this diagram.Course 2

Program Semantics and Properties

Antoine Miné
p. 85 / 98

Hierarchy of Semantics

maximal trace semantics

termination semantics

termination trace semantics

ℳ∞

𝒯m 𝒯M

ℛm ℛM

α* α*

αMαm

Caterina UrbanTermination AnalysisLesson 7 19

Abstracting maximal traces into partial traces
Enriched hierarchy of semantics

R(I)
C(F)

forward/backward statesTp(I)

αp

!!

Ts (F)

αp

!!

prefix/suffix finite traces
T

αI

""

αF

##

partial finite traces
T∞

α∗

!!

partial traces
M∞

α≼

!!

maximal traces

See [Cous02] for more semantics in this diagram.Course 2

Program Semantics and Properties

Antoine Miné
p. 85 / 98

Hierarchy of Semantics

maximal trace semantics

termination semantics

termination trace semantics

ℳ∞

𝒯m 𝒯M

ℛm ℛM

α* α*

αMαm

Caterina UrbanTermination AnalysisLesson 7

Maximal trace semantics

Least fixpoint formulation of maximal traces
Idea: To get a least fixpoint formulation for whole M∞,

we merge finite and infinite maximal trace least fixpoint forms

Fixpoint fusion:

M∞ ∩ Σ∗ is best defined on (P(Σ∗), ⊆, ∪, ∩, ∅, Σ∗).
M∞ ∩ Σω is best defined on (P(Σω), ⊇, ∩, ∪, Σω, ∅), the dual lattice.
(we transform the greatest fixpoint into a least fixpoint!)

We mix them into a new complete lattice (P(Σ∞), ⊑, ⊔, ⊓, ⊥, ⊤):
A ⊑ B def⇐⇒ (A ∩ Σ∗) ⊆ (B ∩ Σ∗) ∧ (A ∩ Σω) ⊇ (B ∩ Σω)
A ⊔ B def= ((A ∩ Σ∗) ∪ (B ∩ Σ∗)) ∪ ((A ∩ Σω) ∩ (B ∩ Σω))
A ⊓ B def= ((A ∩ Σ∗) ∩ (B ∩ Σ∗)) ∪ ((A ∩ Σω) ∪ (B ∩ Σω))
⊥ def= Σω

⊤ def= Σ∗

In this lattice, M∞ = lfp Fs where Fs(T) def= B ∪ τ⌢T
(proof on next slides)

Course 2 Program Semantics and Properties Antoine Miné p. 76 / 98

Example

20

while 1([- , +] 0) do 
 2skip 
od3

∞ ∞ ≠

1,2,3

1 2  
 2 1

 1 3

1 2 3

 1 2  

Σ def= { } × ℰ

τ def= {(, ρ) → (, ρ) ∣ ρ ∈ ℰ}
∪ {(, ρ) → (, ρ) ∣ ρ ∈ ℰ}
∪ {(, ρ) → (, ρ) ∣ ρ ∈ ℰ}

ℳ∞
def= {(, ρ)(, ρ)*(, ρ) ∣ ρ ∈ ℰ}

∪ {(, ρ)(, ρ)ω ∣ ρ ∈ ℰ}

Maximal trace semantics
Maximal traces

Maximal traces: M∞ ∈ P(Σ∞)sequences of states linked by the transition relation τ

start in any state (I = Σ, technical requirement for the fixpoint characterization)

either finite and stop in a blocking state (F = B)

or infinite

M∞
def= { σ0, . . . , σn ∈ Σ∗ | σn ∈ B, ∀i < n: σi → σi+1 } ∪

{ σ0, . . . , σn , . . . ∈ Σω | ∀i < ω: σi → σi+1 }(can be anchored at I and F as: M∞ ∩ (I · Σ∞) ∩ ((Σ∗ · F) ∪ Σω))
Course 2

Program Semantics and Properties

Antoine Miné
p. 72 / 98

Maximal Trace Semantics

Caterina UrbanTermination AnalysisLesson 7 21

Abstracting maximal traces into partial traces
Enriched hierarchy of semantics

R(I)
C(F)

forward/backward statesTp(I)

αp

!!

Ts (F)

αp

!!

prefix/suffix finite traces
T

αI

""

αF

##

partial finite traces
T∞

α∗

!!

partial traces
M∞

α≼

!!

maximal traces

See [Cous02] for more semantics in this diagram.Course 2

Program Semantics and Properties

Antoine Miné
p. 85 / 98

Hierarchy of Semantics

maximal trace semantics

termination semantics

termination trace semantics

ℳ∞

𝒯m 𝒯M

ℛm ℛM

α* α*

αMαm

Caterina UrbanTermination AnalysisLesson 7 22

Galois connections
Galois connectionsGiven two posets (C , ≤) and (A, ⊑), the pair (α : C → A, γ : A → C) is a

Galois connection iff:
∀a ∈ A, c ∈ C , α(c) ⊑ a ⇐⇒ c ≤ γ(a)

which is noted (C , ≤) −−−→←−−−
α

γ

(A, ⊑).

c

(a)

(c)

a

C
A

α is the upper adjoint or abstraction; A is the abstract domain.

γ is the lower adjoint or concretization; C is the concrete domain.

Course 1

Order Theory

Antoine Miné
p. 48 / 69

Potential Termination  
Trace Semantics
Potential Termination Abstraction

⟨𝒫(Σ∞), ⊑ ⟩ ⟨𝒫(Σ*), ⊆ ⟩

α*

γ*

α*(T) def= T ∩ Σ*

γ*(T) def= T

Example:  
α*({ab, aba, bb, baω}) = {ab, aba, bb}

Abstracting maximal traces into partial traces

Finite trace abstraction

Finite partial traces T are an abstraction of all partial traces T∞
(forget about infinite executions)

We have a Galois embedding:

(P(Σ∞), ⊑) −−−→−→←−−−−
α∗

γ∗ (P(Σ∗), ⊆)

⊑ is the fused ordering on Σ∗ ∪ Σω:
A ⊑ B def⇐⇒ (A ∩ Σ∗) ⊆ (B ∩ Σ∗) ∧ (A ∩ Σω) ⊇ (B ∩ Σω)

α∗(T) def= T ∩ Σ∗

(remove infinite traces)

γ∗(T) def= T
(embedding)

T = α∗(T∞)
(proof on next slide)

Course 2 Program Semantics and Properties Antoine Miné p. 83 / 98

Caterina UrbanTermination AnalysisLesson 7 23

Kleenian Fixpoint Transfer

Fixpoint approximations
Fixpoint transfer

If we have:
a Galois connection (C , ≤) −−−→←−−−

α

γ

(A, ⊑) between CPOs

monotonic concrete and abstract functions
f : C → C , f ♯ : A → Aa commutation condition α ◦ f = f ♯ ◦ α

a prefixpoint a of f (a ≤ f (a)) and its abstraction a♯ = α(a)
then α(lfpa f) = lfpa♯ f ♯.

(proof on next slide)
Course 1

Order Theory

Antoine Miné
p. 65 / 69

Let and be
complete partial orders, let

 and be
monotonic functions, and let

 be a continous
abstraction function such that

, for and ,
and that satisfies the commutation
condition . Then, we
have the fixpoint abstraction

.

⟨C, ≤ ⟩ ⟨A, ⊑ ⟩

f : C → C f # : A → A

α : C → A

α(a) = a# a ∈ C a# ∈ A

α ∘ f = f # ∘ α

α(lfp≤
a f) = lfp⊑

a# f #

Theorem

𝒯m
def= α*(ℳ∞) = lfp⊆ F*

F*(T) def= ℬ ∪ τ⌢T

•  

•  
 

•  

•  

⟨𝒫(Σ∞), ⊑ ⟩

ℳ∞
def= lfp⊑ Fs

Fs(T) def= ℬ ∪ τ⌢T

⟨𝒫(Σ*), ⊆ ⟩

α* : 𝒫(Σ∞) → 𝒫(Σ*)
α*(T) def= T ∩ Σ*

Potential Termination  
Trace Semantics

Caterina UrbanTermination AnalysisLesson 7 24

Example

Potential Termination  
Trace Semantics

while 1([- , +] 0) do 
 2skip 
od3

∞ ∞ ≠

1 2 3

 1 2

1 2 3  

ℳ∞
def= {(, ρ)(, ρ)*(, ρ) ∣ ρ ∈ ℰ}

∪ {(, ρ)(, ρ)ω ∣ ρ ∈ ℰ}

𝒯m
def= {(, ρ)(, ρ)*(, ρ) ∣ ρ ∈ ℰ}

Caterina UrbanTermination AnalysisLesson 7 25

Abstracting maximal traces into partial traces
Enriched hierarchy of semantics

R(I)
C(F)

forward/backward statesTp(I)

αp

!!

Ts (F)

αp

!!

prefix/suffix finite traces
T

αI

""

αF

##

partial finite traces
T∞

α∗

!!

partial traces
M∞

α≼

!!

maximal traces

See [Cous02] for more semantics in this diagram.Course 2

Program Semantics and Properties

Antoine Miné
p. 85 / 98

Hierarchy of Semantics

maximal trace semantics

termination semantics

termination trace semantics

ℳ∞

𝒯m 𝒯M

ℛm ℛM

α* α*

αMαm

Caterina UrbanTermination AnalysisLesson 7 26

Definite Termination  
Trace Semantics
Definite Termination Abstraction
⟨𝒫(Σ∞), ⊑ ⟩ ⟨𝒫(Σ*), ⊆ ⟩

α*

α*(T) def= {t ∈ T ∩ Σ* ∣ nhdb(t, T ∩ Σω) = ∅}

nhdb(t, T) def= {t′ ∈ T ∣ pf(t) ∩ pf(t′) ≠ ∅}

pf(t) def= {t′ ∈ Σ∞∖{ϵ} ∣ ∃t′ ′ ∈ Σ∞ : t = t′ ⋅ t′ ′ }

Example:  
 since α*({ab, aba, bb, baω}) = {ab, aba} pf(bb) ∩ pf(baω) = {b} ≠ ∅

Caterina UrbanTermination AnalysisLesson 7 27

Let and
 be complete

lattices, let and
be monotonic functions, and let

 be an abstraction function
that is a complete -morphism 
()
and that satisfies and
the post-fixpoint correspondence

 
 (i.e.,

each abstract post-fixpoint of is the
abstraction by of some concrete
post-fixpoint of). Then, we have the
fixpoint abstraction .

⟨C, ≤ , ∨ , ∧ , ⊥ , ⊤ ⟩
⟨A, ⊑ , ⊔ , ⊓ , ⊥# , ⊤# ⟩

f : C → C f # : A → A

α : C → A
∧

∀S ⊆ C : f(∧S) = ⊓ {f(s) ∣ s ∈ S}
f # ∘ α ⊑ α ∘ f

∀a# ∈ A : f #(a#) ⊑ a# ⇒
∃a ∈ C : f(a) ≤ d ∧ α(a) = a#

f #

α
f

α(lfp≤ f) = lfp⊑ f #

Theorem
Tarskian Fixpoint Transfer
•  

•  
 

•  

•

⟨𝒫(Σ∞), ⊑ , ⊔ , ⊓ ,Σω, Σ*⟩

ℳ∞
def= lfp⊑ Fs

Fs(T) def= ℬ ∪ τ⌢T

⟨𝒫(Σ*), ⊆ , ∪ , ∩ ,∅, Σ*⟩

α* : 𝒫(Σ∞) → 𝒫(Σ*)

𝒯M
def= α*(ℳ∞) = lfp⊆ F*

F*(T) def= ℬ ∪ ((τ⌢T) ∩ (Σ+∖(τ⌢(Σ+∖T)))))

Definite Termination  
Trace Semantics

(see proof in [Cousot02])

Caterina UrbanTermination AnalysisLesson 7 28

Example

Definite Termination  
Trace Semantics

while 1([- , +] 0) do 
 2skip 
od3

∞ ∞ ≠

1 2 3

 1 2

 

ℳ∞
def= {(, ρ)(, ρ)*(, ρ) ∣ ρ ∈ ℰ}

∪ {(, ρ)(, ρ)ω ∣ ρ ∈ ℰ}

𝒯M
def= ∅

Caterina UrbanTermination AnalysisLesson 7 29

Abstracting maximal traces into partial traces
Enriched hierarchy of semantics

R(I)
C(F)

forward/backward statesTp(I)

αp

!!

Ts (F)

αp

!!

prefix/suffix finite traces
T

αI

""

αF

##

partial finite traces
T∞

α∗

!!

partial traces
M∞

α≼

!!

maximal traces

See [Cous02] for more semantics in this diagram.Course 2

Program Semantics and Properties

Antoine Miné
p. 85 / 98

Hierarchy of Semantics

maximal trace semantics

termination semantics

termination trace semantics

ℳ∞

𝒯m 𝒯M

ℛm ℛM

α* α*

αMαm

Caterina UrbanTermination AnalysisLesson 7

Potential Ranking Abstraction
Potential Termination Semantics

30

⟨𝒫(Σ*), ⊆ ⟩ ⟨Σ ⇀ 𝕆, ⪯ ⟩

αm

αm(T) def= αv(→α (T))

αv(∅) def= ·∅
αv(r)σ def= {0 ∀σ′ ∈ Σ : (σ, σ′) ∉ r

inf{αv(r)σ′ + 1 ∣ σ′ ∈ dom(αv(r)) ∧ (σ, σ′) ∈ r} otherwise
→α (T) def= {(σ, σ′) ∈ Σ × Σ ∣ ∃t ∈ Σ*, t′ ∈ Σ∞ : tσσ′ t′ ∈ T}

count execution steps backwards

0
1
x

2
x3

x
4
x

…

f1 ⪯ f2
def= dom(f1) ⊆ dom(f2) ∧ ∀x ∈ dom(f1) : f1(x) ≤ f2(x)

Caterina UrbanTermination AnalysisLesson 7

Potential Termination Semantics

31

ℛm
def= αm(𝒯m) = lfp⪯ Fm

Fm(f)σ def=
0 σ ∈ ℬ
inf{f(σ′) + 1 ∣ (σ, σ′) ∈ τ} σ ∈ preτ(dom(f))
undefined otherwise

0

0 0
1

0
1

0
1

0
1

2

0
1

0
1

2 ✔

✘

A program may terminate for traces starting from a
set of initial state if and only if ℐ ℐ ⊆ dom(ℛm)

Theorem

Caterina UrbanTermination AnalysisLesson 7

Potential Termination Semantics

32

ℛm
def= αm(𝒯m) = lfp⪯ Fm

Fm(f)σ def=
0 σ ∈ ℬ
sup{f(σ′) + 1 ∣ (σ, σ′) ∈ τ} σ ∈ preτ(dom(f))
undefined otherwise

Exercise

Show that the following fixpoint definition of the potential termination
semantics does not guarantee the existence of a least fixpoint:

Hint: find a program for which the values of the iterates of the potential
termination semantics are always increasing

Caterina UrbanTermination AnalysisLesson 7 33

Abstracting maximal traces into partial traces
Enriched hierarchy of semantics

R(I)
C(F)

forward/backward statesTp(I)

αp

!!

Ts (F)

αp

!!

prefix/suffix finite traces
T

αI

""

αF

##

partial finite traces
T∞

α∗

!!

partial traces
M∞

α≼

!!

maximal traces

See [Cous02] for more semantics in this diagram.Course 2

Program Semantics and Properties

Antoine Miné
p. 85 / 98

Hierarchy of Semantics

maximal trace semantics

termination semantics

termination trace semantics

ℳ∞

𝒯m 𝒯M

ℛm ℛM

α* α*

αMαm

Caterina UrbanTermination AnalysisLesson 7

Ranking Abstraction
Definite Termination Semantics

34

⟨𝒫(Σ*), ⊆ ⟩ ⟨Σ ⇀ 𝕆, ⪯ ⟩

αm

αM(T) def= αV(→α (T))

αV(∅) def= ·∅
αV(r)σ def= {0 ∀σ′ ∈ Σ : (σ, σ′) ∉ r

sup{αV(r)σ′ + 1 ∣ σ′ ∈ dom(αV(r)) ∧ (σ, σ′) ∈ r} otherwise

→α (T) def= {(σ, σ′) ∈ Σ × Σ ∣ ∃t ∈ Σ*, t′ ∈ Σ∞ : tσσ′ t′ ∈ T}

count execution steps backwards

0
1
x

2
x3

x
4
x

…

Caterina UrbanTermination AnalysisLesson 7

Definite Termination Semantics

35

ℛM
def= αM(𝒯M) = lfp⪯ FM

FM(f)σ def=
0 σ ∈ ℬ
sup{f(σ′) + 1 ∣ (σ, σ′) ∈ τ} σ ∈ ∼

preτ(dom(f))
undefined otherwise

0

0

✔

✘

A program must terminate for traces starting from a
set of initial states if and only if ℐ ℐ ⊆ dom(ℛM)

Theorem

0

1
0 0

1

0
2

0
1

0
2

Caterina UrbanTermination AnalysisLesson 7 36

Abstracting maximal traces into partial traces
Enriched hierarchy of semantics

R(I)
C(F)

forward/backward statesTp(I)

αp

!!

Ts (F)

αp

!!

prefix/suffix finite traces
T

αI

""

αF

##

partial finite traces
T∞

α∗

!!

partial traces
M∞

α≼

!!

maximal traces

See [Cous02] for more semantics in this diagram.Course 2

Program Semantics and Properties

Antoine Miné
p. 85 / 98

Hierarchy of Semantics

maximal trace semantics

termination semantics

termination trace semantics

ℳ∞

𝒯m 𝒯M

ℛm ℛM

α* α*

αMαm

Caterina UrbanTermination AnalysisLesson 7

Programs and executions
Language syntax

ℓstatℓ ::= ℓX ← expℓ

(assignment)

| ℓif exp ◃▹ 0 then ℓstatℓ

(conditional)

| ℓwhile ℓexp ◃▹ 0 do ℓstatℓ doneℓ

(loop)

| ℓstat; ℓstatℓ

(sequence)

exp ::= X

(variable)

| −exp

(negation)

| exp ⋄ exp

(binary operation)

| c

(constant c ∈ Z)

| [c, c ′]
(random input, c, c ′ ∈ Z ∪ { ±∞ })

Simple structured, numeric language
X ∈ V, where V is a finite set of program variables

ℓ ∈ L, where L is a finite set of control points
numeric expressions: ◃▹ ∈ {=, ≤, . . .}, ⋄ ∈ { +, −, ×, / }

random inputs: X ← [c, c ′]
model environment, parametric programs, unknown functions, . . .

Course 2

Program Semantics and Properties

Antoine Miné
p. 3 / 98

37

Denotational Definite
Termination Semantics
We define the definite termination semantics

 by partitioning with respect to
the program control points, i.e.,

.

Thus, for each program instruction , we
define a transformer

:

•

•

•

•

ℛM : Σ ⇀ 𝕆
ℛM : ℒ → (ℰ ⇀ 𝕆)

𝗌𝗍𝖺𝗍
ℛM[[𝗌𝗍𝖺𝗍]] : (ℰ ⇀ 𝕆) → (ℰ ⇀ 𝕆)

ℛM[[ℓX ← e]]

ℛM[[if .ℓ e ⋈ 0 then s]]

ℛM[[while .ℓ e ⋈ 0 do s done]]

ℛM[[s1; s2]]

Caterina UrbanTermination AnalysisLesson 7 38

Denotational Definite 
Termination Semantics
ℛM[[ℓX ← e]]

ℛM[[ℓX ← e]]f def= λρ .
sup{f(ρ[X ↦ v])+1 ∣ v ∈ E[[e]]ρ} ∃v̄ ∈ E[[e]]ρ ∧

∀v ∈ E[[e]]ρ : ρ[X ↦ v] ∈ dom(f)
undefined otherwise

Example: 
Let and defined as follows: 

 

We have 

𝕍 = {x} f : ℰ ⇀ 𝕆

f(ρ) def=
2 ρ(x) = 1
3 ρ(x) = 2
undefined otherwise

ℛM[[x ← x + [1,2]]]f def= λρ . {4 ρ(x) = 0
undefined otherwise

Caterina UrbanTermination AnalysisLesson 7 39

Denotational Definite 
Termination Semantics
ℛM[[if .ℓ e ⋈ 0 then s]]

ℛM[[if .ℓ e ⋈ 0 then s]]f def= λρ .
1
2
3

undefined otherwise

 

 

1 sup{ℛM[[s]]f(ρ) + 1, f(ρ) + 1}

2 ℛM[[s]]f(ρ) + 1

3 f(ρ) + 1

 

 

ρ ∈ dom(ℛM[[s]]f) ∩ dom(f) ∧
∃v1, v2 ∈ E[[e]]ρ : v1 ⋈ 0 ∧ v2 /⋈ 0

ρ ∈ dom(ℛM[[s]]f) ∧
∀v ∈ E[[e]]ρ : v ⋈ 0

ρ ∈ dom(f) ∧ ∀v ∈ E[[e]]ρ : v /⋈ 0

Caterina UrbanTermination AnalysisLesson 7 40

Denotational Definite 
Termination Semantics

 (continue)ℛM[[if .ℓ e ⋈ 0 then s]]
Example: 
Let and , and defined as follows: 

  

 
We have 

 

and

𝕍 = {x} f : ℰ ⇀ 𝕆 ℛM[[s]]f
f def= λρ . {1 ρ(x) ≤ 0

undefined otherwise

ℛM[[s]]f def= λρ . {3 0 ≤ ρ(x)
undefined otherwise

ℛM[[if 3 − x < 0 then s]]f def= λρ .
2 ρ(x) ≤ 0
4 3 < ρ(x)
undefined otherwise

ℛM[[if [−∞, + ∞] ≠ 0 then s]]f def= λρ . {4 ρ(x) = 0
undefined otherwise

Caterina UrbanTermination AnalysisLesson 7 41

Denotational Definite 
Termination Semantics
ℛM[[while .ℓ e ⋈ 0 do s done]]

ℛM[[while .ℓ e ⋈ 0 do s done]]f def= lfp⪯·∅ FM

FM(x) def= λρ .
1
2
3

undefined otherwise

 

 

1 sup{ℛM[[s]]x(ρ) + 1, f(ρ) + 1}

2 ℛM[[s]]x(ρ) + 1

3 f(ρ) + 1

 

 

ρ ∈ dom(ℛM[[s]]x) ∩ dom(f) ∧
∃v1, v2 ∈ E[[e]]ρ : v1 ⋈ 0 ∧ v2 /⋈ 0

ρ ∈ dom(ℛM[[s]]x) ∧
∀v ∈ E[[e]]ρ : v ⋈ 0

ρ ∈ dom(f) ∧ ∀v ∈ E[[e]]ρ : v /⋈ 0

Caterina UrbanTermination AnalysisLesson 7 42

Denotational Definite 
Termination Semantics
ℛM[[s1; s2]]

ℛM[[s1; s2]]f def= ℛM[[s1]](ℛM[[s2]]f)

Caterina UrbanTermination AnalysisLesson 7 43

Denotational Definite 
Termination Semantics

The definite termination semantics  
of a program is:

where is  
the definite termination semantics of each program instruction

ℛM[[𝗌𝗍𝖺𝗍ℓ]] : ℰ ⇀ 𝕆
𝗌𝗍𝖺𝗍ℓ

ℛM[[𝗌𝗍𝖺𝗍ℓ]] def= ℛM[[𝗌𝗍𝖺𝗍]](λρ.0)

ℛM[[𝗌𝗍𝖺𝗍]] : (ℰ ⇀ 𝕆) → (ℰ ⇀ 𝕆)
𝗌𝗍𝖺𝗍

Definition

A program must terminate for traces starting from a set of initial
states if and only if

𝗌𝗍𝖺𝗍ℓ

ℐ ℐ ⊆ dom(ℛm[[𝗌𝗍𝖺𝗍ℓ]])

Theorem

Caterina UrbanTermination AnalysisLesson 7

Abstract Interpretation Recipe

44

mathematical models
of the program behavior

algorithmic approaches
to decide program properties

practical tools
targeting specific programs

Caterina UrbanTermination AnalysisLesson 7 45

Piecewise-Defined  
Ranking Functions  
Abstract Domain

Caterina UrbanTermination AnalysisLesson 7 46

Concretization-Based  
Piecewise Abstraction

⟨ℰ ⇀ 𝕆, ≼ ⟩ ⟨𝒜, ≼A ⟩

γA

ℛM[[𝗌𝗍𝖺𝗍ℓ]] : ℰ ⇀ 𝕆 f1 ≼ f2
def= dom(f1) ⊇ dom(f2) ∧ ∀x ∈ dom(f1) : f1(x) ≤ f2(x)

approximation order

ℛ#
M[[𝗌𝗍𝖺𝗍ℓ]] ∈ 𝒜

⟨ℒ → (ℰ ⇀ 𝕆), ·≼ ⟩ ⟨ℒ → 𝒜, ·≼A ⟩

·γA

ℛM : ℒ → (ℰ ⇀ 𝕆) ℛ#
M : ℒ → 𝒜

By pointwise lifiting we obtain an abstraction of :ℛ#
M ℛM

Caterina UrbanTermination AnalysisLesson 7 47

Piecewise-Defined Ranking 
Functions Abstract Domain

⟨𝒜, ≼A ⟩

Example

1x [- , +] 
0while 2(x 0) do 
 3x - 2 x + 10  
od4

← ∞ ∞
≥

← ⋅

2 4 6 x. 1λ

x 0≥

x - 3 0≥

x - 4 0≥

x - 6 0≥

x. 3λ

x. 7λ

x. 9λ

x. 5λ

Caterina UrbanTermination AnalysisLesson 7 48

Piecewise-Defined Ranking 
Functions Abstract Domain
Linear Constraints Auxiliary Abstract Domain

x. 1λ

x 0≥

x - 3 0≥

x - 4 0≥

x - 6 0≥

x. 3λ

x. 7λ

x. 9λ

x. 5λ

• Parameterized by an underlying numerical abstract domain  
(i.e., intervals, octagons, or polyhedra):

⟨𝒟, ⊑D ⟩

⟨𝒫(𝒞/ ≡C), ⊑D ⟩ ⟨𝒟, ⊑D ⟩

αC

γC

𝒞 def= {c1 ⋅ X1 + ck ⋅ Xk + ck+1 ≥ 0 ∣ X1, …, Xk ∈ 𝕍

∧ c1, …, ck+1 ∈ ℤ ∧ gcd(|c1 | , …, |ck+1 |) = 1}

• is a set of linear constraints  
in canonical form, equipped with a total order :
𝒞

≤C

Caterina UrbanTermination AnalysisLesson 7 49

Piecewise-Defined Ranking 
Functions Abstract Domain
Functions Auxiliary Abstract Domain

x. 1λ

x 0≥

x - 3 0≥

x - 4 0≥

x - 6 0≥

x. 3λ

x. 7λ

x. 9λ

x. 5λ

•  
 
We consider affine functions: 

ℱ def= { ⊥F } ∪ (ℤ|𝕍| → ℕ) ∪ { ⊤F }

ℱA
def= { ⊥F } ∪ {f : ℤ|𝕍| → ℕ ∣

f(X1, …, Xk) =
k

∑
i=1

mi ⋅ Xi + q

} ∪ { ⊤F }

• Parameterized by an underlying numerical abstract domain ⟨𝒟, ⊑D ⟩

Caterina UrbanTermination AnalysisLesson 7 50

Piecewise-Defined Ranking 
Functions Abstract Domain
Functions Auxiliary Abstract Domain (continue)

• approximation order , where :

• between defined leaf nodes:  
 

• otherwise (i.e., when one or both leaf nodes are undefined):

≼F [D] D ∈ 𝒟

f1 ≼F [D] f2
def= ∀ρ ∈ γD(D) : f1(…, ρ(Xi), …) ≤ f2(…, ρ(Xi), …)

⊤F⊥F

f : ℤ|𝕍| → ℕ

Caterina UrbanTermination AnalysisLesson 7 51

Piecewise-Defined Ranking 
Functions Abstract Domain
Functions Auxiliary Abstract Domain (continue)

• computational order , where :

• between defined leaf nodes:  
 

• otherwise (i.e., when one or both leaf nodes are undefined):

⊑F [D] D ∈ 𝒟

f1 ⊑F [D] f2
def= ∀ρ ∈ γD(D) : f1(…, ρ(Xi), …) ≤ f2(…, ρ(Xi), …)

f : ℤ|𝕍| → ℕ

⊥F

⊤F

Caterina UrbanTermination AnalysisLesson 7

• 𝒜 def= {𝖫𝖤𝖠𝖥 : f ∣ f ∈ ℱ} ∪ {𝖭𝖮𝖣𝖤{c}: t1; t2 ∣ c ∈ 𝒞 ∧ t1, t2 ∈ 𝒜}

52

Piecewise-Defined Ranking 
Functions Abstract Domain

• concretization function :  
 

 
 
where :  

 
 

 
and : 

 
 

γA : 𝒜 → (ℰ ⇀ 𝕆)

γA(t) def= γA[∅](t)

γA : 𝒫(𝒞/ ≡C) → 𝒜 → (ℰ ⇀ 𝕆)
γA[C](𝖫𝖤𝖠𝖥 : f) def= γF[αC(C)](f)
γA[C](𝖭𝖮𝖣𝖤{c}: t1; t2)

def= γA[C ∪ {c}](t1) ·∪ γA[C ∪ {¬c}](t2)

γF : 𝒟 → ℱ → (ℰ ⇀ 𝕆)
γF[D](⊥F) def= ·∅
γF[D](f) def= λρ ∈ γD(D) : f(…, ρ(Xi), …)
γF[D](⊤F) def= ·∅

Caterina UrbanTermination AnalysisLesson 7 53

Piecewise-Defined Ranking 
Functions Abstract Domain
Abstract Domain Operators

• They manipulate elements in

• The binary operators rely on a tree unification algorithm

• approximation order and computational order

• approximation join and computational join

• meet

• widening

• The unary operators rely on a tree pruning algorithm

• assignment

• test

𝒜𝖭𝖨𝖫
def= {𝖭𝖨𝖫} ∪ 𝒜

≼A ⊑A
⋎A ⊔A

⋏A
▿A

⟵𝖠𝖲𝖲𝖨𝖦𝖭A[[X ← e]]
𝖥𝖨𝖫𝖳𝖤𝖱A[[e]]

Caterina UrbanTermination AnalysisLesson 7 54

Piecewise-Defined Ranking 
Functions Abstract Domain
Tree Unification

Goal: find a common refinement for the given decision trees

f2f1

• Base cases:

f2f1

f1

f2

𝖭𝖨𝖫

𝖭𝖨𝖫

𝖭𝖨𝖫 𝖭𝖨𝖫

f1

f2

𝖭𝖨𝖫

𝖭𝖨𝖫

𝖭𝖨𝖫 𝖭𝖨𝖫

Caterina UrbanTermination AnalysisLesson 7 55

Piecewise-Defined Ranking 
Functions Abstract Domain
Tree Unification (continue)

• Case 1

f1

R1

c1

L1 R2

c2

L2

1a is redundantc2

1b is redundant¬c2

1c is added to c2 t1

f1

f1

c2

R2

R2

c2

L2

L2

R2

R1

c1

L1
c2 ≤C c1

L2

R1

c1

L1

Caterina UrbanTermination AnalysisLesson 7 56

Piecewise-Defined Ranking 
Functions Abstract Domain
Tree Unification (continue)

• Case 2 (simmetric to 1)

• Case 3

R1

c

L1 R2

c

L2

1a is redundantc

1b is redundant¬c

1c is kept in and c t1 t2
c

L2

R2

L1

R1

L2L1 R2R1

Caterina UrbanTermination AnalysisLesson 7 57

Piecewise-Defined Ranking 
Functions Abstract Domain
Tree Unification (continue)

δ

x 0≥

𝖭𝖨𝖫𝖭𝖨𝖫

x + 1 0≥

x. x + 4λ

𝖭𝖨𝖫

x + 1 0≥

x 0≥

x. x + 4λ

x. x + 4λ

Example

δ

x + 1 0≥

x 0≥

𝖭𝖨𝖫

δ

Caterina UrbanTermination AnalysisLesson 7

1. Perform tree unification

2. Recursively descend the trees while accumulating the linear constraints
encountered along the paths into a set of constraints

3. Compare the leaf nodes using the approximation order  
or the computational order

C

≼F [αC(C)]
⊑F [αC(C)]

58

Piecewise-Defined Ranking 
Functions Abstract Domain
Order

∀t1, t2 ∈ 𝒜 : t1 ≼A t2 ⇒ γA(t1) ≼ γA(t2)
Lemma

The concretization function is monotonic with respect to :γA ≼A

Caterina UrbanTermination AnalysisLesson 7

1. Perform tree unification

2. Recursively descend the trees while accumulating the linear constraints
encountered along the paths into a set of constraints

3.  

4. Join the leaf nodes using the approximation join  
or the computational join

C

𝖭𝖨𝖫 ⋎A t def= t
t ⋎A 𝖭𝖨𝖫 def= t

⋎F [αC(C)]
⊔F [αC(C)]

59

Piecewise-Defined Ranking 
Functions Abstract Domain
Join

Caterina UrbanTermination AnalysisLesson 7 60

Piecewise-Defined Ranking 
Functions Abstract Domain
Join (continue)

• approximation join , where :

• between defined leaf nodes: 
 

 

where

• Example:  
 

 
 
 

⋎F [D] D ∈ 𝒟

f1 ⋎F [D] f2
def= { f f ∈ ℱ∖{ ⊥F , ⊤F }

⊤F otherwise
f def= λρ ∈ γD(D) : max(f1(…, ρ(Xi), …), f2(…, ρ(Xi), …))

⊥F ⋎F [D] f def= ⊥F f ∈ ℱ∖{ ⊤F }
f ⋎F [D] ⊥F

def= ⊥F f ∈ ℱ∖{ ⊤F }
⊤F ⋎F [D] f def= ⊤F f ∈ ℱ∖{ ⊥F }
f ⋎F [D] ⊤F

def= ⊤F f ∈ ℱ∖{ ⊥F }

Polyhedron domain
Operators on polyhedra: join
Join: X ♯ ∪♯ Y ♯ def= [[PX ♯ PY ♯], [RX ♯ RY ♯]] (join generator sets)

Examples:

two polytopes

a point and a line

∪♯ is optimal:we get the topological closure of the convex hull of γ(X ♯) ∪ γ(Y ♯).
Course 4

Relational Numerical Abstract Domains

Antoine Miné
p. 30 / 70

Caterina UrbanTermination AnalysisLesson 7 60

Piecewise-Defined Ranking 
Functions Abstract Domain
Join (continue)

⊤F⊥F

f : ℤ|𝕍| → ℕ

• approximation join , where :

• between defined leaf nodes: 
 

 

where

• otherwise (i.e., when one or both leaf nodes are undefined):  
 

 
 
 

⋎F [D] D ∈ 𝒟

f1 ⋎F [D] f2
def= { f f ∈ ℱ∖{ ⊥F , ⊤F }

⊤F otherwise
f def= λρ ∈ γD(D) : max(f1(…, ρ(Xi), …), f2(…, ρ(Xi), …))

⊥F ⋎F [D] f def= ⊥F f ∈ ℱ∖{ ⊤F }
f ⋎F [D] ⊥F

def= ⊥F f ∈ ℱ∖{ ⊤F }
⊤F ⋎F [D] f def= ⊤F f ∈ ℱ∖{ ⊥F }
f ⋎F [D] ⊤F

def= ⊤F f ∈ ℱ∖{ ⊥F }

Caterina UrbanTermination AnalysisLesson 7

Example

61

Piecewise-Defined Ranking 
Functions Abstract Domain
Join (continue)

δ

x + 1 0≥

x 0≥

𝖭𝖨𝖫

δ𝖭𝖨𝖫

x + 1 0≥

x 0≥

x. x + 4λ

x. x + 4λ

δ

x + 1 0≥

x 0≥

x. x + 4λ

x. x + 4 λ ⋎F δ

Caterina UrbanTermination AnalysisLesson 7 62

Piecewise-Defined Ranking 
Functions Abstract Domain
Join (continue)

• computational join , where :

• between defined leaf nodes: 
 

 

where

• otherwise (i.e., when one or both leaf nodes are undefined):  
 

 
 
 

⊔F [D] D ∈ 𝒟

f1 ⋎F [D] f2
def= { f f ∈ ℱ∖{ ⊥F , ⊤F }

⊤F otherwise
f def= λρ ∈ γD(D) : max(f1(…, ρ(Xi), …), f2(…, ρ(Xi), …))

⊥F ⊔F [D] f def= f f ∈ ℱ
f ⊔F [D] ⊥F

def= f f ∈ ℱ
⊤F ⊔F [D] f def= ⊤F f ∈ ℱ
f ⊔F [D] ⊤F

def= ⊤F f ∈ ℱ

f : ℤ|𝕍| → ℕ

⊥F

⊤F

Caterina UrbanTermination AnalysisLesson 7

1. Perform tree unification

2. Recursively descend the trees while accumulating the linear constraints
encountered along the paths into a set of constraints

3.  

4. Join the leaf nodes using the approximation join

C

𝖭𝖨𝖫 ⋎A t def= 𝖭𝖨𝖫
t ⋎A 𝖭𝖨𝖫 def= 𝖭𝖨𝖫

⋎F [αC(C)]

63

Piecewise-Defined Ranking 
Functions Abstract Domain
Meet

Caterina UrbanTermination AnalysisLesson 7

Example

64

Piecewise-Defined Ranking 
Functions Abstract Domain
Meet (continue)

δ

x + 1 0≥

x 0≥

𝖭𝖨𝖫

δ𝖭𝖨𝖫

x + 1 0≥

x 0≥

x. x + 4λ

x. x + 4λ

x + 1 0≥

x 0≥

x. x + 4 λ ⋎F δ 𝖭𝖨𝖫

𝖭𝖨𝖫

Caterina UrbanTermination AnalysisLesson 7 65

Piecewise-Defined Ranking 
Functions Abstract Domain
Widening

98 5. Piecewise-Defined Ranking Functions

0 0 0

1
1

3 2

(a) Most precise ranking function.

2 2 22

0 0 0

1
1

A B C

(b) Unsound abstraction.

Figure 5.10: Unsound abstraction (b) of a most precise ranking function (a).

on which it is not yet defined. The only requirement is that, when the iter-
ation sequence with widening is stable for the computational order, its limit
is a sound abstraction of the termination semantics with respect to the ap-
proximation order. In the following, we discuss in detail how the widening
guarantees the soundness of the analysis.

As running example, let us consider Figure 5.10. In Figure 5.10a we de-
pict a transition system and the value of the termination semantics for the
well-founded part of its transition relation. In Figure 5.10b we represent the
concretization of a possible iterate of the analysis: we assume that the first
iterate has individuated the states marked with value zero, the second iter-
ate has individuated the states marked with value one, and the widening at
the third iterate has extrapolated the ranking function over the states marked
with value two. In this case the abstraction both under-approximates the
value of the termination semantics (on the second state from the left — case
B) and over-approximates its domain of definition (including the first and the
last state from the left — case A and C, respectively). In case A, the non-
terminating loop is outside the domain of definition of the unsound abstract
function, while in case C the loop is inside. The analysis continues iterating
until all these discrepancies are solved and, in the following, we explain and
justify why this works in general.

For a loop while lbexp do stmt od, given a sound over-approximation
R ∈ D of τI(l), we define the iteration sequence with widening as follows:

y0
def
= ⊥T

yn+1
def
=

{
yn φ♮

Mt(yn) ⊑T [R] yn ∧ φ♮
Mt(yn) !T [R] yn

yn ▽T φ♮
Mt(yn) otherwise

(5.2.24)

Goal: try to predict a valid ranking function

The prediction can (temporarily) be wrong!, i.e.,

• under-approximates the value of

and/or

• over-approximates the domain of

ℛM

dom(ℛM) ℛM
98 5. Piecewise-Defined Ranking Functions

0 0 0

1
1

3 2

(a) Most precise ranking function.

2 2 22

0 0 0

1
1

A B C

(b) Unsound abstraction.

Figure 5.10: Unsound abstraction (b) of a most precise ranking function (a).

on which it is not yet defined. The only requirement is that, when the iter-
ation sequence with widening is stable for the computational order, its limit
is a sound abstraction of the termination semantics with respect to the ap-
proximation order. In the following, we discuss in detail how the widening
guarantees the soundness of the analysis.

As running example, let us consider Figure 5.10. In Figure 5.10a we de-
pict a transition system and the value of the termination semantics for the
well-founded part of its transition relation. In Figure 5.10b we represent the
concretization of a possible iterate of the analysis: we assume that the first
iterate has individuated the states marked with value zero, the second iter-
ate has individuated the states marked with value one, and the widening at
the third iterate has extrapolated the ranking function over the states marked
with value two. In this case the abstraction both under-approximates the
value of the termination semantics (on the second state from the left — case
B) and over-approximates its domain of definition (including the first and the
last state from the left — case A and C, respectively). In case A, the non-
terminating loop is outside the domain of definition of the unsound abstract
function, while in case C the loop is inside. The analysis continues iterating
until all these discrepancies are solved and, in the following, we explain and
justify why this works in general.

For a loop while lbexp do stmt od, given a sound over-approximation
R ∈ D of τI(l), we define the iteration sequence with widening as follows:

y0
def
= ⊥T

yn+1
def
=

{
yn φ♮

Mt(yn) ⊑T [R] yn ∧ φ♮
Mt(yn) !T [R] yn

yn ▽T φ♮
Mt(yn) otherwise

(5.2.24)

Example

ℛM ℛ#
M

Caterina UrbanTermination AnalysisLesson 7 66

Piecewise-Defined Ranking 
Functions Abstract Domain
Widening (continue)

1. Check for case A (i.e., wrong domain predictions)

2. Perform domain widening

3. Check for case B or C (i.e., wrong value predictions)

4. Perform value widening

98 5. Piecewise-Defined Ranking Functions

0 0 0

1
1

3 2

(a) Most precise ranking function.

2 2 22

0 0 0

1
1

A B C

(b) Unsound abstraction.

Figure 5.10: Unsound abstraction (b) of a most precise ranking function (a).

on which it is not yet defined. The only requirement is that, when the iter-
ation sequence with widening is stable for the computational order, its limit
is a sound abstraction of the termination semantics with respect to the ap-
proximation order. In the following, we discuss in detail how the widening
guarantees the soundness of the analysis.

As running example, let us consider Figure 5.10. In Figure 5.10a we de-
pict a transition system and the value of the termination semantics for the
well-founded part of its transition relation. In Figure 5.10b we represent the
concretization of a possible iterate of the analysis: we assume that the first
iterate has individuated the states marked with value zero, the second iter-
ate has individuated the states marked with value one, and the widening at
the third iterate has extrapolated the ranking function over the states marked
with value two. In this case the abstraction both under-approximates the
value of the termination semantics (on the second state from the left — case
B) and over-approximates its domain of definition (including the first and the
last state from the left — case A and C, respectively). In case A, the non-
terminating loop is outside the domain of definition of the unsound abstract
function, while in case C the loop is inside. The analysis continues iterating
until all these discrepancies are solved and, in the following, we explain and
justify why this works in general.

For a loop while lbexp do stmt od, given a sound over-approximation
R ∈ D of τI(l), we define the iteration sequence with widening as follows:

y0
def
= ⊥T

yn+1
def
=

{
yn φ♮

Mt(yn) ⊑T [R] yn ∧ φ♮
Mt(yn) !T [R] yn

yn ▽T φ♮
Mt(yn) otherwise

(5.2.24)

Caterina UrbanTermination AnalysisLesson 7 67

Piecewise-Defined Ranking 
Functions Abstract Domain
Widening (continue) Check for Case A

Let . Then, in case A, we have
.

dom(γA(ℛ#n
M (ℓ)))∖dom(ℛM(ℓ)) ≠ ∅

dom(γA(ℛ#n+1
M (ℓ)))∖dom(ℛM(ℓ)) ⊂ dom(γA(ℛ#n

M (ℓ)))∖dom(ℛM(ℓ))

Lemma

(see proof in [Urban15])
98 5. Piecewise-Defined Ranking Functions

0 0 0

1
1

3 2

(a) Most precise ranking function.

2 2 22

0 0 0

1
1

A B C

(b) Unsound abstraction.

Figure 5.10: Unsound abstraction (b) of a most precise ranking function (a).

on which it is not yet defined. The only requirement is that, when the iter-
ation sequence with widening is stable for the computational order, its limit
is a sound abstraction of the termination semantics with respect to the ap-
proximation order. In the following, we discuss in detail how the widening
guarantees the soundness of the analysis.

As running example, let us consider Figure 5.10. In Figure 5.10a we de-
pict a transition system and the value of the termination semantics for the
well-founded part of its transition relation. In Figure 5.10b we represent the
concretization of a possible iterate of the analysis: we assume that the first
iterate has individuated the states marked with value zero, the second iter-
ate has individuated the states marked with value one, and the widening at
the third iterate has extrapolated the ranking function over the states marked
with value two. In this case the abstraction both under-approximates the
value of the termination semantics (on the second state from the left — case
B) and over-approximates its domain of definition (including the first and the
last state from the left — case A and C, respectively). In case A, the non-
terminating loop is outside the domain of definition of the unsound abstract
function, while in case C the loop is inside. The analysis continues iterating
until all these discrepancies are solved and, in the following, we explain and
justify why this works in general.

For a loop while lbexp do stmt od, given a sound over-approximation
R ∈ D of τI(l), we define the iteration sequence with widening as follows:

y0
def
= ⊥T

yn+1
def
=

{
yn φ♮

Mt(yn) ⊑T [R] yn ∧ φ♮
Mt(yn) !T [R] yn

yn ▽T φ♮
Mt(yn) otherwise

(5.2.24)

Caterina UrbanTermination AnalysisLesson 7 67

Piecewise-Defined Ranking 
Functions Abstract Domain
Widening (continue)

1. Perform tree unification

2. Recursively descend the trees while accumulating the linear constraints
encountered along the paths into a set of constraints

3.

C

Check for Case A

⊥Ff ⊤Ff

Let . Then, in case A, we have
.

dom(γA(ℛ#n
M (ℓ)))∖dom(ℛM(ℓ)) ≠ ∅

dom(γA(ℛ#n+1
M (ℓ)))∖dom(ℛM(ℓ)) ⊂ dom(γA(ℛ#n

M (ℓ)))∖dom(ℛM(ℓ))

Lemma

(see proof in [Urban15])

Caterina UrbanTermination AnalysisLesson 7 68

Piecewise-Defined Ranking 
Functions Abstract Domain
Widening (continue) Domain Widening

Goal: limit the size of the decision trees

Left unification: variant of tree unification that forces the structure of on t1 t2

f2f1

• Base case:

f2f1

Caterina UrbanTermination AnalysisLesson 7 69

Piecewise-Defined Ranking 
Functions Abstract Domain

• Case 1

f1

R1

c1

L1 R2

c2

L2

1a is redundantc2

1b is redundant¬c2

1c is removed from c2 t2

f1

f1
R2

c2

L2

L2

R2

c2 ≤C c1

L2 ⊔A R2

R1

c1

L1

Widening (continue) Domain Widening

Caterina UrbanTermination AnalysisLesson 7 70

Piecewise-Defined Ranking 
Functions Abstract Domain

• Case 2 (as for tree unification)

• Case 3

R1

c

L1 R2

c

L2

1a is redundantc

1b is redundant¬c

1c is kept in and c t1 t2
c

L2

R2

L1

R1

L2L1 R2R1

Widening (continue) Domain Widening

Caterina UrbanTermination AnalysisLesson 7 71

Piecewise-Defined Ranking 
Functions Abstract Domain
Widening (continue) Check for Case B or C

Let for some
 (case B). Then, there exists

 such that
.

γA(ℛ#n
M (ℓ))(ρ) < ℛM(ℓ)(ρ)

ρ ∈ dom(ℛM(ℓ)) ∩ dom(γA(ℛ#n
M)(ℓ))

ρ ∈ dom(γA(ℛ#n+1
M (ℓ))) ∩ dom(ℛ#n

M (ℓ))
γA(ℛ#n

M (ℓ))(ρ) < γA(ℛ#n+1
M (ℓ))(ρ)

Lemma

98 5. Piecewise-Defined Ranking Functions

0 0 0

1
1

3 2

(a) Most precise ranking function.

2 2 22

0 0 0

1
1

A B C

(b) Unsound abstraction.

Figure 5.10: Unsound abstraction (b) of a most precise ranking function (a).

on which it is not yet defined. The only requirement is that, when the iter-
ation sequence with widening is stable for the computational order, its limit
is a sound abstraction of the termination semantics with respect to the ap-
proximation order. In the following, we discuss in detail how the widening
guarantees the soundness of the analysis.

As running example, let us consider Figure 5.10. In Figure 5.10a we de-
pict a transition system and the value of the termination semantics for the
well-founded part of its transition relation. In Figure 5.10b we represent the
concretization of a possible iterate of the analysis: we assume that the first
iterate has individuated the states marked with value zero, the second iter-
ate has individuated the states marked with value one, and the widening at
the third iterate has extrapolated the ranking function over the states marked
with value two. In this case the abstraction both under-approximates the
value of the termination semantics (on the second state from the left — case
B) and over-approximates its domain of definition (including the first and the
last state from the left — case A and C, respectively). In case A, the non-
terminating loop is outside the domain of definition of the unsound abstract
function, while in case C the loop is inside. The analysis continues iterating
until all these discrepancies are solved and, in the following, we explain and
justify why this works in general.

For a loop while lbexp do stmt od, given a sound over-approximation
R ∈ D of τI(l), we define the iteration sequence with widening as follows:

y0
def
= ⊥T

yn+1
def
=

{
yn φ♮

Mt(yn) ⊑T [R] yn ∧ φ♮
Mt(yn) !T [R] yn

yn ▽T φ♮
Mt(yn) otherwise

(5.2.24)

Caterina UrbanTermination AnalysisLesson 7 72

Piecewise-Defined Ranking 
Functions Abstract Domain
Widening (continue) Check for Case B or C

Let . Then, for all
 in case C, we have

.

dom(γA(ℛ#n
M (ℓ)))∖dom(ℛM(ℓ)) ≠ ∅

ρ ∈ dom(γA(ℛ#n
M (ℓ)))∖dom(ℛM(ℓ))

γA(ℛ#n
M (ℓ))(ρ) < γA(ℛ#n+1

M (ℓ))(ρ)

Lemma

(see proof in [Urban15])

98 5. Piecewise-Defined Ranking Functions

0 0 0

1
1

3 2

(a) Most precise ranking function.

2 2 22

0 0 0

1
1

A B C

(b) Unsound abstraction.

Figure 5.10: Unsound abstraction (b) of a most precise ranking function (a).

on which it is not yet defined. The only requirement is that, when the iter-
ation sequence with widening is stable for the computational order, its limit
is a sound abstraction of the termination semantics with respect to the ap-
proximation order. In the following, we discuss in detail how the widening
guarantees the soundness of the analysis.

As running example, let us consider Figure 5.10. In Figure 5.10a we de-
pict a transition system and the value of the termination semantics for the
well-founded part of its transition relation. In Figure 5.10b we represent the
concretization of a possible iterate of the analysis: we assume that the first
iterate has individuated the states marked with value zero, the second iter-
ate has individuated the states marked with value one, and the widening at
the third iterate has extrapolated the ranking function over the states marked
with value two. In this case the abstraction both under-approximates the
value of the termination semantics (on the second state from the left — case
B) and over-approximates its domain of definition (including the first and the
last state from the left — case A and C, respectively). In case A, the non-
terminating loop is outside the domain of definition of the unsound abstract
function, while in case C the loop is inside. The analysis continues iterating
until all these discrepancies are solved and, in the following, we explain and
justify why this works in general.

For a loop while lbexp do stmt od, given a sound over-approximation
R ∈ D of τI(l), we define the iteration sequence with widening as follows:

y0
def
= ⊥T

yn+1
def
=

{
yn φ♮

Mt(yn) ⊑T [R] yn ∧ φ♮
Mt(yn) !T [R] yn

yn ▽T φ♮
Mt(yn) otherwise

(5.2.24)

Caterina UrbanTermination AnalysisLesson 7 73

Piecewise-Defined Ranking 
Functions Abstract Domain
Widening (continue) Check for Case B or C

1. Recursively descend the trees while accumulating the linear constraints
encountered along the paths into a set of constraints

2.

C

f2f1 ⊤Ff

f1 ∈ ℱ∖{ ⊥F , ⊤F } ∧ f2 /≼F [αc(C)] f1

Caterina UrbanTermination AnalysisLesson 7 74

Piecewise-Defined Ranking 
Functions Abstract Domain
Widening (continue) Value Widening

1. Recursively descend the trees while accumulating the linear constraints
encountered along the paths into a set of constraints

2. Widen each (defined) leaf node with respect to each of their adjacent
(defined) leaf node using the extrapolation operator ,
where is the set of constraints along the path to  
 
Example:

C

f
f ▾F [αC(C), αC(C)]

C f

Caterina UrbanTermination AnalysisLesson 7 75

Piecewise-Defined Ranking 
Functions Abstract Domain
Tree Pruning

Goal: add a set of linear constraints to the decision treeJ

• Base case ()J = ∅

R

c

L

a is redundantc

b is redundant¬c

c is kept in c t

L

R

f

R

c

L

f

Caterina UrbanTermination AnalysisLesson 7 76

Piecewise-Defined Ranking 
Functions Abstract Domain
Tree Pruning (continue)

• Case 1

1a is redundantmin J

1b is redundant¬min J

1c is added to min J t

f

min J

min J ≤C c

R

c

L

f

𝖭𝖨𝖫

J∖{min J}
R

c

L

𝖭𝖨𝖫

R

c

L J∖{min J}

min J

𝖭𝖨𝖫f

J∖{min J}

Caterina UrbanTermination AnalysisLesson 7 77

Piecewise-Defined Ranking 
Functions Abstract Domain
Tree Pruning (continue)

• Case 2

c ≤C min J

R

c

L

2a is redundantc

2b is redundant¬c

2c is kept in c t

L

R

R

c

L

• Case 3

R

min J

L

3a is redundantmin J

3b is redundant¬min J

3c is kept in min J t

L J∖{min J}

𝖭𝖨𝖫

c

L 𝖭𝖨𝖫

J∖{min J}

Caterina UrbanTermination AnalysisLesson 7 78

Piecewise-Defined Ranking 
Functions Abstract Domain
Tree Pruning (continue)

J def= {x − 2 ≥ 0}

Example

δ3

x + 1 0≥

x 0≥

δ1

δ2

δ3

x + 1 0≥

x 0≥

x - 2 0≥

δ1

δ2

𝖭𝖨𝖫

Caterina UrbanTermination AnalysisLesson 7 79

Piecewise-Defined Ranking 
Functions Abstract Domain
Assignments ⟵𝖠𝖲𝖲𝖨𝖦𝖭A[[X ← e]]

• Base case ()  
 
Apply on the defined leaf nodes 
 

 

where
 

and  
 
Example:  

 
(since and

⟵𝖠𝖲𝖲𝖨𝖦𝖭F[[X ← e]][αC(C)]

⟵𝖠𝖲𝖲𝖨𝖦𝖭F[[X ← e]][D](f) def= {f f ∈ ℱ∖{ ⊥F , ⊤F }
⊤F otherwise

f ∈ ℱ∖{ ⊥F , ⊤F }

f(…, Xi, X, …) def= max{f(…, ρ(Xi), v, …) + 1 ∣ ρ ∈ γD(R) ∧ v ∈ E[[e]]ρ}
R def= ⟵𝖠𝖲𝖲𝖨𝖦𝖭D[[X ← e]]D

⟵𝖠𝖲𝖲𝖨𝖦𝖭F[[x ← x + [1,2]]][⊤D](λx . x + 1) = λx . x + 4
f(x + [1,2]) + 1 = x + [1,2] + 1 + 1 = x + [3,4] max(3,4) = 4

f

Caterina UrbanTermination AnalysisLesson 7 80

Piecewise-Defined Ranking 
Functions Abstract Domain
Assignments ⟵𝖠𝖲𝖲𝖨𝖦𝖭A[[X ← e]]

• XXX

R

c

L

Convert and
 

into sets and of linear constraints in canonical form

⟵𝖠𝖲𝖲𝖨𝖦𝖭D[[X ← e]](αC({c})⟵𝖠𝖲𝖲𝖨𝖦𝖭D[[X ← e]](αC({¬c})
I J

case 1 I = J = ∅ case 2 I = ∅ ∧ ⊥C ∈ J

L R⋎A L

R

case 3 ⊥C ∈ I ∧ J = ∅ case 4

1. perform tree pruning on XXXXX and XXXXX

2. join the results with ⋎A

L R

Caterina UrbanTermination AnalysisLesson 7

Tests

81

Piecewise-Defined Ranking 
Functions Abstract Domain

𝖥𝖨𝖫𝖳𝖤𝖱A[[e]]
1. Recursively descend the tree and apply on the defined leaf nodes  

to account for one more execution step needed before termination: 
 

2. Convert into a set of linear constraints in canonical form 
 
Example:  
where is the underlying numerical domain

3. Perform tree pruning with

𝖲𝖳𝖤𝖯F

𝖲𝖳𝖤𝖯F(f) def= λX1, …, Xk . f(X1, …, Xk) + 1 f ∈ ℱ∖{ ⊥F , ⊤F }

e J

αC(𝖥𝖨𝖫𝖳𝖤𝖱D[[e]] ⊤D)
⟨𝒟, ⊑D ⟩

J

Caterina UrbanTermination AnalysisLesson 7

Programs and executions
Language syntax

ℓstatℓ ::= ℓX ← expℓ

(assignment)

| ℓif exp ◃▹ 0 then ℓstatℓ

(conditional)

| ℓwhile ℓexp ◃▹ 0 do ℓstatℓ doneℓ

(loop)

| ℓstat; ℓstatℓ

(sequence)

exp ::= X

(variable)

| −exp

(negation)

| exp ⋄ exp

(binary operation)

| c

(constant c ∈ Z)

| [c, c ′]
(random input, c, c ′ ∈ Z ∪ { ±∞ })

Simple structured, numeric language
X ∈ V, where V is a finite set of program variables

ℓ ∈ L, where L is a finite set of control points
numeric expressions: ◃▹ ∈ {=, ≤, . . .}, ⋄ ∈ { +, −, ×, / }

random inputs: X ← [c, c ′]
model environment, parametric programs, unknown functions, . . .

Course 2

Program Semantics and Properties

Antoine Miné
p. 3 / 98

82

Abstract Definite
Termination Semantics
For each program instruction , we define

a transformer :

•

•  

•  
where

•

𝗌𝗍𝖺𝗍
ℛ#

M[[𝗌𝗍𝖺𝗍]] : 𝒜 → 𝒜

ℛ#
M[[ℓX ← e]]t def= ⟵𝖠𝖲𝖲𝖨𝖦𝖭A[[X ← e]]t

ℛ#
M[[if .ℓ e ⋈ 0 then s]]t def=

𝖥𝖨𝖫𝖳𝖤𝖱A[[e ⋈ 0]](ℛ#
M[[s1]]t) ⋎T 𝖥𝖨𝖫𝖳𝖤𝖱A[[e /⋈ 0]](ℛ#

M[[s2]]t)

ℛ#
M[[while .ℓ e ⋈ 0 do s done]]t def= lfp#F#

M
F#

M(x) def= 𝖥𝖨𝖫𝖳𝖤𝖱A[[e ⋈ 0]](ℛ#
M[[s]]x) ⋎T 𝖥𝖨𝖫𝖳𝖤𝖱A[[e /⋈ 0]](t)

ℛ#
M[[s1; s2]]t

def= ℛ#
M[[s1]](ℛ#

M[[s2]]t)

ℛM[[ℓX ← e]]γA(t) ≼ γA(ℛ#
M[[ℓX ← e]]t)

Lemma (Soundness)

(see proof in [Urban15])

Caterina UrbanTermination AnalysisLesson 7

Programs and executions
Language syntax

ℓstatℓ ::= ℓX ← expℓ

(assignment)

| ℓif exp ◃▹ 0 then ℓstatℓ

(conditional)

| ℓwhile ℓexp ◃▹ 0 do ℓstatℓ doneℓ

(loop)

| ℓstat; ℓstatℓ

(sequence)

exp ::= X

(variable)

| −exp

(negation)

| exp ⋄ exp

(binary operation)

| c

(constant c ∈ Z)

| [c, c ′]
(random input, c, c ′ ∈ Z ∪ { ±∞ })

Simple structured, numeric language
X ∈ V, where V is a finite set of program variables

ℓ ∈ L, where L is a finite set of control points
numeric expressions: ◃▹ ∈ {=, ≤, . . .}, ⋄ ∈ { +, −, ×, / }

random inputs: X ← [c, c ′]
model environment, parametric programs, unknown functions, . . .

Course 2

Program Semantics and Properties

Antoine Miné
p. 3 / 98

83

Abstract Definite
Termination Semantics
For each program instruction , we define

a transformer :

•

•  

•  
where

•

𝗌𝗍𝖺𝗍
ℛ#

M[[𝗌𝗍𝖺𝗍]] : 𝒜 → 𝒜

ℛ#
M[[ℓX ← e]]t def= ⟵𝖠𝖲𝖲𝖨𝖦𝖭A[[X ← e]]t

ℛ#
M[[if .ℓ e ⋈ 0 then s]]t def=

𝖥𝖨𝖫𝖳𝖤𝖱A[[e ⋈ 0]](ℛ#
M[[s]]t) ⋎T 𝖥𝖨𝖫𝖳𝖤𝖱A[[e /⋈ 0]]t

ℛ#
M[[while .ℓ e ⋈ 0 do s done]]t def= lfp#F#

M
F#

M(x) def= 𝖥𝖨𝖫𝖳𝖤𝖱A[[e ⋈ 0]](ℛ#
M[[s]]x) ⋎T 𝖥𝖨𝖫𝖳𝖤𝖱A[[e /⋈ 0]](t)

ℛ#
M[[s1; s2]]t

def= ℛ#
M[[s1]](ℛ#

M[[s2]]t)

ℛM[[if .ℓ e ⋈ 0 then s]]γA(t) ≼ γA(ℛ#
M[[if .ℓ e ⋈ 0 then s]]t)

Lemma (Soundness)

(see proof in [Urban15])

Caterina UrbanTermination AnalysisLesson 7

Programs and executions
Language syntax

ℓstatℓ ::= ℓX ← expℓ

(assignment)

| ℓif exp ◃▹ 0 then ℓstatℓ

(conditional)

| ℓwhile ℓexp ◃▹ 0 do ℓstatℓ doneℓ

(loop)

| ℓstat; ℓstatℓ

(sequence)

exp ::= X

(variable)

| −exp

(negation)

| exp ⋄ exp

(binary operation)

| c

(constant c ∈ Z)

| [c, c ′]
(random input, c, c ′ ∈ Z ∪ { ±∞ })

Simple structured, numeric language
X ∈ V, where V is a finite set of program variables

ℓ ∈ L, where L is a finite set of control points
numeric expressions: ◃▹ ∈ {=, ≤, . . .}, ⋄ ∈ { +, −, ×, / }

random inputs: X ← [c, c ′]
model environment, parametric programs, unknown functions, . . .

Course 2

Program Semantics and Properties

Antoine Miné
p. 3 / 98

84

Abstract Definite
Termination Semantics
For each program instruction , we define

a transformer :

•

•  

•  
where

•

𝗌𝗍𝖺𝗍
ℛ#

M[[𝗌𝗍𝖺𝗍]] : 𝒜 → 𝒜

ℛ#
M[[ℓX ← e]]t def= ⟵𝖠𝖲𝖲𝖨𝖦𝖭A[[X ← e]]t

ℛ#
M[[if .ℓ e ⋈ 0 then s]]t def=

𝖥𝖨𝖫𝖳𝖤𝖱A[[e ⋈ 0]](ℛ#
M[[s]]t) ⋎T 𝖥𝖨𝖫𝖳𝖤𝖱A[[e /⋈ 0]]t

ℛ#
M[[while .ℓ e ⋈ 0 do s done]]t def= lfp#F#

M
F#

M(x) def= 𝖥𝖨𝖫𝖳𝖤𝖱A[[e ⋈ 0]](ℛ#
M[[s]]x) ⋎T 𝖥𝖨𝖫𝖳𝖤𝖱A[[e /⋈ 0]](t)

ℛ#
M[[s1; s2]]t

def= ℛ#
M[[s1]](ℛ#

M[[s2]]t)
ℛM[[while .ℓ e ⋈ 0 do s done]]γA(t) ≼ γA(ℛ#

M[[while .ℓ e ⋈ 0 do s done]]t)
Lemma (Soundness)

(see proof in [Urban15])

Caterina UrbanTermination AnalysisLesson 7

Programs and executions
Language syntax

ℓstatℓ ::= ℓX ← expℓ

(assignment)

| ℓif exp ◃▹ 0 then ℓstatℓ

(conditional)

| ℓwhile ℓexp ◃▹ 0 do ℓstatℓ doneℓ

(loop)

| ℓstat; ℓstatℓ

(sequence)

exp ::= X

(variable)

| −exp

(negation)

| exp ⋄ exp

(binary operation)

| c

(constant c ∈ Z)

| [c, c ′]
(random input, c, c ′ ∈ Z ∪ { ±∞ })

Simple structured, numeric language
X ∈ V, where V is a finite set of program variables

ℓ ∈ L, where L is a finite set of control points
numeric expressions: ◃▹ ∈ {=, ≤, . . .}, ⋄ ∈ { +, −, ×, / }

random inputs: X ← [c, c ′]
model environment, parametric programs, unknown functions, . . .

Course 2

Program Semantics and Properties

Antoine Miné
p. 3 / 98

85

Abstract Definite
Termination Semantics
For each program instruction , we define

a transformer :

•

•  

•  
where

•

𝗌𝗍𝖺𝗍
ℛ#

M[[𝗌𝗍𝖺𝗍]] : 𝒜 → 𝒜

ℛ#
M[[ℓX ← e]]t def= ⟵𝖠𝖲𝖲𝖨𝖦𝖭A[[X ← e]]t

ℛ#
M[[if .ℓ e ⋈ 0 then s]]t def=

𝖥𝖨𝖫𝖳𝖤𝖱A[[e ⋈ 0]](ℛ#
M[[s]]t) ⋎T 𝖥𝖨𝖫𝖳𝖤𝖱A[[e /⋈ 0]]t

ℛ#
M[[while .ℓ e ⋈ 0 do s done]]t def= lfp#F#

M
F#

M(x) def= 𝖥𝖨𝖫𝖳𝖤𝖱A[[e ⋈ 0]](ℛ#
M[[s]]x) ⋎T 𝖥𝖨𝖫𝖳𝖤𝖱A[[e /⋈ 0]](t)

ℛ#
M[[s1; s2]]t

def= ℛ#
M[[s1]](ℛ#

M[[s2]]t)

Caterina UrbanTermination AnalysisLesson 7

A program must terminate for traces
starting from a set of initial states if

𝗌𝗍𝖺𝗍ℓ

ℐ
ℐ ⊆ dom(γA(ℛ#

M[[𝗌𝗍𝖺𝗍ℓ]]))

Corollary (Soundness)

86

Abstract Definite
Termination Semantics

The abstract definite termination semantics  
of a program is:

where is the abstract definite termination semantics  
of each program instruction

ℛ#
M[[𝗌𝗍𝖺𝗍ℓ]] ∈ 𝒜

𝗌𝗍𝖺𝗍ℓ

ℛ#
M[[𝗌𝗍𝖺𝗍ℓ]] def= ℛ#

M[[𝗌𝗍𝖺𝗍]](𝖫𝖤𝖠𝖥 : λX1, …, Xk.0)

ℛ#
M[[𝗌𝗍𝖺𝗍]] : 𝒜 → 𝒜

𝗌𝗍𝖺𝗍

Definition

ℛM[[𝗌𝗍𝖺𝗍ℓ]] ≼ γA(ℛ#
M[[𝗌𝗍𝖺𝗍ℓ]])

Theorem (Soundness)

Caterina UrbanTermination AnalysisLesson 7 89

1x [- , +] 
2y [- , +] 
0while 3(x 0) do 
 4x x - y 
od5

← ∞ ∞
← ∞ ∞

>
←

Abstract Definite
Termination Semantics
Example

x

y

0

x

y

x 0≤

1
x

y

𝖥𝖨𝖫𝖳𝖤𝖱A[[x ≤ 0]]
𝖭𝖨𝖫

Caterina UrbanTermination AnalysisLesson 7 90

1x [- , +] 
2y [- , +] 
0while 3(x 0) do 
 4x x - y 
od5

← ∞ ∞
← ∞ ∞

>
←

Abstract Definite
Termination Semantics
Example

x

y

x 0≤

1
x

y

⊥F

Caterina UrbanTermination AnalysisLesson 7 91

1x [- , +] 
2y [- , +] 
0while 3(x 0) do 
 4x x - y 
od5

← ∞ ∞
← ∞ ∞

>
←

Abstract Definite
Termination Semantics
Example

⊥F

x 0≤

1
x

y

⟵𝖠𝖲𝖲𝖨𝖦𝖭A[[x ← x − y]]

⊥F

x - y 0≤

2
x

y

Caterina UrbanTermination AnalysisLesson 7 92

1x [- , +] 
2y [- , +] 
0while 3(x 0) do 
 4x x - y 
od5

← ∞ ∞
← ∞ ∞

>
←

Abstract Definite
Termination Semantics
Example

⊥F

x 0≤

1
x

y

⊥F

x - y 0≤

2
x

y

𝖥𝖨𝖫𝖳𝖤𝖱A[[x > 0]]

⊥F

𝖭𝖨𝖫 x - y 0≤

x 0≤

3
x

y

Caterina UrbanTermination AnalysisLesson 7 93

1x [- , +] 
2y [- , +] 
0while 3(x 0) do 
 4x x - y 
od5

← ∞ ∞
← ∞ ∞

>
←

Abstract Definite
Termination Semantics
Example

⊥F

𝖭𝖨𝖫 x - y 0≤

x 0≤

3

𝖭𝖨𝖫

x 0≤

1
x

y

x

y

Caterina UrbanTermination AnalysisLesson 7 93

1x [- , +] 
2y [- , +] 
0while 3(x 0) do 
 4x x - y 
od5

← ∞ ∞
← ∞ ∞

>
←

Abstract Definite
Termination Semantics
Example

⋎A

x

y

⊥F

x - y 0≤

x 0≤

1

3

Caterina UrbanTermination AnalysisLesson 7 94

1x [- , +] 
2y [- , +] 
0while 3(x 0) do 
 4x x - y 
od5

← ∞ ∞
← ∞ ∞

>
←

Abstract Definite
Termination Semantics
Example

x

y

⊥F

x - y 0≤

x 0≤

1

3

x

y

x - y 0≤

x 0≤

1

3

⊥F

x - 2y 0≥

5

Caterina UrbanTermination AnalysisLesson 7 95

1x [- , +] 
2y [- , +] 
0while 3(x 0) do 
 4x x - y 
od5

← ∞ ∞
← ∞ ∞

>
←

Abstract Definite
Termination Semantics
Example

x - y 0≤

x 0≤

1

3 ⊥F55

▿A
x - y 0≤

x 0≤

1

3
x

y

x

y

⊥F

x - y 0≤

x 0≤

1

3

Caterina UrbanTermination AnalysisLesson 7 96

1x [- , +] 
2y [- , +] 
0while 3(x 0) do 
 4x x - y 
od5

← ∞ ∞
← ∞ ∞

>
←

Abstract Definite
Termination Semantics
Example

x

y

5

x - y 0≤

x 0≤

1

3

x

y

x - y 0≤

x 0≤

1

3

7

x - 2y 0≥

5

Caterina UrbanTermination AnalysisLesson 7 97

1x [- , +] 
2y [- , +] 
0while 3(x 0) do 
 4x x - y 
od5

← ∞ ∞
← ∞ ∞

>
←

Abstract Definite
Termination Semantics
Example

x - y 0≤

x 0≤

1

3 57

▿A
x - y 0≤

x 0≤

1

3
x

y

x

y

x

y

5

x - y 0≤

x 0≤

1

3

Caterina UrbanTermination AnalysisLesson 7 97

1x [- , +] 
2y [- , +] 
0while 3(x 0) do 
 4x x - y 
od5

← ∞ ∞
← ∞ ∞

>
←

Abstract Definite
Termination Semantics
Example

x - y 0≤

x 0≤

1

3 57⊤F

▿A
x - y 0≤

x 0≤

1

3
x

y

x

y

x

y

5

x - y 0≤

x 0≤

1

3

x

y

Caterina UrbanTermination AnalysisLesson 7 98

1x [- , +] 
2y [- , +] 
0while 3(x 0) do 
 4x x - y 
od5

← ∞ ∞
← ∞ ∞

>
←

Abstract Definite
Termination Semantics
Example

x - y 0≤

x 0≤

1

3 ⊤F

x - y 0≤

x 0≤

1

3
x

y

x

y

x

y

Caterina UrbanTermination AnalysisLesson 7 99

Abstract Definite
Termination Semantics

Better WideningExample

1x [- , +] 
2y [- , +] 
0while 3(x 0) do 
 4x x - y 
od5

← ∞ ∞
← ∞ ∞

>
←

x

y

⊥F

x - y 0≤

x 0≤

1

3

x

y

x - y 0≤

x 0≤

1

3

⊥F

x - 2y 0≥

5
Precise Widening Operators

for Convex Polyhedra⋆

Roberto Bagnara1, Patricia M. Hill2, Elisa Ricci1, and Enea Zaffanella1

1 Department of Mathematics, University of Parma, Italy
{bagnara,ericci,zaffanella}@cs.unipr.it

2 School of Computing, University of Leeds, UK
hill@comp.leeds.ac.uk

Abstract. Convex polyhedra constitute the most used abstract domain
among those capturing numerical relational information. Since the do-
main of convex polyhedra admits infinite ascending chains, it has to be
used in conjunction with appropriate mechanisms for enforcing and ac-
celerating convergence of the fixpoint computation. Widening operators
provide a simple and general characterization for such mechanisms. For
the domain of convex polyhedra, the original widening operator proposed
by Cousot and Halbwachs amply deserves the name of standard widening
since most analysis and verification tools that employ convex polyhedra
also employ that operator. Nonetheless, there is demand for more precise
widening operators that still has not been fulfilled. In this paper, after
a formal introduction to the standard widening where we clarify some
aspects that are often overlooked, we embark on the challenging task
of improving on it. We present a framework for the systematic defini-
tion of new and precise widening operators for convex polyhedra. The
framework is then instantiated so as to obtain a new widening operator
that combines several heuristics and uses the standard widening as a last
resort so that it is never less precise. A preliminary experimental evalu-
ation has yielded promising results. We also suggest an improvement to
the well-known widening delay technique that allows to gain precision
while preserving its overall simplicity.

1 Introduction

An ability to reason about numerical quantities is crucial for increasing numbers
of applications in the field of automated analysis and verification of complex
systems. Of particular interest are representations that capture relational infor-
mation, that is, information relating different quantities such as, for example,
the length of a buffer and the contents of a program variable, or the number of
agents in different states in the modeling of a distributed protocol.

⋆ This work has been partly supported by MURST projects “Aggregate- and number-
reasoning for computing: from decision algorithms to constraint programming with
multisets, sets, and maps” and “Constraint Based Verification of Reactive Systems”.

O
P1

P2

P1 ∇ P2

O
P1

P2

hr(P1,P2)

P1 ∇ P2

Fig. 2. The heuristics hr improving on the standard widening.

Proposition 3. Let P1,P2 ∈ CPn, where P1 ⊂ P2, aff.hull(P1) = aff.hull(P2)
and lin.space(P1) = lin.space(P2). Then, for each technique h ∈ {hc, hp, hr},
P2 ⊆ h(P1,P2) ⊆ P1 ∇ P2.

Proof. Let Pt = h(P1,P2). Consider first the case when h = hc and assume the
notation introduced in Definition 5. The proof for Pt ⊆ P1 ∇ P2 is immediate,
since Pt is defined by a constraint system C∇∪C⊕ including all of the constraints
defining P1 ∇P2. To prove that P2 ⊆ Pt we show that P2 ⊆ con

(
{β}

)
, for each

constraint β ∈ C∇ ∪ C⊕ defining Pt. Clearly, if β ∈ C∇ then the inclusion holds
by the fact that the standard widening is an upper bound operator, i.e., by
Theorem 2. If otherwise β ∈ C⊕, then, for some Cp ⊆ ineq(C2), β = ⊕(Cp), so
that P2 ⊆ con(Cp) ⊆ con

(
{β}

)
.

Next, consider the cases when h ∈ {hp, hr} and assume the notation intro-
duced in Definitions 6 and 8. Let G ′ = (L2, R2 ∪ R, P2) and P ′ = gen(G′); then
Pt = P ′ ∩ (P1 ∇P2). Thus Pt ⊆ P1 ∇P2. As G2 ≼ G′, we obtain P2 ⊆ P ′. More-
over, by Theorem 2, we also have P2 ⊆ P1 ∇P2. Therefore, by the monotonicity
of set intersection, we conclude P2 ⊆ Pt. ⊓⊔

The new widening operator is obtained by instantiating the framework of the
previous section using the four heuristic techniques presented above.

Definition 9. (The ∇̂ widening.) Let P1,P2 ∈ CPn, where P1 ⊂ P2. Then

P1 ∇̂ P2
def=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P2, if P1 ! P2;
hc(P1,P2), if P1 ! hc(P1,P2) ⊂ P1 ∇ P2;
hp(P1,P2), if P1 ! hp(P1,P2) ⊂ P1 ∇ P2;
hr(P1,P2), if P1 ! hr(P1,P2) ⊂ P1 ∇ P2;
P1 ∇ P2, otherwise.

It can be seen that ∇̂ is an instance of the framework proposed in the previous
section: in particular, when applying the first heuristics, the omission of the ap-
plicability condition P2 ⊂ P1 ∇P2 is a simple and inconsequential optimization.
Thus the following result is a direct consequence of Theorem 3 and Proposition 3.

Proposition 4. The ∇̂ operator is a widening at least as precise as ∇.

17

Caterina UrbanTermination AnalysisLesson 7 100

Abstract Definite
Termination Semantics

Better WideningExample

1x [- , +] 
2y [- , +] 
0while 3(x 0) do 
 4x x - y 
od5

← ∞ ∞
← ∞ ∞

>
←

x

y

⊥F

x - y 0≤

x 0≤

1

3

x

y

x - y 0≤

x 0≤

1

3

⊥F

- y 0≥

5
Precise Widening Operators

for Convex Polyhedra⋆

Roberto Bagnara1, Patricia M. Hill2, Elisa Ricci1, and Enea Zaffanella1

1 Department of Mathematics, University of Parma, Italy
{bagnara,ericci,zaffanella}@cs.unipr.it

2 School of Computing, University of Leeds, UK
hill@comp.leeds.ac.uk

Abstract. Convex polyhedra constitute the most used abstract domain
among those capturing numerical relational information. Since the do-
main of convex polyhedra admits infinite ascending chains, it has to be
used in conjunction with appropriate mechanisms for enforcing and ac-
celerating convergence of the fixpoint computation. Widening operators
provide a simple and general characterization for such mechanisms. For
the domain of convex polyhedra, the original widening operator proposed
by Cousot and Halbwachs amply deserves the name of standard widening
since most analysis and verification tools that employ convex polyhedra
also employ that operator. Nonetheless, there is demand for more precise
widening operators that still has not been fulfilled. In this paper, after
a formal introduction to the standard widening where we clarify some
aspects that are often overlooked, we embark on the challenging task
of improving on it. We present a framework for the systematic defini-
tion of new and precise widening operators for convex polyhedra. The
framework is then instantiated so as to obtain a new widening operator
that combines several heuristics and uses the standard widening as a last
resort so that it is never less precise. A preliminary experimental evalu-
ation has yielded promising results. We also suggest an improvement to
the well-known widening delay technique that allows to gain precision
while preserving its overall simplicity.

1 Introduction

An ability to reason about numerical quantities is crucial for increasing numbers
of applications in the field of automated analysis and verification of complex
systems. Of particular interest are representations that capture relational infor-
mation, that is, information relating different quantities such as, for example,
the length of a buffer and the contents of a program variable, or the number of
agents in different states in the modeling of a distributed protocol.

⋆ This work has been partly supported by MURST projects “Aggregate- and number-
reasoning for computing: from decision algorithms to constraint programming with
multisets, sets, and maps” and “Constraint Based Verification of Reactive Systems”.

O
P1

P2

P1 ∇ P2

O
P1

P2

hr(P1,P2)

P1 ∇ P2

Fig. 2. The heuristics hr improving on the standard widening.

Proposition 3. Let P1,P2 ∈ CPn, where P1 ⊂ P2, aff.hull(P1) = aff.hull(P2)
and lin.space(P1) = lin.space(P2). Then, for each technique h ∈ {hc, hp, hr},
P2 ⊆ h(P1,P2) ⊆ P1 ∇ P2.

Proof. Let Pt = h(P1,P2). Consider first the case when h = hc and assume the
notation introduced in Definition 5. The proof for Pt ⊆ P1 ∇ P2 is immediate,
since Pt is defined by a constraint system C∇∪C⊕ including all of the constraints
defining P1 ∇P2. To prove that P2 ⊆ Pt we show that P2 ⊆ con

(
{β}

)
, for each

constraint β ∈ C∇ ∪ C⊕ defining Pt. Clearly, if β ∈ C∇ then the inclusion holds
by the fact that the standard widening is an upper bound operator, i.e., by
Theorem 2. If otherwise β ∈ C⊕, then, for some Cp ⊆ ineq(C2), β = ⊕(Cp), so
that P2 ⊆ con(Cp) ⊆ con

(
{β}

)
.

Next, consider the cases when h ∈ {hp, hr} and assume the notation intro-
duced in Definitions 6 and 8. Let G ′ = (L2, R2 ∪ R, P2) and P ′ = gen(G′); then
Pt = P ′ ∩ (P1 ∇P2). Thus Pt ⊆ P1 ∇P2. As G2 ≼ G′, we obtain P2 ⊆ P ′. More-
over, by Theorem 2, we also have P2 ⊆ P1 ∇P2. Therefore, by the monotonicity
of set intersection, we conclude P2 ⊆ Pt. ⊓⊔

The new widening operator is obtained by instantiating the framework of the
previous section using the four heuristic techniques presented above.

Definition 9. (The ∇̂ widening.) Let P1,P2 ∈ CPn, where P1 ⊂ P2. Then

P1 ∇̂ P2
def=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P2, if P1 ! P2;
hc(P1,P2), if P1 ! hc(P1,P2) ⊂ P1 ∇ P2;
hp(P1,P2), if P1 ! hp(P1,P2) ⊂ P1 ∇ P2;
hr(P1,P2), if P1 ! hr(P1,P2) ⊂ P1 ∇ P2;
P1 ∇ P2, otherwise.

It can be seen that ∇̂ is an instance of the framework proposed in the previous
section: in particular, when applying the first heuristics, the omission of the ap-
plicability condition P2 ⊂ P1 ∇P2 is a simple and inconsequential optimization.
Thus the following result is a direct consequence of Theorem 3 and Proposition 3.

Proposition 4. The ∇̂ operator is a widening at least as precise as ∇.

17

x

y

Caterina UrbanTermination AnalysisLesson 7 100

Abstract Definite
Termination Semantics

Better WideningExample

1x [- , +] 
2y [- , +] 
0while 3(x 0) do 
 4x x - y 
od5

← ∞ ∞
← ∞ ∞

>
←

x

y

⊥F

x - y 0≤

x 0≤

1

3

x

y

x - y 0≤

x 0≤

1

3

⊥F

- y 0≥

5

x

y

Caterina UrbanTermination AnalysisLesson 7 101

Abstract Definite
Termination Semantics

Better WideningExample

1x [- , +] 
2y [- , +] 
0while 3(x 0) do 
 4x x - y 
od5

← ∞ ∞
← ∞ ∞

>
←

x

y

⊥F

x - y 0≤

x 0≤

1

3

x

y

x - y 0≤

x 0≤

1

3

⊥F

- y 0≥

2x + 1

x

y

Caterina UrbanTermination AnalysisLesson 7 102

Abstract Definite
Termination Semantics

Better WideningExample

1x [- , +] 
2y [- , +] 
0while 3(x 0) do 
 4x x - y 
od5

← ∞ ∞
← ∞ ∞

>
←

x

y

x - y 0≤

x 0≤

1

3

⊥F

- y 0≥

2x + 1

x

y

Caterina UrbanTermination AnalysisLesson 7 102

Ordinal-Valued Raking Functions

Caterina UrbanTermination AnalysisLesson 7 103

Need for Ordinals
Example

1x [- , +] 
0while 2(x 0) do 
 3x x - 1 
od4

← ∞ ∞
>

←
ω

00 1 2 n ……

0 1

10

0

n-1

Caterina UrbanTermination AnalysisLesson 7

Ordinals

104

0

1

2

3

ω
ω+1

ω+2
ω+3

ω·2

ω·3

ω·2+1
ω·2+2

ω·4
ω²ω²+1

ω²+2

ω²+ω

ω²+ω·2

ω²·2

ω²·3

ω²·4
ω³
ω⁴ ω³+ω

ω³+ω²

ω·5

4

5

ω+4

ωω

finite ordinalstransfinite ordinals

successor ordinals
succ(α) def= α ∪ {α}

limit ordinals

Caterina UrbanTermination AnalysisLesson 7

Ordinal Arithmetic

105

Addition

α + 0 = α (zero case)
α+succ(β) = succ(α + β) (successor case)

α + β = ⋃
γ<β

(α + γ) (limit case)

Properties 

• associative

• not commutative

(α + β) + γ = α + (β + γ)
1 + ω = ω ≠ ω + 1

Caterina UrbanTermination AnalysisLesson 7

Ordinal Arithmetic

106

Multiplication

α ⋅ 0 = 0 (zero case)
α ⋅ succ(β) = (α ⋅ β) + α (successor case)

α ⋅ β = ⋃
γ<β

(α ⋅ γ) (limit case)

Properties 

• associative

• left distributive
• not commutative
• not right distributive

(α ⋅ β) ⋅ γ = α ⋅ (β ⋅ γ)
α ⋅ (β + γ) = (α ⋅ β) + (α ⋅ γ)

2 ⋅ ω = ω ≠ ω ⋅ 2
(ω + 1) ⋅ ω = ω ⋅ ω ≠ ω ⋅ ω + ω

Caterina UrbanTermination AnalysisLesson 7 107

Piecewise-Defined Ranking 
Functions Abstract Domain

Caterina Urban

Termination Analysis

Lesson 7

48

Piecewise-Defined Ranking 

Functions Abstract Domain

Linear Constraints Auxiliary Abstract Domain

x. 1λ

x 0≥

x - 3 0≥

x - 4 0≥

x - 6 0≥

x. 3λ

x. 7λ

x. 9λ

x. 5λ

• Parameterized by an underlying numerical abstract domain
 

(i.e., intervals, octagons, or polyhedra):

⟨𝒟, ⊑D ⟩

⟨𝒫(𝒞/ ≡C), ⊑D ⟩ ⟨𝒟, ⊑D ⟩

αC

γC

Example: 

X → [−∞,3]

Y → [0, + ∞]
γC⟶ {3 − X ≥ 0, Y ≥ 0}

Caterina Urban

Termination Analysis

Lesson 7

48

Piecewise-Defined Ranking 
Functions Abstract Domain
Linear Constraints Auxiliary Abstract Domain

x. 1λ

x 0≥

x - 3 0≥

x - 4 0≥

x - 6 0≥

x. 3λ

x. 7λ

x. 9λ

x. 5λ

• Parameterized by an underlying numerical abstract domain
 

(i.e., intervals, octagons, or polyhedra): ⟨𝒟, ⊑D ⟩⟨𝒫(𝒞/ ≡C), ⊑D ⟩ ⟨𝒟, ⊑D ⟩
αC

γC

𝒞 def= {c1 ⋅ X1 + ck ⋅ Xk + ck+1 ≥ 0 ∣ X1, …, Xk ∈ 𝕍

∧ c1, …, ck+1 ∈ ℤ ∧ gcd(|c1 | , …, |ck+1 |) = 1}

• is a set of linear constraints  
in canonical form, equipped with a total order :

𝒞

≤C

Caterina UrbanTermination AnalysisLesson 7

𝒲 def= { ⊥W } ∪ {

∑
i

ωi ⋅ fi ∣ fi ∈ ℱ∖{ ⊥F , ⊤F }

} ∪ { ⊤W }

•  𝒲 def= { ⊥W } ∪ {

108

Piecewise-Defined Ranking 
Functions Abstract Domain
Ordinal-Valued Functions Auxiliary Domain

x. 1λ

x 0≥

x - 3 0≥

x - 4 0≥

x - 6 0≥

x. 3λ

x. 7λ

x. 9λ

x. 5λ

• Parameterized by the underlying functions auxiliary domain ⟨ℱ, ⊑F ⟩

Cantor Normal Form
ωβ1 ⋅ n1 + … + ωβk ⋅ nk

Caterina UrbanTermination AnalysisLesson 7 109

Piecewise-Defined Ranking 
Functions Abstract Domain
Ordinal-Valued Functions Auxiliary Domain (continue)

Caterina UrbanTermination AnalysisLesson 7 50

Piecewise-Defined Ranking 
Functions Abstract Domain
Functions Auxiliary Abstract Domain (continue)

• approximation order , where :

• between defined leaf nodes: 
 

• otherwise (i.e., when one or both leaf nodes are undefined):

≼F [D] D ∈ 𝒟

f1 ≼F [D] f2
def= ∀ρ ∈ γD(D) : f1(…, ρ(Xi), …) ≤ f2(…, ρ(Xi), …)

⊤F⊥F

f : ℤ|𝕍| → ℕ

Caterina Urban

Termination Analysis

Lesson 7

51

Piecewise-Defined Ranking 

Functions Abstract Domain

Functions Auxiliary Abstract Domain (continue)

• computational order , where :

• between defined leaf nodes: 

 

• otherwise (i.e., when one or both leaf nodes are undefined):

⊑F[D] D ∈ 𝒟

f1 ⊑F[D] f2
def= ∀ρ ∈ γD(D) : f1(…, ρ(Xi), …) ≤ f2(…, ρ(Xi), …)

f : ℤ|𝕍| → ℕ

⊥F

⊤F

Caterina UrbanTermination AnalysisLesson 7 110

Piecewise-Defined Ranking 
Functions Abstract Domain
Ordinal-Valued Functions Auxiliary Domain (continue)

• approximation order , where :

• between defined leaf nodes:

• otherwise (i.e., when one or both leaf nodes are undefined):

≼W [D] D ∈ 𝒟

∑
i

ωi⋅fi1 ≼W [D]∑
i

ωi⋅fi2
def= ∀ρ∈γD(D) :∑

i
ωi⋅fi1(. . ρ(Xi) . .)≤∑

i
ωi⋅fi2(. . ρ(Xi) . .)

⊤W⊥W

f : ℤ|𝕍| → 𝕆

Caterina UrbanTermination AnalysisLesson 7 111

Piecewise-Defined Ranking 
Functions Abstract Domain
Ordinal-Valued Functions Auxiliary Domain (continue)

• computational order , where :

• between defined leaf nodes:

• otherwise (i.e., when one or both leaf nodes are undefined):

⊑W [D] D ∈ 𝒟

∑
i

ωi⋅fi1 ⊑W [D]∑
i

ωi⋅fi2
def= ∀ρ∈γD(D) :∑

i
ωi⋅fi1(. . ρ(Xi) . .)≤∑

i
ωi⋅fi2(. . ρ(Xi) . .)

f : ℤ|𝕍| → 𝕆

⊥W

⊤W

Caterina UrbanTermination AnalysisLesson 7

• 𝒜 def= {𝖫𝖤𝖠𝖥 : f ∣ f ∈ 𝒲} ∪ {𝖭𝖮𝖣𝖤{c}: t1; t2 ∣ c ∈ 𝒞 ∧ t1, t2 ∈ 𝒜}

112

Piecewise-Defined Ranking 
Functions Abstract Domain

• concretization function :  
 

 
 
where :  

 
 

 
and :  

 
 

γA : 𝒜 → (ℰ ⇀ 𝕆)

γA(t) def= γA[∅](t)

γA : 𝒫(𝒞/ ≡C) → 𝒜 → (ℰ ⇀ 𝕆)
γA[C](𝖫𝖤𝖠𝖥 : f) def= γF[αC(C)](f)
γA[C](𝖭𝖮𝖣𝖤{c}: t1; t2)

def= γA[C ∪ {c}](t1) ·∪ γA[C ∪ {¬c}](t2)

γF : 𝒟 → 𝒲 → (ℰ ⇀ 𝕆)
γF[D](⊥F) def= ·∅
γF[D](∑

i
ωi ⋅ fi)

def= λρ ∈ γD(D) : ∑
i

ωi ⋅ fi(…, ρ(Xi), …)

γF[D](⊤F) def= ·∅

Caterina UrbanTermination AnalysisLesson 7 113

Piecewise-Defined Ranking 
Functions Abstract Domain
Abstract Domain Operators

• They manipulate elements in

• The binary operators rely on a tree unification algorithm

• approximation order and computational order

• approximation join and computational join

• meet

• widening

• The unary operators rely on a tree pruning algorithm

• assignment

• test

𝒜𝖭𝖨𝖫
def= {𝖭𝖨𝖫} ∪ 𝒜

≼A ⊑A
⋎A ⊔A

⋏A
▿A

⟵𝖠𝖲𝖲𝖨𝖦𝖭A[[X ← e]]
𝖥𝖨𝖫𝖳𝖤𝖱A[[e]]

Caterina UrbanTermination AnalysisLesson 7 114

Piecewise-Defined Ranking 
Functions Abstract Domain
Join

Caterina UrbanTermination AnalysisLesson 7

1. Perform tree unification

2. Recursively descend the trees while accumulating the linear constraints
encountered along the paths into a set of constraints

3.  

4. Join the leaf nodes using the approximation join  
or the computational join

C

𝖭𝖨𝖫 ⋎A t def= t
t ⋎A 𝖭𝖨𝖫 def= t

⋎F [αC(C)]
⊔F [αC(C)]

59

Piecewise-Defined Ranking 
Functions Abstract Domain
Join

Caterina Urban

Termination Analysis

Lesson 7

60

Piecewise-Defined Ranking 
Functions Abstract Domain
Join (continue)
• approximation join , where :

• between defined leaf nodes: 
 

 
where

• Example:   

 
 
 

⋎F [D] D ∈ 𝒟
f1 ⋎F [D] f2 def= { f f ∈ ℱ∖{ ⊥F , ⊤F }⊤F otherwisef def= λρ ∈ γD(D) : max(f1(…, ρ(Xi), …), f2(…, ρ(Xi), …))⊥F ⋎F [D] f def= ⊥F f ∈ ℱ∖{ ⊤F }

f ⋎F [D] ⊥F
def= ⊥F f ∈ ℱ∖{ ⊤F }

⊤F ⋎F [D] f def= ⊤F f ∈ ℱ∖{ ⊥F }
f ⋎F [D] ⊤F

def= ⊤F f ∈ ℱ∖{ ⊥F }

Polyhedron domain

Operators on polyhedra: join
Join: X ♯ ∪ ♯ Y ♯ def= [[PX ♯ PY ♯], [RX ♯ RY ♯]]

(join generator sets)

Examples:

two polytopes

a point and a line

∪ ♯ is optimal:we get the topological closure of the convex hull of γ(X ♯) ∪ γ(Y ♯).

Course 4

Relational Numerical Abstract Domains

Antoine Miné

p. 30 / 70

Caterina UrbanTermination AnalysisLesson 7

• approximation join , where :

• between defined leaf nodes:  
 
approximation join in ascending powers of

• Example: 
 

⋎W [D] D ∈ 𝒟

⋎F [D] ω

f1 ≡ ω2 ⋅ x1 + ω ⋅ x2 + 3
f2 ≡ ω2 ⋅ x1 + ω ⋅ (−x2) + 4

f1 ⋎W [⊤D] f2 ≡ ω2 ⋅ (x1 + 1) + ω ⋅ 0 + 4

115

Piecewise-Defined Ranking 
Functions Abstract Domain
Join (continue)

Caterina UrbanTermination AnalysisLesson 7 115

Piecewise-Defined Ranking 
Functions Abstract Domain
Join (continue)

• approximation join , where :

• between defined leaf nodes:  
 
approximation join in ascending powers of

• otherwise (i.e., when one or both leaf nodes are undefined): 
 

 
 
 

⋎W [D] D ∈ 𝒟

⋎F [D] ω

⊥W ⋎W [D] f def= ⊥W f ∈ 𝒲∖{ ⊤W }
f ⋎W [D] ⊥W

def= ⊥W f ∈ 𝒲∖{ ⊤W }
⊤W ⋎W [D] f def= ⊤W f ∈ 𝒲∖{ ⊥W }
f ⋎W [D] ⊤W

def= ⊤W f ∈ 𝒲∖{ ⊥W }

⊤W⊥W

f : ℤ|𝕍| → 𝕆

Caterina UrbanTermination AnalysisLesson 7 116

Piecewise-Defined Ranking 
Functions Abstract Domain
Join (continue)

• computational join , where :

• between defined leaf nodes:  
 
computational join in ascending powers of

• otherwise (i.e., when one or both leaf nodes are undefined): 
 

 
 
 

⊔W [D] D ∈ 𝒟

⊔W [D] ω

⊥W ⊔W [D] f def= f f ∈ 𝒲
f ⊔W [D] ⊥W

def= f f ∈ 𝒲
⊤W ⊔W [D] f def= ⊤W f ∈ 𝒲
f ⊔W [D] ⊤W

def= ⊤W f ∈ 𝒲

f : ℤ|𝕍| → 𝕆

⊥W

⊤W

Caterina UrbanTermination AnalysisLesson 7 117

Piecewise-Defined Ranking 
Functions Abstract Domain
Widening

Caterina Urban

Termination Analysis

Lesson 7

66

Piecewise-Defined Ranking 

Functions Abstract Domain

Widening (continue)

1. Check for case A (i.e., wrong domain predictions)

2. Perform domain widening

3. Check for case B or C (i.e., wrong value predictions)

4. Perform value widening
98

5. Piecew
ise-Defined Ranking

Functio
ns

0
0

0

1

1

3
2

(a) Most pre
cise ranking

functio
n.

2
2

2

2

0
0

0

1

1

A
B

C

(b) Unsound
abstrac

tion.

Figure
5.10: U

nsound
abstrac

tion (b) of a
most prec

ise ranking
function

(a).

on which it is not yet defined
. The only requirem

ent is that, w
hen the iter-

ation sequenc
e with widenin

g is stable for the computatio
nal ord

er, its limit

is a sound abstrac
tion of the termination

semantics with respect
to the ap-

proxim
ation order.

In the followin
g, we discuss

in detail h
ow the widenin

g

guarant
ees the

soundn
ess of t

he analysis
.

As running
example, let

us conside
r Figure

5.10. In Figure
5.10a we de-

pict a transiti
on system

and the value of the termination
semantics for the

well-fou
nded part of

its tran
sition relation

. In Figure
5.10b we represe

nt the

concret
ization

of a possible
iterate

of the analysis
: we assume that the first

iterate
has individu

ated the states marked with value zero, th
e second

iter-

ate has individu
ated the states marked with value one, an

d the widenin
g at

the thir
d iterate

has ext
rapolat

ed the ran
king function

over the
states m

arked

with value two. In this case the abstrac
tion both under-a

pproxim
ates the

value of the termination
semantics (

on the second
state from the left —

case

B) and
over-ap

proxim
ates its

domain of defin
ition (includi

ng the first
and the

last state from the left — case A and C, resp
ectively

). In case A, the
non-

terminating
loop is outsi

de the domain of defin
ition of the unsoun

d abstrac
t

function
, while

in case C the loop is inside.
The analysis

continu
es iteratin

g

until al
l these

discrep
ancies are solved and, in

the followin
g, we explain

and

justify
why this wo

rks in general
.

For a loop while
lbexp do stmt od, given a sound over-ap

proxim
ation

R ∈ D of τI(l),
we define the iteratio

n sequenc
e with widenin

g as follo
ws:

y0
def
= ⊥T

yn+1
def
=

{
yn

φ
♮
Mt(yn

) ⊑T [R] yn ∧ φ
♮
Mt(yn

) !T [R] yn

yn ▽T φ
♮
Mt(yn

) otherwi
se

(5.2.24)

Caterina UrbanTermination AnalysisLesson 7 74

Piecewise-Defined Ranking 
Functions Abstract Domain
Widening (continue) Value Widening

1. Recursively descend the trees while accumulating the linear constraints
encountered along the paths into a set of constraints

2. Widen each (defined) leaf node with respect to each of their adjacent
(defined) leaf node using the extrapolation operator ,
where is the set of constraints along the path to  
 
Example:

C

f
f ▾F [αC(C), αC(C)]

C f

Caterina UrbanTermination AnalysisLesson 7 118

Piecewise-Defined Ranking 
Functions Abstract Domain
Widening (continue) Value Widening

1. Recursively descend the trees while accumulating the linear constraints
encountered along the paths into a set of constraints

2. Widen each (defined) leaf node with respect to each of their adjacent
(defined) leaf node using the extrapolation operator ,
where is the set of constraints along the path to ,  
in ascending powers of

C

f
f ▾F [αC(C), αC(C)]

C f
ω

yield when the extrapolation of natural-valued functions yields ⊤W ⊤F

Caterina UrbanTermination AnalysisLesson 7 119

Piecewise-Defined Ranking 
Functions Abstract Domain
Assignments ⟵𝖠𝖲𝖲𝖨𝖦𝖭A[[X ← e]]

Caterina Urban

Termination Analysis

Lesson 7

79

Piecewise-Defined Ranking 

Functions Abstract Domain

Assignments

⟵
𝖠𝖲𝖲𝖨𝖦𝖭A[[X ← e]]

• Base case ()
 

 
Apply

 on the defined leaf nodes 

 

 

where

 

and

 

 
Example:  

 

(since

 and

⟵
𝖠𝖲𝖲𝖨𝖦𝖭F[[X ← e]][αC(C)]

⟵
𝖠𝖲𝖲𝖨𝖦𝖭F[[X ← e]][D](f) def= {

f f ∈ ℱ∖{ ⊥F , ⊤F }

⊤F
otherwise

f ∈ ℱ∖{ ⊥F , ⊤F }

f(…, Xi, X, …) def= max{f(…, ρ(Xi), v, …) + 1 ∣ ρ ∈ γD(R) ∧ v ∈ E[[e]]ρ}

R def=
⟵

𝖠𝖲𝖲𝖨𝖦𝖭D[[X ← e]]D

⟵
𝖠𝖲𝖲𝖨𝖦𝖭F[[x ← x + [1,2]]][⊤D](λx . x + 1) = λx . x + 4

f(x + [1,2]) + 1 = x + [1,2] + 1 + 1 = x + [3,4] max(3,4) = 4

f

Caterina UrbanTermination AnalysisLesson 7 80

Piecewise-Defined Ranking 
Functions Abstract Domain
Assignments ⟵𝖠𝖲𝖲𝖨𝖦𝖭A[[X ← e]]

• XXX

R

c

L

Convert and
 

into sets and of linear constraints in canonical form

⟵𝖠𝖲𝖲𝖨𝖦𝖭D[[X ← e]](αC({c})⟵𝖠𝖲𝖲𝖨𝖦𝖭D[[X ← e]](αC({¬c})
I J

case 1 I = J = ∅ case 2 I = ∅ ∧ ⊥C ∈ J

L R⋎A L

R

case 3 ⊥C ∈ I ∧ J = ∅ case 4

1. perform tree pruning on XXXXX and XXXXX

2. join the results with ⋎A

L R

Caterina UrbanTermination AnalysisLesson 7

⟵𝖠𝖲𝖲𝖨𝖦𝖭A[[X ← e]]

120

Piecewise-Defined Ranking 
Functions Abstract Domain
Assignments (continue)

f• Base case ()  
 
Apply on the defined leaf nodes 
in ascending powers of  
 
Example:  
 

⟵𝖠𝖲𝖲𝖨𝖦𝖭F[[X ← e]][αC(C)]
ω

f ≡ ω ⋅ x1 + x2
⟵𝖠𝖲𝖲𝖨𝖦𝖭W[[x1 ← [−∞,+∞]]][⊤D] ≡ ω2 ⋅ 1 + ω ⋅ 0 + x2 + 1

Caterina UrbanTermination AnalysisLesson 7 121

Caterina Urban

Termination Analysis

Lesson 7

Programs and executions

Language syntax

ℓstatℓ ::= ℓX ← expℓ (assignment)
| ℓif exp ◃▹ 0 then ℓstatℓ (conditional)
| ℓwhile ℓexp ◃▹ 0 do ℓstatℓ doneℓ (loop)
| ℓstat; ℓstatℓ (sequence)

exp ::= X (variable)
| −exp (negation)
| exp ⋄ exp (binary operation)
| c (constant c ∈ Z)
| [c, c ′] (random input, c, c′ ∈ Z ∪ { ±∞ })

Simple structured, numeric language
X ∈ V, where V is a finite set of program variables
ℓ ∈ L, where L is a finite set of control points
numeric expressions: ◃▹ ∈ {=, ≤, . . .}, ⋄ ∈ { +, −, ×, / }
random inputs: X ← [c, c ′]
model environment, parametric programs, unknown functions, . . .

Course 2 Program Semantics and Properties Antoine Miné p. 3 / 98

85

Abstract Definite

Termination Semantics

For each program instruction , we define

a transformer
:

•

•

 

•

 

where

•

𝗌𝗍𝖺𝗍

ℛ#
M[[𝗌𝗍𝖺𝗍]] : 𝒜 → 𝒜

ℛ#
M[[ℓ X ← e]]t def=

⟵
𝖠𝖲𝖲𝖨𝖦𝖭A[[X ← e]]t

ℛ#
M[[if .ℓ e ⋈ 0 then s]]t def=

𝖥𝖨𝖫𝖳𝖤𝖱A[[e ⋈ 0]](ℛ#
M[[s]]t) ⋎T 𝖥𝖨𝖫𝖳𝖤𝖱A[[e /⋈ 0]]t

ℛ#
M[[while .ℓ e ⋈ 0 do s done]]t def= lfp#F#

M

F#
M(x) def= 𝖥𝖨𝖫𝖳𝖤𝖱A[[e ⋈ 0]](ℛ#

M[[s]]x) ⋎T 𝖥𝖨𝖫𝖳𝖤𝖱A[[e /⋈ 0]](t)

ℛ#
M[[s1; s2]]t

def= ℛ#
M[[s1]](ℛ

#
M[[s2]]t)

Caterina Urban

Termination Analysis

Lesson 7

A program must terminate for traces

starting from a set of initial states if

𝗌𝗍𝖺𝗍ℓ

ℐ
ℐ ⊆ dom(γA(ℛ#

M[[𝗌𝗍𝖺𝗍ℓ]]))

Corollary (Soundness)

86

Abstract Definite Termination SemanticsThe abstract definite termination semantics
  

of a program is:

where

 is the abstract definite termination semantics  

of each program instruction

ℛ#
M[[𝗌𝗍𝖺𝗍ℓ]] ∈ 𝒜

𝗌𝗍𝖺𝗍ℓ

ℛ#
M[[𝗌𝗍𝖺𝗍ℓ]] def= ℛ#

M[[𝗌𝗍𝖺𝗍]](𝖫𝖤𝖠𝖥 : λX1, …, Xk.0)ℛ#
M[[𝗌𝗍𝖺𝗍]] : 𝒜 → 𝒜

𝗌𝗍𝖺𝗍

Definition

ℛM[[𝗌𝗍𝖺𝗍ℓ]] ≼ γA(ℛ#
M[[𝗌𝗍𝖺𝗍ℓ]])

Theorem (Soundness)

Abstract Definite Termination Semantics

Caterina UrbanTermination AnalysisLesson 7 122

1x1 [- , +] 
2x2 [- , +] 
0while 3(x1 0 x2 0) do 
 4b [- , +] 
 if 5(b 0) then 
 6x1 x1 - 1 
 7x2 [- , +] 
 else 
 8x2 x2 - 1 
od9

← ∞ ∞
← ∞ ∞

> ∧ >
← ∞ ∞

≥
←
← ∞ ∞

←

Example

f3
def= {1 x1 ≤ 0 ∨ x2 ≤ 0

ω ⋅ (x1 − 7) + 7x1 + 3x2 − 5 x1 > 0 ∧ x2 > 0

Abstract Definite Termination Semantics

Caterina UrbanTermination AnalysisLesson 7

Abstract Interpretation Recipe

123

mathematical models
of the program behavior

algorithmic approaches
to decide program properties

practical tools
targeting specific programs

Caterina UrbanTermination AnalysisLesson 7 124

Caterina UrbanTermination AnalysisLesson 7

Abstract Interpretation Recipe

125

mathematical models
of the program behavior

algorithmic approaches
to decide program properties

practical tools
targeting specific programs

Caterina Urban

Termination Analysis

Lesson 8

63

Piecewise-Defined Ranking 
Functions Abstract Domain
Widening

98

5. Piecewise-Defined Ranking Functions

0
0

0

1 1

3
2

(a) Most precise ranking function.

2
2

2

2

0
0

0

11

A
B

C

(b) Unsound abstraction.

Figure 5.10: Unsound abstraction (b) of a most precise ranking function (a).

on which it is not yet defined. The only requirement is that, when the iter-

ation sequence with widening is stable for the computational order, its limit

is a sound abstraction of the termination semantics with respect to the ap-

proximation order. In the following, we discuss in detail how the widening

guarantees the soundness of the analysis.

As running example, let us consider Figure 5.10. In Figure 5.10a we de-

pict a transition system and the value of the termination semantics for the

well-founded part of its transition relation. In Figure 5.10b we represent the

concretization of a possible iterate of the analysis: we assume that the first

iterate has individuated the states marked with value zero, the second iter-

ate has individuated the states marked with value one, and the widening at

the third iterate has extrapolated the ranking function over the states marked

with value two. In this case the abstraction both under-approximates the

value of the termination semantics (on the second state from the left — case

B) and over-approximates its domain of definition (including the first and the

last state from the left — case A and C, respectively). In case A, the non-

terminating loop is outside the domain of definition of the unsound abstract

function, while in case C the loop is inside. The analysis continues iterating

until all these discrepancies are solved and, in the following, we explain and

justify why this works in general.
For a loop while lbexp do stmt od, given a sound over-approximation

R ∈ D of τI(l), we define the iteration sequence with widening as follows:

y0
def= ⊥T

yn+1
def=

{
yn

φ♮
Mt(yn) ⊑T [R] yn ∧ φ♮

Mt(yn) !T [R] yn

yn ▽T φ♮
Mt(yn) otherwise

(5.2.24)

Goal: try to predict a valid ranking function
The prediction can (temporarily) be wrong!, i.e.,

• under-approximates the value of

and/or
• over-approximates the domain

 of

ℛM

dom(ℛM) ℛM

98

5. Piecewise-Defined Ranking Functions

0
0

0

1 1

3
2

(a) Most precise ranking function.

2
2

2

2

0
0

0

11

A
B

C

(b) Unsound abstraction.

Figure 5.10: Unsound abstraction (b) of a most precise ranking function (a).

on which it is not yet defined. The only requirement is that, when the iter-

ation sequence with widening is stable for the computational order, its limit

is a sound abstraction of the termination semantics with respect to the ap-

proximation order. In the following, we discuss in detail how the widening

guarantees the soundness of the analysis.

As running example, let us consider Figure 5.10. In Figure 5.10a we de-

pict a transition system and the value of the termination semantics for the

well-founded part of its transition relation. In Figure 5.10b we represent the

concretization of a possible iterate of the analysis: we assume that the first

iterate has individuated the states marked with value zero, the second iter-

ate has individuated the states marked with value one, and the widening at

the third iterate has extrapolated the ranking function over the states marked

with value two. In this case the abstraction both under-approximates the

value of the termination semantics (on the second state from the left — case

B) and over-approximates its domain of definition (including the first and the

last state from the left — case A and C, respectively). In case A, the non-

terminating loop is outside the domain of definition of the unsound abstract

function, while in case C the loop is inside. The analysis continues iterating

until all these discrepancies are solved and, in the following, we explain and

justify why this works in general.
For a loop while lbexp do stmt od, given a sound over-approximation

R ∈ D of τI(l), we define the iteration sequence with widening as follows:

y0
def= ⊥T

yn+1
def=

{
yn

φ♮
Mt(yn) ⊑T [R] yn ∧ φ♮

Mt(yn) !T [R] yn

yn ▽T φ♮
Mt(yn) otherwise

(5.2.24)

Example

ℛM

ℛ#
M

Caterina Urban

Termination Analysis

Lesson 8

44

Concretization-Based  

Piecewise Abstraction

⟨ℰ ⇀ 𝕆, ≼ ⟩ ⟨𝒜, ≼A ⟩

γA

ℛM[[𝗌𝗍𝖺𝗍ℓ]] : ℰ ⇀ 𝕆
f1 ≼ f2

def= dom(f1) ⊇ dom(f2) ∧ ∀x ∈ dom(f1) : f1(x) ≤ f2(x)

approximation order

ℛ#
M[[𝗌𝗍𝖺𝗍ℓ]] ∈ 𝒜

Caterina Urban

Termination Analysis

Lesson 8

Definite Termination Semantics

34

ℛM
def= αM(𝒯M) = lfp⪯ FM

FM(f)σ def=
0

σ ∈ ℬ

sup{f(σ′) + 1 ∣ (σ, σ′) ∈ τ} σ ∈
∼

preτ(dom(f))

undefined
otherwise

0

0 ✔

✘

A program must terminate for traces starting from a

set of initial states if and only if
ℐ

ℐ ⊆ dom(ℛM)
Theorem

0

1

0

0

1

0
2

0

1

0
2

f1 ⪯ f2
def= dom(f1) ⊆ dom(f2) ∧ ∀x ∈ dom(f1) : f1(x) ≤ f2(x)

computational order

Caterina UrbanTermination AnalysisLesson 7

 
[Cousot02] Patrick Cousot. Constructive Design of a Hierarchy of Semantics of a Transition System by
Abstract Interpretation. In Theoretical Computer Science 277(1-2):47–103, 2002.

 
[Cousot12] Patrick Cousot and Radhia Cousot. An Abstract Interpretation Framework for Termination. In
POPL, pages 245–258, 2012.

 
[Urban15] Caterina Urban. Static Analysis by Abstract Interpretation of Functional Temporal Properties of
Programs. PhD Thesis, École Normale Supérieure, 2015.

 
[Urban17] Nathanaëlle Courant and Caterina Urban. Precise Widening Operators for Proving
Termination by Abstract Interpretation. In TACAS, 2017.

Bibliography

126

extensions with other widening heuristics

