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1 void main(int x, int y, int z){
2 while(y > z){

3 y=y -

4 }

5 ERROR ()

6 }

How many variable(s) an attacker needs to control to reach the error ?

Trivial coarse response: all variables

@ Our analysis:

- e reduce as possible the sets of variable(s) to control

e numeric constraints on these variables to ensure the error
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void main(int x, int y, int z){
while(y > z){
y=y-x
}
ERROR()

Two possible minimal sets:

o A: {y,z} + condition {z > y}
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void main(int x, int y, int z){
while(y > z){
y=y-x
}
ERROR ()

Two possible minimal sets:
o A: {y,z} + condition {z > y} <= trivial condition (loop
condition)
e B: {z} + condition {z > 1} <= non-trivial condition
(semantics)
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Error as a CTL property

1 void main(int x, int y, int z){
2 while(y > z){

5 y =¥ - X

4 }

5 ERROR ()
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AF{l5 : true} € CTL
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CTL properties

CTL: A branching time logic to express program (trace) properties

pu=l|-¢|opNP|oVe
| AX¢ | AGo | AF¢ | A{¢U ¢}
| EX¢ | EGo | EF¢ | E{¢ U ¢}
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CTL properties

CTL: A branching time logic to express program (trace) properties
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Abstract interpretation for CTL properties

SRS N

Abstract Interpretation of CTL Properties

Caterina Urban, Samuel Ueltschi, and Peter Miiller

Department of Computer Science
ETH Zurich, Switzerland

Abstract. CTLis a temporal logie commonly used to express program
propertics. Most of the existing approaches for proving CTL properties
only support certain classes of progras, limit their scope o a subset of
CTL. or do not direetly support certain existential CTL formulas. This
paper presents an abstract interpretation framework for proving CTL
propertics that does not suffer from these limitations. Our approach au-

tomatically infers sufficient preconditions, and thus provides useful infor
mation even when a program satisfies a property only for some inputs,

We systematically derive a program semantics that precisely captures
CTL properties by abstraction of the operational trace semantics of a
program. We then leverage existing abstract domains based on piccewise-
defined functions to derive decidable abstractions that are suitable for
static program analysis. To handle existential CTL properties, we aug-
ment these abstract domains with under-approximat

g operators,
We implemented our approach in a prototype static analyzer. Our exper-
imental evaluation demonstrates that the analysis is effective, even for
CTL formulas with non-trivial nesting of universal and existential path
quantifiers, and performs well on a wide variety of benchmarks.
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Abstract interpretation for CTL properties

SRR ST ON

e Abstract sound semantics:
decision tree representing

Abstract Interpretation of CTL Properties

piecewise defined function

e Provide efficient algorithms
for a static analysis of C
programs
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1 void main(int x, int y, int z){

2 while(y > z){
3 y=y-x;
4 }
5 ERROR () L
6 } g
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undefined otherwise
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1 void main(int x, int y, int z){

2 while(y > z){
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undefined otherwise

Theorem

Given a decision tree Ty for a CTL property ¢, if s € dom(Ty) then
s E o. 7/18



Abstract semantics

forget : given a decision tree and a variable X try to build a tree by
removing all the constraints on X.
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forget : given a decision tree and a variable X try to build a tree by
removing all the constraints on X.
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forgel'(y)
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y—z2>1 forget(y )

forget(x) "

forget(?)

{z}is safe: maximal set of variable that can be removed
{y, z} is vulnerable: Complement of maximal safe set

{y, z} is a first minimal set to control to ensure the reachability of the error
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(y-721
T—y+22>0
z>1
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(y-721
T—y+22>0
z>1
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Note: removing contraints on y removes the contraints on z and vice-versa
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forget&\]\

Note: removing contraints on y removes the contraints on z and vice-versa

{y, z} is safe
{z}is vulnerable

{z}is a second minimal set to control to ensure reachability of the error
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Result of the algorithm is a set of sets to control: {{z}, {y,z}}
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Abstract refinement process

with CDA
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FuncTion-V

Static Analyzer coded in Ocaml
Support a numerical subset of C programs.
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Experimentation

Evaluated on 347 examples from: SV-Comp, Literature, LTL-Automizer..
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Number of vulnerable variable sets:

Vulnerable Sets Number of Programs Total Time Average Time Average L

0 146 15 s 0.1s 79
1 165 (+15 21 0.1 22
NO CDA (+15) ° °
2 30 10's 0.33s 24
3 6 5s 0.7s 25
0 154 23s 0.15 s 77
1 160 (+14 934 5 22
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3 5 124 s 25's 26
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Experimentation

Evaluated on 347 examples from: SV-Comp, Literature, LTL-Automizer..
Number of vulnerable variable sets:

Vulnerable Sets Number of Programs Total Time Average Time Average L

0 146 15 s 0.1s 79
1 165 (+15 21 0.1 22
NO CDA (+15) ° ®
2 30 10's 0.33s 24
3 6 5s 0.7s 25
0 154 23s 0.15 s 77
1 160 (+14 934 5 22
CDA (+14) ° °
2 79 432's 15s 25
3 5 124 s 255 26

Average minimum percentage of vulnerable variables:

Termination Robust Reachability CTL
CDA 16% 22% 28%



Related Work

Robust Reachability: error reachability independently of the values
of uncontrolled variables

Implemented in: BINSEC-RSE
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Related Work

Non-exploitability: absence of runtime errors independently of the
values of controlled variables

Implemented in: MopPSA
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Comparison

FuncTION-V:

(-+) : infer set of variable that imply Robust reachability
or Non-exploitability
(++) : CTL properties: combination of safety and liveness properties
(+) : Termination sensitive
(—) : Restricted to a subset of numerical C-programs while MoPsA

and BINSEC-RSE are not!
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Conclusion

e Detection of variables that an attacker can control to ensure an

undesirable properties
e Experimentation on various programs

e More detailed in the paper: semantics, dynamic programming
algorithm, Conflict driven analysis

18/18



