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Data Scientists
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Data Scientist: The Sexiest Job of
the 21st Century
Andrew McAfee and Erik Brynjolfsson

Andrew J Buboltz, silk screen on a page from a high school yearbook, 8.5" x 12", 2011  Tamar Cohen

When Jonathan Goldman arrived for work in June 2006 at LinkedIn, the
business networking site, the place still felt like a start-up. The company
had just under 8 million accounts, and the number was growing quickly as
existing members invited their friends and colleagues to join. But users
weren’t seeking out connections with the people who were already on the
site at the rate executives had expected. Something was apparently
missing in the social experience. As one LinkedIn manager put it, “It was
like arriving at a conference reception and realizing you don’t know
anyone. So you just stand in the corner sipping your drink—and you
probably leave early.”

Goldman, a PhD in physics from Stanford, was intrigued by the linking he
did see going on and by the richness of the user profiles. It all made for
messy data and unwieldy analysis, but as he began exploring people’s
connections, he started to see possibilities. He began forming theories,
testing hunches, and finding patterns that allowed him to predict whose
networks a given profile would land in. He could imagine that new features

https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
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P. Subotić et al. - A Static Analysis Framework for Data Science Notebooks (ICSE 2022)

   UNUSED DATA
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P. Subotić et al. - A Static Analysis Framework for Data Science Notebooks (ICSE 2022)
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   STALE DATA
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Anomalously Unused Data
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The Reinhart-Rogoff Paper
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573

American Economic Review: Papers & Proceedings 100 (May 2010): 573–578
http://www.aeaweb.org/articles.php?doi=10.1257/aer.100.2.573

In this paper, we exploit a new multi-country 
historical dataset on public (government) debt to 
search for a systemic relationship between high 
public debt levels, growth and inflation.1 Our 
main result is that whereas the link between 
growth and debt seems relatively weak at “nor-
mal” debt levels, median growth rates for coun-
tries with public debt over roughly 90 percent 
of GDP are about one percent lower than other-
wise; average (mean) growth rates are several 
percent lower. Surprisingly, the relationship 
between public debt and growth is remarkably 
similar across emerging markets and advanced 
economies. This is not the case for inflation. We 
find no systematic relationship between high 
debt levels and inflation for advanced econo-
mies as a group (albeit with individual country 
exceptions including the United States). By con-
trast, in emerging market countries, high public 
debt levels coincide with higher inflation.

Our topic would seem to be a timely one. 
Public debt has been soaring in the wake of the 
recent global financial maelstrom, especially in 
the epicenter countries. This should not be sur-
prising, given the experience of earlier severe 
financial crises.2 Outsized deficits and epic bank 
bailouts may be useful in fighting a downturn, 
but what is the long-run macroeconomic impact, 

1 In this paper “public debt” refers to gross central 
government debt.   “Domestic public debt” is government 
debt issued under domestic legal jurisdiction. Public debt 
does not include debts carrying a government guarantee. 
Total gross external debt includes the external debts of all 
branches of government as well as private debt that is issued 
by domestic private entities under a foreign jurisdiction.

2 Reinhart and Rogoff (2009a, b) demonstrate that the 
aftermath of a deep financial crisis typically involves a 
protracted period of macroeconomic adjustment, particu-
larly in employment and housing prices. On average, public 
debt rose by more than 80 percent within three years after 
a crisis.

Growth in a Time of Debt

By Carmen M. Reinhart and Kenneth S. Rogoff*

especially against the backdrop of graying pop-
ulations and rising social insurance costs? Are 
sharply elevated public debts ultimately a man-
ageable policy challenge?

Our approach here is decidedly empirical, 
taking advantage of a broad new historical 
dataset on public debt (in particular, central 
government debt) first presented in Carmen M. 
Reinhart and Kenneth S. Rogoff (2008, 2009b). 
Prior to this dataset, it was exceedingly difficult 
to get more than two or three decades of pub-
lic debt data even for many rich countries, and 
virtually impossible for most emerging markets. 
Our results incorporate data on 44 countries 
spanning about 200 years. Taken together, the 
data incorporate over 3,700 annual observations 
covering a wide range of political systems, insti-
tutions, exchange rate and monetary arrange-
ments, and historic circumstances.

We also employ more recent data on external 
debt, including debt owed both by governments 
and by private entities. For emerging markets, 
we find that there exists a significantly more 
severe threshold for total gross external debt (public and private)—which is almost exclu-
sively denominated in a foreign currency—than 
for total public debt (the domestically issued 
component of which is largely denominated 
in home currency). When gross external debt 
reaches 60 percent of GDP, annual growth 
declines by about two percent; for levels of 
external debt in excess of 90 percent of GDP, 
growth rates are roughly cut in half. We are not 
in a position to calculate separate total exter-
nal debt thresholds (as opposed to public debt 
thresholds) for advanced countries. The avail-
able time-series is too recent, beginning only in 
2000. We do note, however, that external debt 
levels in advanced countries now average nearly 
200 percent of GDP, with external debt levels 
being particularly high across Europe.

The focus of this paper is on the longer term 
macroeconomic implications of much higher 
public and external debt. The final section, how-
ever, summarizes the historical experience of 
the United States in dealing with private sector 

* Reinhart: Department of Economics, 4115 Tydings 
Hall, University of Maryland, College Park, MD 20742 (e-mail: creinhar@umd.edu); Rogoff: Economics Depart-
ment, 216 Littauer Center, Harvard University, Cambridge 
MA 02138–3001 (e-mail: krogoff@harvard.edu). The 
authors would like to thank Olivier Jeanne and Vincent R. 
Reinhart for helpful comments.

data excluded 
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England Covid-19 Cases Error
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Excel spreadsheet error
blamed for UK’s 16,000 missing
coronavirus cases
The case went missing a!er the spreadsheet hit its filesize limit
By James Vincent  Oct 5, 2020, 9:41am EDT

SCIENCE US & WORLD TECH

6

Covid-19:
Only half

of 16 000
patients m

issed from
England’s

official

figures ha
ve been c

ontacted

Elisabeth
Mahase

Details of
nearly 16

000 cases
of covid-1

9 were no
t

transferre
d to Engla

nd’s NHS
Test and T

race servi
ce

and were
missed fro

m official fig
ures beca

use of an

error in th
e process

for updati
ng the dat

a.

England’s
health an

d social ca
re secreta

ry, Matt

Hancock,
told the H

ouse of Co
mmons on

Monday 5

October th
at after th

e error wa
s discover

ed on Frid
ay

2 October
“6500 hou

rs of extra
contact tr

acing” ha
d

been carri
ed out ove

r theweek
end. But a

s atMond
ay

morning o
nly half (5

1%) of the pe
ople had b

een

reached b
y contact

tracers.

In respon
se, Labou

r’s shadow
health sec

retary,

Jonathan
Ashworth

, said, “Th
ousands o

f people a
re

blissfully
unaware t

hey have b
een expos

ed to covi
d,

potentiall
y spreadin

g this dead
ly virus at

a timewhe
n

hospital a
dmissions

are rising
and we ar

e in the

secondwa
ve. This is

not just a s
hambles,

it is somu
ch

worse.”

The misse
d cases w

ere added
to the dail

y figures f
or

theweeke
nd,meani

ng that 22
961 casesw

ere reporte
d

on Sunda
y 4 Octobe

r and 12 8
72 were re

ported on

Saturday.

Reports in
dicated th

at the pro
blem may have

been

caused by
the row limit on M

icrosoft’s
Excel

spreadshe
et softwar

e, which c
aused num

bers sent

from one labor
atory to b

e missed o
ff.

Hancockw
ouldnot c

onfirm the cause
of the tech

nical

issue but s
aid that h

e had alre
ady decid

ed to repla
ce

the system
at fault in

July. “I co
mmission

ed a new

data syste
m to replace

the legacy
one, and t

he

contracts
were awa

rded in Au
gust and t

he work o
n

the upgra
de is alrea

dy under
way,” he t

old MPs.

The Guard
ian report

ed that th
e error occ

urred whe
n

one labor
atory sent

its daily te
st report t

o Public

Health En
gland in a

CSV file.1 Altho
ugh these

files

can be an
y size, an

Excel spre
adsheet h

as a limit
of

1 048 576
rows, or 6

5536 if an
older vers

ion of the

softwarew
as beingu

sed.Whena file l
onger than

that

is opened
, the rows

that excee
d themax

imumare cut

off, mean
ing once t

hat labora
tory had p

erformed

more than
a million

tests, its r
eports we

re not see
n

by PHE.

Comment
ing on the

error, Pete
r Banniste

r, executiv
e

chair of th
e Institutio

nofEngin
eeringand

Technolog
y

Healthcar
e Sector, s

aid, “It’s w
idely know

n within

medical d
evice deve

lopment t
hat the us

e of

commerci
al off-the-

shelf prod
ucts, such

as Excel,

requires a
dditional

testing to
ensure tha

t they are

able to me
et the strin

gent requ
irements o

f use in a

healthcar
e setting.

“In particu
lar, regula

tory autho
rities such

as the FDA

in the US
have calle

d out the
limitation

s of Excel

when app
lied to sto

ring and m
anipulatin

g medical

data and f
urthermor

e have iss
ued guida

nce on

validation
and risk m

anagemen
t for these

products

if they are
to beused

in such a s
afety critic

almanner
.”

The error
came as th

e Labour P
arty’s lead

er, Keir

Starmer, s
aid that th

e prime m
inister ha

d “lost

control” o
f covid-19,

withno cl
ear strateg

y for beati
ng

it. Speakin
g to the O

bserver, S
tarmer set

out his fiv
e

point plan
for covid-

19, which
starts with

publishin
g

the criteri
a for local

restriction
s, as the G

erman

governme
nt did. Se

condly, he
said publi

c health

messagin
g should b

e improve
d by addin

g a featur
e

to the NH
S covid-19

app so pe
ople can s

earch thei
r

postcode
and find o

ut their lo
cal restric

tions.

Starmer h
as also sai

d hewoul
d fix the co

ntact traci
ng

system by investi
ng in NHS

and unive
rsity

laboratori
es to expa

nd testing
and at the

same time

put local p
ublic heal

th teams i
n charge o

f contact

tracing in
their area

s. Routine
regular te

sting in hi
gh

risk workp
laces and

high trans
mission a

reas woul
d

then be ca
rried out,

with resul
ts within 2

4 hours.

Additiona
lly, Starm

er would o
utline a va

ccine

manufact
uring and

distributio
n program

me ready

for when a
vaccine is

approved
.

1 Halliday J,
Campbell D,W

alker P, Sa
mple I. Engla

nd covid c
ases error

means

50 000 contacts m
ay not hav

e been tra
ced. Guard

ian. 5 Oct
2020.

https://ww
w.theguar

dian.com/world/20
20/oct/05

/england-c
ovid-cases

-

error-unkn
own-how-

many-conta
cts-not-tra

ced-says-m
inister.

This article
is made freely

available f
or use in a

ccordance
with BMJ's website

terms and cond
itions for t

he duratio
n of the co

vid-19 pan
demic or until o

therwise

determined by BM
J. You may use, do

wnload an
d print the

article for
any lawful

,

non-commercial purp
ose (includ

ing text an
d data mining) prov

ided that a
ll

copyright
notices an

d trade m
arks are re

tained.

1

the bmj | BMJ 2020;371:m3891 | doi: 10.1136/bmj.m3891

NEWS

The BMJ

Cite this a
s: BMJ 20

20;371:m
3891

http://dx.d
oi.org/10.1

136/bmj.m3891

Published
: 06 October 2

020

 on 1 February 2022 by guest. Protected by copyright.

http://w
w

w
.bm

j.com
/

BM
J: first published as 10.1136/bm

j.m
3891 on 6 O

ctober 2020. D
ow

nloaded from
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Example
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english = bool(input())  
math = bool(input())  
science = bool(input())  
bonus = bool(input())  
 
passing = True 
if not english:  
       passing = False                                 
if not math:  
       passing = False or bonus  
if not science:                                                  
       passing = False or bonus              
 
print(passing) 

english = bool(input())  
math = bool(input())  
science = bool(input())  
bonus = bool(input())  
 
passing = True 
if not english:  
       english = False                                 
if not math:  
       passing = False or bonus  
if not math:                                                  
       passing = False or bonus              
 
print(passing) 

ERROR: english SHOULD BE passing

ERROR: math SHOULD BE science

INPUT VARIABLES

OUTPUT VARIABLES

the input variables english and science are unused
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3-Step Recipe
Data Usage Static Analysis [Urban18]
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concrete semantics 
mathematical models of the program behavior

abstract semantics, abstract domains 
algorithmic approaches to decide program properties

practical tools  
targeting specific programs
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TODO
Caterina UrbanStatic Analysis for Machine LearningLesson 12

Dependency Fairness

158

−i
def= {[[M]] ⋅ UNUSEDi([[M]])}

 is the set of all neural networks M (or, rather, their semantics )  
that do not use the value of the sensitive input node  for classification
−i [[M]]

x0,i

UNUSEDi(T) def= 




∈t, t⇔ ⊆ T : t0(x0,i) ℛ t⇔ 0(x0,i) ∣
(∈0 ′ j ′ |L0 | : j ℛ i ≤ t0(x0,j) = t⇔ 0(x0,j))
≤ tω = t⇔ ω

Intuitively: inputs differing only on the value 
of the sensitive input node  should lead 
to the same classification outcome

x0,i

M ∞ −i ⊧ {[[M]]} ∀ −i

Theorem

M ∞ −i ⇒ [[M]] ∀ [[M]]→ ∀ −i

Corollary

δ(t0) = δ(t⇔ 0)

ϵ(t0) = ϵ(t⇔ 0)
δ(x0j) = { ♮ j = i

x0j otherwise

:δ
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Data (Non-)Usage
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𝒩J
def= {[[P]] ∣ UNUSEDJ([[P]])}

 is the set of all programs P (or, rather, their semantics )  
that do not use the value of the input variables in 
𝒩J [[P]]

J

UNUSEDJ([[P]]) def= 







∀t ∈ [[P]], V ∈ ℛ|J| : t0(J) ≠ V ⇒ ∃t′ ∈ [[P]] :
(∀i : i ∉ J ⇒ t0(i) = t′ 0(i))∧ t′ 0(J) = V
∧ tω = t′ ω

Intuitively: any possible program  
outcome is possible from any value 

of the input variable i

P ⊧ 𝒩J ⇔ {[[P]]} ⊆ 𝒩J

Theorem
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3-Step Recipe
Data Usage Static Analysis [Urban18]
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concrete semantics 
mathematical models of the program behavior

abstract semantics, abstract domains 
algorithmic approaches to decide program properties

practical tools  
targeting specific programs

Caterina UrbanStatic Analysis for Machine LearningLesson 12

Hierarchy of Semantics

114

collecting semantics

outcome semantics

parallel semantics
ω−

{[[M]]}

{[M]}−
⋅

{[M]}−
∈

{[M]}− ω⋅

ω⋅

ω∈

ω∈

ω−

ω−

dependency semantics

[[M]]∈

[[M]]⋅
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3-Step Recipe
Data Usage Static Analysis [Urban18]
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concrete semantics 
mathematical models of the program behavior

abstract semantics, abstract domains 
algorithmic approaches to decide program properties

practical tools  
targeting specific programs

Caterina UrbanStatic Analysis for Machine LearningLesson 12

Hierarchy of Semantics

114

collecting semantics

outcome semantics

parallel semantics
ω−

{[[M]]}

{[M]}−
⋅

{[M]}−
∈

{[M]}− ω⋅

ω⋅

ω∈

ω∈

ω−

ω−

dependency semantics

[[M]]∈

[[M]]⋅
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Not a Subset-Closed Property
Data (Non-) Usage
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Data (Non-)Usage
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𝒩J
def= {[[P]] ∣ UNUSEDJ([[P]])}

 is the set of all programs P (or, rather, their semantics )  
that do not use the value of the input variables in 
𝒩J [[P]]

J

UNUSEDJ([[P]]) def= 







∀t ∈ [[P]], V ∈ ℛ|J| : t0(J) ≠ V ⇒ ∃t′ ∈ [[P]] :
(∀i : i ∉ J ⇒ t0(i) = t′ 0(i))∧ t′ 0(J) = V
∧ tω = t′ ω

Intuitively: any possible program  
outcome is possible from any value 

of the input variable i

P ⊧ 𝒩J ⇔ {[[P]]} ⊆ 𝒩J

Theorem

P ⊧ 𝒩J ⇐ [[P]] ⊆ [[P]]♮ ∈ 𝒩J

Corollary

P ⊧ 𝒩J ⇐ {[[P]]} ⊆ [[P]]♮ ∈ 𝒩J

Corollary
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Over-Approximation of the Used Input Data
Data (Non-)Usage Abstractions
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 Under-Approximation of the Unused Input Data⇒

P ⊧ 𝒩J♮⊆J ⇐ {[[P]]} ⊆ [[P]]♮
A ⊆ 𝒩J♮⊆J
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2 Caterina Urban and Peter Müller

⇤
trace

semantics
(Section 2)

⇤•
outcome
semantics
(Section 5)

⇤ 
dependency
semantics
(Section 6)

⇤F

non-interference
analysis

(Section 8)

⇤X

strongly live
variable analysis

(Section 9)

⇤Q

data usage
analysis

(Section 10)

���! ���
↵•

�•
����! ����

↵ 

� 

�F

�X

�Q

Fig. 1. Overview of the program semantics presented in the paper. The dependency
semantics, derived by abstraction of the trace semantics, is sound and complete for
data usage. Further sound but not complete abstractions are shown on the right.

hold that this paper led to unjustified adoption of austerity policies for coun-
tries with various levels of public debt [30]. Programming errors in data analysis
code for medical applications are even more critical [27]. It is thus paramount
to achieve a high level of confidence in the correctness of data science code.

The likelihood that a programming error causes some input data to remain
unused is particularly high for data science applications, where data goes through
long pipelines of modules that acquire, filter, merge, and manipulate it. In this
paper, we propose an abstract interpretation [14] framework to automatically
detect unused input data. We characterize when a program uses (some of) its
input data using the notion of dependency between the input data and the out-
come of the program. Our notion of dependency accounts for non-determinism
and non-termination. Thus, it encompasses notions of dependency that arise in
many di↵erent contexts, such as secure information flow and program slicing [1],
as well as provenance or lineage analysis [9], to name a few.

Following the theory of abstract interpretation [12], we systematically derive
a new program semantics that precisely captures exactly the information needed
to reason about input data usage, abstracting away from irrelevant details about
the program behavior. Figure 1 gives an overview of our approach. The seman-
tics is first expressed in a constructive fixpoint form over sets of sets of traces, by
partitioning the operational trace semantics of a program based on its outcome
(cf. outcome semantics in Figure 1), and a further abstraction ignores interme-
diate state computations (cf. dependency semantics in Figure 1). Starting the
development of the semantics from the operational trace semantics enables a
uniform mathematical reasoning about programs semantics and program prop-
erties (Section 3). In particular, since input data usage is not a trace property

collecting
{Λ}

semantics
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long pipelines of modules that acquire, filter, merge, and manipulate it. In this
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and non-termination. Thus, it encompasses notions of dependency that arise in
many di↵erent contexts, such as secure information flow and program slicing [1],
as well as provenance or lineage analysis [9], to name a few.

Following the theory of abstract interpretation [12], we systematically derive
a new program semantics that precisely captures exactly the information needed
to reason about input data usage, abstracting away from irrelevant details about
the program behavior. Figure 1 gives an overview of our approach. The seman-
tics is first expressed in a constructive fixpoint form over sets of sets of traces, by
partitioning the operational trace semantics of a program based on its outcome
(cf. outcome semantics in Figure 1), and a further abstraction ignores interme-
diate state computations (cf. dependency semantics in Figure 1). Starting the
development of the semantics from the operational trace semantics enables a
uniform mathematical reasoning about programs semantics and program prop-
erties (Section 3). In particular, since input data usage is not a trace property

collecting
{Λ}
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Secure Information Flow

JPKF

L ⇢ x

L ⇢ y

L ⇢ z

H ⇢ w

H ⇢ t

possibilistic non-interference coincides with input data (non-)usage  
when the set J of unused input variables contains all input variables: 
• input variables are high-security variables
• output variables are low-security variables

Hypercollecting Semantics

and Its Application to Static Analysis of Information Flow

Mounir Assaf

Stevens Institute of Technology,

Hoboken, US

first.las
t@steve

ns.edu

David A. Naumann

Stevens Institute of Technology,

Hoboken, US
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t@steve

ns.edu
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Abstract

We show how static analysis for secure information flow can be ex-

pressed and proved correct entirely within the framework of abstract

interpretation. The key idea is to define a Galois connection that

directly approximates the hyperproperty of interest. To enable use

of such Galois connections, we introduce a fixpoint characterisation

of hypercollecting semantics, i.e. a “set of sets” transformer. This

makes it possible to systematically derive static analyses for hyper-

properties entirely within the calculational framework of abstract

interpretation. We evaluate this technique by deriving example static

analyses. For qualitative information flow, we derive a dependence

analysis similar to the logic of Amtoft and Banerjee (SAS’04) and

the type system of Hunt and Sands (POPL’06). For quantitative infor-

mation flow, we derive a novel cardinality analysis that bounds the

leakage conveyed by a program instead of simply deciding whether

it exists. This encompasses problems that are hypersafety but not

k-safety. We put the framework to use and introduce variations

that achieve precision rivalling the most recent and precise static

analyses for information flow.

Categories and Subject Descriptors D.2.4 [Software Engineer-

ing]: Software/Program Verification–Assertion checkers; D.3 [Pro-

gramming Languages]; F.3.1 [Logics and meanings of programs]:

Semantics of Programming Language

Keywords static analysis, abstract interpretation, information flow,

hyperproperties

1. Introduction

Most static analyses tell something about all executions of a program.

This is needed, for example, to validate compiler optimizations.

Functional correctness is also formulated in terms of a predicate on

observable behaviours, i.e. more or less abstract execution traces: A

program is correct if all its traces satisfy the predicate. By contrast

with such trace properties, extensional definitions of dependences

involve more than one trace. To express that the final value of a

variable x may depend only on the initial value of a variable y, the

requirement—known as noninterference in the security literature

(Sabelfeld and Myers 2003)—is that any two traces with the same

initial value for y result in the same final value for x. Sophisticated

information flow policies allow dependences subject to quantitative

bounds—and their formalisations involve more than two traces,

sometimes unboundedly many.

For secure information flow formulated as decision problems, the

theory of hyperproperties classifies the simplest form of noninterfer-

ence as 2-safety and some quantitative flow properties as hypersafety

properties (Clarkson and Schneider 2010). A number of approaches

have been explored for analysis of dependences, including type sys-

tems, program logics, and dependence graphs. Several works have

used abstract interpretation in some way. One approach to 2-safety is

by forming a product program that encodes execution pairs (Barthe

et al. 2004; Terauchi and Aiken 2005; Darvas et al. 2005), thereby

reducing the problem to ordinary safety which can be checked by

abstract interpretation (Kovács et al. 2013) or other means. Alter-

natively, a 2-safety property can be checked by dedicated analyses

which may rely in part on ordinary abstract interpretations for trace

properties (Amtoft et al. 2006).

The theory of abstract interpretation serves to specify and

guide the design of static analyses. It is well known that effective

application of the theory requires choosing an appropriate notion

of observable behaviour for the property of interest (Cousot 2002;

Bertrane et al. 2012, 2015). Once a notion of “trace” is chosen, one

has a program semantics and “all executions” can be formalized in

terms of collecting semantics, which can be used to define a trace

property of interest, and thus to specify an abstract interpretation

(Cousot and Cousot 1977, 1979; Cousot 1999).

The foundation of abstract interpretation is quite general, based

on Galois connections between semantic domains on which collec-

ting semantics is defined. Clarkson and Schneider (2010) formalize

the notion of hyperproperty in a very general way, as a set of sets

of traces. Remarkably, prior works using abstract interpretation for

secure information flow do not directly address the set-of-sets di-

mension and instead involve various ad hoc formulations. This paper

presents a new approach of deriving information flow static analyses

within the calculational framework of abstract interpretation.
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Abstract

We show how static analysis for secure information flow can be ex-

pressed and proved correct entirely within the framework of abstract

interpretation. The key idea is to define a Galois connection that

directly approximates the hyperproperty of interest. To enable use

of such Galois connections, we introduce a fixpoint characterisation

of hypercollecting semantics, i.e. a “set of sets” transformer. This

makes it possible to systematically derive static analyses for hyper-

properties entirely within the calculational framework of abstract

interpretation. We evaluate this technique by deriving example static

analyses. For qualitative information flow, we derive a dependence

analysis similar to the logic of Amtoft and Banerjee (SAS’04) and

the type system of Hunt and Sands (POPL’06). For quantitative infor-

mation flow, we derive a novel cardinality analysis that bounds the

leakage conveyed by a program instead of simply deciding whether

it exists. This encompasses problems that are hypersafety but not

k-safety. We put the framework to use and introduce variations

that achieve precision rivalling the most recent and precise static

analyses for information flow.

Categories and Subject Descriptors D.2.4 [Software Engineer-

ing]: Software/Program Verification–Assertion checkers; D.3 [Pro-

gramming Languages]; F.3.1 [Logics and meanings of programs]:

Semantics of Programming Language

Keywords static analysis, abstract interpretation, information flow,

hyperproperties

1. Introduction

Most static analyses tell something about all executions of a program.

This is needed, for example, to validate compiler optimizations.

Functional correctness is also formulated in terms of a predicate on

observable behaviours, i.e. more or less abstract execution traces: A

program is correct if all its traces satisfy the predicate. By contrast

with such trace properties, extensional definitions of dependences

involve more than one trace. To express that the final value of a

variable x may depend only on the initial value of a variable y, the

requirement—known as noninterference in the security literature

(Sabelfeld and Myers 2003)—is that any two traces with the same

initial value for y result in the same final value for x. Sophisticated

information flow policies allow dependences subject to quantitative

bounds—and their formalisations involve more than two traces,

sometimes unboundedly many.

For secure information flow formulated as decision problems, the

theory of hyperproperties classifies the simplest form of noninterfer-

ence as 2-safety and some quantitative flow properties as hypersafety

properties (Clarkson and Schneider 2010). A number of approaches

have been explored for analysis of dependences, including type sys-

tems, program logics, and dependence graphs. Several works have

used abstract interpretation in some way. One approach to 2-safety is

by forming a product program that encodes execution pairs (Barthe

et al. 2004; Terauchi and Aiken 2005; Darvas et al. 2005), thereby

reducing the problem to ordinary safety which can be checked by

abstract interpretation (Kovács et al. 2013) or other means. Alter-

natively, a 2-safety property can be checked by dedicated analyses

which may rely in part on ordinary abstract interpretations for trace

properties (Amtoft et al. 2006).

The theory of abstract interpretation serves to specify and

guide the design of static analyses. It is well known that effective

application of the theory requires choosing an appropriate notion

of observable behaviour for the property of interest (Cousot 2002;

Bertrane et al. 2012, 2015). Once a notion of “trace” is chosen, one

has a program semantics and “all executions” can be formalized in

terms of collecting semantics, which can be used to define a trace

property of interest, and thus to specify an abstract interpretation

(Cousot and Cousot 1977, 1979; Cousot 1999).

The foundation of abstract interpretation is quite general, based

on Galois connections between semantic domains on which collec-

ting semantics is defined. Clarkson and Schneider (2010) formalize

the notion of hyperproperty in a very general way, as a set of sets

of traces. Remarkably, prior works using abstract interpretation for

secure information flow do not directly address the set-of-sets di-

mension and instead involve various ad hoc formulations. This paper

presents a new approach of deriving information flow static analyses

within the calculational framework of abstract interpretation.
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JPKF

L ⇢ x

L ⇢ y

L ⇢ z

H ⇢ w

H ⇢ t

 
passing = True 
if not english:  
      english = False                                 
if not math:  
      passing = False or bonus  
if not math:                                                  
      passing = False or bonus            

L ⇢ passing, H ⇢ english, math, science, bonus

H ⇢ english, math, science, bonus, passing             

L ⇢ passing, H ⇢ english, math, science, bonus

H ⇢ english, math, science, bonus, passing                                          

L ⇢ passing, H ⇢ english, math, science, bonus

possibilistic non-interference coincides with input data (non-)usage  
when the set J of unused input variables contains all input variables: 
• input variables are high-security variables
• output variables are low-security variables
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JPKF

L ⇢ x

L ⇢ y

L ⇢ z

H ⇢ w

H ⇢ t

possibilistic non-interference coincides with input data (non-)usage  
when the set J of unused input variables contains all input variables: 
• input variables are high-security variables
• output variables are low-security variables
and the program is terminating

 
passing = True 
while not english:  
      english = False                                

L ⇢ passing, H ⇢ english, math, science, bonus

L ⇢ passing, H ⇢ english, math, science, bonus

L ⇢ passing, H ⇢ english, math, science, bonus

P ⊧ 𝒩+
J ⇐ {[[P]]} ⊆ [[P]]♮

F ⊆ 𝒩+
J

Theorem
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2 Caterina Urban and Peter Müller

⇤
trace

semantics
(Section 2)

⇤•
outcome
semantics
(Section 5)

⇤ 
dependency
semantics
(Section 6)

⇤F

non-interference
analysis

(Section 8)

⇤X

strongly live
variable analysis

(Section 9)

⇤Q

data usage
analysis

(Section 10)
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Fig. 1. Overview of the program semantics presented in the paper. The dependency
semantics, derived by abstraction of the trace semantics, is sound and complete for
data usage. Further sound but not complete abstractions are shown on the right.

hold that this paper led to unjustified adoption of austerity policies for coun-
tries with various levels of public debt [30]. Programming errors in data analysis
code for medical applications are even more critical [27]. It is thus paramount
to achieve a high level of confidence in the correctness of data science code.

The likelihood that a programming error causes some input data to remain
unused is particularly high for data science applications, where data goes through
long pipelines of modules that acquire, filter, merge, and manipulate it. In this
paper, we propose an abstract interpretation [14] framework to automatically
detect unused input data. We characterize when a program uses (some of) its
input data using the notion of dependency between the input data and the out-
come of the program. Our notion of dependency accounts for non-determinism
and non-termination. Thus, it encompasses notions of dependency that arise in
many di↵erent contexts, such as secure information flow and program slicing [1],
as well as provenance or lineage analysis [9], to name a few.

Following the theory of abstract interpretation [12], we systematically derive
a new program semantics that precisely captures exactly the information needed
to reason about input data usage, abstracting away from irrelevant details about
the program behavior. Figure 1 gives an overview of our approach. The seman-
tics is first expressed in a constructive fixpoint form over sets of sets of traces, by
partitioning the operational trace semantics of a program based on its outcome
(cf. outcome semantics in Figure 1), and a further abstraction ignores interme-
diate state computations (cf. dependency semantics in Figure 1). Starting the
development of the semantics from the operational trace semantics enables a
uniform mathematical reasoning about programs semantics and program prop-
erties (Section 3). In particular, since input data usage is not a trace property

collecting
{Λ}

semantics
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a variable is strongly live if 
• it is used in an assignment to another strongly live variable
• it is used in a statement other than an assignment
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Strong-Liveness
a variable is strongly live if 
• it is used in an assignment to another strongly live variable
• it is used in a statement other than an assignment
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a variable is strongly live if 
• it is used in an assignment to another strongly live variable
• it is used in a statement other than an assignment

JPKX

x

y

z

w

t

passing = True 
if not english:  
      english = False                                 
if not math:  
      passing = False or bonus  
if not math:                                                  
      passing = False or bonus 
            

{ bonus, math, english }     

{ passing }             
{ bonus }            

{ bonus, math }                                                
{ bonus, math }                                                
{ bonus, math }                                                
{ bonus, math }                                                

{ bonus, math, english }        

P ⊧ 𝒩J ⇐ {[[P]]} ⊆ [[P]]♮
X ⊆ 𝒩J

Theorem
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Fig. 1. Overview of the program semantics presented in the paper. The dependency
semantics, derived by abstraction of the trace semantics, is sound and complete for
data usage. Further sound but not complete abstractions are shown on the right.

hold that this paper led to unjustified adoption of austerity policies for coun-
tries with various levels of public debt [30]. Programming errors in data analysis
code for medical applications are even more critical [27]. It is thus paramount
to achieve a high level of confidence in the correctness of data science code.

The likelihood that a programming error causes some input data to remain
unused is particularly high for data science applications, where data goes through
long pipelines of modules that acquire, filter, merge, and manipulate it. In this
paper, we propose an abstract interpretation [14] framework to automatically
detect unused input data. We characterize when a program uses (some of) its
input data using the notion of dependency between the input data and the out-
come of the program. Our notion of dependency accounts for non-determinism
and non-termination. Thus, it encompasses notions of dependency that arise in
many di↵erent contexts, such as secure information flow and program slicing [1],
as well as provenance or lineage analysis [9], to name a few.

Following the theory of abstract interpretation [12], we systematically derive
a new program semantics that precisely captures exactly the information needed
to reason about input data usage, abstracting away from irrelevant details about
the program behavior. Figure 1 gives an overview of our approach. The seman-
tics is first expressed in a constructive fixpoint form over sets of sets of traces, by
partitioning the operational trace semantics of a program based on its outcome
(cf. outcome semantics in Figure 1), and a further abstraction ignores interme-
diate state computations (cf. dependency semantics in Figure 1). Starting the
development of the semantics from the operational trace semantics enables a
uniform mathematical reasoning about programs semantics and program prop-
erties (Section 3). In particular, since input data usage is not a trace property

collecting
{Λ}

semantics
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x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

U

S O

N

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used [[P]]Q
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x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used
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Syntactic (Non-)Usage

JPKU

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

  
passing = True 
  
if not english:  
        
      english = False                                 
        
  
if not math:  
        
      passing = False or bonus  
        
  
if not math:                                                  
        
      passing = False or bonus 
        
           passing ⇢ U

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used

MAO

MEI

anyothervariablemapsto N

[[P]]Q

U

S O

N
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x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used
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Syntactic (Non-)Usage

JPKU

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

  
passing = True 
  
if not english:  
        
      english = False                                 
        
  
if not math:  
        
      passing = False or bonus  
        
  
if not math:                                                  
        
      passing = False or bonus 
        
           

passing ⇢ S | passing ⇢ U
passing ⇢ U

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used

Mom

Had

8 E 8

domainelements
arestacksofmaps
matchingnestinglevel
ofanalyzedstatements

[[P]]Q

U

S O

N
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x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used
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Syntactic (Non-)Usage

JPKU

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

  
passing = True 
  
if not english:  
        
      english = False                                 
        
  
if not math:  
        
      passing = False or bonus  
        
  
if not math:                                                  
        
      passing = False or bonus 
        
           

bonus ⇢ U, passing ⇢ O | passing ⇢ U

passing ⇢ S | passing ⇢ U
passing ⇢ U

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used

DAD

Mad

iftheassignedvariablewasused Uor s
itbecomesoverwritten o if notalso

fi

otherwise itbecomes freshlyused u

[[P]]Q

U

S O

N
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x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used
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Syntactic (Non-)Usage

JPKU

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

  
passing = True 
  
if not english:  
        
      english = False                                 
        
  
if not math:  
        
      passing = False or bonus  
        
  
if not math:                                                  
        
      passing = False or bonus 
        
           

bonus ⇢ U, passing ⇢ O | passing ⇢ U

passing ⇢ S | passing ⇢ U
passing ⇢ U

math, bonus, passing ⇢ U

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used

MAN

Had

a variablebecomesused uMiggy and
of a statementthat uses u ormodifies o
anothervariable

[[P]]Q

U

S O

N
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x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used
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Syntactic (Non-)Usage

JPKU

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

  
passing = True 
  
if not english:  
        
      english = False                                 
        
  
if not math:  
        
      passing = False or bonus  
        
  
if not math:                                                  
        
      passing = False or bonus 
        
           

bonus ⇢ U, passing ⇢ O | passing ⇢ U

passing ⇢ S | passing ⇢ U
passing ⇢ U

math, bonus, passing ⇢ U

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used

MRU

MAI

restoresthepreviousvalue
if it hasnotchangedsince

mathbonusto u passing to

[[P]]Q

U

S O

N
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x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used
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Syntactic (Non-)Usage

JPKU

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

  
passing = True 
  
if not english:  
        
      english = False                                 
        
  
if not math:  
        
      passing = False or bonus  
        
  
if not math:                                                  
        
      passing = False or bonus 
        
           

bonus ⇢ U, passing ⇢ O | passing ⇢ U

passing ⇢ S | passing ⇢ U
passing ⇢ U

math, bonus, passing ⇢ U

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used

MAD

MEN

www.y yy

[[P]]Q

U

S O

N
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x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used
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Syntactic (Non-)Usage

JPKU

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

  
passing = True 
  
if not english:  
        
      english = False                                 
        
  
if not math:  
        
      passing = False or bonus  
        
  
if not math:                                                  
        
      passing = False or bonus 
        
           

bonus ⇢ U, passing ⇢ O | passing ⇢ U

passing ⇢ S | passing ⇢ U
passing ⇢ U

math, bonus, passing ⇢ U
math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used

MAO

MEI
[[P]]Q

U

S O

N
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x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used
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Syntactic (Non-)Usage

JPKU

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

  
passing = True 
  
if not english:  
        
      english = False                                 
        
  
if not math:  
        
      passing = False or bonus  
        
  
if not math:                                                  
        
      passing = False or bonus 
        
           

bonus ⇢ U, passing ⇢ O | passing ⇢ U

passing ⇢ S | passing ⇢ U
passing ⇢ U

math, bonus, passing ⇢ U
math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

math ⇢ S, bonus ⇢ U, passing ⇢ O | …

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used

MAD

Mad
[[P]]Q

U

S O

N
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x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used
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Syntactic (Non-)Usage

JPKU

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

  
passing = True 
  
if not english:  
        
      english = False                                 
        
  
if not math:  
        
      passing = False or bonus  
        
  
if not math:                                                  
        
      passing = False or bonus 
        
           

bonus ⇢ U, passing ⇢ O | passing ⇢ U

passing ⇢ S | passing ⇢ U
passing ⇢ U

math, bonus, passing ⇢ U
math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

math ⇢ S, bonus ⇢ U, passing ⇢ O | …

math, bonus, passing ⇢ U

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used

MAD

Mad
[[P]]Q

U

S O

N
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x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used
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Syntactic (Non-)Usage

JPKU

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

  
passing = True 
  
if not english:  
        
      english = False                                 
        
  
if not math:  
        
      passing = False or bonus  
        
  
if not math:                                                  
        
      passing = False or bonus 
        
           

bonus ⇢ U, passing ⇢ O | passing ⇢ U

passing ⇢ S | passing ⇢ U
passing ⇢ U

math, bonus, passing ⇢ U
math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

math ⇢ S, bonus ⇢ U, passing ⇢ O | …

math, bonus, passing ⇢ U
math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used

MAD

Mad
[[P]]Q

U

S O

N
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x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used
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Syntactic (Non-)Usage

JPKU

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

  
passing = True 
  
if not english:  
        
      english = False                                 
        
  
if not math:  
        
      passing = False or bonus  
        
  
if not math:                                                  
        
      passing = False or bonus 
        
           

bonus ⇢ U, passing ⇢ O | passing ⇢ U

passing ⇢ S | passing ⇢ U
passing ⇢ U

math, bonus, passing ⇢ U
math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

math ⇢ S, bonus ⇢ U, passing ⇢ O | …

math, bonus, passing ⇢ U
math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used

MAD

Mad
[[P]]Q

U

S O

N
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x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used
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Syntactic (Non-)Usage

JPKU

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

  
passing = True 
  
if not english:  
        
      english = False                                 
        
  
if not math:  
        
      passing = False or bonus  
        
  
if not math:                                                  
        
      passing = False or bonus 
        
           

bonus ⇢ U, passing ⇢ O | passing ⇢ U

passing ⇢ S | passing ⇢ U
passing ⇢ U

math, bonus, passing ⇢ U
math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

math ⇢ S, bonus ⇢ U, passing ⇢ O | …

math, bonus, passing ⇢ U
math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

math, bonus, passing ⇢ U

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used

MAD

Mad
[[P]]Q

U

S O

N
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x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used

Caterina UrbanStatic Analysis for Data ScienceLesson 14 41

Syntactic (Non-)Usage

JPKU

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

  
passing = True 
  
if not english:  
        
      english = False                                 
        
  
if not math:  
        
      passing = False or bonus  
        
  
if not math:                                                  
        
      passing = False or bonus 
        
           

bonus ⇢ U, passing ⇢ O | passing ⇢ U

passing ⇢ S | passing ⇢ U
passing ⇢ U

math, bonus, passing ⇢ U
math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

math ⇢ S, bonus ⇢ U, passing ⇢ O | …

math, bonus, passing ⇢ U
math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

math, bonus, passing ⇢ U

math, bonus ⇢ U, passing ⇢ O

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used [[P]]Q

U

S O

N
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x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used [[P]]Q

 
passing = True 
while not english:  
      english = False                                

passing ⇢ O

passing ⇢ U

passing ⇢ U

P 𝒩 ∣+
J ∀ {[[P]]} ∈ [[P]]ℛ

Q ∈ ∣+
J

Theorem

U

S O

N
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concrete semantics 
mathematical models of the program behavior

abstract semantics, abstract domains 
algorithmic approaches to decide program properties

practical tools  
targeting specific programs

Caterina UrbanStatic Analysis for Machine LearningLesson 12

Hierarchy of Semantics

114

collecting semantics

outcome semantics

parallel semantics
ω−

{[[M]]}

{[M]}−
⋅

{[M]}−
∈

{[M]}− ω⋅

ω⋅

ω∈

ω∈

ω−

ω−

dependency semantics

[[M]]∈

[[M]]⋅

syntactic non-usagestrongly-live variable analysis

secure information flow
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Data Leakage
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Abstract

Every
year there are more than 3.6 mil-

lion referral
s made to c

hild protect
ion agen-

cies across the US. The
practic

e of scree
n-

ing calls is left to each jurisdic
tion to fol-

low local pr
actices

and policies
, poten

tially

leading
to large variatio

n in the way in

which referral
s are tr

eated across t
he coun

-

try. Whilst increas
ing access

to linked ad-

ministrat
ive data is avail

able, it
is di�cult

for welf
are workers

to make system
atic use

of histo
rical in

formation about a
ll the chil-

dren and adults
on a single referral

call.

Risk predict
ion models that use routine

ly

collecte
d administrat

ive data can help call

workers
to better

identify
cases that are

likely to result i
n adverse

outcom
es. How-

ever, th
e use of pred

ictive analyti
cs in the

area of child
welfare

is content
ious. There

is a possibi
lity that some communities—

such as those in poverty
or from particu

-

lar racial a
nd ethnic

groups—
will be

dis-

advanta
ged by the reliance

on governm
ent

administrat
ive data.

On the other hand,

these analyti
cs tools can augment or re-

place human judgments, w
hich themselves

are biased
and imperfect

. In this pa
per we

describ
e our work on develop

ing, validat-

ing, fai
rness a

uditing
, and deployi

ng a risk

predict
ion model in

Alleghen
y County

, PA,

USA. We discuss
the results

of our
analy-

sis to-d
ate, and

also highligh
t key problem

s

and data bias iss
ues tha

t presen
t challe

nges

for model ev
aluatio

n and deploym
ent.

1. Introd
uction

Every year th
ere are

more tha
n 3.6 million refer-

rals made to child protect
ion agencie

s across
the

US. It
is estimated that 37% of US children

are

investig
ated for child abuse and neglect

by age

18 years (K
im et al., 2

017). T
hese sta

tistics i
ndi-

cate tha
t far fro

m being a rare occ
urrence

, many

more chil
dren are bein

g pulled into the chil
d wel-

fare age
ncies th

an previou
sly thought

. Curre
ntly,

screenin
g these referral

calls is left to each ju-

risdictio
n to follow local pr

actices
and policies

.

These p
ractices

usually
involve

casewor
kers gat

h-

ering de
tails ab

out the
adults a

nd children
associ-

ated with the alle
ged victim. Often, th

e decisi
on

on whethe
r to investig

ate or n
ot is made wit

hout

ever vis
iting the family or spea

king with them.

Whilst electron
ic case managem

ent systems

and linked
administrat

ive data are increasi
ngly

availabl
e, it is di�cult for child welfare

workers

to make systematic use of histo
rical in

formation

about a
ll the ch

ildren and adults o
n a single

refer-

c� 2018 A. Choulde
chova,

E. Putnam
-Hornstei

n, D. Benavid
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. Fialk
o & R. Vaith

ianath
an.
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1

2

3

4

5

6

6 0.67

MIN-MAX NORMALIZATION

TRAIN/TEST SPLIT

TRAINING

TESTING

INPUT DATA READING
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1

2

3

4

5

6

6 0.33

MIN-MAX NORMALIZATION

TRAIN/TEST SPLIT

TRAINING

TESTING

INPUT DATA READING
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Data Leakage Static Analysis [Drobnjaković24]
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concrete semantics 
mathematical models of the program behavior

abstract semantics, abstract domains 
algorithmic approaches to decide program properties

practical tools  
targeting specific programs
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(Absence of) Data Leakage
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INPUT DATA

MIN-MAX 
NORMALIZATION

TRAIN DATA

3 3 3 3 9 9 9 9 3 3 3 3 9 9 9 9 
3 3 9 9 3 3 9 9 3 3 9 9 3 3 9 9 
3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 
3 3 3 3 3 3 3 3 9 9 9 9 9 9 9 9

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0

TEST DATA

3 3 3 3 9 9 9 9 3 3 3 3 9 9 9 9 
3 3 9 9 3 3 9 9 3 3 9 9 3 3 9 9 
3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 
3 3 3 3 3 3 3 3 9 9 9 9 9 9 9 9

INPUT DATA

3 3 3 3 9 9 9 9 3 3 3 3 9 9 9 9 
3 3 9 9 3 3 9 9 3 3 9 9 3 3 9 9
3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 
3 3 3 3 3 3 3 3 9 9 9 9 9 9 9 9

0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 
0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0

MIN-MAX 
NORMALIZATION

TRAIN DATA
TEST DATA

A SINGLE ROW CHANGE  
IN THE INPUT DATA AFFECTS  
BOTH TRAIN AND TEST DATA 

A SINGLE ROW CHANGE  
IN THE INPUT DATA AFFECTS  

ONLY TRAIN OR ONLY TEST DATA 
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Independence of Training and Testing Data
(Absence of) Data Leakage

54

ℐ def= {[[P]] ∣ INDEPENDENT([[P]])}

input data

3 3 3 3 9 9 9 9 3 3 3 3 9 9 9 9 1
3 3 9 9 3 3 9 9 3 3 9 9 3 3 9 9 2
3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3
3 3 3 3 3 3 3 3 9 9 9 9 9 9 9 9 4
→ → → → → → → → → → → → → → → →

train data 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 2

test data 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 2

ω ω↑

(a)

input data

3 3 3 3 9 9 9 9 3 3 3 3 9 9 9 9 1
3 3 9 9 3 3 9 9 3 3 9 9 3 3 9 9 2
3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3
3 3 3 3 3 3 3 3 9 9 9 9 9 9 9 9 4
→ → → → → → → → → → → → → → → →

train data 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1
0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 2

test data 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 2

ω ω↑

(b)

Figure 3: Train and test data resulting from all possible input data of program P (a) and program Q (b) in Example 3.

independent(ΥJPK) def
= ↓ω ↔ ΥJPK, i ↔ IP, r ↔ Ri : unchanged(ω, i, r,Utest

P ) ↗ unchanged(ω, i, r,Utrain
P )

unchanged(ω, i, r,U) def
= ↓v̄ ↔ VCi : ω(i)[r] ! v̄↘ (≃ω↑ ↔ ΥJPK : ω↑(i)[r]= v̄ ⇐ ε(ω) = ε(ω↑) ⇐ ω(U) = ω↑(U)

)

ε(ω) def
= ϑ j : ϑr↑ :



ω( j)[r↑] j ↔ IP \ {i} ↗ r↑ ↔ Ri : r↑ ! r
⇒ otherwise

ω(X) = ω↑(X) def
= ↓x ↔ X : ω(x) = ω↑(x)

Figure 4: Formal definition of the independent predicate, which states when a program (semantics) uses independent data for training and testing.

More formally, let X be the set of all the (data frame) variables of a (data frame-manipulating) program P. We
denote with IP ⇑ X the set of its input or source data frame variables, i.e., data frame variables whose value is directly
read from the input, and use UP ⇑ X to denote the set of its used data frame variables, i.e., data frame variables
used for training or testing a ML model. We write Utrain

P ⇑ UP and Utest
P ⇑ UP for the variables used for training and

testing, respectively. For simplicity, we can assume that programs are in static single-assignment form so that data
frame variables are assigned exactly once: data is read from the input, transformed and normalized, and ultimately
used for training and testing. Given a trace ω ↔ ΥJPK, we write ω(i) and ω(o) to denote the value of the data frame
variables i ↔ IP and o ↔ UP in ω. We define when used data frame variables are independent in a program with
trace semantics ΥJPK in Figure 4, where Ri and Ci stand for Rω(i) (i.e., number of rows of the data frame value of
i ↔ IP) and Cω(i) (i.e., number of columns of the data frame value of i ↔ IP), respectively. The definition requires
that changing the value of a data source i ↔ IP can modify data frame variables used for training (Utrain

P ) or testing
(Utest

P ), but not both: the value of data frame variables used for either training or testing in a trace ω remains the same
independently of all possible values v̄ ↔ VCi of any portion (e.g., any row r ↔ Ri) of any input data frame variable
i ↔ IP in ω. Note that this definition quantifies over changes in data frame rows since the split into train and test data
happens across rows (e.g., using train_test_split in Pandas), but takes into account all possible column values
in each row (v̄ ↔ VCi ). It also implicitly takes into account implicit flows of information by considering traces in
ΥJPK. In particular, in terms of secure information flow, notably non-interference, this definition says that we cannot
simultaneously observe different values in Utrain

P and Utest
P , regardless of the values of the input data frame variables.

Here we weaken non-interference to consider either Utrain
P or Utest

P as low outputs (depending on which row of the input

5

input data frame variables data frame row used data frame variables
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Data Leakage Static Analysis [Drobnjaković24]
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concrete semantics 
mathematical models of the program behavior

abstract semantics, abstract domains 
algorithmic approaches to decide program properties

practical tools  
targeting specific programs
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collecting semantics

data leakage semantics

{[[M]]}

[[M]]↝

·[[M]]

α↝

·α

dependency semantics
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Hierarchy of Semantics
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collecting semantics

data leakage semantics

{[[M]]}

[[M]]↝

·[[M]]

α↝

·α

dependency semantics
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collecting semantics

data leakage semantics

{[[M]]}

[[M]]↝

·[[M]]

α↝

·α

dependency semantics
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Hierarchy of Semantics
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collecting semantics

data leakage semantics

{[[M]]}

[[M]]↝

·[[M]]

α↝

·α

dependency semantics

OVERLAP =  
DATA LEAKAGE

NO OVERLAP =  
NO DATA LEAKAGE



Caterina UrbanStatic Analysis for Data ScienceLesson 13
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60

INPUT DATA

MIN-MAX 
NORMALIZATION

TRAIN DATA

3 3 3 3 9 9 9 9 3 3 3 3 9 9 9 9 
3 3 9 9 3 3 9 9 3 3 9 9 3 3 9 9 
3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 
3 3 3 3 3 3 3 3 9 9 9 9 9 9 9 9

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0

TEST DATA

3 3 3 3 9 9 9 9 3 3 3 3 9 9 9 9 
3 3 9 9 3 3 9 9 3 3 9 9 3 3 9 9 
3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 
3 3 3 3 3 3 3 3 9 9 9 9 9 9 9 9

INPUT DATA

3 3 3 3 9 9 9 9 3 3 3 3 9 9 9 9 
3 3 9 9 3 3 9 9 3 3 9 9 3 3 9 9
3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 
3 3 3 3 3 3 3 3 9 9 9 9 9 9 9 9

0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 
0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0

MIN-MAX 
NORMALIZATION

TRAIN DATA
TEST DATA
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concrete semantics 
mathematical models of the program behavior

abstract semantics, abstract domains 
algorithmic approaches to decide program properties

practical tools  
targeting specific programs
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Data Frame Sources Abstract Domain

62

DATA FRAME VARIABLES

X ⟨{source1{id}
[1,10], source2{id}

[1,10]}, FALSE⟩

Y

Z

⟨{source2{id}
[0,100], source2{name}

[0,100] }, TRUE⟩

⟨{source3{id,zip}
[0,∞] }, FALSE⟩

W ⟨{source2{id}
[500,1000]}, TRUE⟩

↦

↦

↦

↦

DATA SOURCE

DATA ROWS

DATA COLUMNS

TAINT FLAG
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Example
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1

2

3

4

5

6

6 0.67

X ↦ ⟨{data{X1,X2}
[0,∞] }, FALSE⟩

X ↦ ⟨{data{X1,X2}
[0,∞] }, TRUE⟩

Xtrain ↦ ⟨{data{X1,X2}
[0,∞] }, TRUE⟩ Xtest ↦ ⟨{data{X1,X2}

[0,∞] }, TRUE⟩

(TAINT) OVERLAP = DATA LEAKAGE

MIN-MAX NORMALIZATION

TRAIN/TEST SPLIT

TRAINING

TESTING

INPUT DATA READING
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Example
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1

2

3

4

5

6

6 0.33

X ↦ ⟨{data{X1,X2}
[0,∞] }, FALSE⟩

Xtrain ↦ ⟨{data{X1,X2}
[0.025*R+1,∞]}, FALSE⟩ Xtest ↦ ⟨{data{X1,X2}

[0,0.025*R]}, FALSE⟩

Xtrain ↦ ⟨{data{X1,X2}
[0.025*R+1,∞]}, TRUE⟩

Xtest ↦ ⟨{data{X1,X2}
[0,0.025*R]}, TRUE⟩

MIN-MAX  
NORMALIZATION

TRAIN/TEST SPLIT

TRAINING

TESTING

INPUT DATA READING

NO OVERLAP = NO DATA LEAKAGE
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concrete semantics 
mathematical models of the program behavior

abstract semantics, abstract domains 
algorithmic approaches to decide program properties

practical tools  
targeting specific programs
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7378 Executions in 2111 Notebooks from Kaggle
Experimental Evaluation

66

Implementation
True Positives

False Positives
Taint Data Leakage Overlap Data Leakage

NBLyzer + Original Data Leakage Analysis 10 0 2

NBLyzer + Our Data Leakage Analysis 10 15 2

IN 5 NOTEBOOKS IN 11 NOTEBOOKS CONFIRMED BY
4 DATA SCIENTISTS

AT MICROSOFT
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3-Step Recipe
Data Leakage Static Analysis [Drobnjaković24]
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concrete semantics 
mathematical models of the program behavior

abstract semantics, abstract domains 
algorithmic approaches to decide program properties

practical tools  
targeting specific programs

Data Frame Sources Abstract Domain

17

DATA FRAME VARIABLES

X ⟨{source1{id}
[1,10], source2{id}

[1,10]}, FALSE⟩

Y

Z

⟨{source2{id}
[0,100], source2{name}

[0,100] }, TRUE⟩

⟨{source3{id,zip}
[0,∞] }, FALSE⟩

W ⟨{source2{id}
[500,1000]}, TRUE⟩

↦

↦

↦

↦

DATA SOURCE

DATA ROWS

DATA COLUMNS

TAINT FLAG

Hierarchy of Semantics

15

collecting semantics

data leakage semantics

{[[M]]}

[[M]]↝

·[[M]]

α↝

·α

dependency semantics

OVERLAP =  
DATA LEAKAGE

NO OVERLAP =  
NO DATA LEAKAGE
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Unexpected Data
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Unexpected Data
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https://xkcd.com/2054/

different data

duplicate values

different format

extra values

missing values

Caterina UrbanStatic Analysis for Data ScienceLesson 13
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Example

Caterina UrbanStatic Analysis for Data ScienceLesson 13
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Missing Values
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Extra Values
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Different Format
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Data Expectations Static Analysis

74
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1st Challenge: Multi-Dimensional Data Structures
Data

75
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3-Step Recipe
Data Expectations Static Analysis
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concrete semantics 
mathematical models of the program behavior

abstract semantics, abstract domains 
algorithmic approaches to decide program properties

practical tools  
targeting specific programs
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2nd Challenge: Indirect Reasoning
Concrete Semantics

77

[[P]]
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3rd Challenge: Complex Library Calls
Abstract Semantics

78

import pandas as pd 
df = pd.read_csv(“HousePrices.csv”)

ex = df[df.SalePrice >= 1000000]

Sa
leP

ric
e

ex = df

ex[‘Profit’] = ex[‘SalePrice’] - ex[‘BuyPrice’]

Sa
leP

ric
e

Pr
ofi

t
Bu

yP
ric

e

 
dL = pd.read_csv(“L.csv”) 
dP = dL.pivot(index=c, columns=y, values=l) 
dR = pd.read_csv(“R.csv”) 
dG = dP.loc[:, 0:35].groupby(dR[r])

⋮

 c
 

 y
   l 

dR[r]  dG 
dP  dR

∈
∩ r 
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Wish List
Implementation

79

INTERACTIVE STATIC ANALYSIS

MULTI-LANGUAGE SUPPORT

STATIC AND DYNAMIC ANALYSIS COMBINATIONS



(Un)expected + (Un)used Data
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CFG with Analysis Result for example

df -> {_: W}

1

df -> {_: W}

import pandas as pd
df -> {_: W}

df: pd.DataFrame = read_csv(pandas, "...")
df -> {"id": N, "t": U, _: N}

drop(df, ["id"])
df -> {"t": U, _: N}

head(df["t"])
df -> {_: N}

2

df -> {_: N}

3
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CFG with Analysis Result for example

df -> {_: W}
sub -> {_: W}

1

df -> {_: W}
sub -> {_: W}

import pandas as pd
df -> {_: W}
sub -> {_: W}

df: pd.DataFrame = read_csv(pandas, "...")
df -> {"A": U, "B": N, "C": U, _: N}

sub -> {_: W}

sub: pd.DataFrame = df[["A", "B", "C"]]
df -> {_: N}

sub -> {"B": W, _: U}

sub["B"]: pd.DataFrame = 1
df -> {_: N}
sub -> {_: U}

head(sub)
df -> {_: N}
sub -> {_: N}

2

df -> {_: N}
sub -> {_: N}

3
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