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Introduction

Shape analysis

Shape analyses aim at discovering structural invariants
of programs that manipulate complex unbounded data-structures

Applications:
establish memory safety
verify the preservation of structural properties
e.g., list, doubly-linked lists, trees, ...
reason about programs that manipulate unbounded memory states

Previous lecture: TVLA, i.e.,
logical predicates which evaluate in three valued logic
shape graphs, described by the predicates
very non trivial transfer function for updates
local materialization/focus, coerce, formula evaluation, abstraction
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Introduction

Another family of shape analyses

Today: systematically avoid weak updates

separation logic, a logic to describe properties of memory states
abstract domain
static analysis algorithms
combination with numerical domains
widening operators...
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Separation Logic

Separation logic principle: avoid weak updates

How to deal with weak updates ?
Avoid them !

Always materialize exactly the cell that needs be modified
Can be very costly to achieve, and not always feasible

Notion of property that holds over a memory region:
special separating conjunction operator ∗

Local reasoning:
powerful principle, which allows to consider only part of the memory

Separation logic has been used in many contexts, including manual
verification, static analysis, etc...
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Separation Logic

Separation logic

Two kinds of formulas:
pure formulas behave like formulas in first-order logic
i.e., are not attached to a memory region
spatial formulas describe properties attached to a memory region

Pure formulas denote value properties

e ::= n (n ∈ N) constants
| l l-value
| e0 + e1 binary operations
| . . .

P ::= e0 = e1 | P′ ∨ P′′ | P′ ∧ P′′ . . . pure predicates

Pure formulas semantics: γ(P) ⊆ E×H
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Separation Logic

Separation logic: points-to predicates

The next slides introduce the main separation logic formulas F ::= . . .

We start with the most basic predicate, that describes a single cell:

Points-to predicate
Predicate:

F ::= . . . | a 7→ v where a is an address and v is a value

Concretization:

(e, h) ∈ γ(a 7→ v) if and only if h = [JaK(e, h) 7→ v]

Example:

F = &x 7→ 18 &x = 308 18

We also note l 7→ e, as an l-value l denotes an address
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Separation Logic

Separation logic: separating conjunction

Merge of concrete heaps: let h0, h1 ∈ (Vaddr → V), such that
dom(h0) ∩ dom(h1) = ∅; then, we let h0 � h1 be defined by:

h0 � h1 : dom(h0) ∪ dom(h1) −→ V
x ∈ dom(h0) 7−→ h0(x)
x ∈ dom(h1) 7−→ h1(x)

Separating conjunction
Predicate:

F ::= . . . | F0 ∗ F1

Concretization:

γ(F0 ∗ F1) = {(e, h0 � h1) | (e, h0) ∈ γ(F0) ∧ (e, h1) ∈ γ(F1)}

F0 ∗ F1
F0

F1
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Separation Logic

An example

Concrete memory layout
(pointer values underlined)

address

&x = 300
304

&y = 308

&z = 312
316 0x0

88
312
312
64

e : x 7→ 300
y 7→ 308
z 7→ 312

h : 300 7→ 64
304 7→ 312
308 7→ 312
312 7→ 88
316 7→ 0

A formula that abstracts away the addresses:

&x 7→ ⟨64, &z⟩ ∗ &y 7→ &z ∗ &z 7→ ⟨88, 0⟩
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Separation Logic

Separation logic: non separating conjunction

We can also add the conventional conjunction operator, with its usual
concretization:

Non separating conjunction
Predicate:

F ::= . . . | F0 ∧ F1

Concretization:
γ(F0 ∧ F1) = γ(F0) ∩ γ(F1)

Exercise: describe and compare the concretizations of
&a 7→ &b ∧ &b 7→ &a

&a 7→ &b ∗ &b 7→ &a
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Separation Logic

Separating conjunction vs non separating conjunction

Classical conjunction: properties for the same memory region
Separating conjunction: properties for disjoint memory regions

&a 7→ &b ∧ &b 7→ &a
the same heap verifies &a 7→ &b
and &b 7→ &a

there can be only one cell
thus a = b

&a 7→ &b ∗ &b 7→ &a
two separate sub-heaps
respectively satisfy &a 7→ &b and
&b 7→ &a

thus a ̸= b

Separating conjunction and non-separating conjunction have very different
properties
Both express very different properties
e.g., no ambiguity on weak / strong updates
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Separation Logic

Separating and non separating conjunction

Logic rules of the two conjunction operators of SL:

Separating conjunction:

(e, h0) ∈ γ(F0) (e, h1) ∈ γ(F1)

(e, h0 � h1) ∈ γ(F0 ∗ F1)

Non separating conjunction:

(e, h) ∈ γ(F0) (e, h) ∈ γ(F1)

(e, h) ∈ γ(F0 ∧ F1)

Reminiscent of Linear Logic [Girard87]:
resource aware / non resource aware conjunction operators
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Separation Logic

Separation logic: empty store

Empty store
Predicate:

F ::= . . . | emp

Concretization:

γ(emp) = {(e, []) | e ∈ E} = E× {[]}

where [] denotes the empty store

emp is the neutral element for ∗
(monoid structure induced by ∗)
by contrast the neutral element for ∧ is TRUE, with concretization:

γ(TRUE) = E×H
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Separation Logic

Separation logic: other connectors

Disjunction:
F ::= . . . | F0 ∨ F1

concretization:
γ(F0 ∨ F1) = γ(F0) ∪ γ(F1)

Spatial implication (aka, magic wand):
F ::= . . . | F0 −∗ F1

concretization:

γ(F0 −∗ F1) =
{(e, h) | ∀h0 ∈ H, (e, h0) ∈ γ(F0) =⇒ (e, h � h0) ∈ γ(F1)}

very powerful connector to describe structure segments,
used in complex SL proofs
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Separation Logic

Separation logic

Summary of the main separation logic constructions seen so far:

Separation logic main connectors
γ(emp) = E× {[]}
γ(TRUE) = E×H

γ(l 7→ v) = {(e, [JlK(e, h) 7→ v]) | e ∈ E}
γ(F0 ∗ F1) = {(e, h0 � h1) | (e, h0) ∈ γ(F0) ∧ (e, h1) ∈ γ(F1)}
γ(F0 ∧ F1) = γ(F0) ∩ γ(F1)
γ(F0 ∨ F1) = γ(F0) ∪ γ(F1)

γ(F0 −∗ F1) = {(e, h) | ∀h0 ∈ H, (e, h0) ∈ γ(F0) =⇒ (e, h � h0) ∈ γ(F1)}

Concretization of pure formulas is standard

How does this help for program reasoning ?
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Separation Logic

Separation logic triple

Program proofs based on Hoare triples
Notation: {F}p{F′} if and only if:

∀s, s ′ ∈ S, s ∈ γ(F) ∧ s ′ ∈ JpK(s) =⇒ s ′ ∈ γ(F′)

Application: formalize proofs of programs

A few rules (straightforward proofs):

{&x 7→?}x := e{&x 7→ e} mutation

F0 =⇒ F′0 {F′0}b{F′1} F′1 =⇒ F1

{F0}b{F1}
consequence

x does not appear in F
{&x 7→? ∗ F}x := e{&x 7→ e ∗ F} mutation-2

(we assume that e does not allocate memory)
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Separation Logic

The frame rule

What about the resemblance between rules “mutation” and “mutation-2” ?

Theorem: the frame rule
{F0}b{F1} freevar(F) ∩ write(b) = ∅

{F0 ∗ F}b{F1 ∗ F} frame

Proof by induction on the logical rules on program statements, i.e.,
essentially a large case analysis
(see biblio for a more complete set of rules)
Rules are proved by case analysis on the program syntax

The frame rule allows to reason locally about programs
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Separation Logic

Application of the frame rule

A program with intermittent invariants, derived using the frame rule, since
each step impacts a disjoint region:

int i;
int ∗ x;
int ∗ y;
{&i 7→? ∗ &x 7→? ∗ &y 7→?}
x = &i;
{&i 7→? ∗ &x 7→ &i ∗ &y 7→?}
y = &i;
{&i 7→? ∗ &x 7→ &i ∗ &y 7→ &i}
∗ x = 42;
{&i 7→ 42 ∗ &x 7→ &i ∗ &y 7→ &i}

Many other program proofs done using separation logic
e.g., verification of the Deutsch-Shorr-Waite algorithm (biblio)
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Separation Logic

Summarization and inductive definitions

What do we still miss ?
So far, formulas denote fixed sets of cells
Thus, no summarization of unbounded regions...

Example all lists pointed to by x, such as:
&x 0x0

&x 0x0

&x 0x0

&x 0x0

How to precisely abstract these stores with a single formula
i.e., no infinite disjunction ?
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Separation Logic

Inductive definitions in separation logic

List definition
α · list := α = 0 ∧ emp

∨ α ̸= 0 ∧ α · next 7→ δ ∗ α · data 7→ β ∗ δ · list

Formula abstracting our set of structures:
&x 7→ α ∗ α · list

Summarization:
this formula is finite and describe infinitely many heaps
Concretization: next slide...

Practical implementation in verification/analysis tools
Verification: hand-written definitions
Analysis: either built-in or user-supplied, or partly inferred
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Separation Logic

Concretization by unfolding

Intuitive semantics of inductive predicates
Inductive predicates can be unfolded, by unrolling their definitions
Syntactic unfolding is noted U−→
A formula F with inductive predicates describes all stores described by all
formulas F′ such that F U−→ F′

Example:
Let us start with x 7→ α0 ∗ α0 · list; we can unfold it as follows:
&x 7→ α0 ∗ α0 · list

U−→ &x 7→ α0 ∗ α0 · next 7→ α1 ∗ α0 · data 7→ β1 ∗ α1 · list
U−→ &x 7→ α0 ∗ α0 · next 7→ α1 ∗ α0 · data 7→ β1 ∗ emp ∧ α1 = 0x0

We get the concrete state below:
&x 0x0
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Separation Logic

Example: tree

Example:

0x0
0x0

0x0
0x0

Inductive definition
Two recursive calls instead of one:

α · tree := α = 0 ∧ emp
∨ α ̸= 0 ∧ α · left 7→ β ∗ α · right 7→ δ

∗ β · tree ∗ δ · tree
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Separation Logic

Example: doubly linked list

Example:
0x0

0x0

Inductive definition
We need to propagate the prev pointer as an additional parameter:

α · dll(δ) := α = 0 ∧ emp
∨ α ̸= 0 ∧ α · next 7→ β ∗ α · prev 7→ δ

∗ β · dll(α)
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Separation Logic

Example: sortedness

Example: sorted list

&x
8 9 33

0x0

Inductive definition
Each element should be greater than the previous one
The first element simply needs be greater than −∞...
We need to propagate the lower bound, using a scalar parameter

α · lsortaux(n) := α = 0 ∧ emp
∨ α ̸= 0 ∧ n ≤ β ∧ α · next 7→ δ

∗ α · data 7→ β ∗ δ · lsortaux(β)

α · lsort() := α · lsortaux(−∞)
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A shape abstract domain relying on separation
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A shape abstract domain relying on separation

Design of an abstract domain

A lot of things are missing to turn SL into an abstract domain

Set of logical predicates:
separation logic formulas are very expressive
e.g., arbitrary alternations of ∧ and ∗
such expressiveness is not necessarily required in static analysis

Representation:
unstructured formulas can be represented as ASTs,
but this representation is not easy to manipulate efficiently
intuition over memory states typically involves graphs

Analysis algorithms:
inference of “optimal” invariants in SL, with numerical predicates obviously
not computable
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A shape abstract domain relying on separation

Basic abstraction: structures and their contents

Concrete memory states

▶ very low level description
numeric offsets / field names

▶ pointers, numeric values:
raw sequences of bits

&(x · n) = 0x...a0
&(x · d) = 0x...a4

&(y · n) = 0x...b0
&(y · d) = 0x...b4 0x0

22

0x...b0
17
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A shape abstract domain relying on separation

Basic abstraction: structures and their contents

Concrete memory states

Abstraction of values into symbolic variables (nodes)

α0

α1

α2

α3

α4

0x...a0

0x...b0
0x0
22

0x...b0
17 ν(α0) = 0x...a0

ν(α1) = 17
ν(α2) = 0x...b0
ν(α3) = 22
ν(α4) = 0x0

▶ characterized by valuation ν
▶ ν maps symbolic variables into concrete addresses
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A shape abstract domain relying on separation

Basic abstraction: structures and their contents

Concrete memory states

Abstraction of values into symbolic variables / nodes

Abstraction of regions into points-to edges

α0

α1

α2

α3

α4

+0

+4
+0

+4

0x...a0

0x...b0
0x0
22

0x...b0
17 ν(α0) = 0x...a0

ν(α1) = 17
ν(α2) = 0x...b0
ν(α3) = 22
ν(α4) = 0x0
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A shape abstract domain relying on separation

Basic abstraction: structures and their contents

Concrete memory states

Abstraction of values into symbolic variables / nodes

Abstraction of regions into points-to edges

α0

α1

α2

α3

α4

+0

+4
+0

+4

0x...a0

0x...b0
0x0
22

0x...b0
17 ν(α0) = 0x...a0

ν(α1) = 17
ν(α2) = 0x...b0
ν(α3) = 22
ν(α4) = 0x0

Shape graph concretization
γsh(G ) = {(h , ν) | . . .}

valuation ν plays an important role to combine abstraction...
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A shape abstract domain relying on separation

Structure of shape graphs

Valuations bridge the gap between nodes and values

Symbolic variables / nodes and intuitively abstract concrete values:

Symbolic variables
We let V♯ denote a countable set of symbolic variables; we usually let them be
denoted by Greek letters in the following: V♯ = {α, β, δ, . . .}

When concretizing a shape graph, we need to characterize how the concrete
instance evaluates each symbolic variable, which is the purpose of the
valuation functions:

Valuations
A valuation is a function from symbolic variables into concrete values (and is
often denoted by ν): Val = V♯ −→ V

Note that valuations treat in the same way addresses and raw values
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A shape abstract domain relying on separation

Structure of shape graphs

Distinct edges describe separate regions

In particular, if we split a graph into two parts:

Separating conjunction

γsh(S
♯
0 ∗ S♯

1) = {(h0 � h1, ν) | (h0, ν) ∈ γsh(S
♯
0) ∧ (h1, ν) ∈ γsh(S

♯
1)}

S♯
0 S♯

1

γ(S♯
0) γ(S♯

1)

γ γ

Similarly, when considering the empty set of edges, we get the empty heap
(where V♯ is the set of nodes):

γsh(emp) = {(∅, ν) | ν : V♯ → V}
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A shape abstract domain relying on separation

Abstraction of contiguous regions

A single points-to edge represents one heap cell

A points-to edge encodes basic points to predicate in separation logic:

Points-to edges
Syntax

Graph edge Separation logic formula Concrete view

α β
f α · f 7→ β

ν(α)

offset(f) ν(β)

Concretization:
γsh(α · f 7→ β) =
{([ν(α) + offset(f) 7→ ν(β)], ν) | ν : {α, β, . . .} → N}
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A shape abstract domain relying on separation

Abstraction of contiguous regions

Contiguous regions are described by adjacent points-to edges

To describe blocks containing series of cells (e.g., in a C structure), shape
graphs utilize several outgoing edges from the node representing the base address
of the block

Field splitting model
Separation impacts edges / fields, not pointers

Shape graph
α

β0

β1

f

g accounts for both abstract states below:

ν(α)

offset(f)
offset(g)

ν(β0)

ν(β1)

ν(α)

offset(f)
offset(g)

ν(β0) = ν(β1)

In other words, in a field splitting model, separation:
asserts addresses are distinct
says nothing about contents
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A shape abstract domain relying on separation

Abstraction of the environment

Environments bind variables to their (concrete / abstract) address

&x = &(x · n) = 0x...a0
&(x · d) = 0x...a4

&y = &(y · n) = 0x...b0
&(y · d) = 0x...b4 0x0

22

0x...b0
17

&x
α0

α1

&y
α2

α3

α4

+0

+4

+0

+4

ν : α0 7→ 0x...a0
α2 7→ 0x...b0
. . . 7→ . . .

e♯ : x 7→ α0 (
ν7→ 0x...a0)

y 7→ α2 (
ν7→ 0x...b0)

Abstract environments
An abstract environment is a function e♯ from variables to symbolic nodes
The concretization extends as follows:

γmem(e♯,S♯) = {(e, h , ν) | (h , ν) ∈ γsh(S
♯) ∧ e = ν ◦ e♯}
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A shape abstract domain relying on separation

Basic abstraction: summarization

Set of all lists of any length:

&x 0x0 &x 0x...

0x0
. . .

&x 0x...

0x...
. . .

0x0
. . .

Well-founded list inductive def.
α · list :=

(emp ∧ α = 0x0)
∨ (α · d 7→ β0 ∗ α · n 7→ β1

∗ β1 · list ∧ α ̸= 0x0)
well-founded predicate

Inductive summary predicates

&x α β
list

Concretization based on unfolding and least-fixpoint:
U−→ replaces an α · list predicate with one of its premises

γ(S♯, F) =
⋃
{γ(S♯

u, Fu) | (S♯, F) U−→ (S♯
u, Fu)}
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A shape abstract domain relying on separation

Inductive structures: a few instances

As before, many interesting inductive predicates encode nicely into graph
inductive definitions:

More complex shapes: trees

α
tree U−→ι α

β0

β1

left

right

tree

tree

Relations among pointers: doubly-linked lists

α
dll(δ) U−→ι α

β

δ

next

prev

dll(α)

Relations between pointers and numerical: sorted lists

α
lsort(δ) U−→ι

α

β0

β1

next

data

lsort(β1)

δ ≤ β1
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A shape abstract domain relying on separation

Inductive segments

A frequent pattern:

&x

&y

0x0

A first attempt:
x points to a list, so &x 7→ α ∗ α · list holds
y points to a list, so &y 7→ β ∗ β · list holds

However, the following does not hold

&x 7→ α ∗ α · list ∗ &y 7→ β ∗ β · list

Why ? violation of separation!

A second attempt:

(&x 7→ α ∗ α · list ∗ TRUE) ∧ (&y 7→ β ∗ β · list ∗ TRUE)

Why is it still not all that good ? relation lost!
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A shape abstract domain relying on separation

Inductive segments

A frequent pattern:

&x

&y

0x0

Could be expressed directly as an inductive with a parameter:

α · list_endp(π) ::= (emp, α = π)
| (α · next 7→ β0 ∗ α · data 7→ β1

∗ β0 · list_endp(π), α ̸= 0)

This definition straightforwardly derives from list
Thus, we make segments part of the fundamental predicates of the domain

&x

&y

list

list

list

Multi-segments: possible, but harder for analysis
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A shape abstract domain relying on separation

Shape graphs and separation logic

Semantic preserving translation Π of graphs into separation logic formulas:

Graph S♯ ∈ D♯
sh Translated formula Π(S♯)

α β
f α · f 7→ β

S♯
0 S♯

1 Π(S♯
0) ∗ Π(S♯

1)

α
list

α · list
α δ

list

list
α · list_endp(δ)

other inductives and segments similar

Note that:
shape graphs can be encoded into separation logic formula
the opposite is usually not true

Value information:
discussed in the next course
intuitively, assume we maintain numerical information next to shape graphs
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Standard static analysis algorithms Overview of the analysis

Outline

1 Introduction

2 Separation Logic

3 A shape abstract domain relying on separation

4 Standard static analysis algorithms
Overview of the analysis
Post-conditions and unfolding
Folding: widening and inclusion checking
Abstract interpretation framework: assumptions and results
Comparing Separation Logic and Three-Valued logic abstractions

5 Combining shape and value abstractions

6 Conclusion

Xavier Rival (INRIA) Shape analysis abstractions Feb, 10th, 2025 38 / 94



Standard static analysis algorithms Overview of the analysis

Static analysis overview

A list insertion function:

list ⋆ l assumed to point to a list
list ⋆ t assumed to point to a list element
list ⋆ c = l;
while(c != NULL && c -> next != NULL && (. . .)){

c = c -> next;
}
t -> next = c -> next;
c -> next = t;

list inductive structure def.
Abstract precondition:

&l

&c

&t

next

data

list

Result of the (interprocedural) analysis
Over-approximations of reachable concrete states
e.g., after the insertion:

&l

&c

&t

next

data

listlist next

data
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Standard static analysis algorithms Overview of the analysis

Transfer functions

Abstract interpreter design
Follows the semantics of the language under consideration
The abstract domain should provide sound transfer functions

Transfer functions:
Assignment: x→ f = y→ g or x→ f = earith

Test: analysis of conditions (if, while)
Variable creation and removal
Memory management: malloc, free

Abstract operators:
Join and widening: over-approximation
Inclusion checking: check stabilization of abstract iterates

Should be sound i.e., not forget any concrete behavior
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Standard static analysis algorithms Overview of the analysis

Abstract operations

Denotational style abstract interpreter
Concrete denotational semantics JbK : S −→ P(S)
Abstract post-condition JbK♯(S), computed by the analysis:

s ∈ γ(S) =⇒ JbK(s) ⊆ γ(JbK♯(S))

Analysis by induction on the syntax using domain operators

Jb0; b1K♯(S) = Jb1K♯ ◦ Jb0K♯(S)
Jl = eK♯(S) = assign(l, e, S)

Jl = malloc(n)K♯(S) = alloc(l, n, S)
Jfree(l)K♯(S) = free(l, n, S)

Jif(e) bt else bfK♯(S) =

{
join(JbtK♯(test(e, S)),

JbfK♯(test(e = false, S)))
Jwhile(e)bK♯(S) = test(e = false, lfp♯

SF
♯)

where, F ♯ : S0 7→ JbK♯(test(e, S0))
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Standard static analysis algorithms Overview of the analysis

The algorithms underlying the transfer functions

Space saving convention:
represent only nodes for x, y and not for &x, &y when the latter play no role

Unfolding: cases analysis on summaries

x y
list list =⇒

x y
list next

data

list
∨

x y

0x0
list

Abstract postconditions, on “exact” regions, e.g. insertion

x y

0x0

list next

data

list

next

data

=⇒
x y

list
next

data

listnext

data

Widening: builds summaries and ensures termination

x y
list list ▽

x y
list

next

data

list

=⇒
x y

list list
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Standard static analysis algorithms Post-conditions and unfolding

Analysis of an assignment in the graph domain

Steps for analyzing x = y -> next (local reasoning)
1 Evaluate l-value x into points-to edge α 7→ β

2 Evaluate r-value y -> next into node β′

3 Replace points-to edge α 7→ β with points-to edge α 7→ β′

With pre-condition:
&x α0 β0

&y α1 β1 β2
next

Step 1 produces α0 7→ β0

Step 2 produces β2

End result:
&x α0 β0

&y α1 β1 β2next

With pre-condition:
&x α0 β0

&y α1 β1
list

Step 1 produces α0 7→ β0

Step 2 fails

Abstract state too abstract
We need to refine it
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Standard static analysis algorithms Post-conditions and unfolding

Unfolding as a local case analysis

Unfolding principle
Case analysis, based on the inductive definition
Generates symbolic disjunctions (analysis performed in a disjunction
domain, e.g., trace partitioning)

Example, for lists:

α
list U−→ α = 0

α

α
list U−→ α ̸= 0

α α′

β

next

data

list

Numeric predicates: next course on shape + value abstraction

Soundness: by definition of the concretization of inductive structures

γsh(S
♯) ⊆

⋃
{γsh(S

♯
0) | S

♯ U−→ S♯
0}
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Standard static analysis algorithms Post-conditions and unfolding

Analysis of an assignment, with unfolding

Principle

We have γsh(α · ι) =
⋃
{γsh(S

♯) | α · ι U−→ S♯}
Replace α · ι with a finite number of disjuncts and continue

Disjunct 1:

&x α0 β0

&y α1
= 0

β1

Step 1 produces α0 7→ β0

Step 2 fails: Null pointer !
In a correct program, would be
ruled out by a condition y ̸= 0
i.e., β1 ̸= 0 in D♯

num

Disjunct 2:

&x α0 β0

&y α1 β1

β2

β3

next

data

list

Step 1 produces α0 7→ β0

Step 2 produces β2

End result:

&x α0 β0

&y α1 β1

β2

β3

next

data

list
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Standard static analysis algorithms Post-conditions and unfolding

Unfolding and degenerated cases

assume(l points to a dll)
c = l;
① while(c ̸= NULL && condition)

c = c -> next;
② if(c ̸= 0 && c -> prev ̸= 0)

c = c -> prev→ prev;

at ①: l, c

α0
dll(δ1)

at ②:
l

α0

c
α1

dll(δ0)

dll(δ1)

dll(δ1)

⇒ non trivial unfolding

Materialization of c -> prev:
α0 α1

α-1

dll(. . .)

dll(α−1)

next

prev

dll(α0)

Segment splitting lemma: basis for segment unfolding

α0 α2
ι i + j

ι′ describes the same set of stores as α0 α1 α2
ι i

ι′′

ι′′ j

ι′

Materialization of c -> prev -> prev:
α-1 α0 α1

α-2

dll(. . .)

dll(α−2)

nextnext

prev

prev

dll(α0)

Implementation issue: discover which inductive edge to unfold
very hard !
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Standard static analysis algorithms Folding: widening and inclusion checking
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Standard static analysis algorithms Folding: widening and inclusion checking

Need for a folding operation

Back to the list traversal example:

First iterates in the loop:
at iteration 0 (before entering the loop):

l, c
α0

list

at iteration 1:
l c

β1

next

data

list

at iteration 2:
l
α0 α1

c
α2

β1 β2

next

data

next

data

list

assume(l points to a list)
c = l;
while(c ̸= NULL){
c = c→ next;
}

The analysis unfolds, but
never folds:

S0

S0,u S1

S1,u S2 . . .

unfold
f

unfold
f

How to guarantee termination of the analysis ?
How to introduce segment edges / perform abstraction ?
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Standard static analysis algorithms Folding: widening and inclusion checking

Widening

The lattice of shape abstract values has infinite height
Thus iteration sequences may not terminate

Definition of a widening operator ▽
Over-approximates join:{

γ(X ♯) ⊆ γ(X ♯ ▽Y ♯)
γ(Y ♯) ⊆ γ(X ♯ ▽Y ♯)

Enforces termination: for all sequence (X ♯
n )n∈N, the sequence (Y ♯

n )n∈N
defined below is ultimately stationary{

Y ♯
0 = X ♯

0
∀n ∈ N, Y ♯

n+1 = Y ♯
n ▽X ♯

n+1
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Standard static analysis algorithms Folding: widening and inclusion checking

Canonicalization

Upper closure operator
ρ : D♯ −→ D♯

can ⊆ D♯ is an upper closure operator (uco) iff it is monotone,
extensive and idempotent.

Canonicalization
Disjunctive completion: D♯

∨ = finite disjunctions over D♯

Canonicalization operator ρ∨ defined by ρ∨ : D♯
∨ −→ D♯

can∨ and
ρ∨(X

♯) = {ρ(x♯) | x♯ ∈ X ♯} where ρ is an uco and D♯
can is finite

Canonicalization is used in many shape analysis tools
Easier to compute but less powerful than widening: does not exploit
history of computation
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Standard static analysis algorithms Folding: widening and inclusion checking

Weakening: definition

To design inclusion test, join and widening algorithms, we first study a more
general notion of weakening:

Weakening

We say that S♯
0 can be weakened into S♯

1 if and only if

∀(h , ν) ∈ γsh(S
♯
0), ∃ν′ ∈ Val, (h , ν′) ∈ γsh(S

♯
1)

We then note S♯
0 ≼ S♯

1

Applications:
inclusion test (comparison) inputs S♯

0,S
♯
1; if returns true S♯

0 ≼ S♯
1

canonicalization (unary weakening) inputs S♯
0 and returns ρ(S♯

0) such that
S♯

0 ≼ ρ(S♯
0)

widening / join (binary weakening ensuring termination or not) inputs S♯
0,S

♯
1

and returns S♯
up such that S♯

i ≼ S♯
up
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Standard static analysis algorithms Folding: widening and inclusion checking

Weakening: example

We consider S♯
0 defined by:

&x

α0 α1 α2

α3

next

data

list

and S♯
1 defined by:

&x
β0 β1

list

Then, we have the weakening S♯
0 ≼ S♯

1 up-to a renaming in S♯
1:

Ψ : β0 7−→ α0
β1 7−→ α1

weakening up-to renaming is generally required as graphs do not have the
same name space
formalized a bit later...
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Standard static analysis algorithms Folding: widening and inclusion checking

Local weakening: separating conjunction rule

We can apply the local reasoning principle to weakening

If S♯
0 ≼ S♯

0,weak and S♯
1 ≼ S♯

1,weak then:

S♯
0 S♯

1
α0 α1 α2 ≼ S♯

0,weak S♯
1,weakα0 α1 α2

Separating conjunction rule (≼∗)
Let us assume that

S♯
0 and S♯

1 have distinct set of source nodes

we can weaken S♯
0 into S♯

0,weak

we can weaken S♯
1 into S♯

1,weak

then:

we can weaken S♯
0 ∗ S♯

1 into S♯
0,weak ∗ S♯

1,weak
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Standard static analysis algorithms Folding: widening and inclusion checking

Local weakening: unfolding rule, identity rule

Weakening unfolded region (≼U)

Let us assume that S♯
0

U−→ S♯
1. Then, by definition of the concretization of

unfolding

we can weaken S♯
1 into S♯

0

the proof follows from the definition of unfolding
it can be applied locally, on graph regions that differ due to unfolding of
inductive definitions

Identity weakening (≼Id)

we can weaken S♯ into S♯

the proof is trivial:
γsh(S

♯) ⊆ γsh(S
♯)

on itself, this principle is not very useful, but it can be applied locally, and
combined with (≼U ) on graph regions that are not equal
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Standard static analysis algorithms Folding: widening and inclusion checking

Local weakening: example

By rule (≼U ):

α1 α2

α3

next

data

list
≼

α1
list

Additionally, by rule (≼Id):

&l

α0 α1
≼

&l

α0 α1

Thus, by rule (≼∗):

&l

α0 α1 α2

α3

next

data

list
≼

&l

α0 α1
list
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Standard static analysis algorithms Folding: widening and inclusion checking

Inclusion checking rules in the shape domain

Graphs to compare have distinct sets of nodes, thus inclusion check should carry
out a valuation transformer Ψ : V♯(S♯

1) −→ V♯(S♯
0) (important when dealing

also with content values)

Using (and extending) the weakening principles, we obtain the following rules
(considering only inductive definition list, though these rules would extend to
other definitions straightforwardly):

Identity rules:
∀i , Ψ(βi ) = αi =⇒ α0 · f 7→ α1 ⊑♯

Ψ β0 · f 7→ β1
Ψ(β) = α =⇒ α · list ⊑♯

Ψ β · list
∀i , Ψ(βi ) = αi =⇒ α0 · list_endp(α1) ⊑♯

Ψ β0 · list_endp(β1)

Rules on inductives:
∀i , Ψ(βi ) = α =⇒ emp ⊑♯

Ψ β0 · list_endp(β1)

S♯
0 ⊑♯

Ψ S♯
1 ∧ β · ι U−→ S♯

1 =⇒ S♯
0 ⊑♯

Ψ β · ι
if β1 fresh ,Ψ′ = Ψ[β1 7→ α1] and Ψ(β0) = α0 then,

S♯
0 ⊑♯

Ψ′ β1 · list =⇒ α0 · list_endp(α1) ∗ S♯
0 ⊑♯

Ψ β0 · ι
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Standard static analysis algorithms Folding: widening and inclusion checking

Inclusion checking algorithm

Comparison of (e♯0, S
♯
0) and (e♯1, S

♯
1)

1 start with Ψ defined by Ψ(β) = α if and only if there exists a variable x such
that e♯0(x) = α ∧ e♯1(x) = β

2 iteratively apply local rules, and extend Ψ when needed
3 return true when both shape graphs become empty

the first step ensures both environments are consistent

This algorithm is sound:

Soundness
(e♯0,S

♯
0) ⊑♯

Ψ (e♯1,S
♯
1) =⇒ γ(e♯0,S

♯
0) ⊆ γ(e♯1,S

♯
1)
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Standard static analysis algorithms Folding: widening and inclusion checking

Over-approximation of union

The principle of join and widening algorithm is similar to that of ⊑♯:
It can be computed region by region, as for weakening in general:
If ∀i ∈ {0, 1}, ∀s ∈ {lft, rgh}, S♯

i,s ≼ S♯
s ,

S♯
0,lft S♯

1,lftα0 α1 α2

S♯
0,rgh S♯

1,rghβ0 β1 β2

Ψ Ψ Ψ ≼ S♯
0 S♯

1
γ0 γ1 γ2

The partitioning of inputs / different nodes sets requires a node
correspondence function

Ψ : V♯(S♯
lft)× V♯(S♯

rgh) −→ V♯(S♯)

The computation of the shape join progresses by the application of local join
rules, that produce a new (output) shape graph, that weakens both
inputs
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Standard static analysis algorithms Folding: widening and inclusion checking

Over-approximation of union: syntactic identity rules

In the next few slides, we focus on ▽
though the abstract union would be defined similarly in the shape domain

Several rules derive from (≼Id):

If S♯
lft = α0 · f 7→ α1

and S♯
rgh = β0 · f 7→ β1

and Ψ(α0, β0) = δ0, Ψ(α1, β1) = δ1, then:

S♯
lft ▽ S♯

rgh = δ0 · f 7→ δ1

If S♯
lft = α0 · list

and S♯
rgh = β0 · list1

and Ψ(α0, β0) = δ0, then:

S♯
lft ▽S♯

rgh = δ0 · list
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Standard static analysis algorithms Folding: widening and inclusion checking

Over-approximation of union: segment introduction rule

Rule

if
S♯

rgh

α

β0 β1 β0 β1
list

Ψ Ψ

S♯
lft

⊑
then


S♯

lft ▽ S♯
rgh = δ0 δ1

list

(α, β0)
Ψ←→ δ0

(α, β1)
Ψ←→ δ1

Application to list traversal, at the end of iteration 1:
before iteration 0:

l, c

α0
list

end of iteration 0:

l
β0

c
β1

β2

next

data

list

join, before iteration 1:

l
δ0

c
δ1

list

list

list
{

Ψ(α0, β0) = δ0
Ψ(α0, β1) = δ1
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Standard static analysis algorithms Folding: widening and inclusion checking

Over-approximation of union: segment extension rule

Rule

if
S♯

rgh

α0 α1

β0 β1 β0 β1

list

list
Ψ Ψ

S♯
lft

⊑
then


S♯

lft ▽S♯
rgh = δ0 δ1

list

(α0, β0)
Ψ←→ δ0

(α1, β1)
Ψ←→ δ1

Application to list traversal, at the end of iteration 1:
previous invariant before iteration 1:

l

α0

c
α1

list

list

list

end of iteration 1:

l
β0 β1

c
β2

β3

list

list
next

data

list

join, before iteration 1:

l
δ0

c
δ1

list

list

list
{

Ψ(α0, β0) = δ0
Ψ(α1, β2) = δ1
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Standard static analysis algorithms Folding: widening and inclusion checking

Over-approximation of union: rewrite system properties

Comparison, canonicalization and widening algorithms can be considered
rewriting systems over tuples of graphs
Success configuration: weakening applies on all components,
i.e., the inputs are fully “consumed” in the weakening process
Failure configuration: some components cannot be weakened
i.e., the algorithm should return the conservative answer (i.e., ⊤)

Termination
The systems are terminating
This ensures comparison, canonicalization, widening are computable

Non confluence !
The results depends on the order of application of the rules
Implementation requires the choice of an adequate strategy
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Standard static analysis algorithms Folding: widening and inclusion checking

Over-approximation of union in the combined domain

Widening of (e♯0, S
♯
0) and (e♯1, S

♯
1)

1 define Ψ, e by Ψ(α, β) = e(x) = δ (where δ is a fresh node) if and only if
e♯0(x) = α ∧ e♯1(x) = β

2 iteratively apply local over-approximation rules, and extend Ψ when new
relations are inferred (for instance for points-to edges)

3 return the result obtained when all regions of both inputs are approximated in
the output graph

This algorithm is sound:

Soundness
γ(e♯0,S

♯
0) ∪ γ(e♯1,S

♯
1) ⊆ γ(e♯,S♯)

Widening also enforces termination (it only introduces segments, and the growth
induced by the introduction of segments is bounded)
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Standard static analysis algorithms Abstract interpretation framework: assumptions and results

Assumptions

What assumptions do we make ?
How do we prove soundness of the analysis of a loop ?

Assumptions in the concrete level, and for block b:

(P(M),⊆) is a complete lattice, hence a CPO
F : P(M)→ P(M) is the concrete semantic (“post”) function of b

thus, the concrete semantics writes down as JbK = lfp∅F

Assumptions in the abstract level:

M♯ set of abstract elements, no order a priori
m♯ ::= (e♯,S♯)

γM : M♯ → P(M) concretization
F ♯ : M♯ →M♯ sound abstract semantic function

i.e., such that F ◦ γM ⊆ γM ◦ F ♯

▽ : M♯ ×M♯ →M♯ widening operator, terminates, and such that
γM(m

♯
0) ∪ γM(m

♯
1) ⊆ γM(m

♯
0 ▽m♯

1)

Xavier Rival (INRIA) Shape analysis abstractions Feb, 10th, 2025 66 / 94



Standard static analysis algorithms Abstract interpretation framework: assumptions and results

Computing a loop abstract post-condition

Loop abstract semantics
The abstract semantics of loop while(rand()){b} is calculated as the limit of the
sequence of abstract iterates below:{

m♯
0 = ⊥

m♯
n+1 = m♯

n ▽F ♯(m♯
n)

Soundness proof:
by induction over n,

⋃
k≤n F

k(∅) ⊆ γM(m♯
n)

by the property of widening, the abstract sequence converges at a rank N:
∀k ≥ N, m♯

k = m♯
N , thus

lfp∅F =
⋃
k

F k(∅) ⊆ γM(m
♯
N)
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Standard static analysis algorithms Abstract interpretation framework: assumptions and results

Discussion on the abstract ordering

How about the abstract ordering ? We assumed NONE so far...

Logical ordering, induced by concretization, used for proofs

m♯
0 ⊑ m♯

1 ::= ”γM(m
♯
0) ⊆ γM(m

♯
1)”

Approximation of the logical ordering, implemented as a function
is_le : M♯ ×M♯ → {true,⊤}, used to test the convergence of abstract
iterates

is_le(m♯
0,m♯

1) = true =⇒ γM(m
♯
0) ⊆ γM(m

♯
1)

Abstract semantics is not assumed (and is actually most likely NOT)
monotone with respect to either of these orders...

Also, computational ordering would be used for proving widening
termination
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Standard static analysis algorithms Comparing Separation Logic and Three-Valued logic abstractions

Separation logic

Separation logic formulas (main connectors only)

F ::= emp
| TRUE
| l 7→ l
| F0 ∗ F1
| F0 ∧ F1
| F0 −∗ F1

Concretization:
γ(emp) = E× {[]}
γ(TRUE) = E×H

γ(l 7→ v) = {(e, [JlK(e, h) 7→ v]) | e ∈ E}
γ(F0 ∗ F1) = {(e, h0 � h1) | (e, h0) ∈ γ(F0) ∧ (e, h1) ∈ γ(F1)}
γ(F0 ∧ F1) = γ(F0) ∩ γ(F1)

γ(F0 −∗ F1) = exercise

Program reasoning: frame rule and strong updates
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Standard static analysis algorithms Comparing Separation Logic and Three-Valued logic abstractions

Shape graphs and separation logic

Shape graphs: provide an efficient data-structure to describe a subset of
separation logic predicates, and do static analysis with them.

Important addition: inductive predicates.

Semantic preserving translation Π of graphs into separation logic formulas:

Graph S♯ ∈ D♯
sh Translated formula Π(S♯)

α β
f α · f 7→ β

S♯
0 S♯

1 Π(S♯
0) ∗ Π(S♯

1)

α
list

α · list
α δ

list

list
α · list_endp(δ)

other inductives and segments similar

Note that:
shape graphs can be encoded into separation logic formula
the opposite is usually not true
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Standard static analysis algorithms Comparing Separation Logic and Three-Valued logic abstractions

Comparing the structure of abstract formulae

Separation logic:

F0 ∗ F1 ∗ . . . ∗ Fn

first the heap is partitioned
each region is described separately
some of the Fi components may
be summary predicates, describing
unbounded regions
reachability is implicit
allows local reasoning

Three valued logic:

p0 ∧ p1 ∧ . . . ∧ pn

first a conjunction of properties
each predicate pi may talk about
any heap region
no direct heap partitioning
reachability can be expressed
(natively)
no local reasoning

Two very different sets of predicates
one allows local reasoning, the other not
the other way for reachability predicates
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Standard static analysis algorithms Comparing Separation Logic and Three-Valued logic abstractions

Summarization: one abstract cell, many concrete cells

Large / unbounded numbers of concrete cells need to be abstracted

Dynamic structures (lists, trees) have an unknown and unbounded number
of cells, hence require summarization
We also needed summaries to deal with arrays

Summary
A summary predicate allows to describe an unbounded number of memory
locations using a fixed, finite set of predicates

Principles underlying summarization:
in separation logic:
using inductive definitions for lists, trees...
unbounded size of the summarized region is hidden in the recursion
in three-valued logic:
summary nodes + high level predicates (such as reachability)
one summary node carries the properties of an unbounded number of cells
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Standard static analysis algorithms Comparing Separation Logic and Three-Valued logic abstractions

Concretize partially, update, abstract

For precise analysis, summaries need to be (temporarily) refined

Separation logic:

Local (partial) concretization
For materialization:

S♯pre

S♯pre,ref S♯post

unfold
(materialize)

f

Global abstraction: widening
S♯0 ▽S

♯
1

▽S♯0 S♯1

In both cases, two mechanisms are
needed:

1 refine summaries
2 synthesize summaries

TVLA:

Focus, analyze, canonicalize
S♯pre

Spre Spost

S♯post

partially
concretize

f

abstract
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Combining shape and value abstractions Shape and value properties

Shape and value properties

Common data-structures require to reason both about shape and data:
hybrid stores: data stored next to inductive structures
list of even elements:

68 24 0 112
&x 0x0

sorted list:
&x

8 9 33
0x0

list with a length constraint
tries: binary trees with paths labelled with sequences of “0” and “1”
balanced trees: red-black, AVL...

This part of the course:
how to express both shape and numerical properties ?
how to extend shape analysis algorithms
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Combining shape and value abstractions Shape and value properties

Description of a sorted list

Example: sorted list

&x
8 9 33

0x0

Inductive definition
Each element should be greater than the previous one
The first element simply needs be greater than −∞...
We need to propagate the lower bound, using a scalar parameter

α · lsortaux(n) := α = 0 ∧ emp
∨ α ̸= 0 ∧ n ≤ β ∧ α · next 7→ δ

∗ α · data 7→ β ∗ δ · lsortaux(β)

α · lsort() := α · lsortaux(−∞)
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Combining shape and value abstractions Shape and value properties

Adding value information (here, numeric)

Concrete numeric values appear in the valuation
thus the abstracting contents boils down to abstracting ν !

Example: all lists of length 2, sorted in the increasing order of data fields

Memory abstraction: α0

α1

α2

α3

α4

+0

+4

+0

+4

0x...a0
0x...a4

0x...b0
0x...b4 0x0

9

0x...b0
7

ν : α1 7→ 7
α3 7→ 9
. . . 7→ . . .

0x...a0
0x...a4

0x...b0
0x...b4 0x0

12

0x...b0
8

ν : α1 7→ 8
α3 7→ 12
. . . 7→ . . .

Abstraction of valuations: ν(α1) < ν(α3), can be described by the constraint
α1 < α3
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A first step towards a combined domain

Domains and their concretization:
shape abstract domain D♯

sh of graphs
abstract stores together with a physical mapping of nodes

γsh : D♯
sh → P((D

♯
sh →M)× (V♯ → V))

numerical abstract domain D♯
num, abstracts physical mapping of nodes

γnum : D♯
num → P(V♯ → V)

Combined domain [CR]

Set of abstract values: D♯ = D♯
sh × D♯

num

Concretization:

γ(S♯,N♯) = {(h , ν) ∈M | ν ∈ γnum(N
♯) ∧ (h , ν) ∈ γsh(S

♯)}

Can it be described as a reduced product ?
product abstraction: D♯ = D♯

0 × D♯
1 (componentwise ordering)

concretization: γ(x0, x1) = γ(x0) ∩ γ(x1)
reduction: D♯

r is the quotient of D♯ by the equivalence relation ≡ defined by
(x0, x1) ≡ (x ′0, x

′
1) ⇐⇒ γ(x0, x1) = γ(x ′0, x

′
1)
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Combining shape and value abstractions Shape and value properties

Formalizing the product domain

The use of a simple reduced product raises several issues

Elements without a clear meaning:

&t

α0

α1

α2

a

b

α1 ≤ α2
α2 ≤ α1 + α3

this element exists in the reduced product domain (independent components)
but, ... what is α3 ?

Unclear comparison:
How can we compare the two elements below ?

&t

α is even

α

next

data

leven

and &t
leven

in the reduced product domain, they are not comparable:
nodes do not match, so componentwise comparison does not make sense
when concretizing them, there is clear inclusion
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Combining shape and value abstractions Shape and value properties

Towards a more adapted combination operator

Reason why the reduced product construction does not work well:
the set of nodes / symbolic variables is not fixed
the set of dimensions in the numerical domain depends on the shape
abstraction

⇒ thus the product is not symmetric
however, the reduced product construction is symmetric

Intuitions
Graphs form a shape domain D♯

sh

For each graph S♯ ∈ D♯
sh, we have a numerical lattice D♯

num⟨S♯⟩
▶ example: if graph S♯ contains nodes α0, α1, α2, D♯

num⟨S♯⟩ should abstract
{α0, α1, α2} → V

An abstract value is a pair (S♯,N♯), such that N♯ ∈ D♯
num⟨N♯⟩
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Combining shape and value abstractions Combined abstraction with cofibered abstract domain

Cofibered domain

Definition, for shape + num

Basis: abstract domain (D♯
sh,⊑

♯), with concretization
γsh : D♯

sh → D
Function: ϕ : D♯

sh → D, where each element of D is an
abstract domain instance (D♯

num,⊑♯
num), with a

concretization γnum : D♯
num → D (tied to a shape

graph)
Domain D♯: set of pairs (S♯,N♯) where N♯ ∈ ϕ(S♯)

Concretization: γ(S♯,N♯) = γ(S♯) ∩ γ(N♯)

Lift functions: ∀S♯
0,S

♯
1 ∈ D♯

sh, such that S♯
0 ⊑♯ S♯

1, there
exists a function ΠS♯

0 ,S
♯
1
: ϕ(S♯

0)→ ϕ(S♯
1), that is

monotone for γS♯
0

and γS♯
1

S♯
0

S♯
1

S♯
2

D♯
num⟨S

♯
0⟩

D♯
num⟨S

♯
1⟩

D♯
num⟨S

♯
2⟩

General construction presented in [AV](Arnaud Venet)
Intuition: a dependent domain product
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Combining shape and value abstractions Combined abstraction with cofibered abstract domain

Overall abstract domain structure

Implementation exploiting the modular structure
Each layer accounts for one aspect of the concrete states
Each layer boils down to a module or functor in ML

shape abstract domain D♯
sh

S♯ abstracts sets of (h , ν)
value abstract domain D♯

num
N♯ abstracts sets of ν

combined shape-value abstract domain D♯
cof

(S♯,N♯) abstracts sets of (h , ν)

state abstract domain M♯

(e♯,S♯,N♯) abstracts sets of (e, h)

How about operations, transfer functions ? Also to be modularly defined
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Combining shape and value abstractions Combined abstraction with cofibered abstract domain

Domain operations

The cofibered structure allows to define standard domain operations:
ift functions allow to switch domain when needed
computations first done in the basis, then in the numerical domains, after
lifting, when needed

Comparison of (S ♯
0,N

♯
0) and (S ♯

1,N
♯
1)

1 First, compare S♯
0 and S♯

1 in D♯
sh

2 If S♯
0 ⊑♯ S♯

1, compare ΠS♯
0 ,S

♯
1
(N♯

0) and N♯
1

Widening of (S ♯
0,N

♯
0) and (S ♯

1,N
♯
1)

1 First, compute the widening in the basis S♯ = S♯
0 ▽S♯

1

2 Then move to ϕ(S♯), by computing N♯
0c = ΠS♯

0 ,S
♯(N

♯
0) and N♯

1c = ΠS♯
1 ,S

♯(N
♯
1)

3 Last widen in ϕ(S♯): N♯ = N♯
0c ▽S♯ N♯

1c

4 Return (S♯
0,N

♯
0)▽(S

♯
A,N

♯
1) = (S♯,N♯)
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Combining shape and value abstractions Combined analysis algorithms

Domain operations and transfer functions

Abstract assignments, condition tests:
need to modify both the shape abstraction and the value abstraction
both modification are interdependent

Typical process to compute abstract post-conditions
1 compute the post in the shape abstract domain and update the basis
2 update the value abstraction (numerics) to model dimensions additions and

removals
3 compute the post in the value abstract domain

Proofs of soundness of transfer functions rely on:
the soundness of the lift functions
the soundness of both domain transfer functions
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Combining shape and value abstractions Combined analysis algorithms

Analysis of an assignment in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env

&x α0 α1

&y α2 α3
lpos

N♯ = α1 ≥ 0 ∧ α3 ̸= 0x0

y -> d = x+ 1

Abstract post-condition ?
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Combining shape and value abstractions Combined analysis algorithms

Analysis of an assignment in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env

&x α0 α1

&y α2 α3
lpos

N♯ = α1 ≥ 0 ∧ α3 ̸= 0x0

y -> d = x+ 1 ⇒ (∗α2) · d = (∗α0) + 1

Abstract post-condition ?

Stage 1: environment resolution
replaces x with ∗e♯(x)
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Combining shape and value abstractions Combined analysis algorithms

Analysis of an assignment in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env

&x α0 α1

&y α2 α3
lpos

N♯ = α1 ≥ 0 ∧ α3 ̸= 0x0

(∗α2) · d = (∗α0) + 1

Abstract post-condition ?

Stage 2: propagate into the shape + numerics domain
only symbolic nodes appear
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Combining shape and value abstractions Combined analysis algorithms

Analysis of an assignment in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env

&x α0 α1

&y α2 α3
lpos

N♯ = α1 ≥ 0 ∧ α3 ̸= 0x0

(∗α2) · d = (∗α0) + 1

Abstract post-condition ?

Stage 3: resolve cells in the shape graph abstract domain
∗α0 evaluates to α1; ∗α2 evaluates to α3

(∗α2) · d fails to evaluate: no points-to out of α3
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Combining shape and value abstractions Combined analysis algorithms

Analysis of an assignment in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env

&x α0 α1

&y α2 α3
lpos

N♯ = α1 ≥ 0 ∧ α3 ̸= 0x0

(∗α2) · d = (∗α0) + 1

Abstract post-condition ?

Stage 4 (a): unfolding triggered
the analysis needs to locally materialize α3 · lpos...
thus, unfolding starts at symbolic variable α3
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Combining shape and value abstractions Combined analysis algorithms

Analysis of an assignment in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env

&x α0 α1

&y α2 α3

α4

α5

d

n
lpos

N♯ = α1 ≥ 0 ∧ α3 ̸= 0x0

(∗α2) · d = (∗α0) + 1

Abstract post-condition ?

Stage 4 (b): unfolding, shape part
unfolding of the memory predicate part
numerical predicates still need be taken into account
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Combining shape and value abstractions Combined analysis algorithms

Analysis of an assignment in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env

&x α0 α1

&y α2 α3

α4

α5

d

n
lpos

N♯ = α1 ≥ 0 ∧ α3 ̸= 0x0 ∧ α4 ≥ 0

(∗α2) · d = (∗α0) + 1

Abstract post-condition ?

Stage 4 (c): unfolding, numeric part
numerical predicates taken into account
l-value α3 · d now evaluates into edge α3 · d 7→ α4
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Combining shape and value abstractions Combined analysis algorithms

Analysis of an assignment in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env

&x α0 α1

&y α2 α3

α4

α5

d

n
lpos

N♯ = α1 ≥ 0 ∧ α3 ̸= 0x0 ∧ α4 ≥ 0

create node α6

&x α0 α1

&y α2 α3

α4

α5

α6d

n
lpos

N♯ = α1 ≥ 0 ∧ α3 ̸= 0x0 ∧ α4 ≥ 0

Stage 5: create a new node
new node α6 denotes a new value
will store the new value
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Combining shape and value abstractions Combined analysis algorithms

Analysis of an assignment in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env

&x α0 α1

&y α2 α3

α4

α5

d

n
lpos

N♯ = α1 ≥ 0 ∧ α3 ̸= 0x0 ∧ α4 ≥ 0

α6 ← α1 + 1 in numerics

&x α0 α1

&y α2 α3

α4

α5

α6d

n
lpos

N♯ = α1 ≥ 0 ∧ α3 ̸= 0x0 ∧ α4 ≥ 0 ∧ α6 ≥ 1

Stage 6: perform numeric assignment
numeric assignment completely ignores pointer structures
to the new node
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Combining shape and value abstractions Combined analysis algorithms

Analysis of an assignment in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env

mutate (α3 · d) 7→ α4 into α6

&x α0 α1

&y α2 α3

α4

α5

α6d

n
lpos

N♯ = α1 ≥ 0 ∧ α3 ̸= 0x0 ∧ α4 ≥ 0 ∧ α6 ≥ 1

Stage 7: perform the update in the graph
classic strong update in a pointer aware domain
symbolic node α4 becomes redundant and can be removed
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Combining shape and value abstractions Combined analysis algorithms

Widening / join in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env &x α0 α1

α2

α3

&y α4 α5

d

n
lpos

N♯
lft = α2 ≥ α5 ≥ 2

&x β0 β1

&y β2 β3

lpos

N♯
rgh = β3 ≥ 1
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Combining shape and value abstractions Combined analysis algorithms

Widening / join in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env &x α0 α1

α2

α3

&y α4 α5

d

n
lpos

N♯
lft = α2 ≥ α5 ≥ 2

&x β0 β1

&y β2 β3

lpos

N♯
rgh = β3 ≥ 1

&x δ0

&y δ1

Ψ(α0, β0) = δ0
Ψ(α4, β2) = δ1

Stage 1: abstract environment
compute new abstract environment and initial node relation
e.g., α0, β0 both denote &x
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Combining shape and value abstractions Combined analysis algorithms

Widening / join in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env &x α0 α1

α2

α3

&y α4 α5

d

n
lpos

N♯
lft = α2 ≥ α5 ≥ 2

&x β0 β1

&y β2 β3

lpos

N♯
rgh = β3 ≥ 1

&x δ0

&y δ1

Ψ(α0, β0) = δ0
Ψ(α4, β2) = δ1

Stage 2: join in the “cofibered” layer
operations to perform:

1 compute the join in the graph
2 convert value abstractions, and join the resulting lattice
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Combining shape and value abstractions Combined analysis algorithms

Widening / join in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env &x α0 α1

α2

α3

&y α4 α5

d

n
lpos

N♯
lft = α2 ≥ α5 ≥ 2

&x β0 β1

&y β2 β3

lpos

N♯
rgh = β3 ≥ 1

&x δ0

&y δ1

δ2
Ψ(α0, β0) = δ0
Ψ(α4, β2) = δ1
Ψ(α1, β1) = δ2

Stage 2: graph join
apply local join rules
ex: points-to matching, weakening to inductive...
incremental algorithm
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Widening / join in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env &x α0 α1

α2

α3

&y α4 α5

d

n
lpos

N♯
lft = α2 ≥ α5 ≥ 2

&x β0 β1

&y β2 β3

lpos

N♯
rgh = β3 ≥ 1

&x δ0

&y δ1

δ2

δ3

Ψ(α0, β0) = δ0
Ψ(α4, β2) = δ1
Ψ(α1, β1) = δ2
Ψ(α5, β3) = δ3

Stage 2: graph join
apply local join rules
ex: points-to matching, weakening to inductive...
incremental algorithm
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Combining shape and value abstractions Combined analysis algorithms

Widening / join in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env &x α0 α1

α2

α3

&y α4 α5

d

n
lpos

N♯
lft = α2 ≥ α5 ≥ 2

&x β0 β1

&y β2 β3

lpos

N♯
rgh = β3 ≥ 1

&x δ0

&y δ1

δ2

δ3

lpos Ψ(α0, β0) = δ0
Ψ(α4, β2) = δ1
Ψ(α1, β1) = δ2
Ψ(α5, β3) = δ3

Stage 2: graph join
apply local join rules
ex: points-to matching, weakening to inductive...
incremental algorithm
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Combining shape and value abstractions Combined analysis algorithms

Widening / join in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env &x α0 α1

α2

α3

&y α4 α5

d

n
lpos

N♯
lft = α2 ≥ α5 ≥ 2

&x β0 β1

&y β2 β3

lpos

N♯
rgh = β3 ≥ 1

&x δ0

&y δ1

δ2

δ3

lpos

N♯
⊔ = [δ3 ≥ 2] ⊔ [δ3 ≥ 1]

Ψ(α0, β0) = δ0
Ψ(α4, β2) = δ1
Ψ(α1, β1) = δ2
Ψ(α5, β3) = δ3

Stage 3: conversion function application in numerics
remove nodes that were abstracted away
rename other nodes
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Combining shape and value abstractions Combined analysis algorithms

Widening / join in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env &x α0 α1

α2

α3

&y α4 α5

d

n
lpos

N♯
lft = α2 ≥ α5 ≥ 2

&x β0 β1

&y β2 β3

lpos

N♯
rgh = β3 ≥ 1

&x δ0

&y δ1

δ2

δ3

lpos

N♯
⊔ = [δ3 ≥ 1]

Ψ(α0, β0) = δ0
Ψ(α4, β2) = δ1
Ψ(α1, β1) = δ2
Ψ(α5, β3) = δ3

Stage 4: join in the numeric domain
apply ⊔ for regular join, ▽ for a widening
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Conclusion

Updates and summarization

Weak updates cause significant precision loss...
Separation logic makes updates strong

Separation logic
Separating conjunction combines properties on disjoint stores

Fundamental idea: ∗ forces to identify what is modified
Before an update (or a read) takes place, memory cells need to be
materialized
Local reasoning: properties on unmodified cells pertain

Summaries
Inductive predicates describe unbounded memory regions

Last lecture: array segments and transitive closure (TVLA)

Xavier Rival (INRIA) Shape analysis abstractions Feb, 10th, 2025 91 / 94



Conclusion

Bibliography

[JR]: Separation Logic: A Logic for Shared Mutable Data Structures.
John C. Reynolds.
In LICS’02, pages 55–74, 2002.

[DHY]: A Local Shape Analysis Based on Separation Logic.
Dino Distefano, Peter W. O’Hearn and Hongseok Yang.
In TACAS’06, pages 287–302.

[CR]: Relational inductive shape analysis.
Bor-Yuh Evan Chang and Xavier Rival.
In POPL’08, pages 247–260, 2008.

Xavier Rival (INRIA) Shape analysis abstractions Feb, 10th, 2025 92 / 94



Conclusion

Assignment and paper reading

The Frame rule:

formalize the Hoare logic rules for a language with pointer assignments and
condition tests
prove the Frame rule by induction over the syntax of programs

Reading:

Separation Logic: A Logic for Shared Mutable Data Structures.
John C. Reynolds.
In LICS’02, pages 55–74, 2002.

Formalizes the Frame rule, among others
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Conclusion

Assignment: a simple analysis in Separation Logic (after
TVLA)

l, k assumed to be disjoint lists

while(l ̸= 0){

t = l -> n;

l -> n = k;

k = l;

l = t;

}
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