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Introduction

Security

What does “security” mean ?

There are many examples of “potential security issues”:
Leakage of sensitive information:
an unauthorized user is able to retrieve or even just guess critical information
Code injection:
a user succeeds in getting malicious code executed with a high privilege (and
can corrupt data or take control of the system)
Authentication breach:
a malicious user pretends to be another user

“Security” is a rather general and vague term.
We need to be more specific on what it means.

Rough intuition (that we will formalize):
safety issue, e.g., runtime error: failure in presence of just the environment
security issue: failure resulting from (malicious) deliberate user action

Note: some security issues stem from safety related problems
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Introduction

Objectives of this course

1 Understand the difficulty inherent in security properties:
In general, security properties are significantly harder to reason about than
safety properties

2 Introduce hyperproperties:
A more general framework than the trace properties we are used to, which
can express many relevant program properties

3 Describe a few abstractions for security:
▶ extension of abstractions for safety
▶ specific abstractions

In one class, we can only provide an introduction to the field.
Our goal is to understand the main problems.
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Non-interference

Notations

We focus on imperative programs viewed as transition systems:
set of control states: L (program points)
set of variables: X (all assumed globals)
set of values: V
set of memory states: M
set of states: S = L×M and initial states Si ⊆ S
transition relation: (→) ⊆ S× S, assumed deterministic

Semantics:
reachable states: JPKR ⊆ S
finite execution traces: JPKT ∗ ⊆ S∗

denotational semantics: JPKF : S −→ P(S)
where JPKF (σ) = {σ′ ∈ S | σ →∗ σ′}
Given l , l ′ ∈ L, we also let JPKF [l ,l ′] : M −→ P(M) be defined by
JPKF [l ,l ′](m) = {m ′ ∈ M | (l ,m) →∗ (l ′,m ′)}.

For us today, most of the time we use the denotational semantics.
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Non-interference

Non-interference

Among the many possible security properties, we choose one, that is very
representative.
It describes the fact that some secret information should not be guessed
(directly or indirectly) by any unauthorized user.

Non-interference (informal definition)
Notations: X = Xpub ⊎ Xsec where,

Xpub: public variables, observed by anybody
(also called “low”, i.e., it requires only a low authorization)
Xsec: secrete variables, should not be observed by anybody, save authorized
users (also called “high”, i.e., high authorization)

We say that a program P satisfies the non-interference property defined by
Xpub,Xsec if and only if any execution of the program where one can only observe
the values of the variables in Xpub does not allow to derive any information about
the values of the variables in Xsec.

This definition is quite informal, and we will make it precise and formal soon.
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Non-interference

Example of program violating non-interference

Let us consider the program below:

int s; // private variable, should be secure
int i; // public variable, can be seen by anybody

s = private_computation( ); // should remain secret

i = s + 8;
// anyone can observe i here!

We should let:
Xpub = {i}
Xsec = {s} (for readability we will write s for the private variable that should
remain secure)

This program clearly violates non-interference.

If we know the final value of i we can subtract 8 and derive the value of s
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Non-interference

Example of program satisfying non-interference

We now consider the program below, with the same Xpub,Xsec:

int s; // private variable, should be secure
int i; // public variable, can be seen by anybody

s = private_computation( ); // should remain secret

i = user_input( ) + 8;
// anyone can observe i here!

This program satisfies non-interference.

The final value of i is computed in a way that is never influenced by that
of s (the user input ignores the value of s at this point).

Xavier Rival (INRIA) Analysis of security properties Feb, 10th, 2024 8 / 70



Non-interference

A few more subtle cases

We use the same conventions (with variables i, s).

Program 1: non-interference violated

// ... as before, s stores the secret
if( s == 7 )

i = 1;
else

i = -1;

There is an implicit
information flow. If we observe
that i is 1, we know exactly
what s is.

Program 2: non-interference violated

s = 8 / s;
i = 5;

Again, there is an implicit
information flow. If we observe
a crash (no value for i), we
know that s = 0.

Program 3: non-interference satisfied

i = 0 * s;

There is no information flow.
Indeed, i is 0 regardless...

In the following, we need to formalize and characterize non-interference
before we can actually reason about it.
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Non-interference

Non-interference

A couple of caveats:
termination may change observation (though we cannot positively observe
non-termination)
errors may change observation too

For the sake of simplicity, we ignore these and consider termination insensitive
non-interference and assume no error may arise and restrict to terminating
executions.
In the following, we still call this notion non-interference.
Observation point: we search whether public variables observed at end point
l⊣ reveal anything about private variables observed at entry point l⊢.

Non-interference (formal definition)
We say that a program P satisfies the non-interference property defined by
Xpub/l⊣,Xsec/l⊢ if and only if for all memory states m0,m1 ∈ M,

(∀x ∈ Xpub, m0(x) = m1(x))
=⇒ (∀x ∈ Xpub, JPKF [l ⊢,l ⊣](m0)(x) = JPKF [l ⊢,l ⊣](m1)(x))
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Non-interference

Non-interference: about the definition

Non-interference (formal definition)
We say that a program P satisfies the non-interference property defined by
Xpub/l⊣,Xsec/l⊢ if and only if for all memory states m0,m1 ∈ M,

(∀x ∈ Xpub, m0(x) = m1(x))
=⇒ (∀x ∈ Xpub, JPKF [l ⊢,l ⊣](m0)(x) = JPKF [l ⊢,l ⊣](m1)(x))

Non-determinism:
taken into accout by the definition; JPK may return a set made of several
elements
Non-termination:
when modifying the secret may change termination, non-interfernce may still
hold provided the same set of possible terminating outputs can be observed...
option: augment the semantics and return a special state/value ω in case of
non-termination
Probabilistic behavior ignored:
would require considering distributions over states/values
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Non-interference

Dependence

When non interference does not hold, we may also say there exists a dependence.

Dependences have many applications beyond security:
program understanding and maintenance:
explain how some specific variable is computed
slicing tools
split a program into several independent programs:
e.g., for parallelization

(we do not discuss these today)
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Specificities of security properties Properties as sets
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Specificities of security properties Properties as sets

Semantics

We have seen three semantics, that are comparable:
trace semantics is the most precise and informative
i.e., the denotational semantics can be computed from it
then denotational semantics is more precise than reachable states
i.e., the reachable states semantics can be computed from it

Before we formalize and study non-interference,
we recall a few important points about trace properties.

To study hierarchies of properties, the most expressive semantics is more adapted.

Recall:
finite traces semantics JPKT ∗ ⊆ S∗
expressed as a least fixpoint
infinite traces semantics JPKT ω ⊆ Sω
expressed as a greatest fixpoint
all traces semantics JPKT ∗ω ⊆ S∗ω = S∗ ⊎ Sω
(JPKT ∗ω = JPKT ∗ ⊎ JPKT ω )
can also be expressed as a fixpoint, by fixpoint combination technique
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Specificities of security properties Properties as sets

Semantic properties as sets of behaviors

We consider the following model:
a semantic property is described by the set of behaviors that are compliant
with
a program satisfies such a property if and only if all the behaviors of the
program are compliant with the property, i.e., are elements of the set
describing the property

Direct formalization:

Definition: semantic property (or verification goal)
Assuming program behaviors range in set S, a semantic property is a set
G ⊆ S.
Given program P, then P satisfies G if and only if:

∀b ∈ JPKS , b ∈ G

or equivalently,
JPKS ⊆ G

Let us see some examples...
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Specificities of security properties Properties as sets

Examples

Unreachability of certain states Q ⊆ S:
set property S \ Q

i.e., we want to show JPKR ⊆ S \ Q
trace property (S \ Q)∗ω

i.e., we want to show JPKT ∗ω ⊆ (S \ Q)∗ω

classical case 1: Q corresponds to error states or dangerous states (absence
of runtime errors)
classical case 2: Q corresponds to exit state that violate some exit condition
(partial correctness)

Termination:
trace property (S)∗

i.e., we want to show JPKT ∗ω ⊆ (S)∗

or, equivalently that JPKT ω ⊆ ∅ (i.e., P has no infinite trace)

Depending on property kinds, specific proof methods/analysis methods apply...
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Specificities of security properties Significant sets of properties
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Specificities of security properties Significant sets of properties

Safety properties

Informal definition:

A safety property is a semantic property such that,
when it does not hold, it admits a finite counter-example trace

Intuitively, we can test a safety property on a trace and be able to say after a
finite session whether this trace is a counter-example or not.

Definition: safety property
A trace property G ⊆ S∗ω is a safety property if and only if:

∀T ⊆ S∗ω, T ̸⊆ G =⇒ ∃σ ∈ S∗, ∃σ′ ∈ S∗ω, σ · σ′ ∈ T , ∧ ∀σ′′ ∈ S∗, σ · σ′′ ̸∈ G

If we let T = JPKT ∗ω , we recover the informal definition.

Remarks:
infinite traces do not matter, thus we can consider JPKT ∗ instead of JPKT ∗ω ;
if we could enumerate all finite traces of P we can decide whether it satisfies
safety property G .
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Specificities of security properties Significant sets of properties

Examples of safety properties

State properties are safety properties:
let us consider the state property G ⊆ S
then if we consider traces,

JPKR ⊆ G ⇐⇒ JPKT ∗ ⊆ G∗ which is safety

proof left as exercise
consequence:
absence of runtime errors and functional correctness are safety

But many interesting safety properties are not state properties:
let σ ∈ S
consider G defined by ⟨σ0, . . . , σn⟩ ∈ G ⇐⇒ Card({i ∈ N | σi = σ}) ≤ 1
i.e., a trace is correct if and only if it cannot visit σ twice
we can show that G is a safety property
based on the states it visits, one cannot say whether a trace meets it
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Specificities of security properties Significant sets of properties

Proof method for safety

We consider a program P with initial states Si and transition relation →:

Principle of invariance proofs
Let I be a set of finite traces; it is said to be an invariant if and only if:

∀σ ∈ SI , ⟨σ⟩ ∈ I
∀⟨σ0, . . . , σn⟩ ∈ I, ∀σn+1 ∈ S, σn → σn+1 =⇒ ⟨σ0, . . . , σn+1⟩ ∈ I

It is stronger than G if and only if I ⊆ G .

The “by invariance” proof method is based on finding an invariant that is
stronger than T .

This proof method always works (theorem proof left as an exercise):

Theorem: soundness and completeness
A safety property G holds if and only if there exists an invariant stronger than G .

But, finding a suitable invariant I is often very difficult (especially automatically)
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Specificities of security properties Significant sets of properties

Liveness properties

Informal definition, a form of dual of safety:

A liveness property is a semantic property such that any finite execution may be
extended into a correct one; thus, it has no finite counter-example

Canonical example: termination
after finitely many steps of an unfinished execution, we cannot say for sure
whether the program is about to terminate or will never terminate...
consequence: testing will not produce counterexample for termination
hack: search for repeating states in finite executions

but this is changing the problem and will not capture all cases of NT

Definition: liveness property
A trace property G ⊆ S∗ω is a liveness property if and only if:

∀σ ∈ S∗, ∃σ′ ∈ S∗ω, σ · σ′ ∈ G

Termination:
G = S∗, i.e., there should be no infinite trace
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Specificities of security properties Significant sets of properties

Proof method for liveness

There exists also a proof method for liveness properties, which is also sound
and complete.

We only sketch the case of termination since the general proof principle is long
to describe and similar in spirit...

Definition: ranking function
A ranking function for program P is a function ϕ : S∗ −→ E , where E with
partial order ⪯ is a well-founded ordering (no infinite decreasing chains) and the
ranking property below holds:

∀⟨σ0, . . . , σn⟩, ∀σn+1 ∈ S,
σn → σn+1 =⇒ ϕ(⟨σ0, . . . , σn+1⟩) ≺ ϕ(⟨σ0, . . . , σn⟩)

This is the basis for proof methods that reduce the search of a variant (like a
ranking function) to that of an invariant, but for a different program.
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Specificities of security properties Significant sets of properties

Decomposition of trace properties

Theorem: decomposition (see [Alpern & Schneider 87])
Let G ⊆ S∗ω; it can be decomposed into the conjunction of a safety property
Gs and a liveness property Gl :

G = Gs ∩ Gl

Proof:
it is actually systematic and constructive
i.e., it describes precisely how both Gs and Gl can be defined
see the paper for details (part of recommended reading assignment)

Application: how to verify any trace property G
1 decompose it into G = Gs ∩ Gl where Gs is a safety property and Gl a

liveness property
2 search for an invariant to prove Gs
3 search for a variant to prove Gl

Example: total correctness
Gs : absence of crashes + partial correctness and Gl : termination
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Specificities of security properties Significant sets of properties

Status so far

Trace properties
total correctness

Safety properties
never reach s0 before s1

Liveness properties
termination

State properties
absence or runtime errors
partial correctness

actually there is a small interaction between safety and liveness
proof methods exist for all these
we can search for invariants by static analysis...
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Specificities of security properties Non interference is not a trace property

Outline

1 Introduction

2 Non-interference

3 Specificities of security properties
Properties as sets
Significant sets of properties
Non interference is not a trace property

4 Hyperproperties

5 Dependence analysis for non-interference

6 Relational reasoning over non-interference

7 Conclusion

Xavier Rival (INRIA) Analysis of security properties Feb, 10th, 2024 25 / 70



Specificities of security properties Non interference is not a trace property

Refinement: monotonicity over behaviors and properties

Monotonicity over properties
Let T0,T1 be two trace properties such that T0 ⊆ T1.
Let P be a program. Then:

If P satisfies T0, then P satisfies T1.

obvious consequence of the definition using ⊆
intuitively, a property that consist of fewer behaviors is stronger

Monotonicity over program behaviors
Let P0,P1 be two programs such that JP0KT ∗ω ⊇ JP1KT ∗ω .
Let T be a trace property. Then:

If P0 satisfies T , then P1 satisfies T .

again, obvious consequence of the definition using ⊆
intuitively, a program with fewer behaviors satisfies more properties.

Monotonicity over program behaviors also holds if we consider J.KR or J.KF [.,.]

instead of J.KT ∗ω
Xavier Rival (INRIA) Analysis of security properties Feb, 10th, 2024 26 / 70



Specificities of security properties Non interference is not a trace property

Two (contrived) examples programs and non-interference

A few simplifying assumptions (it is hard to do simpler...):
only two variables s, x, with s private and x public
thus Xpub = {x} and Xsec = {s}
only two values V = {0, 1}
for clarity we write (m(s),m(x)) for the memory state m

We consider P0,P1 with the denotational semantics below

JP0KF [l ⊢,l ⊣] : (0, 0) 7−→ M
(0, 1) 7−→ M
(1, 0) 7−→ M
(1, 1) 7−→ M

JP1KF [l ⊢,l ⊣] : (0, 0) 7−→ M
(0, 1) 7−→ M
(1, 0) 7−→ {(1, 1)}
(1, 1) 7−→ {(1, 1)}

Observations:
P0 satisfies non-interference:
whatever the private input, the public output is always 1, thus there is no
way to learn anything about the secret
P1 violates non-interference:
when the public output is 0, we know the private input cannot be 1
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Specificities of security properties Non interference is not a trace property

Non interference is not a trace property

Let us put it all together:
P0 has more behaviors than P1

P0 satisfies non-interference
thus, if non-interference was a trace property then P1 should satisfy
non-interference
but P1 violates non-interference

Conclusion:

Non-interference is not a trace property.

i.e., we cannot characterize non-interference by a set of “non-interfering”
executions...

Consequences:
we cannot decompose it into safety/liveness and apply existing proof
methods, and apply directly previously shown static analysis methods
we need to study different techniques
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Hyperproperties

Moving to sets of sets of behaviors

We first search for how to characterize non-interference (and related security
properties):

Definition: semantic hyperproperty
Assuming program behaviors range in set S a semantic hyperproperty, a
semantic property is a set of sets G ⊆ P(S).
Given program P, then P satisfies G if and only if:

JPKS ∈ G

Important differences with everything we have seen so far:
all executions of the program are considered at once
i.e., adding or removing one trace may invalidate the property of the whole
set
known proof methods/static analysis techniques break
i.e., we cannot check execution traces one by one (by testing)
i.e., we cannot rely on an over-approximation of JPKS

(that could be computed by static analysis)
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Hyperproperties

Properties as hyperproperties

Lemma
Any trace property can be described by a semantically equivalent
hyperproperty.

Indeed, let T ⊆ S∗ω be a trace property and P a program. Then:

P satisfies T ⇐⇒ JPKT ∗ω ⊆ T
⇐⇒ JPKT ∗ω ∈ P(T )

Thus property T describes the same program as hyperproperty P(T ) (powerset
induces a downwards closure on hyperproperties).

Note that:
the monotonicity results do not hold for hyperproperties
for specific pairs of hyperproperties, we may of course observe a monotone
behavior, e.g. for hyperproperties induced by properties.
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Hyperproperties

Non-interference

To express non-interference on traces we need to abstract traces into
input-output functions:

Φ : S∗ω −→ (M −→ P(M))
T 7−→ λm · {m ′ ∈ M, ⟨(l⊢,m), . . . , (l⊣,m ′)⟩ ∈ T}

We can now define non-interference as an hyperproperty:

N = {T ∈ P(S∗ω) |
∀m0,m1 ∈ M, (∀x ∈ Xpub, m0(x) = m1(x))
=⇒ ∀x ∈ Xpub, Φ(T )(m0)(x) = Φ(T )(m1)(x)

This definition captures the non-interference property:
whenever two initial memories agree on public variables

then corresponding final states should agree on private variables.

Examples (continued):
JP0KT ∗ω ∈ N
JP1KT ∗ω ̸∈ N
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Hyperproperties

Average execution time

We temporarily make a few limiting assumptions on programs:
we consider only terminating programs
we consider only programs with finitely many complete executions
complete executions: from entry control state l⊢ to exit control state l⊣

Given a set of traces T ∈ P(S∗), we define:

Avg_len(T ) =
1
|T |

∑
σ∈T

length(σ)

where length returns the length of a trace.

Average execution time lower than k ∈ N (clearly not a trace property):

Ak = {T ∈ P(S∗) | Avg_len(T ) ≤ k}

Generalization:
with some measure theory, we can extend similar properties to infinite sets
of program traces
we can also let programs have some infinite traces, and consider only the
finite ones
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Hyperproperties

Interesting families of hyperproperties

Can we divide the set of hyperproperties in interesting sub-classes ?

Hierarchy inspired by the safety/liveness division,
and more precisely how can a hyperproperty be disproved:

hypersafety:
can always be disproved using a finite set of finite traces

k-safety:
can always be disproved using a set of at most k finite traces
clearly:

k-safety hyperproperties are also k + 1-safety
k-safety hyperproperties are also hypersafety

hyperliveness:
disproving them requires looking at infinite traces or infinite sets of traces

We now formalize some of these sets more in detail...
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Hyperproperties

Hypersafety

The idea is to extend safety, except that the observation is limited to finite sets
finite traces, instead of just finite traces.

Extension of an observation:
Given T ,T ′ ⊆ S∗ω, we say that T ′ extends T and note T ≤ T ′ if and only if:

∀σ ∈ T , ∃σ′ ∈ S∗ω, σ · σ′ ∈ T ′

Definition: hypersafety
Let G ∈ P(P(S∗ω)) be a hyperproperty. Then, we say that G is a hypersafety
property if and only if for all T ∈ P(S∗ω), if T does not satisfy G, then

∃M ⊆ S∗,

 M is a finite set
∧ M ≤ T
∧ ∀T ′ ⊆ S∗ω, M ≤ T ′ =⇒ T ′ ̸∈ G

Examples:
absence of runtime errors (counter-example: one crashing trace)
non-interference (counter-example: two traces revealing leak)
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Hyperproperties

k-safety

Hypersafety is not very specific, as counter-examples can be arbitrarily large.
Additional (parametric) restriction: the number of traces in the counter-example.

Definition: k-safety
Let G ∈ P(P(S)) be a hyperproperty. Then, we say that G is a k-safety property
if and only if for all T ∈ P(S∗ω), if T does not satisfy G, then

∃M ⊆ S∗,

 M has at most k elements
∧ M ≤ T
∧ ∀T ′ ⊆ S∗ω, M ≤ T ′ =⇒ T ′ ̸∈ G

Interesting examples:
all safety properties are 1-safety

i.e., counter-examples consist only of one offending finite trace this
includes the absence of runtime errors
non-interference:

i.e., by the definition a counter-example is made of two finite traces
k-safety is included in k + 1-safety
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Hyperproperties

Hyperliveness

Intuition behind liveness: finite observations are not counter-examples.

We can extend this intuition here, except that a finite observation is now any
finite set of finite execution traces:

Definition: hyperliveness
Let G ∈ P(P(S)) be a hyperproperty. Then, we say that G is a hyperliveness
property if and only if

∀T ⊆ P(S∗), T finite =⇒ ∃T ′ ⊆ P(S∗ω),
{

T ≤ T ′

∧ T ′ ∈ G

Example: termination due to the need to look at infinite traces

Example:
the average run-time is less than N steps
indeed, any finite set of executions may be extended with enough short ones
to bring down the average.
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Hyperproperties

Decomposition of hyperproperties

We can also extend the Alpern & Schneider decomposition theorem:

Decomposition theorem
Let G ∈ P(P(S∗ω)) be a hyperproperty. Then, there exist

a hypersafety property Gs and
a hyperliveness property Gl

such that:
G = Gs ∩ Gl

see [Clarkshon & Schneider 2008]
no general proof method for hyperproperties...
unlike the framework of trace properties
in the following of this class, though 2-safety is enough
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Dependence analysis for non-interference Semantics for non-interference

From traces to sets of traces in the semantics

Observations so far:
typical semantics describe sets of behaviors
and are based on fixpoint definitions
abstract interpretation builds upon abstraction and fixpoint definition
hence, it allows to over-approximate sets of behaviors
in the case of non-interference, over-approximating sets of behaviors is
not useful
the same goes for any hyperproperty that is not a trace property...

We need a technique to conservatively reason over hyperproperties

We are going to consider two approaches:
1 lifting the semantics to sets of sets of traces
2 re-expressing the hyperproperties that we are interested in

Each will yield some interesting kinds of analyses
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Dependence analysis for non-interference Semantics for non-interference

A very basic language

In the following, we study a very basic imperative language, to describe a static
analysis based on a semantics defined in terms of sets of sets:

as before, we assume finitely many variables X and a set set of base type
values V
expressions:

e ::= v base type value
| x variable
| e0 ⊕ e1 binary operation ⊕

commands:
s ::= x := e assignment

| skip do nothing
| s0; s1 sequence
| if(e0) s1 else s2 condition
| while(e0) s1 loop

non-determinism occurs only at the beginning of program execution
once the initial state is set up, no non-determinism occurs
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Dependence analysis for non-interference Semantics for non-interference

Dependence analysis: intuition

Example:
x = . . . ;
y = 2 ∗ x+ 3;
z = a+ b;
t = y ∗ x;

y is computed from x;
t is computed from x and y, also computed from x
so t depends only on x

z is computed from a and b, which have no connection with x
so z does not depend on x

Basic idea of dependence analysis
For each variable, compute a set of variable that it may depend on.

As usual, we compute an over-approximation of actual dependencies
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Dependence analysis for non-interference Semantics for non-interference

Denotational semantics

Semantics of expressions (JeK : M −→ V):

JvK(m) = v JxK(m) = m(x) Je0 ⊕ e1K(m) = Je0K(m)⊕̄Je1K(m)

Semantics of commands (JsKD : S ⊎ {⊥} −→ S ⊎ {⊥}):

JsKD(⊥) = ⊥
Jx := eKD(m) = m[x 7→ JeK(m)])

JskipKD(m) = m
Js0; s1KD(m) = Js1KD ◦ Js0KD(m)

Jif(e0) s1 else s2KD(m) =

{
Js1KD(m) if JeK(m) = true
Js2KD(m) if JeK(m) = false

Jwhile(e0) s1KD(m) = (lfpF )(m) where

F (ϕ) :

 ⊥ 7→ ⊥

m 7→
{

ϕ ◦ Js1KD(m) if JeK(m) = true
m if JeK(m) = false

Exercise: which lattice to use for iteration ?
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Dependence analysis for non-interference Semantics for non-interference

A second semantics, computing relations

We are interested in input-output relations:
standard JsKD: maps input memory state into output memory state
to obtain more general statements: functions over such pairs

1 JPKrel inputs (m0,m1), assumes that a previous run from m0 led to m1
2 it computes the effect of P from there, we assume the result is m2
3 then, it returns the new pair (m0,m2) ∈ F = M×M

Semantics of commands (JsKF : F ⊎ {⊥} −→ F ⊎ {⊥}):

JsKF (⊥) = ⊥
Jx := eKF (m0,m1) = (m0,m1[x 7→ JeK(m1)])

JskipKF (m0,m1) = (m0,m1)
Js0; s1KF (m0,m1) = Js1KF ◦ Js0KF (m0,m1)

Jif(e0) s1 else s2KF (m0,m1) =

{
Js1KF (m0,m1) if JeK(m1) = true
Js2KF (m0,m1) if JeK(m1) = false

Jwhile(e0) s1KF (m0,m1) = lfpG
where G is left as an exercise
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Dependence analysis for non-interference Semantics for non-interference

Relation between semantics

We have defined:
A semantics on states:

JsKF : S ⊎ {⊥} −→ S ⊎ {⊥}

A semantics on relations:

JsKF : F ⊎ {⊥} −→ F ⊎ {⊥}

Properties
If JsKD(m1) = m2, then JsKF (m0,m1) = (m0,m2)

If JsKD(m1) = ⊥, then JsKF (m0,m1) = (m0,⊥)
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Dependence analysis for non-interference Semantics for non-interference

Non-interference

We can express non-interference directly.
Assumption: Xpub,Xsec are given.
We let the following equivalence relation describe memory agreement on any
given set of variables X :

notation: m0 ≡X m1

condition:
m0 ≡X m1 ⇐⇒ ∀x ∈ X , m0(x) = m1(x)

Non-interference at the relational semantics level
Program P satisfies non-interference if and only if

∀m0,m ′
0,m1,m ′

1 ∈ M,
m0 ≡Xpub m ′

0
∧ JPKF (m0,m0) = (m0,m1)
∧ JPKF (m ′

0,m ′
0) = (m ′

0,m ′
1)

 =⇒ m1 ≡Xpub m ′
1

Remark: we could work out similar definitions with full traces rather than
relations...
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Dependence analysis for non-interference Hypercollecting semantics

Towards a non-standard semantics

Base semantics:
we have defined JsKF : F ⊎ {⊥} −→ F ⊎ {⊥}
let δM = {(m ,m) | m ∈ M}
then, JsKF (δM) describes exactly the input/output pairs of s
as observed, over-approximating this set of pairs is of no use to prove
non-interference, thus we turn to a new semantics

Hypercollecting semantics:
goal: compute a set of set of pairs...
thus, we let JsKH : P(P(F)) −→ P(P(F)) and ∆M = {δM | M ∈ P(M)}
then, JsKH(∆M) computes the set of sets of input/output pairs, for any set
of inputs

We will set up the definition of J.KH so as to meet the following two conditions:

1 for all s and for all F ∈ P(F), the definition of JsKH is such that
(JsKF (F ) ∩ F) ∈ JsKH({F}) (i.e., removing traces ending in ⊥)

2 J.KH is adapted for abstract interpretation, i.e., can be over-approximated
in an inductive manner
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Dependence analysis for non-interference Hypercollecting semantics

Hypercollecting semantics

Hypercollecting semantics of tests:

JeKH,test : P(P(F)) −→ P(P(F))
E 7−→ {{(m0,m1) ∈ F | JeK(m1) = true} | F ∈ E}

Hypercollecting semantics of commands:

JeKH : P(P(F)) −→ P(P(F))
Jx := eKH(E) = {{(m0,m1[x 7→ JeK(m1)]) | (m0,m1) ∈ F}

| F ∈ E}
JskipKH(E) = E

Js0; s1KH(E) = Js1KH ◦ Js0KH(E)
Jif(e0) s1 else s2KH(E) = {Js1KD ◦ Je0KH,test(F )

∪ Js2KD ◦ J¬e0KH,test(F ) | F ∈ E}
Jwhile(e0) s1KH(E) = JeKH,test ◦ (lfpF GH)(E)

where GH(ϕ) = Jif(e0) s1;ϕ else skipKH
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Dependence analysis for non-interference Hypercollecting semantics

Hypercollecting semantics

Instantiation:
starting from ∆M = {δM | M ∈ P(M)} = {{(m ,m) | m ∈ M} | M ∈ P(M)}
then, JsKH(∆M) ∈ P(P(F)) collects the set of all sets of runs of s,
described by a pair made of an input memory and an output memory
each of the hypercollecting semantics inputs such a set of sets of pairs

Induction:
JsKH is defined by case analysis of s but its definition is not exactly done
by induction
but we can prove by induction

1 that it is monotone
2 the inclusion

(JsKF (F ) ∩ F) ∈ JsKH({F})

the combination of these properties opens up inductive approximation
see [Assaf et al 2017]
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Dependence analysis for non-interference Dependence abstraction and analysis

Dependence abstraction

We now set up an abstraction for JsKH(∆M) ∈ P(P(F)), that describes
dependences between inputs and outputs.

Agreement relation:
if X ⊆ X, the equivalence relation (≡X ) ⊆ M×M is defined by

m0 ≡X m1
def⇐⇒ ∀x ∈ X , m0(x) = m1(x)

Dependence abstraction

We let the dependence abstract domain be D♯
dep = X −→ P(X) with the

pointwise inclusion ordering, with the following concretization function:

γdep : D♯
dep 7−→ P(P(F))

d −→ {R ∈ P(F) | ∀(m0,m1), (m ′
0,m ′

1) ∈ R,
∀x ∈ X, m0 ≡d(x) m ′

0 =⇒ m1 ≡{x} m ′
1}

Contraposition: when a pair of executions lead to distinct outputs, there must
be disagreement in at least some of the dependence inputs

Xavier Rival (INRIA) Analysis of security properties Feb, 10th, 2024 52 / 70



Dependence analysis for non-interference Dependence abstraction and analysis

Dependence abstraction: example

Back to some examples related to non-interference...

Program 1:

// ... as before, s stores the secret
if( s == 7 )

i = 1;
else

i = -1;

non-interference: violated

Dependency:

i 7−→ {s}

Indeed, modifying s may cause
distinct i outputs

Program 3:

i = 0 * s;

non-interference: satisfied

Dependency:

i 7−→ ∅

Indeed, s ends up being 0
regardless...

Non-interference
Non-interference holds if and only if no public variable depends on a secret.
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Dependence analysis for non-interference Dependence abstraction and analysis

Dependence analysis of expressions

Principle of the dependency analysis of expressions:
to be used for the analysis of commands
e.g., assignment command x = e
new dependency of x: whatever may change the result of e
compute an over-approximation of the set of the variables that may make the
evaluation result change

Definition of JeK♯dep ∈ D♯
dep −→ P(X):

JvK♯dep(d) = ∅
JxK♯dep(d) = d(x)

Je0 ⊕ e1K
♯
dep(d) = Je0K

♯
dep(d) ∪ Je1K

♯
dep(d)

It is approximate:
expression x ∗ 0 does not depend on x in the concrete
but Jx ∗ 0K♯dep = {x}
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Dependence analysis for non-interference Dependence abstraction and analysis

Soundness of the analysis of expressions

The analysis of expressions is sound in the following sense:

Soundness of the analysis of expressions

Given an expression e and an element d ∈ D♯
dep, then:

∀R ∈ γdep(d), ∀(m0,m1), (m ′
0,m ′

1) ∈ R,
m0 ≡JeK♯dep(d)

m ′
0 =⇒ JeK(m1) = JeK(m ′

1)

the proof proceeds by induction over the syntax of expressions
example 1:
let us assume that e is x+ y
and that d is x 7→ {x}, y 7→ {x, t}, t 7→ {z}:
then, JeK♯dep(d) = {x, t} (this result is precise)
example 2:
let us assume that e is 0 ∗ x
and that d is x 7→ {x}, . . .:
then, JeK♯dep(d) = {x} (this result is imprecise)
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Dependence analysis for non-interference Dependence abstraction and analysis

Dependence analysis of commands

Principle:
define a function JsK♯dep : D♯

dep −→ D♯
dep by induction over the syntax of

statements
ensure soundness condition

JsKH ◦ γdep ⊆ γdep ◦ JsK♯dep

apply JsK♯dep to did = λx ∈ X · {x} (note that ∆M ⊆ γdep(did))
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Dependence analysis for non-interference Dependence abstraction and analysis

Dependence analysis of basic commands and sequences

Analysis of skip commands: JskipK♯dep(d) = d

since the concrete semantics is also the identity function

Analysis of sequences: Js0; s1K
♯
dep(d) = Js1K

♯
dep ◦ Js0K

♯
dep(d)

since the concrete semantics is also a composition

Analysis of assignment commands, based on the previously defined JeK♯dep:

Jx = eK♯dep(d) =

{
x 7−→ JeK♯dep(d)

y ̸= x 7−→ d(y)
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Dependence analysis for non-interference Dependence abstraction and analysis

Dependence analysis of condition commands

Dependences induced by condition command if(e0) s1 else s2:
1 dependences in assignments in s1, s2 as before
2 any variable modified in either s1 or s2 also depends on the condition e0

Modified variables M(s) ∈ P(X):

M(x := e) = {x}
M(skip) = ∅

M(s0; s1) = M(s0) ∪ M(s1)

M(if(e0) s1 else s2) = M(s0) ∪ M(s1)
M(while(e0) s1) = M(s1)

Dependency analysis of condition statement s ::= if(e0) s1 else s2:

we let d ′ = Js1K
♯
dep(d)

.
∪ Js2K

♯
dep(d) (pointwise union)

analysis function:

JsK♯dep(d) = λ(x ∈ X) ·
{

d ′(x) ∪ Je0K
♯
dep(d) if x ∈ M(s1) ∪ M(s2)

d ′(x) otherwise

Case of loops: apply standard fixpoint techniques, left as an exercise
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Dependence analysis for non-interference Dependence abstraction and analysis

Soundness of the analysis of commands

Analysis soundness
For all statement, we have:

1 soundness of the abstract semantics:

JsKH ◦ γdep ⊆ γdep ◦ JsK♯dep

2 soundness of the analysis:

JsKF (δM) ∈ γdep ◦ JsK♯dep(did)

1 proof by induction over the syntax
2 composing inclusions:

JsKF (δM) ∈ JsKH({δM})
⊆ JsKH(∆M)
⊆ JsKH ◦ γdep(did)

⊆ γdep ◦ JsK♯dep(did)
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Dependence analysis for non-interference Dependence abstraction and analysis

Dependence analysis: example explicit flows

{x 7→ {x}, y 7→ {y}, s 7→ {s}, z 7→ {z}}
z = y− 1 + x;

{x 7→ {x}, y 7→ {y}, s 7→ {s}, z 7→ {x, y}}
x = s ∗ s+ 8;

{x 7→ {s}, y 7→ {y}, s 7→ {s}, z 7→ {x, y}}
y = x+ 1;

{x 7→ {s}, y 7→ {s}, s 7→ {s}, z 7→ {x, y}}

Information flows
There are information flows from s to x and to y.
There is no information flow from s to z.
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Dependence analysis for non-interference Dependence abstraction and analysis

Dependence analysis: example implicit flows

{x 7→ {x}, y 7→ {y}, s 7→ {s}}
x = s ∗ s+ 8;

{x 7→ {s}, y 7→ {y}, s 7→ {s}}
if(x > 0) {

{x 7→ {s}, y 7→ {y}, s 7→ {s}}
y = y+ 1;

{x 7→ {s}, y 7→ {y}, s 7→ {s}}
} else {

{x 7→ {s}, y 7→ {y}, s 7→ {s}}
y = y− 1;

{x 7→ {s}, y 7→ {y}, s 7→ {s}}
}

{x 7→ {s}, y 7→ {s, y}, s 7→ {s}}

Information flows
There are information flows from s to x (explicit) and to y (implicit).
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Relational reasoning over non-interference

Another informal proof principle

We look again at the definition of non-interference:

Non-interference
Program P satisfies the non-interference property defined by Xpub/l⊣,Xsec/l⊢ if
and only if for all memory states m0,m1 ∈ M,

(∀x ∈ Xpub, m0(x) = m1(x))
=⇒ (∀x ∈ Xpub, JPKF [l ⊢,l ⊣](m0)(x) = JPKF [l ⊢,l ⊣](m1)(x))

Intuition:
we run the program twice, with two states that differ only in the value of
one secrete variable
if the outputs agree for all such pairs of runs, then non-interference is
satisfied

We can turn this into a symbolic composition, to allow for the non-interference
to be verified.
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Relational reasoning over non-interference

Proof by self-composition

Notation: to build self-composition, we need to make variables explicit
we write P[x, y] for a program that is defined over variables x, y, even though
it may use only some of these;
for example, we may let P[x, y, z] stand for program while(x ≤ y){x = x+ 1}
(z is included even though it is not used in the program)

Definition: proof by self-composition (see [Barthe & Rezk 2004])
Let P[s0, . . . , sk , x0, . . . , xl ] be a deterministic program, where
Xsec = {s0, . . . , sk} and Xpub = {x0, . . . , xl}. We let s′0, . . . , s

′
k , x

′
0, . . . , x

′
l be

fresh variables. We let Q[s0, . . . , sk , x0, . . . , xl , s′0, . . . , s
′
k , x

′
0, . . . , x

′
l ] be:

assume(x0 == x′0); . . . ; assume(xl == x′l);
P[s0, . . . , sk , x0, . . . , xl ];
P ′[s′0, . . . , s

′
k , x

′
0, . . . , x

′
l ];

assert(x0 == x′0); . . . ; assert(xl == x′l);

Then, P[. . .] satisfies non-interference if and only if Q[. . .] satisfies the final
assertion.
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Relational reasoning over non-interference

Proof by self-composition

Principle: reduce a security question to a safety question
but for a different program

initial question: is P secure ?
reduced question: is Q safe ? (where Q is defined from P)
then, classical analysis techniques for safety apply

Specific issues:
termination:
if P may not terminate, the observation of termination or non-termination
may reveal information on the secret
non-determinism:
if P may contain some non-determinism, the final assertion of Q may fail
even when the non-interference is satisfied

Taking these into account requires more care.
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Relational reasoning over non-interference

Examples

A simple case:

Initial program:

x = 8 * y + 2;
s = x + s;

Transformed program:

assume( x0 == x1 );
x0 = 8 * y0 + 2;
s0 = x0 + s0;
x1 = 8 * y1 + 2;
s1 = x1 + s1;
assert( x0 == x1 );

Verification of the assertion by static analysis:
exercise 1: what are the results of dependence analysis ?
exercise 2: which abstract domain to use for verification by self-composition ?
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Relational reasoning over non-interference

Examples

A more subtle case to rule out deceptive implicit flows:

Initial program:

if( s == 1 ) x = s;
else x = 1;

Transformed program:

assume( x0 == x1 );
if( s0 == 1 ) x0 = s0;
else x0 = 1;
if( s1 == 1 ) x1 = s1;
else x1 = 1;
assert( x0 == x1 );

Verification of the assertion by static analysis:
exercise 1: what are the results of dependence analysis ?
exercise 2: which abstract domain to use for verification by self-composition ?
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Conclusion

Main points to remember

Security properties are a separate class of properties:

expressing the property requires quantifying over pairs of executions

hyperproperties ⊃ hypersafety ⊃ 2-safety
many important security properties are 2-safety...

Static analysis with respect to hyperproperties:

dependence analysis has to be proved with respect to a specific
semantics, which can talk about pairs of executions

deceptive implicit flows: conditions

Self-composition:
technique based on the reduction to another property
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Conclusion

Assignment: proofs and paper reading

Recognizing Safety and Liveness.
Bowen Alpern and Fred B. Schneider.
In Distributed Computing, Springer, 1987.

Hyperproperties.
Michael Clarkson and Fred B. Schneider.
In CSF 2008, IEEE, 2008.

Hypercollecting semantics and its application to static analysis of
information flow.

Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, Frédéric Tronel.
In POPL’17, pages 874–887, 2017.

Secure Information Flow by Self-Composition.
Gilles Barthe, Pedro R. D’Argenio, Tamara Rezk.
In CSFW 2004: 100-114
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