
COURSE NOTES

Master Parisien de Recherche en Informatique

Course 2–6: Abstract Interpretation: Application to Verification and Static Analysis

Static Inference of Numeric Invariants

by Abstract Interpretation

Antoine MINÉ

antoine.mine@lip6.fr

Université Pierre et Marie Curie, Paris, France

Draft 2025-05-26

Do not circulate

CONTENTS

Contents

1 Introduction 3
1.1 A First Static Analysis: Informal Presentation 4
1.2 Scope and Applications . 10
1.3 Outline . 15
1.4 Further Resources . 15

2 Elements of Abstract Interpretation 17
2.1 Order Theory . 18
2.2 Fixpoints . 27
2.3 Approximations . 33
2.4 Summary . 47
2.5 Bibliographic Notes . 47

3 Language and Semantics 49
3.1 Syntax . 50
3.2 Atomic Statement Semantics . 52
3.3 Denotational-Style Semantics . 55
3.4 Equation-Based Semantics . 59
3.5 Abstract Semantics . 62
3.6 Bibliographic Notes . 66

4 Non-Relational Abstract Domains 69
4.1 Value and State Abstractions . 69
4.2 The Sign Domain . 74
4.3 The Constant Domain . 77
4.4 The Constant Set Domain . 79
4.5 The Interval Domain . 80
4.6 Advanced Abstract Tests . 84
4.7 Advanced Iteration Techniques . 88
4.8 The Congruence Domain . 97
4.9 The Cartesian Abstraction . 100
4.10 Summary . 101
4.11 Bibliographic Notes . 101

Version 2025-05-26 iii

CONTENTS

5 Relational Abstract Domains 103
5.1 Motivation . 103
5.2 The Affine Equalities Domain (Karr’s Domain) 106
5.3 The Affine Inequalities Domain (Polyhedra Domain) 114
5.4 The Zone and Octagon Domains . 129
5.5 The Template Domain . 145
5.6 Summary . 149
5.7 Bibliographic Notes . 150

6 Domain Transformers 151
6.1 The Lattice of Abstractions . 151
6.2 Product Domains . 154
6.3 Disjunctive Completions . 163
6.4 Summary . 178
6.5 Bibliographic Notes . 179

7 Conclusion 181
7.1 Summary . 181
7.2 Principles . 181
7.3 Towards the Analysis of Realistic Programs 184

Version 2025-05-26 iv

Abstract

These course notes present Abstract Interpretation and its use to create static analyzers
that infer numeric properties on programs.

Abstract Interpretation, born in the late 70s, has proven a very effective method to
construct static analyzers. It has lead to successful program analysis tools, such PolySpace
Verifier (The Mathworks) and the Astrée analyzer (AbsInt): industrial tools that are rou-
tinely used in avionic, automotive, and space industries to help ensuring the correctness of
mission-critical software. Indeed, automatically inferring numeric invariants can be used
to prove the absence of run-time errors, such as arithmetic overflows, out-of-bound array
accesses, etc. before the program is even run, while achieving a full coverage of the control
and data space.

These notes first present the theoretical bases of Abstract Interpretation: they explain
how we can assign a well-defined formal semantics to programs, and how we can construct
computable approximations to derive effective analyzers, focusing on invariant inference.
We describe the key results that ensure soundness: any property derived by the analyzer
is true of all actual executions, although some properties of programs may be missed due
to approximation, a necessary compromise to keep the analysis automatic, sound, and
terminating when inferring uncomputable properties. We then proceed to describe the
classic numeric abstractions readily available to an analysis designer, including intervals,
polyhedra, congruences, octagons, etc. We also discuss convergence acceleration, a key
part of Abstract Interpretation that allows inferring loop invariants in infinite-height ab-
stract domains, as well as domain combiners, such as the reduced product and various
disjunctive completions. This tutorial focuses not only on the semantic aspect, but also
on the algorithmic one, providing a description of the data-structures and algorithms nec-
essary to effectively implement all our abstractions. We will encounter many trade-offs
between cost on the one hand, and precision and expressiveness on the other hand: in the
choice of domains, in the individual abstraction of each operator, and in the combination
of domains.

Numeric invariant inference is formalized on an idealized, toy-language, manipulating
perfect integers, rational, or reals. Nevertheless, the principles we describe, and the actual
domains and algorithms we present, are effectively applied in the construction of industrial
analyzers for real languages, such as C.

These course notes are based the Tutorial on Static Inference of Numeric Invariants by
Abstract Interpretation published in Foundations and Trends in Programming Languages
(FnTPL)1. They are intended to support a Master-level course in Abstract Interpretation.
After reading these notes, the reader should be ready to read the research literature on
current advances in Abstract Interpretation, as well as more practical articles on the design
of industrial-strength static analyzers for real languages.

1http://www.nowpublishers.com/article/Details/PGL-034

http://www.nowpublishers.com/article/Details/PGL-034

Chapter 1

Introduction

While software are naturally meant to be run on computers, they can also be studied, ma-
nipulated, analyzed, either by hand or mechanically, that is, by other computer programs.
A common example is compilation, which transforms programs in source code form into
programs in binary code suitable for direct interpretation by a processor — or by a vir-
tual machine, yet another program. This tutorial concerns static analysis, a less common
example of computer programs manipulating other programs. A static analyzer is a pro-
gram that takes as input a program and outputs information about its possible behaviors,
without actually executing it.

In a broad sense, static analysis also covers syntactic analyses, that search for prede-
fined patterns, as well as code quality metrics, such as counting the number of comments.
However, we focus here on semantic-based static analyses. These methods output program
properties that are provably correct with respect to a clear mathematical formalization
of program behaviors. Such a high level of confidence in the analysis results is necessary
in many applications, ranging from compiler optimization to program verification. One
example property is that two pointers never alias. If proved true, the property can be
exploited by a compiler to enable optimizations that would be incorrect in the presence
of aliasing. Another example is finding bounds on array index expressions. This can be
exploited in program verification to ensure that a program is free from out-of-bound array
accesses. For the correctness proof to be valid, it is necessary to ensure that the inferred
bounds indeed encompass all possible index values computed in all possible executions of
the program.

Formal methods. The idea of reasoning with mathematical rigor about programs dates
back from the early days of computers [Turing, 1949] and lead to the rich field of formal
methods with the pioneering work of Hoare [1969] and Floyd [1967] on program logic.
The lack of automation for writing and checking program proofs hindered these early
efforts. In fact, Turing famously proved the undecidability of the halting problem, and
Rice [1953] generalized this result, stating that all non-trivial properties about programs
are undecidable. Hence, program verification cannot be fully automated. This fundamental

Version 2025-05-26 3

CHAPTER 1. INTRODUCTION

limitation can be sidestep in different ways, leading to the various flavors of program
verification methods used today. Cousot and Cousot [2010] classify current formal methods
into three categories, depending on whether automation, generality, or completeness is
abandoned:

• Deductive Methods, which inherit directly from the work of Hoare [1969] and Floyd
[1967], use interactive logic-based tools, including proof assistants such as Coq
[Bertot and Castéran, 2004] and theorem provers such as PVS [Owre et al., 1992].
These tools are largely mechanized, but rely ultimately on the user, to a varying
degree, to guide the proof.

• Model Checking, pioneered by Clarke et al. [1986], restricts program verification
problems to decidable fragments. Initially restricted to finite models, it has since
been generalized to infinite-state but regular models by McMillan [1993] in symbolic
model checking. In practice, this often means that a model must be extracted, by
hand, before the analysis can be performed. Alternatively, software bounded model
checkers, such as CBMC [Clarke et al., 2004], analyze programs in actual program-
ming languages such as C, but consider only a finite part of their executions.

• Static Analysis, studied in this tutorial, performs a direct analysis of the original
source code, considering all possible executions and without user intervention, but
resorts to approximations and analyzes the program at some level of abstraction
that forgets about details that are, hopefully, irrelevant for the kind of properties
checked. The abstraction is incomplete and can miss some properties, resulting in
false alarms, i.e., the program is correct but the analyzer cannot prove it.

Abstract Interpretation. The theory of Abstract Interpretation, introduced by Cousot
and Cousot [1977], is a general theory of the approximation of formal program semantics.
It is an invaluable tool to prove the correctness of a static analysis, as it makes it possible to
express mathematically the link between the output of a practical, approximate analysis,
and the original, uncomputable program semantics. Both are seen as the same object, at
different levels of abstraction. Additionally, Abstract Interpretation makes it possible to
derive, from the original program semantics and a choice of abstraction, a static analysis
that is correct by construction. Finally, the notion of abstraction is a first class citizen
in Abstract Interpretation: abstractions can be manipulated and combined, leading to
modular designs for static analyses. In this tutorial, we will design static analyses by
Abstract Interpretation.

The rest of this chapter presents informally static analyses by Abstract Interpretation
in order to derive simple numeric properties on the variables of a program.

1.1 A First Static Analysis: Informal Presentation
Let us consider, as first example, the program in Fig. 1.1. The mod function takes two
arguments, A and B, then computes in Q and R, respectively, the integer dividend A/B

Version 2025-05-26 4

1.1. A FIRST STATIC ANALYSIS: INFORMAL PRESENTATION

//@ requires A >= 0 && B >= 0;
int mod(int A, int B) {

1: int Q = 0;
2: int R = A;
3: while (R >= B) {
4: R = R - B;
5: Q = Q + 1;
6: }
7: return R;

}

Figure 1.1: A simple C function returning the modulo R of its arguments, with some
precondition on the arguments A and B.

and the remainder A%B, and finally returns R. This very naive function is written in
a C-like language, and enriched with a //@requires annotation, written in the ACSL
specification language [Cuoq et al., 2012], stating that it is always called with positive
values for A and B.

The most straightforward way to model the function behavior is to consider execution
traces: we execute the function step by step (where each step is a simple assignment or
test) and record, at each step, the current program location and the value of each variable
in scope. In our example, a program state would have the form ⟨l : a, b, q, r⟩ where l is the
line number from Fig. 1.1 and a, b, q, r are, respectively, the values of variables A, B, Q,
R. The execution starting with A = 10 and B = 3 would give the following trace (where
variables not yet in scope are not shown in the state):

⟨1 : 10, 3⟩ → ⟨2 : 10, 3, 0⟩ → ⟨3 : 10, 3, 0, 10⟩
→ ⟨4 : 10, 3, 0, 10⟩ → ⟨5 : 10, 3, 0, 7⟩ → ⟨6 : 10, 3, 1, 7⟩
→ ⟨4 : 10, 3, 1, 7⟩ → ⟨5 : 10, 3, 1, 4⟩ → ⟨6 : 10, 3, 2, 4⟩
→ ⟨4 : 10, 3, 2, 4⟩ → ⟨5 : 10, 3, 2, 1⟩ → ⟨6 : 10, 3, 3, 1⟩ → ⟨7 : 10, 3, 3, 1⟩

i.e., the function returns 1, which is indeed the remainder of 10 by 3.
There are many such executions, one for each initial value of A and B, but we can see

intuitively that, in each of them, R and Q remain positive. This information can be useful
to a compiler (which can then use unsigned types and arithmetic instead of signed ones)
or to a program verifier (e.g., if the result of the function is used in an unsigned context).

1.1.1 Sign Analysis

Our first static analysis attempts to establish rigorously the sign of the variables. A naive
method, which ensures that all possible program behaviors are considered, is to effectively
simulate every possible execution by running the program, and then collect the signs of
variable values along these executions. Naturally, this is not very efficient, and we will
construct a far more efficient method.

Version 2025-05-26 5

CHAPTER 1. INTRODUCTION

//@requires A >= 0 && B >= 0;
int mod(int A, int B) {

1: H A = (≥0), B = (≥0) I
int Q = 0;

2: H A = (≥0), B = (≥0), Q = 0 I
int R = A;

3: H A = (≥0), B = (≥0), Q = 0, R = 0 I
while (R >= B) {

4: H A = (≥0), B = (≥0), Q = (≥0), R = (≥0) I
R = R - B;

5: H A = (≥0), B = (≥0), Q = (≥0), R = ⊤ I
Q = Q + 1;

6: H A = (≥0), B = (≥0), Q = (≥0), R = ⊤ I
}

7: H A = (≥0), B = (≥0), Q = (≥0), R = ⊤ I
return R;

}

Figure 1.2: Modulo function from Fig. 1.1 annotated with the result of a sign analysis
in comments.

A key principle of Abstract Interpretation is replacing these actual, so-called concrete,
executions, with abstract ones. For a sign analysis, we replace the concrete states mapping
each variable to an integer value with an abstract state mapping each variable to a sign.
Program instructions can then be interpreted in the world of signs by employing well-
known rules of signs, such as (≥ 0) + (≥ 0) = (≥ 0), i.e., positive plus positive equals
positive, etc. Starting from positive values of A and B, one possible execution is:

⟨1 : (≥0), (≥0)⟩ → ⟨2 : (≥0), (≥0), 0⟩ → ⟨3 : (≥0), (≥0), 0, (≥0)⟩
→ ⟨4 : (≥0), (≥0), 0, (≥0)⟩ → ⟨5 : (≥0), (≥0), 0,⊤⟩
→ ⟨6 : (≥0), (≥0), (≥0),⊤⟩ → ⟨4 : (≥0), (≥0), (≥0),⊤⟩
→ ⟨5 : (≥0), (≥0), (≥0),⊤⟩ → ⟨6 : (≥0), (≥0), (≥0),⊤⟩
→ ⟨7 : (≥0), (≥0), (≥0),⊤⟩

where ⊤ indicates that the sign is unknown — the variable may be positive or negative.
Note that the value of Q, which is 0 when first going through location 4, becomes (≥0) at
the second passage, which is expected as Q increases. Collecting the sign of the variables at
each program point, we can annotate the program from Fig. 1.1 with sign information; the
result is shown in Fig. 1.2. These annotations are invariants: the values of the variables in
every concrete execution passing through a given control location satisfy the sign property
we provided at this location.

Note that, at the end of the function, we have no information on R (R = ⊤) while,
in fact, R is always positive. We can trace the introduction of an uncertainty, ⊤, to the
computation, at line 4, of R - B which, in the sign domain, gives (≥ 0) − (≥ 0) = ⊤.
Indeed, R - B can only be proven to be positive if we know that R ≥ B, which is not
a sign information. So, while R = (≥ 0) is an invariant and a sign property, it cannot

Version 2025-05-26 6

1.1. A FIRST STATIC ANALYSIS: INFORMAL PRESENTATION

be found by reasoning purely in the sign domain. Failure to infer the best invariants
expressible in the abstract world is common in Abstract Interpretation and motivates the
introduction of more expressive domains, as we will do shortly. The reader familiar with
deductive methods will have guessed that this is related to the fact that R = (≥0) is an
invariant but not an inductive invariant. We will discuss this connection in depth later.

Note also that the test R >= B is interpreted in the abstract as ⊤ ≥ (≥ 0), which is
inconclusive. This means that, while we chose, in our abstract execution, to iterate the
loop twice, longer executions with more loop iterations are also valid. The program, in the
abstract, becomes non-deterministic. We argue, informally for now, that further iterations
will not bring any new possible sign values: we have reached a fixpoint. Another key part
of Abstract Interpretation is to know how to precisely iterate loops in the abstract, and
when to stop, to guarantee that all possible program behaviors have been considered. It
will be discussed at length in this tutorial.

1.1.2 Affine Inequalities Analysis

The sign analysis we presented is one of the simplest and least expressive static analysis
there is. We illustrate the other end of the spectrum with a static analysis able to infer
affine inequalities between variables. The invariants it computes on our modulo example
are presented in Fig. 1.3. Its principle remains the same: we propagate an abstract repre-
sentation of variable values through the program. However, it no longer has the simple form
of a map from variables to abstract values, but is rather a conjunction of affine inequalities
that delimit the set of possible concrete states the program can be in. As a consequence,
the abstraction can represent relations, i.e., it is a relational analysis. Geometrically, we
obtain a polyhedron.

Program instructions can still be applied on polyhedra. For instance, an assignment Q
= Q + 1 is modeled as a translation, while a test R >= B is modeled as adding an affine
constraint. The exact algorithms will be described in details in Sect. 5.3. They borrow
heavily from the classic mathematical theory of convex polyhedra. We can see, in Fig. 1.3,
that the analysis is now able to exactly represent R ≥ B, and can thus deduce that R
remains positive, which was not possible in the sign analysis.

1.1.3 Iterations

To illustrate more clearly the need to iterate loops in the abstract, we consider the simple
loop in Fig. 1.4.(a) that increments A and B from 0 to 100. The program is annotated with
invariants computed in yet another abstraction, intervals, which infers variable bounds: a
lower bound and an upper bound. This popular abstraction will be discussed at length in
Sect. 4.5. We can easily compute the abstract effect of instructions using interval arith-
metic. For instance, A = A + 1 adds 1 to both the lower and the upper bounds of A.

Program location 2 in Fig. 1.4.(a) is the location reached just before testing the condi-
tion A < 100 a first time to determine whether to enter the loop at all, and reached again
after each loop iteration before testing the condition to determine whether to reenter the

Version 2025-05-26 7

CHAPTER 1. INTRODUCTION

//@requires A >= 0 && B >= 0;
int mod(int A, int B) {

1: H A ≥ 0, B ≥ 0 I
int Q = 0;

2: H A ≥ 0, B ≥ 0, Q = 0 I
int R = A;

3: H A ≥ 0, B ≥ 0, Q = 0, R = A I
while (R >= B) {

4: H A ≥ 0, B ≥ 0, Q ≥ 0, R ≥ B I
R = R - B;

5: H A ≥ 0, B ≥ 0, Q ≥ 0, R ≥ 0 I
Q = Q + 1;

6: H A ≥ 0, B ≥ 0, Q ≥ 1, R ≥ 0 I
}

7: H A ≥ 0, B ≥ 0, Q ≥ 0, 0 ≤ R < B I
return R;

}

Figure 1.3: Modulo function from Fig. 1.1 annotated with the result of an affine inequality
analysis in comments. In red, we show the invariants that were not found by the sign
analysis of Fig. 1.2.

A = 0; B = 0;
1: H A ∈ [0, 0], B ∈ [0, 0] I

while
2: H A ∈ [0, 100], B ∈ [0, +∞] I

(A < 100) {
3: H A ∈ [0, 99], B ∈ [0, +∞] I

A = A + 1;
4: H A ∈ [1, 100], B ∈ [0, +∞] I

B = B + 1;
5: H A ∈ [1, 100], B ∈ [1, +∞] I

}
6: H A ∈ [100, 100], B ∈ [0, +∞] I

iteration A B
1 [0, 0] [0, 0]
2 [0, 1] [0, 1]
3 [0, 2] [0, 2]

.
100 [0, 99] [0, 99]
101 [0, 100] [0, 100]
102 [0, 100] [0, 101]
103 [0, 100] [0, 102]

(a) (b)

Figure 1.4: Interval analysis of a simple loop (a) and the detailed iteration for location
2 (b).

Version 2025-05-26 8

1.1. A FIRST STATIC ANALYSIS: INFORMAL PRESENTATION

affine inequalities intervals

signsconcrete executions

Figure 1.5: A set of points abstracted using affine inequalities (dark polyhedron), intervals
(lighter rectangle) and signs (light quarter-plane).

loop body for a new iteration. The corresponding invariant is called a loop invariant, and
provides a convenient summary of the behavior of the loop. A classic execution would
have, for A at location 2, the sequence of values: 0, 1, 2, . . . , 100. The output of the anal-
ysis must, however, provide a single interval for location 2 that takes into account all the
reachable values. Hence, the abstract semantics accumulates, at each iteration, every new
value with that of preceding iterations. This flavor of semantics, useful for verification, is
called a collecting semantics.

The iteration is shown in Fig. 1.4.(b). We observe that, for A, the iteration stabilizes at
[0, 100] after 101 iteration steps, allowing us to deduce that A equals 100 when the program
ends, after the loop exit condition A >= 100. Such convergence is long. Another important
contribution of Abstract Interpretation is a set of convergence acceleration methods, to
construct more efficient analyses that use less iterations.

In some cases, the plain abstract iteration may not even converge. This is the case for
variable B in Fig. 1.4 as there is no test on B to bound it. Convergence acceleration will
ensure that, after a finite number of accelerated iterations, this behavior is detected and
we output the stable interval B ∈ [0, +∞].

1.1.4 Precision

As seen on the modulo example from Figs. 1.2–1.3, the result of a static analysis depends on
the abstract domain of interpretation, but it will always represent an over-approximation
of the set of possible program states. More expressive abstractions generally lead to tighter
over-approximations, and so, more precise results.

Figure 1.5 illustrates this by showing a set of planar points (representing, e.g., a set of
concrete program states over two variables) and its best enclosing into a polyhedron (in
the affine inequality domain), a box (in the interval domain), and a quarter-plane (in the
sign domain). Polyhedra add less spurious states with respect to the concrete world, but,
as we will see, polyhedra algorithms are also more complex and more costly, leading to a
slower analysis. There is a tradeoff to reach between precision and cost.

Version 2025-05-26 9

CHAPTER 1. INTRODUCTION

S

P

A

S

P

A

S

P

A

precise analysis false alarm unsound analysis
A ⊆ S =⇒ P ⊆ S A ̸⊆ S but P ⊆ S A ⊆ S but P ̸⊆ S

(a) (b) (c)

Figure 1.6: Proving that a program P satisfies a safety specification S, i.e., that P ⊆ S,
using an abstraction A of P : (a) succeeds, (b) fails with a false alarm, and (c) is not a
possible configuration for a sound analysis.

1.1.5 Soundness

In the general sense, soundness states that whatever the properties inferred by an analysis,
they can be trusted to hold on actual program executions. It is a very desirable property
of formal methods, and one we will always ensure in this tutorial.

In our case, we expect the analysis to output invariants. It must thus contain at least
all actual program states, but it may safely contain more. Computing over-approximations
is thus our soundness guarantee. Considering over-approximations allows us to check rig-
orously so-called safety correctness specifications, that is, specifications stating that the
set of reachable program states is included in a set of safe states — in practice, this set
is either specified by the user, through explicit assertions, or specified implicitly by the
language, such as the absence of arithmetic overflow. The need for over-approximations
is intuitive: if the abstraction is included in the specification then, a forciori, the set of
actual executions is included in the specification. This is illustrated in Fig. 1.6.(a).

If the abstract state computed does not satisfy the specification, however, the analysis
is inconclusive. Either the program is actually flawed, or the program is correct but the
abstraction over-approximates its behavior too coarsely for the analysis to prove it. This
last case, called false alarm, is depicted in Fig. 1.6.(b). Handling this case requires either
some investigation of the alarm, either manually or employing some other formal method,
or running the analysis again with more precise abstractions. All the analyses we discus
here are sound: the case where the program does not satisfy its safety specification while
the analysis reports no specification violation, illustrated in Fig. 1.6.(c), will never occur.

1.2 Scope and Applications

This tutorial focuses on sound static analysis based on Abstract Interpretation in order to
infer numeric invariants. For the sake of a pedagogical presentation, we analyze a simple
toy-language missing many features from real-life languages, such as: functions, arrays,
pointers, dynamic memory allocation, objects, exceptions, etc. We refer the reader to other

Version 2025-05-26 10

1.2. SCOPE AND APPLICATIONS

int delay[10], i;
i = 0;
while (1) {

⟨ i ∈ [0, 9] ⟩ int y = delay[i];
(a) ⟨ i ∈ [0, 9] ⟩ delay[i] = input();

⟨ i + 1 ∈ [−231, 231 − 1] ⟩ i = i + 1;
if (i >= 10) i = 0;

}

int delay[10], i;
i = 0;

H i = 0 I while (1) {
H i ∈ [0, 9] I int y = delay[i];

(b) H i ∈ [0, 9] I delay[i] = input();
H i ∈ [0, 9] I i = i + 1;

H i ∈ [1, 10] I if (i >= 10) i = 0;
}

Figure 1.7: A C-like program manipulating an array annotated with: (a), correctness
verification conditions implied by the language; and (b), invariants inferred by an interval
static analysis.

publications and tool presentations, such as [Bertrane et al., 2015], to explain how to adapt
the ideas presented here to the analysis of real-life languages and software. Nevertheless, in
this section, we justify the interest of numeric invariants by showing analysis applications
that are based on, or parameterized with, numeric abstractions. As programs manipulate,
at their core, numbers, it is natural to think about numeric abstractions as a key component
in most value-sensitive program analyses.

1.2.1 Safety Verification

Figure 1.7.(a) gives an example program together with the verification conditions it must
satisfy at various program locations in order to be free from arithmetic overflows and out-
of-bound array accesses. These conditions can be derived easily and purely mechanically
from the syntax of the program, and they have a purely numeric form.

Figure 1.7.(b) shows the invariants inferred at these points by a static analysis based
on intervals. The invariants clearly imply the verification conditions. Hence, the program
is free from the errors we target. As we have employed an interval analysis, and the
verification conditions can be expressed exactly as intervals, checking the conditions can
be done without leaving the abstract world of intervals.

1.2.2 Pointer Analysis

Numeric invariants are not only useful to analyze numeric variables, but also any variable
with a numeric aspect. Consider the program in Fig. 1.8.(a) employing pointer arithmetic

Version 2025-05-26 11

CHAPTER 1. INTRODUCTION

float* p = q;
for (i = 0; i < 10; i++)

if (...) p++;

unsigned offp = offq;
for (i = 0; i < 10; i++)

if (...) offp += 4;
H off q ≤ off p ≤ off q + 4 i + 4 I

(a) (b)

Figure 1.8: A C-like program manipulating a pointer p (a) and its translation into a
numeric program manipulating its offset off p (b). Program (b) also shows the numeric
invariants inferred on off p.

on a pointer p to traverse data in a loop. We can view a pointer value as a pair composed
of a variable, and a numeric offset counting a number of bytes from the first byte of
the variable — offset 0. Pointer arithmetic will only operate on the offset part, and in a
way similar to integer arithmetic. We can transform this program into a purely numeric
program operating on synthetic offset variables, such as off p, instead of pointers, as shown
in Fig. 1.8.(b). We can then apply a standard numeric static analysis to infer numeric
invariants on offsets. On the example of Fig. 1.8.(b), an affine inequalities analysis would
find a relation between the pointer offset and the loop counter i.

Some information about pointer alignment, namely the fact that the offset is a multiple
of 4, is missing, because it cannot be represented using affine inequalities. We will see, in
Sect. 4.8, a congruence abstraction that solves this issue. In fact, each inference problem, for
each required property can be solved by designing some adapted abstraction. Finally, note
that, in practice, a numeric analysis is combined with a non-numeric points-to analysis
[Balakrishnan and Reps, 2004, Miné, 2006b] that infers the first component of pointer
values, i.e., the identity of the variables the pointers may point into.

Another, related class of analyses is that of C strings, for instance the analyses by Dor
et al. [2001] or by Simon and King [2002]. In this case, a string buffer and a pointer into
such a buffer are translated into purely numeric synthetic variables. In addition to offset
variables, we need to insert instrumentation variables tracking the position of the first
occurrence of the null character (i.e., the string length) and the number of bytes available
until the end of the buffer. We also need to modify the program to update them. Using
a relational analysis, such as affine inequalities, allows inferring non-trivial relationships,
such as a relation between the lengths of the strings used as arguments and return in a
string concatenation function such as strcat.

1.2.3 Shape Analysis

Beyond pointer analyses, shape analyses are a sophisticated family of analyses targeting
programs with dynamic memory allocation and recursive data-structures, such as lists or
trees. Such analyses also benefit from instrumenting numeric quantities to discuss about,
for instance, list length or tree height. Additionally, a non-uniform analysis, as proposed
by Venet [2004], is able to express properties that distinguish between different instances
of a recursive data-structure. Figure 1.9 presents an application to the allocation of a

Version 2025-05-26 12

1.2. SCOPE AND APPLICATIONS

cell *x, *head = NULL;
for (i = 0; i < n; i++) {

x = alloc();
x->next = head; head = x;

}
for (i = 0, x = head; x; x = x->next, i++) {

H ∀k ∈ [0, i− 1] : a[k] = head(->next)k->data I
a[i] = x->data;

}
H ∀k ∈ [0, n− 1] : a[k] = head(->next)k->data I

Figure 1.9: A C-like program manipulating a linked list and an array, annotated with
non-uniform invariants stating a relation between the contents of the array at position k
and the list at the same position k.

cost = 0;
for (i = 0; i < n-1; i++) {

H cost = i× n− i× (i + 1)/2 I
for (j = i+1; j < n; j++) {

H cost = i× (n− i)× (i + 1)/2 + j − i− 1 I
if (tab[i] > tab[j]) swap(tab[i],tab[j]);
cost = cost+1;

}
}
H cost = (n + 1)× (n− 2)/2 I

Figure 1.10: A sorting algorithm, with an instrumentation variable, cost, added to help
compute the time complexity.

linked list followed by a copy from an array into the list. The loop invariant states that,
at loop step i, the k−th element of the linked list, pointed to by head(->next)k->data,
equals a[k]. This very symbolic logic predicate is complemented by the numeric invariant
0 ≤ k ≤ i − 1, which restricts the predicate to elements at indices up to i. This numeric
invariant can be inferred using the numeric abstractions presented in this tutorial.

1.2.4 Cost Analysis

Numeric invariants do not necessarily refer to quantitative information on the memory
state, but can also refer to quantitative information about execution traces, such as their
length. This provides some information about the time complexity of the program. One
prime example is the Costa analyzer, introduced by Albert et al. [2007].

Figure 1.10 shows a very simple method for obtaining such a bound: the program is
instrumented with a synthetic variable, named cost, which is incremented at each step.
A numeric invariant analysis can then be used to infer properties on cost, including an
upper bound which is symbolic in the arguments of the function, thanks to a relational

Version 2025-05-26 13

CHAPTER 1. INTRODUCTION

x = input([−10, 10]) H x ∈ [−10, 10] I H⊥ I
if (x == 0) z = 0;
else { H x ∈ [−10, 10] I H x = 0 I

y = x; H x ∈ [−10, 10], y ∈ [−10, 10] I H y = 0 I
if (y < 0) y = -y; H x ∈ [−10, 10], y ∈ [0, 10]] I H y = 0 I
z = x / y; H division by zero I

}

(a) (b) (c)

Figure 1.11: A program (a); the result of a forward analysis (b); and the result of a
backward analysis assuming a division by zero (c).

analysis. Note that the invariants here are far more complex than those we encountered
before as they are not affine, but polynomial. In this tutorial, we will limit ourselves to
affine invariants, which are generally not sufficient for cost analyses, but are much simpler
and can be inferred more efficiently.

Another, related application is proving termination. Classic termination proofs require
finding a decreasing ranking function that is bounded below, and numeric properties can
help with that [Urban and Miné, 2014].

1.2.5 Backward Analysis

We return to purely numeric properties and intervals to show another flavor of analysis,
which goes backward. Instead of inferring the value of variables by propagating forward
an abstract memory state from the beginning of the program, an analysis can start from
a program point of interest and an abstract property on the memory state, and go back-
ward to derive necessary conditions so that the executions reach the given program point
satisfying the given abstract state property. In fact, backward analysis is most often used
in combination with a preliminary forward analysis, to refine and focus its results. This
scheme is developed for instance by Bourdoncle [1993a].

Figure 1.11.(a) shows a simple C program that divides x by its absolute value y = |x|.
As the division is guarded by the test x == 0, there is no division by zero. Figure 1.11.(b)
annotates the program with the result of an interval analysis, starting from x ∈ [−10, 10].
As the interval domain cannot represent [−10, 10] \ {0}, it cannot exploit the fact that
x ̸= 0, and so, y ̸= 0, when the division x / y occurs. The analysis outputs an alarm, which
is actually a false alarm. To help the user reason about this alarm, a backward analysis is
performed starting just before the error, at the division, with the erroneous state y = 0.
This state is propagated backward, in the interval domain. We deduce, in particular, that
x = 0 must hold just after the test x == 0 has returned false. Propagating backward one
more step, the analysis infers that there is no possible program state, denoted here as ⊥.
In our case, the backward analysis has proved automatically that the error is spurious.
In more complex cases, the analysis would simply find a restriction of the state space
that would help the user, or another formal method, decide whether the alarm is false or

Version 2025-05-26 14

1.3. OUTLINE

justified.
In the rest of the tutorial, all our examples concern forward analyses to infer invari-

ants. Nevertheless, backward analyses are very similar, and require only a few additional
operators.

1.3 Outline

This chapter provided an informal introduction to numeric invariant inference and its
applications. The rest of the tutorial will present inference methods in a rigorous way,
based on the theory of Abstract Interpretation.

Chapter 2 presents the mathematical tools that will be needed in our formal pre-
sentation, including a short course on Abstract Interpretation. Chapter 3 presents our
target programming language: a toy language tailored to illustrate numeric invariants. It
presents not only the language syntax, but also its concrete semantics in a mathematical,
unambiguous way. It then presents how abstractions can be applied to derive an effective
static analysis that is sound with respect to the concrete world: we state the operators
and hypotheses required on the abstraction, and then develop an analysis that is fully
parametric in the choice of the abstraction. Chapters 4 and 5 present two families of such
abstractions: firstly, non-relational domains, including signs, constants, intervals, and con-
gruences; secondly, relational domains, including affine equalities, affine inequalities, and
weakly relational domains (zones, octagons, and templates). Chapter 6 discusses abstract
domain combiners that improve the precision of existing domains: firstly, the reduced prod-
uct, a technique to combine two or more existing abstractions and design a more expressive
analyzer in a modular way; secondly, three methods that improve the precision of a given
abstraction by allowing it to express symbolic disjunctions (powerset completion, state
partitioning, and path partitioning). To close this tutorial, Chap. 7 provides concluding
remarks.

Naturally, we devote a large amount of time presenting the data-structures and algo-
rithms necessary to implement effectively these abstractions in a static analyzer, and we
discuss their relative merits in terms of precision, cost, and expressiveness. Each chapter
ends with bibliographical notes recalling major articles the reader is invited to consult to
complete this necessarily superficial survey.

1.4 Further Resources

To end our introduction, we list additional resources available on-line that can be used as
a complement to this tutorial.

For an informal introduction to Abstract Interpretation and links to selected technical
resources — including articles, slides, and video presentations — we refer the reader to
Patrick Cousot’s web-page.1

1http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html

Version 2025-05-26 15

http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html

CHAPTER 1. INTRODUCTION

This tutorial is based on several Master-level courses, at École Normale Supérieure,
Paris 6, and Paris 7 Universities in France.2 A programming project focusing on the devel-
opment, in OCaml, of a simple static analyzer for numeric properties on a toy-language,
not unlike the language studied here, is also available.3 We also refer the reader to Master-
level courses by Patrick Cousot at MIT4 and at Marktoberdorf Summer School.5

Implementations of numeric static analyses are also available. The Interproc analyzer6

is a simple, open-source numeric analyzer on a toy-language, for educational and scientific
demonstration purposes. It demonstrates the use of some of the abstract domains we will
present in this tutorial: intervals, linear equalities, linear inequalities, and octagons. It
additionally features backward and modular inter-procedural analyses, which we will not
present formally here. Its most notable feature is that it can be used on-line, through
a web interface. The Apron library7 [Jeannet and Miné, 2009], on which Interproc is
based, is an open-source library implementing classic numeric domains; it can be used
in static analysis projects. Industrial-strength commercial static analyzers include the
Astrée analyzer for C [Bertrane et al., 2010], which was used to analyze the run-time
errors in avionics software. Evaluation versions are freely available from AbsInt.8 Julia9

is a commercial static analyzer for Java. Frama-C10 [Cuoq et al., 2012] is an open-source
program analyzer for C incorporating Abstract Interpretation.

2Course slides in English are available at: https://www-apr.lip6.fr/~mine/enseignement/mpri/2016
-2017/

3English version available at: https://www-apr.lip6.fr/~mine/enseignement/l3/2015-2016/projec
t

4http://web.mit.edu/16.399/www/
5http://www.di.ens.fr/~cousot/Marktoberdorf98.shtml
6http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
7http://apron.cri.ensmp.fr/library/
8http://www.absint.com/astree
9https://www.juliasoft.com/

10https://frama-c.com/

Version 2025-05-26 16

https://www-apr.lip6.fr/~mine/enseignement/mpri/2016-2017/
https://www-apr.lip6.fr/~mine/enseignement/mpri/2016-2017/
https://www-apr.lip6.fr/~mine/enseignement/l3/2015-2016/project
https://www-apr.lip6.fr/~mine/enseignement/l3/2015-2016/project
http://web.mit.edu/16.399/www/
http://www.di.ens.fr/~cousot/Marktoberdorf98.shtml
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
http://apron.cri.ensmp.fr/library/
http://www.absint.com/astree
https://www.juliasoft.com/
https://frama-c.com/

Chapter 2

Elements of Abstract
Interpretation

The Abstract Interpretation theory helps tremendously in the design of static analyzers:
it ensures their soundness by construction, guides design choices, and can even ensure
optimality at some level. In this chapter, we review the mathematical foundations of
Abstract Interpretation, and we introduce notations, definitions, and key theorems that
will be used in the rest of the tutorial.

We assume a basic knowledge of first-order logic, set theory, and linear algebra. How-
ever, we review order theory, which is less known.

Basic notations. We use standard notations from first-order logic: disjunction ∨, con-
junction ∧, logical negation ¬, implication =⇒, equivalence⇐⇒, as well as universal ∀ and
existential ∃ quantifiers. To distinguish a definition from an equality or an equivalence, we
use def= and def⇐⇒ for the former, and = and ⇐⇒ for the later.

We also use standard notations from set theory: the empty set ∅, set union ∪ and
intersection ∩, in binary form (A∪B and A∩B) or over a family (

⋃
i∈I Ai and

⋂
i∈I Ai for

a family (Ai)i∈I of sets indexed by I, which may be finite or infinite), Cartesian product
×, set inclusion ⊆, set ownership ∈, set difference \. Set comprehension, in particular, will
be used pervasively: {x ∈ A | P (x) } is the subset of elements from A that additionally
satisfy some logic predicate P . Given a set A, we denote as P(A) the set of its parts, also
called its powerset, i.e., the set of all the sets included in A. We denote as Pfinite(A) the
set of finite subsets of A. We denote as |A| the number of elements in A. Given two sets A
and B, we denote as A→ B the set of functions from A to B; A is called the codomain of
such a function, and B is its domain. We will sometimes use the lambda notation λx. f(x)
to denote functions concisely. Alternatively, a function can be described in extension as
[x1 7→ v1, . . . , xn 7→ vn], meaning that its codomain is {x1, . . . , xn} and it maps any xi to
the corresponding vi. Given a function f , f [x 7→ v] denotes the function that maps x to v
and any y such that x ̸= y to f(y), i.e., it updates the function at point x to equal value
v. Finally, ◦ denotes function composition, f i denotes f composed i times, and id denotes

Version 2025-05-26 17

CHAPTER 2. ELEMENTS OF ABSTRACT INTERPRETATION

the identity function (f0 def= id and f i+1 def= f i ◦ f = f ◦ f i).
We denote respectively as N, Z, Q, R, the sets of natural integers, integers, rationals,

and reals. N∗, Z∗, Q∗, and R∗ are the set of non-zero natural integers, integers, rationals,
and reals. Finally, R+ and Q+ represent positive (possibly null) reals and rationals.

As we work with numeric programs only, memory states map variables to values in
some numeric set, such as integers or reals. Hence, memory states can be assimilated to
vectors in a vector space. Vectors are denoted as v⃗, matrices as M, matrix-matrix and
matrix-vector multiplications as ×, and the dot product of vectors is denoted as · (a dot).
The i−th component of a vector v⃗ is denoted as vi. Moreover, the i−th line or i−th column
of a matrix M, depending on the context, is a vector denoted as M⃗i. The element at line
i and column j of a matrix M is denoted as Mij . We order vectors element-wise: v⃗ ≥ w⃗
means ∀i: vi ≥ wi. The zero vector is denoted as 0⃗.

Additional mathematical tools. Each abstract domain employs data-structures and
algorithms specific to the shape of invariants it represents and manipulates. Abstract
Interpretation thus leverages existing mathematical theories, and adapt them to discuss
about program semantics. For instance, we will see that interval abstractions (Sect. 4.5)
employ algorithms from interval arithmetic and constraint programming; affine inequalities
abstractions (Sect. 5.3) leverage tools from the theory of convex polyhedra; congruence
abstractions (Sect. 4.8) are based on basic number theory, etc. We do not assume a prior
knowledge of these various fields. We will present relevant results and algorithm only
when needed, omitting the proof of well-known theorems as well as irrelevant parts of
these theories when not needed. Our view is that of a client, intent on using them as tools
in the design of abstract domains, and possibly adapting them to our needs.

2.1 Order Theory

2.1.1 Partial Orders

The main structure we require on mathematical objects describing concrete and abstract
computations is a partial order:

Definition 2.1 (Partial order, Poset).
A partial order ⊑ on a set X is a relation ⊑ ∈ X ×X that is:

1. reflexive: ∀x ∈ X: x ⊑ x;

2. anti-symmetric: ∀x, y ∈ X: (x ⊑ y) ∧ (y ⊑ x) =⇒ x = y;

3. and transitive: ∀x, y, z ∈ X: (x ⊑ y) ∧ (y ⊑ z) =⇒ x ⊑ z.

We denote as (X,⊑) the set X equipped with the partial order ⊑, and call this pair a
partially ordered set, or a poset. ■

Version 2025-05-26 18

2.1. ORDER THEORY

Compared to the usual, so-called total orders, such as number comparison ≤, a partial
order is not total: there can exist unordered pairs of elements — x, y such that neither
x ⊑ y nor y ⊑ x holds.

Example 2.1 (Poset examples).

1. Any completely ordered set is also a poset; for instance: (Z,≤).

2. The parts of any set X ordered by inclusion, (P(X),⊆), is a poset. The order is not
complete; consider for instance that neither { 1 } ⊆ { 2 } nor { 2 } ⊆ { 1 } holds.

3. (Z2,⊑), the set of pairs of integers ordered as: (a, b) ⊑ (a′, b′) ⇐⇒ a ≥ a′ ∧ b ≤ b′

is a poset. When interpreting the first element of each pair as the lower bound of
an interval and the second element as its upper bound, this order is equivalent to
interval inclusion. ♦

Partial orders are extremely important in several areas of Theoretical Computer Sci-
ence. For instance, they play a crucial role in the field of denotational semantics, introduced
by Scott and Strachey [1971], to ensure that the definitions assigning a mathematical mean-
ing to programs are well-founded. In Abstract Interpretation, we will use partial orders to
model no less than four different concepts:

1. Partial orders convey the idea of approximation (Fig. 1.5). Some analysis results
may be coarser than some other results. The order is indeed partial as, sometimes,
analysis results are incomparable. Consider, for instance, a variable that actually
ranges in [1, 9] and two sound interval analyses that output respectively [0, 9] and
[1, 10].

2. Partial orders convey the idea of validating a specification (Fig. 1.6). For instance,
we can see a program P satisfying a specification S as the set inclusion P ⊆ S,
meaning that all program behaviors are included in the authorized set of behaviors.

3. Partial orders convey the idea of soundness (Fig. 1.6). An analysis is sound when it
provably outputs a result that is coarser than the actual behavior.

4. Partial orders convey the idea of iteration (Fig. 1.4.(b)). When analyzing loops, a
sequence of increasing semantic elements is computed, and the fact that they are
ordered will be important to ensure that the computation is advancing towards a
well-defined loop invariant.

2.1.2 Lower and Upper Bounds

Given two elements a and b in a poset X, we call upper bound of a and b any element
c ∈ X such that a ⊑ c and b ⊑ c, i.e., c is greater than both a and b. Likewise, a lower
bound c of a and b satisfies c ⊑ a and c ⊑ b. Moreover, c is the least upper bound, also
called lub or join, if it is the smallest element greater than both a and b. Such a least

Version 2025-05-26 19

CHAPTER 2. ELEMENTS OF ABSTRACT INTERPRETATION

upper bound does not necessarily exist but, when it does, it is unique. It is written as
a ⊔ b. Likewise, the unique greatest lower bound of a and b, also called glb or meet, if it
exists, is the greatest element smaller than a and b, and it is denoted as a ⊓ b.

Proof. (Uniqueness of the lub).
Assume that both c and d are lubs of a and b.
By definition of lubs, we have c ⊑ d and d ⊑ c.
By antisymmetry of ⊑ we then get c = d.

As ⊔ and ⊓ are associative operators, we will employ also the notations ⊔A and ⊓A
to compute lubs an glbs on arbitrary (possibly infinite) sets A of elements. Finally, we
denote respectively as ⊥ (called bottom) and ⊤ (called top) the least element and the
greatest element in the poset, if they exist.

Example 2.2. In the powerset poset (P(X),⊆) of any (possibly infinite) set X, the lub ⊔
is simply the set union ∪, and the glb ⊓ is simply the set intersection ∩. Both always exist
for all arguments — hence, we actually have a complete lattice structure, as described in
Sect. 2.1.5. We also have ⊥ = ∅ and ⊤ = X. ♦

Example 2.3. Not all posets have upper bounds or lubs. Consider, for instance, the poset
({a, b}, =), where the partial order is the equality. Then, there is no upper bound for a and
b, and so, there is no lub. Likewise, we can construct posets where a pair of elements have
several upper bounds but no least upper bound, and posets where finite sets of elements
have lubs but infinite sets of elements do not. ♦

Remark 2.1. We will also use the notation min A and max A to denote, respectively,
the minimum and the maximum element in a set A ⊆ X. Note the difference between
min A (resp. max A) and ⊓A (resp. ⊔A): the former imposes that the element smaller
(resp. larger) than all the elements in A is in A, while the later may denote an element
in X outside A. For instance, in the classic order (R,≤), 0⊔ 1 = max {0, 1} = 1 ∈ {0, 1},
while ⊔{x ∈ R | x < 1 } = 1 /∈ {x ∈ R | x < 1 }. Naturally, min A and max A are not
always defined for every set A in every poset, even less so than ⊓A and ⊔A. ♢

2.1.3 Hasse Diagrams

A poset is often presented graphically by placing greater elements higher, and materializing
the order with lines. Such a visual representation is called a Hasse diagram. It also makes
lubs and glbs easy to see.

Example 2.4 (Hasse diagrams). Figure 2.1.(a) provides the Hasse diagram for the simple
poset where a ⊑ b, b ⊑ c, b ⊑ d, c ⊑ e, c ⊑ f , d ⊑ f , e ⊑ g, and f ⊑ g. Note that we have
omitted lines between elements that are obviously ordered through reflexivity or transitivity
(e.g., c ⊑ g but there is no line from c to g as c ⊑ e ⊑ g). Also note that, although e and
f are not ordered, they do have a lub, g.

Version 2025-05-26 20

2.1. ORDER THEORY

a

⊑

b

c d

e f

g

0

1

2

3

0

1

2

3

∞

(a) (b) (c)

Figure 2.1: Hasse diagrams for: (a) a finite poset, (b) the natural integers (N,≤), and
(c) the natural integers enriched with infinity (N ∪ {∞},≤).

⊑

{-1} {1}{0} {9}...

∅

𝓟(ℤ)

......

{-1,0} {0,1}

{-1,0,1}

{1,9}...

{0,1,9}...

...

{-1,0,1,9}... ...

Figure 2.2: Hasse diagram for the powerset poset of integers (P(Z),⊆).

Figures 2.1.(b)–(c) present Hasse diagrams for total orders: the natural integers ordered
as usual by ≤, and the integers enriched with a infinity element∞ greater than all integers:
∀x ∈ N ∪ {∞}: x ⊑ ∞.

Figure 2.2 gives the Hasse diagram for the powerset of integers (P(Z),⊆). ♦

2.1.4 Chains and CPO

The informal example of Fig. 1.4.(b) from the last chapter features, during loop iteration,
increasing sequences of intervals: [0, 0], [0, 1], [0, 2],. . . To get an invariant, it is necessary
to find a limit to such sequences. For variable A, the iteration stops at [0, 100], which is
naturally the limit. For variable B, the iteration keeps increasing, so that a natural limit
is actually [0, +∞]. In both cases, our notion of limit coincides with that of lub. Note,
however, that we do not require lubs for arbitrary families of elements, but only for those

Version 2025-05-26 21

CHAPTER 2. ELEMENTS OF ABSTRACT INTERPRETATION

that come from iteration sequences. This motivates the following definitions:

Definition 2.2 (Chain). A chain C ⊆ X in a poset (X,⊑) is a subset C of X that is
totally ordered: ∀c, d ∈ C: (c ⊑ d) ∨ (d ⊑ c). ■

Definition 2.3 (CPO). A complete partial order, or CPO, is a poset such that every
chain has a lub. ■

Note that ∅ is a chain, so, our definition requires that ⊔∅ exists. Stretching our definition
a little, we state that ⊔∅ = ⊥. Indeed, the more elements we join, the larger the result is,
so, when joining no element at all, we obtain the least element of all. As a consequence,
all our CPO are so-called pointed, i.e., they feature a least element ⊥.

Example 2.5 (Chains, CPO).

1. In Fig. 2.1.(a), {a, c, f, g} forms a chain.

2. Figure 2.1.(a) is a CPO. In fact, every finite poset is a CPO. Indeed every finite
chain always has a lub.

3. Figure 2.1.(b) is not a CPO because infinite subsets of N do not have a lub in N.

4. Figure 2.1.(c) is a CPO as every infinite subset of N ∪ {∞} has a lub: ∞.

5. For any (even infinite) set X, its powerset poset (P(X),⊆) is a CPO. ♦

Remark 2.2. Our definition of CPO deviates slightly from the usual definition from
domain theory [Scott and Strachey, 1971], which uses directed subsets instead of chains.
While we believe that the two definitions are equivalent (assuming Zorn’s lemma), we chose
to use Def. 2.3 as it makes the connection with limits of iterations more explicit. ♢

2.1.5 Lattices

Posets provide the bare minimum algebraic structure, but many ordered sets have a richer
structure, than we can exploit. Such structures include, in particular, lattices. Lattices
are posets where the lub and glb always exist, either only for pairs of elements (and,
by extension, for finite sets of elements), or for arbitrary (possibly infinite) families of
elements, in which case the lattice is said to be complete:

Definition 2.4 (Lattice). A lattice (X,⊑,⊔,⊓) is a poset such that ∀a, b ∈ X: a ⊔ b and
a ⊓ b exist. ■

Definition 2.5 (Complete lattice). A complete lattice (X,⊑,⊔,⊓,⊥,⊤) is a poset such
that:

1. ∀A ⊆ X: ⊔ A exists;

2. ∀A ⊆ X: ⊓ A exists;

Version 2025-05-26 22

2.1. ORDER THEORY

3. X has a least element ⊥;

4. X has a greatest element ⊤. ■

Naturally, a complete lattice is both a lattice and a CPO. Less obviously, to get a complete
lattice, either Def. 2.5.1 or Def. 2.5.2 is sufficient, as each one implies the other. Indeed,
assuming that ∀A ⊆ X: ⊔ A exists, then ∀B ⊆ X: ⊓ B = ⊔{x ∈ X | ∀a ∈ B: x ⊑ a } also
exists: we can reduce a glb to a lub, which always exists (the converse naturally holds).
Moreover, both imply Def. 2.5.3–4. Indeed, we have: ⊥ = ⊔∅ = ⊓X and ⊤ = ⊓∅ = ⊔X.
More information on lattices can be found in [Birkhoff, 1967].

Example 2.6 (Lattices, Complete lattices).

1. For any set X, the powerset:

(P(X),⊆,∪,∩, ∅, X) (2.1)

is a complete lattice, as we can compute the intersection and union of arbitrary
many (including infinitely many) sets. The Hasse diagram for P(Z) is presented in
Fig. 2.2.

2. We construct an integer interval lattice as follows:

({ [a, b] | a, b ∈ Z, a ≤ b } ∪ {⊥},⊆,⊔,∩) (2.2)

To simplify, we assimilate here a pair of bounds (a, b) with the set [a, b] of integers
comprised between a and b, taking care that a ≤ b. We add a special, unique, smallest
element ⊥ to represent ∅. We thus use the classic set operators: ⊆ as partial order
and ∩ as glb, as intervals are closed under intersection. However, they are not closed
under set union, hence, we define the lub as [a, b]⊔ [a′, b′] def= [min(a, a′), max(b, b′)],
while ∀x: x ⊔ ⊥ = ⊥ ⊔ x = x. Indeed, [a, b] ⊔ [a′, b′] computes the smallest interval
containing intervals [a, b] and [a′, b′].

3. The integer interval lattice (2.2) from the previous point is not complete as the
infinite family of intervals { [0, i] | i ≥ 0 } has no lub. We complete the interval
lattice into a complete lattice by allowing positive and negative infinities as bounds:

({ [a, b] | a ∈ Z ∪ {−∞}, b ∈ Z ∪ {+∞}, a ≤ b } ∪ {⊥},
⊆, ⊔, ∩, ⊥, [−∞, +∞]) (2.3)

Lubs are computed as: ⊔i∈I [ai, bi]
def= [mini∈I ai, maxi∈I bi]. Moreover, the lattice now

has a greatest element: [−∞, +∞]. The complete lattice of intervals is illustrated in
Fig. 2.3.

4. The divisibility lattice is defined as (N∗, |, lcm, gcd), where x|y means that x divides
y, or equivalently that y is a multiple of x, i.e., ∃k ∈ N∗: xk = y. Then, the lub and

Version 2025-05-26 23

CHAPTER 2. ELEMENTS OF ABSTRACT INTERPRETATION

⊑

[-1,-1] [1,1][0,0] [9,9]...

[-∞,+∞]

......

[-1,0] [0,1]

[-1,1]

[1,9]...

[0,9]...

...

[-1,9]... ...

[-1,+∞] [0,+∞][-∞,9][-∞,1]

...

⊥

Figure 2.3: Hasse diagram for the interval lattice, with bounds extended to ∞.

glb are respectively the least common multiple, lcm, and the greatest common divisor,
gcd. This lattice is illustrated in Fig. 2.4. It is the basis of a congruence analysis
that we will study in Sect. 4.8 to infer properties such as the fact that a variable is
a multiple of some constant. Note that this lattice is not complete as chains such
as {2, 4, 8, 16, . . .} have no lub. Moreover, although an arbitrary non-empty, possibly
infinite integer set A ⊆ N∗ has a glb, there is no greatest element, i.e., no glb for the
empty set. ♦

1

2 3 5

4 6 9

8 12 18 27

36

⊑

Figure 2.4: Hasse diagram for the divisor lattice (N∗, |, lcm, gcd) where x|y if x divides
y.

Version 2025-05-26 24

2.1. ORDER THEORY

2.1.6 Distributivity

A lattice (A,⊑,⊔,⊓) is said to be distributive if ⊔ distributes over ⊓, and ⊓ distributes over
⊔, i.e., ∀a, b, c ∈ A: a⊔(b⊓c) = (a⊔b)⊓(a⊔c) and a⊓(b⊔c) = (a⊓b)⊔(a⊓c). Actually, very
few lattices we will encounter are distributive, and these generally correspond to concrete
worlds rather than abstract worlds:

Example 2.7 (Distributive lattices).

1. The powerset lattice (2.1) is distributive as ∪ distributes over ∩, and ∩ distributes
over ∪.

2. The interval lattice (2.3) is not distributive. Indeed, on the one hand ([0, 0]⊔ [2, 2])⊓
[1, 1] = [0, 2] ⊓ [1, 1] = [1, 1]; on the other hand ([0, 0] ⊓ [1, 1]) ⊔ ([2, 2] ⊓ [1, 1]) =
⊥ ⊔⊥ = ⊥. ♦

As we will see, non-distributivity is a common cause of precision loss. Indeed, a clas-
sic analysis design (Sect. 3.5) tends to join information, such as the result of different
control-flow paths merging at some common program location, as early as possible, favor-
ing computations of the form (a ⊔ b) ⊓ c. A formulation such as (a ⊓ c) ⊔ (b ⊔ c), which
delays the join, requires more operators, and is thus more costly. The later is, however,
always at least as precise as the former, and it is strictly more precise if the lattice is not
distributive, as shown in Ex. 2.7 — as ⊥ ⊏ [1, 1]. Yet, limiting ourselves to distributive
lattices would severely hinder our ability to choose the appropriate domain for each task.
When precision matters, we may consider a tradeoff where the later formulation, delaying
joins, is used, but parsimoniously (Sect. 6.3.4).

This phenomenon is well-known in the field of data-flow analysis [Kildall, 1973], where
the second formulation leads to the meet-over-all-paths algorithm, and the former leads
to the least fixpoint algorithm.

2.1.7 Sublattice

A static analysis replaces costly, expressive representations with simpler, more restricted
ones. For instance, it can use intervals to represent integer sets. Note that the set of
intervals (2.3) is a subset of the sets of integers (2.1), and that both are (complete) lattices.
A natural question is thus whether we should require our abstract elements to actually
form a sublattice of the concrete lattice, where a sublattice is defined as follows:

Definition 2.6 (Sublattice). (X ′,⊑,⊔,⊓) is a sublattice of (X,⊑,⊔,⊓) if: X ′ ⊆ X; we
use the same order ⊑ on both X and X ′; and X ′ is closed under ⊔ and ⊓, i.e., lubs and
glbs exist in X ′ and coincide with those in X. ■

Example 2.8 (Sublattice).

1. If X ′ ⊆ X, then (P(X ′),⊆,∪,∩) is a sublattice of (P(X),⊆,∪,∩).

Version 2025-05-26 25

CHAPTER 2. ELEMENTS OF ABSTRACT INTERPRETATION

2. The interval lattice (2.3) is not a sublattice of the lattice of powerset of integers (2.1).
Indeed, the interval join is defined as [a, b] ⊔ [a′, b′] = [min(a, a′), max(b, b′)], which
may differ from the set union [a, b]∪[a′, b′]. Consider, for instance, that [0, 0]⊔[2, 2] =
[0, 2] = {0, 1, 2}, while [0, 0] ∪ [2, 2] = {0, 2}. ♦

Not being a sublattice means that the result of some operations, such as the join of
two intervals, must be approximated to stay within the abstract world of intervals. The
situation is similar to that of distributivity: we lack a strong algebraic property, here being
a sublattice, which results in a loss of precision, but limiting ourselves to sublattices would
hinder our ability to use extremely useful abstractions, such as intervals.

The required connection between the concrete world and the abstract world is actually
more subtle than the sublattice property, as we will discuss shortly in Sect. 2.3. We can
already argue that Abstract Interpretation is particularly lax when it comes to algebraic
requirements, especially on the abstract world. This may be a key to its success, as it
leaves abstractions open to many possibilities.

2.1.8 Derived Ordered Structures

Given one or several ordered structures that can be posets, CPO, or (complete) lattices,
we can derive new ordered structures of the same nature by duality (i.e., reversing the
order and switching lubs with glbs and ⊤ with ⊥), by lifting (adding a least element ⊥),
by Cartesian product, by smashed product (or coalescent product, i.e., a product where
least elements are fused) or, finally, by point-wise lifting. More precisely, we define:

Definition 2.7 (Derived order structures). Assume that (X1,⊑1,⊔1,⊓1,⊥1,⊤1) and (X2,
⊑2,⊔2,⊓2,⊥2,⊤2) are complete lattices (resp. lattices, CPO, posets), then so are the or-
dered structures derived by:

1. Duality: (X1,⊒1,⊓1,⊔1,⊤1,⊥1).

2. Lifting: (X1 ∪ {⊥},⊑,⊔,⊓,⊥,⊤1) where:

– ⊥ /∈ X1 is a new least element;
– a ⊑ b

def⇐⇒ (a = ⊥) ∨ (a ⊑1 b);

– ⊥ ⊔ a
def= a ⊔ ⊥ def= a, and a ⊔ b

def= a ⊔1 b if a, b ̸= ⊥;
– ⊥ ⊓ a

def= a ⊓ ⊥ def= ⊥, and a ⊓ b
def= a ⊓1 b if a, b ̸= ⊥;

– ⊤1 is unchanged.

3. Cartesian product: (X1 ×X2,⊑,⊔,⊓,⊥,⊤) where:

– (x, y) ⊑ (x′, y′) def⇐⇒ (x ⊑1 x′) ∧ (y ⊑2 y′);

– (x, y) ⊔ (x′, y′) def= (x ⊔1 x′, y ⊔2 y′);

– (x, y) ⊓ (x′, y′) def= (x ⊓1 x′, y ⊓2 y′);

Version 2025-05-26 26

2.2. FIXPOINTS

– ⊥ def= (⊥1,⊥2);
– ⊤ def= (⊤1,⊤2).

4. Smashed product:

(((X1 \ {⊥1})× (X2 \ {⊥2})) ∪ {⊥},⊑,⊔,⊓,⊥,⊤)

where ⊑, ⊔, ⊓, ⊤ are defined as in the regular product on (X1 \{⊥1})× (X2 \{⊥2}),
and then lifted with a new least element ⊥.
The smashed product can also be viewed as the Cartesian product X1×X2, quotiented
by the equivalence relation (x, y) ≡ (x′, y′) def⇐⇒ (x = x′ ∧ y = y′) ∨ ((x = ⊥1 ∨ y =
⊥2) ∧ (x′ = ⊥1 ∨ y′ = ⊥2)), which identifies elements where at least one component
is the least element.

5. Point-wise lifting: (S → X,⊑,⊔,⊓,⊥,⊤) where:

– S is an arbitrary (finite or infinite) set;
– x ⊑ y

def⇐⇒ ∀s ∈ S: x(s) ⊑1 y(s);
– ∀s ∈ S: (x ⊔ y)(s) def= x(s) ⊔1 y(s);
– ∀s ∈ S: (x ⊓ y)(s) def= x(s) ⊓1 y(s);
– ∀s ∈ S:⊥(s) def= ⊥1;
– ∀s ∈ S:⊤(s) def= ⊤1.

6. Smashed point-wise lifting:

((S → (X1 \ {⊥1})) ∪ {⊥},⊑,⊔,⊓,⊥,⊤)

where ⊥ is a new least element, and ⊥1 is no longer in the domain of the elements
of the structure.
Similarly to the smashed product, the smashed point-wise lifting quotients the classic
point-wise lifting with the equivalence relation x ≡ y

def⇐⇒ (∀s ∈ S: x(s) = y(s)) ∨
(∃s, s′ ∈ S: x(s) = ⊥1 ∧ y(s′) = ⊥1), which identifies elements where at least one
component is the least element. ■

2.2 Fixpoints
We call operator a function f : X → X with the same domain and codomain. Given
an operator f , a fixpoint is any value x such that f(x) = x. Fixpoints are pervasive in
Mathematics and Theoretical Computer Science. They provide a uniform way to discuss
about the solutions to many kinds of equations. In program semantics, fixpoints closely
model invariants, as we will see formally in Sect. 3.3. Informally, if f models the action of
a loop body, then f(x) = x means that x is left invariant by a loop iteration. As we will see
shortly, fixpoints are also related to computation by iteration, such as presented informally
in Fig. 1.4. Ordered structures provide a rich set of theorems ensuring the existence of
fixpoints. We present them now and will exploit them in the following sections.

Version 2025-05-26 27

CHAPTER 2. ELEMENTS OF ABSTRACT INTERPRETATION

⊥

⊤

a b

gfp

lfp

pre

pre

⊥

⊤

a bpre

pre

(a) (b)

Figure 2.5: Operators on posets: (a) is monotonic and has two fixpoints, a and ⊤; (b) is
non-monotonic and has no fixpoint.

2.2.1 Fixpoints

Let us first complete our definitions:

Definition 2.8 (Fixpoints, Prefixpoints, Postfixpoints).
Given a poset (X,⊑) and an operator f : X → X:

1. x is a fixpoint of f if f(x) = x.
We denote as fp(f) def= {x ∈ X | f(x) = x } the set of fixpoints of f .

2. x is a prefixpoint of f if x ⊑ f(x).

3. x is a postfixpoint of f if f(x) ⊑ x.

4. lfpx f
def= min { y ∈ fp(f) | x ⊑ y }, if it exists, is the least fixpoint of f greater than

x.

5. lfp f
def= lfp⊥ f , if it exists, is the least fixpoint of f .

6. Dually, gfpx f
def= max { y ∈ fp(f) | y ⊑ x } is the greatest fixpoint of f smaller

than x.

7. gfp f
def= gfp⊤ f if the greatest fixpoint of f . ■

Note that an operator does not necessarily have any fixpoint at all. Figure 2.5 presents a
Hasse diagram for the lattice {⊥, a, b,⊤} as well as two operators. Operator (a) has two
fixpoints, a = lfp and ⊤ = gfp, while operator (b) has no fixpoint at all.

2.2.2 Monotony and Continuity

We need some extra hypotheses on an operator f to guarantee the existence of fixpoints.
Let us first present a set of useful properties functions can enjoy:

Definition 2.9 (Monotony, Continuity).

Version 2025-05-26 28

2.2. FIXPOINTS

1. Monotonicity: a function f : (A1,⊑1) → (A2,⊑2) between two posets is monotonic
if ∀x, y ∈ A1: x ⊑1 y =⇒ f(x) ⊑2 f(y).

2. Continuity: a function f : (A1,⊑1,⊔1)→ (A2,⊑2,⊔2) between two CPO is continu-
ous if for every chain C ⊆ A1, { f(c) | c ∈ C } is also a chain and the limits coincide:
f(⊔1 C) = ⊔2 { f(c) | c ∈ C }.

3. Join morphism: a function f : (A1,⊑1,⊔1) → (A2,⊑2,⊔2) between two lattices is
a join morphism, or ⊔−morphism, if ∀a, b ∈ A1: f(a ⊔1 b) = f(a) ⊔2 f(b); it is a
complete ⊔−morphism if A1 and A2 are complete lattices and the property extends
to arbitrary lubs, i.e., ∀X ⊆ A1: f(⊔1 X) = ⊔2 { f(x) | x ∈ X }.

4. Extensivity: an operator f : (A,⊑) → (A,⊑) is extensive if ∀a ∈ A: a ⊑ f(a), and
reductive if ∀a ∈ A: f(a) ⊑ a. ■

These definitions can be justified informally. In terms of information theory, where the
partial order measures a quantity of information, monotonicity means that, given more
information as input, a function must output more information. In terms of program
semantics, the more input we feed a program, the more behaviors it will exhibit.

Continuity implies monotonicity: when x ⊑ y, simply consider the chain {x, y} to get
that f(x) ⊔ f(y) = f(x ⊔ y) = f(y), i.e., f(x) ⊑ f(y). Continuity goes one step further
and requires that functions preserve limits, i.e., there is “no surprise” at the limit, and the
result of f(⊔A) can be intuited by observing the sequence { f(a) | a ∈ A }. For instance, an
operator f over (N∪{∞},≤) such that f(x) = 0 if x ̸=∞ but f(∞) = 1 is not continuous,
as f(∞) cannot be intuited from the set of all finite images { f(x) | x ∈ N } = {0}.
Scott and Strachey [1971] postulate that computable functions are continuous, which is
understandable given the inherent finite capabilities of computers.

Join morphisms and complete join morphisms distribute f over joins in lattices and
complete lattices. Naturally, they imply monotonicity, and a complete ⊔−morphism is
moreover continuous. In terms of program semantics, a ⊔−morphism indicates that the
set of possible behaviors of a program on a set of inputs can be derived by observing its
behaviors on each input separately, and joining them. This is also a natural property we
expect program semantics to have and, although we will not need this property in our
fixpoint theorems here, it will play a role when defining the semantics of our language in
the next chapter.

Extensivity is essentially useful when combined with monotonicity to bootstrap it-
eration: starting from an arbitrary x, we have x ⊑ f(x) by extensivity; then, applying
monotonicity, f(x) ⊑ f2(x), etc., so that the sequence { f i(x) | i ∈ N } is increasing.

In Abstract Interpretation, these properties often hold for concrete operators, but
are often lost in the abstract world for the sake of generality — the same way abstract
worlds feature less algebraic properties than concrete ones, abstract operators feature less
algebraic properties than concrete ones.

Version 2025-05-26 29

CHAPTER 2. ELEMENTS OF ABSTRACT INTERPRETATION

2.2.3 Fixpoint Theorems

Monotonicity is related to the existence of fixpoints. For instance, the operator enjoying
fixpoints in Fig. 2.5.(a) is monotonic, while the operator in Fig. 2.5.(b) is not monotonic,
and has no fixpoint.

Tarski fixpoint. This connection is formalized in Tarski [1955]’s Theorem:

Theorem 2.1 (Tarski’s Theorem). If f ∈ X → X is a monotonic operator in a complete
lattice (X,⊑,⊔,⊓,⊥,⊤), then the set of fixpoints fp(f) is a non-empty complete lattice.
In particular, lfp f exists.
Furthermore, lfp f = ⊓{x ∈ X | f(x) ⊑ x }. ■

Proof. We prove first that lfp f = ⊓{x | f(x) ⊑ x }, i.e., that lfp f is the meet of all
of the postfixpoints of f . Let us note f∗ def= {x | f(x) ⊑ x } the set of postfixpoints, and
a

def= ⊓ f∗ their meet (which exists as X is a complete lattice). Then:

∀x ∈ f∗: a ⊑ x (definition of ⊓)
=⇒ f(a) ⊑ f(x) (f is monotonic)
=⇒ f(a) ⊑ x (x is a postfixpoint)

As this is true of all postfixpoints x, we deduce that f(a) ⊑ ⊓ f∗, i.e. f(a) ⊑ a.
The converse inequality is proved as:

f(a) ⊑ a

=⇒ f(f(a)) ⊑ f(a) (f is monotonic)
=⇒ f(a) ∈ f∗ (definition of f∗)
=⇒ a ⊑ f(a) (as ∀x ∈ f∗: a ⊑ x)

Hence a = f(a), and a is indeed a fixpoint.
To prove that a is the least fixpoint, consider another fixpoint y ∈ fp(f). Then, as, y ∈ f∗

and a = ⊓ f∗, we have indeed a ⊑ y.
We have proved that fp(f) is non empty and has a least element. We now prove that it
has joins for arbitrary many elements. To do so, given S ⊆ fp(f), we prove that lfp⊔ S f
exists.
Consider X ′ def= {x ∈ X | ⊔ S ⊑ x }, the set of elements from X that are above all the
elements in S. Then, X ′ is a complete lattice; it is in fact a sublattice of X.
Additionally, we note that ∀x′ ∈ X ′: f(x′) ∈ X ′.
We can thus restrict f to a monotonic operator f ′ over X ′.
Applying our result on least fixpoints, we deduce that lfp f ′ = lfp⊔ S f exists.
By definition, lfp⊔ S f ∈ fp(f) and is it smaller than any fixpoint larger than all s ∈ S,
i.e., it is the lub in fp(f) of S we seek.
By duality, reversing ⊑ and exchanging the role of ⊔ and ⊓, lfp and gfp, we can construct
gfp f and gfp⊓ S f similarly.

Version 2025-05-26 30

2.2. FIXPOINTS

fp2

gfp

lfp

fp1

pre

pre post pre

lfp

gfp

fp

(a) (b)

Figure 2.6: Tarski’s fixpoint theorem: (a) the lattice {lfp, fp1, fp2, gfp} (in red) of fixpoints
of a monotonic operator in a complete lattice {lfp, fp1, fp2, pre, gfp}; and (b) illustration of
the least fixpoint lfp bracketed between prefixpoints and postfixpoints.

We deduce that the set of fixpoints indeed forms a complete lattice:

(fp(f), ⊑, λS. lfp⊔ S f, λS. gfp⊓ S f, lfp f, gfp f)

The complete lattice of fixpoints of a monotonic operator is illustrated in Fig. 2.6.(a). Note
that it is not a sublattice as the join, gfp, of fixpoints fp1 and fp2 does not coincide with
the join, pre, in the original lattice.

Beside the existence of fixpoints, and in particular a most precise, least fixpoint, a key
result of Tarski’s Theorem is its characterization of the least fixpoint as the meet of all
postfixpoints. This is illustrated in Fig. 2.6.(b): when exploring f(x) from the least element
⊥, one encounters only prefixpoints until reaching the least fixpoint, which is also the first
postfixpoint. An important consequence for static analysis is that any postfixpoint of f is
a sound over-approximation of lfp f .

Kleene fixpoint. Another useful fixpoint theorem, found, e.g., in [Cousot and Cousot,
1977], is inspired by Kleene [1964]’s star construction:

Theorem 2.2 (Kleene’s Theorem). If f ∈ X → X is a continuous operator in a CPO
(X,⊑,⊔,⊤), then lfp f exists. Moreover, lfp f = ⊔{ f i(⊥) | i ∈ N }. ■

Proof. We prove a stronger result: for any prefixpoint a ⊑ f(a), then { fn(a) | n ∈ N } is
a chain and lfpa f = ⊔{ fn(a) | n ∈ N }. As ⊥ is always a prefixpoint, the theorem then
comes immediately. We have:

a ⊑ f(a) (by hypothesis)
=⇒ f(a) ⊑ f(f(a)) (monotony of f)

Version 2025-05-26 31

CHAPTER 2. ELEMENTS OF ABSTRACT INTERPRETATION

lfp

f (⊥)

f 2(⊥)

f 3(⊥)

⊥

Figure 2.7: Kleene fixpoint iterations, from ⊥ to lfp f .

and, continuing this reasoning by recurrence, we get ∀n: fn(a) ⊑ fn+1(a). Thus,
{ fn(a) | n ∈ N } is indeed a chain and, by CPO definition, ⊔{ fn(a) | n ∈ N } exists.
Then:

f(⊔{ fn(a) | n ∈ N })
= ⊔{ fn+1(a) | n ∈ N } (continuity of f)
= a ⊔ (⊔{ fn+1(a) | n ∈ N }) (as all fn+1(a) are greater than a)
= ⊔{ fn(a) | n ∈ N }

So, ⊔{ fn(a) | n ∈ N } ∈ fp(f).
Moreover, any fixpoint greater than a must also be greater than all fn(a), n ∈ N.
So, ⊔{ fn(a) | n ∈ N } = lfpa f .

This theorem requires stronger hypotheses on the operator f than Tarski’s Theorem, i.e.,
continuity instead of monotonicity, but it does not require a complete lattice, only a CPO.
More interestingly, it expresses lfp f as a limit of an iteration, by computing the chain
{ f i(⊥) | i ∈ N }. This iteration is illustrated in Fig. 2.7. This iteration scheme makes
the theorem constructive: one can imagine the process of computing iterations one by one
from ⊥, which is what we actually did in Fig. 1.4. Naturally, the iteration often requires
passing to the limit after an infinite (yet countable) number of iterations. One particular
case is when the CPO X has no infinite strictly increasing chain. In this case, the iteration
is guaranteed to converge in finite time, bounded by the maximal height of chains. Dually,
it is possible to relax the continuity condition and obtain a theorem, due to Cousot and
Cousot [1979b], with even weaker hypotheses than Tarski’s theorem, and which is still
constructive. However, the iteration may not even converge in a countable number of
steps and requires, instead, transfinite iterations, up to larger ordinals.

These theorems are useful to provide a rigorous definition of program semantics, as we
will see in the next chapter, but they do not often lead to effective algorithms. To com-
pute effectively and efficiently, we will introduce, in the abstract, convergence acceleration
methods.

Version 2025-05-26 32

2.3. APPROXIMATIONS

2.3 Approximations
We now study the relationships between concrete worlds and abstract worlds, and state
key results ensuring the soundness of abstract computations with respect to concrete ones.
We will first discuss the abstraction of elements, then of operators, and finally of fixpoints.

2.3.1 Concretization

The minimum structure we require in the concrete and the abstract worlds is a partial
order that models an amount of information — larger elements expose more program
behaviors. Thus, the concrete world is a poset (C,≤), for instance integer powersets (2.1),
and the abstract world is another poset (A,⊑), for instance intervals (2.3). The minimum
connection we request between these worlds is a concretization function, traditionally
denoted as γ:

Definition 2.10 (Concretization). A concretization function γ ∈ (A,⊑) → (C,≤) is a
monotonic function assigning a concrete meaning, in C, to each abstract element in A.

■

The monotonicity simply states that coarser abstract elements represent coarser concrete
elements.

Example 2.9 (Concretization).

1. The interval abstraction (2.3) already considers that an interval is a set of integers.
The concretization from intervals to sets (2.1) is thus the identity.

2. Consider an alternate abstract domain of intervals where an interval is represented
by either a pair of bounds, or ⊥:

{ (a, b) | a ∈ Z ∪ {−∞}, b ∈ Z ∪ {+∞}, a ≤ b } ∪ {⊥} (2.4)

Then, the concretization is given by:

γ((a, b)) def= {x ∈ Z | a ≤ x ≤ b }
γ(⊥) def= ∅

♦

It is convenient, on paper, to confuse an interval as a set of integers (Ex. 2.9.1) and
an interval as a pair of bounds (Ex. 2.9.2). However, the later is far more effective when
it comes to machine representation and manipulation. Thus, it is important not to see
the abstract world only as a subset of the concrete world: the abstract world also adds
a notion of representation, which is key to effectiveness. Hence, we separate the concrete
world from the abstract world, always mediate through a concretization function γ to
compare concrete and abstract elements, and avoid confusing a ∈ A with γ(a) ∈ C.

Version 2025-05-26 33

CHAPTER 2. ELEMENTS OF ABSTRACT INTERPRETATION

Note (Interval notation). Now that the distinction between the abstract world and the
concrete world is clear, in the rest of the tutorial, when discussing intervals, we will write
[a, b] to actually denote the pair of bounds (a, b) that internally represents an interval, and
write explicitly γ([a, b]) when discussing about the set of integers in this interval. ♢

Note that γ does not need to be onto — i.e., injective. It is possible to imagine an
abstract world where several abstract elements represent the same concrete element. Con-
sider, for instance, a variant of (2.4), { (a, b) | a ∈ Z∪{−∞}, b ∈ Z∪{+∞}}, where we do
not enforce a ≤ b, and thus, any pair such that a > b is a representation for the empty set.
This is mainly useful, as we will see later, in the case of domains where computing unique,
normal forms for an abstract element is not possible or would be too time-consuming.

2.3.2 Soundness

Given a concrete and an abstract domain, a sound abstraction is simply an abstract
element that over-approximates a concrete one, up to the interpretation given by the
concretization:

Definition 2.11 (Soundness, Exactness).
a ∈ A is a sound abstraction of c ∈ C if and only if c ≤ γ(a).
It is moreover exact if c = γ(a). ■

The case where the equality holds corresponds to a rare case where the concrete element
can be exactly be represented in the abstract (such as, for instance, a contiguous set of
integers, which can be represented exactly as an interval).

We can now formalize the intuition given in Sect. 1.2 for safety verification problems.
Given a specification S, then if:

• the specification S can be exactly represented in the abstract as S♯, i.e., S = γ(S♯),
and

• the result P ♯ of a static analysis is a sound abstraction of the concrete semantics P ,
i.e., P ⊆ γ(P ♯), and

• P ♯ ⊑ S♯, i.e., the analyzer proves in the abstract that the program satisfies its
specification,

then, the program indeed satisfies its specification in the concrete, i.e., P ⊆ S. Note
that, not only the computation of P ♯, but also the check P ♯ ⊑ S♯, are done entirely in
the abstract world. Hence, effective abstract algorithms lead to sound and effective static
analyses.

2.3.3 Galois connection

While a monotonic concretization γ is sufficient to reason about soundness, more structure,
if available, can help us design sound and accurate analyses. In the standard Abstract

Version 2025-05-26 34

2.3. APPROXIMATIONS

Interpretation framework [Cousot and Cousot, 1977], we assume additionally the existence
of a monotonic abstraction function α : C → A that associates an abstract element to a
concrete one such that (α, γ) forms a Galois connection:

Definition 2.12 (Galois connection). Given two posets (C,≤) and (A,⊑), the pair (α :
C → A, γ : A→ C) is a Galois connection if:

∀a ∈ A, c ∈ C, c ≤ γ(a) ⇐⇒ α(c) ⊑ a (2.5)

which is denoted as (C,≤) −−−→←−−−α

γ
(A,⊑).

α and γ are said to be adjoint functions, where the abstraction α is the upper adjoint and
the concretization γ is the lower adjoint. ■

The fundamental property of Galois connections (2.5) provides, in a very compact
form, a strong connection between the concrete and the abstract world. The following
theorem provides a less compact, but equivalent view:

Theorem 2.3 (Alternate characterization of Galois connections). We have a Galois con-
nection (C,≤) −−−→←−−−α

γ
(A,⊑) if and only if the function pair (α, γ) satisfies all the following

properties:

1. γ is monotonic;

2. α is monotonic;

3. γ ◦ α is extensive, i.e., ∀c ∈ C: c ⊑ γ(α(c));

4. α ◦ γ is reductive, i.e., ∀a ∈ A: α(γ(a)) ≤ a. ■

Proof. Assume first that (α, γ) satisfies (2.5). We prove that the four properties in
Thm. 2.3 hold:

1. Obviously, ∀c ∈ C: α(c) ⊑ α(c).
Applying (2.5) with a

def= α(c), we get c ≤ γ(α(c)), i.e., γ ◦ α is extensive.
2. Obviously, ∀a ∈ A: γ(a) ≤ γ(a).

Applying (2.5) with c
def= γ(a), we get α(γ(a)) ⊑ a, i.e., α ◦ γ is reductive.

3. By 1, ∀c, c′ ∈ C: c ≤ c′ =⇒ c ≤ γ(α(c′)).
Then, applying (2.5) with a

def= α(c′), we get α(c) ⊑ α(c′), i.e., α is monotonic.
4. By 2, ∀a, a′ ∈ A: a ⊑ a′ =⇒ α(γ(a)) ⊑ a′.

Then, applying (2.5) with c
def= γ(a), we get γ(a) ≤ γ(a′), i.e., γ is monotonic.

Assume conversely that the four properties in Thm. 2.3 hold. We prove that (2.5) holds:
1. Firstly, assume that c ≤ γ(a).

Then, α(c) ⊑ α(γ(a)) by monotony of α, and α(γ(a)) ⊑ a by reductivity, hence,
α(c) ⊑ a.

2. Likewise, assume that α(c) ⊑ a.
Then γ(α(c)) ≤ γ(a) by monotony of γ, and c ≤ γ(α(c)) by extensivity, hence.
c ≤ γ(a).

Version 2025-05-26 35

CHAPTER 2. ELEMENTS OF ABSTRACT INTERPRETATION

c

γ(a)

α(c)

a

≤ ⊑

γ

α

C A

c

γ(α(c)) α(c)

≤

γ

α

C A

α

γ(α(C))

α

γ

(a) (b)

Figure 2.8: A Galois connection (a) and a Galois embedding (b).

Apart from the monotonicity of γ, which we already stated, and that of α, which is also
intuitive as we want more precise concrete elements to be abstracted more precisely, the
extensivity of γ ◦ α is particularly interesting. It states that, going through the abstract
world A and back gives a result that is either equal or less precise than staying in the
concrete. The result is strictly less precise when the original concrete element has no exact
representation in the abstract, so that we lose information during the conversion between
the concrete and the abstract world. This is depicted in Fig. 2.8.(a).

The reductivity of α ◦ γ shows that, coming from the abstract and going back to the
abstract through the concrete, we may end up with a smaller abstract element. In fact,
this happens only when a concrete element has several different abstract representations,
in which case α will naturally choose the smallest one for the abstract order ⊑. This has
generally no consequence on the precision of an abstract computation — these elements
all have the same concretization — provided that the operators are carefully designed to
be independent from the choice of an abstract representation among several equivalent
ones. In many, but not all, cases, there is only a single abstract representation at most for
each concrete property anyway. This case will be discussed in more details in Sect. 2.3.4.

Example 2.10 (Galois connection). Following up on Ex. 2.9.2, we define the Galois con-
nection between the concrete domain P(Z) and the abstract domain of intervals represented
as pairs of bounds (2.4):

{ (a, b) | a ∈ Z ∪ {−∞}, b ∈ Z ∪ {+∞}, a ≤ b } ∪ {⊥}

as follows:
γ((a, b)) def= {x ∈ Z | a ≤ x ≤ b }
γ(⊥) def= ∅

α(X) def=
{
⊥ if X = ∅
[min X, max X] otherwise

We note, for instance, that α({0, 2}) = [0, 2] and that γ([0, 2]) = {0, 1, 2}. Hence, γ ◦ α is
extensive and not the identity, i.e., our abstraction generally looses precision. ♦

Version 2025-05-26 36

2.3. APPROXIMATIONS

Proof. We prove that (α, γ) indeed respects the definition (2.5):

∀X ⊆ Z, a ∈ Z ∪ {−∞}, b ∈ Z ∪ {+∞}: α(X) ⊑ (a, b)
⇐⇒ min X ≥ a ∧max X ≤ b

⇐⇒ ∀x ∈ X: a ≤ x ≤ b

⇐⇒ ∀x ∈ X: x ∈ { y | a ≤ y ≤ b }
⇐⇒ ∀x ∈ X: x ∈ γ(a, b)
⇐⇒ X ⊆ γ(a, b)

In practice, it is often easier to prove the alternate characterisation from Thm. 2.3 rather
than (2.5). In most cases, the monotonicity of α and γ is straightforward, and moreover
α ◦ γ is obviously the identity, so that only ∀c ∈ C: c ≤ γ(α(c)) remains to be proved.

In addition to Thm. 2.3, Galois connections enjoy many useful properties:

Theorem 2.4 (Galois connection properties). Given a Galois connection (C,≤) −−−→←−−−α

γ
(A,

⊑), we have:

1. γ ◦ α ◦ γ = γ and α ◦ γ ◦ α = α;

2. α ◦ γ and γ ◦ α are idempotent;

3. ∀c ∈ C: α(c) = ⊓{ a | c ≤ γ(a) };

4. ∀a ∈ A: γ(a) = ∨{ c | α(c) ⊑ a };

5. α maps concrete lubs to abstract lubs:
∀X ⊆ C: if ∨X exists, then α(∨X) = ⊔{α(x) | x ∈ X };

6. γ maps abstract glbs to concrete glbs:
∀X ⊆ A: if ⊓X exists, then γ(⊓X) = ∧{ γ(x) | x ∈ X }. ■

Proof.
1. On the one hand, ∀a ∈ A: α(γ(a)) ⊑ α(γ(a)) =⇒ γ(a) ≤ γ(α(γ(a))) by (2.5).

On the other hand, a ⊒ α(γ(a)) by reductivity, which implies γ(a) ≥ γ(α(γ(a))) by
monotony of γ. Hence, γ ◦ α ◦ γ = γ.
The proof of α ◦ γ ◦ α = α is similar.

2. γ ◦ α ◦ γ = γ implies α ◦ γ ◦ α ◦ γ = α ◦ γ, hence α ◦ γ is idempotent.
Likewise, α ◦ γ ◦ α = α implies that γ ◦ α is idempotent.

3. Assume that c ∈ C. We prove that α(c) = ⊓{ a | c ≤ γ(a) }.
We have ∀a ∈ A: c ≤ γ(a) =⇒ α(c) ⊑ a by (2.5), meaning that α(c) is a lower
bound of { a | c ≤ γ(a) }. We now need to prove that it is the greatest lower bound.
Assume that a′ is another lower bound. Then, ∀a ∈ A: c ≤ γ(a) =⇒ a′ ⊑ a. By
(2.5), we have that ∀a ∈ A: α(c) ⊑ a =⇒ a′ ⊑ a.
This implies a′ ⊑ α(c). Hence, the greatest lower bound of { a | c ≤ γ(a) } exists,
and equals α(c).

Version 2025-05-26 37

CHAPTER 2. ELEMENTS OF ABSTRACT INTERPRETATION

4. The proof of ∀a ∈ A: γ(a) = ∨{ c | α(c) ⊑ a } is similar to the previous case.
5. Consider X ⊆ C such that ∨X exists. We prove that α(∨X) = ⊔{α(x) | x ∈ X }.

By definition of lubs, ∀x ∈ X: x ≤ ∨X.
By monotony of α, ∀x ∈ X: α(x) ⊑ α(∨X).
Hence, α(∨X) is an upper bound of {α(x) | x ∈ X }.
We now prove that it is the least upper bound.
Assume that y is another upper bound of {α(x) | x ∈ X }.
Then, ∀x ∈ X: α(x) ⊑ y.
By Galois connection ∀x ∈ X: x ≤ γ(y).
By definition of lubs, ∨X ≤ γ(y).
By Galois connection, α(∨X) ⊑ y.
Hence, {α(x) | x ∈ X } has a lub, which equals α(∨X).

6. The proof of γ(⊓X) = ∧{ γ(x) | x ∈ X } is similar to the previous case.

Theorem 2.4.2 states that, although passing through the abstract once may lose precision,
as γ ◦ α is extensive (Thm. 2.3.3), further round-trips through the abstract world do not
lose any more precision, as (γ ◦ α)2 = γ ◦ α. Theorem 2.4.3–4 states that, in a Galois
connection, one adjoint can be derived from the other one.

Additionally, Thm. 2.4.3 states a very important property relating Galois connections,
soundness, and optimality. Recall that c ≤ γ(a) means, by Def. 2.11, that a is a sound
abstraction of c. Then, given c ∈ C, first recall that c ≤ γ(α(c)), which means that α(c)
is a sound abstraction of c. Moreover, α(c) = ⊓{ a | c ≤ γ(a) } means literally that α(c) is
the best (i.e., smallest) sound abstraction of c:

Corollary 2.5 (Best abstraction). If we have a Galois connection (C,≤) −−−→←−−−α

γ
(A,⊑),

then ∀c ∈ C: α(c) is the best abstraction of c, i.e., the smallest abstract element which is
a sound abstraction of c. ■

For instance, in the interval domain, the abstraction α(X) of a set of integers X computes
[min X, max X], which is indeed the tightest interval that contains all the values from X.

Example 2.11 (Absence of a Galois connection). Not all abstract domains enjoy a Galois
connection. Consider the affine inequalities domain, that we mentioned in Sect. 1.1.2 and
will present in details in Sect. 5.3. Intuitively, it abstracts a set of points as a convex
polyhedron, and a best abstraction would be the smallest polyhedron enclosing these points.
Some shapes, such as discs, do not have a smallest enclosing polyhedron, hence, no α
function, and so, no Galois connection can exist. We can still reason about soundness
through γ, though, and choose a, possibly arbitrary, way to soundly abstract a disc. ♦

Finally, an important consequence of Thm. 2.4.6 is that the set of concrete properties
that can be exactly represented in the abstract must be closed by concrete meet.

Example 2.12 (Closure by conjunction and Galois connections). We consider, as concrete
world, the poset (P(Z),⊆) of sets of integers, and the sign abstraction already discussed
informally in Fig. 1.2.

Version 2025-05-26 38

2.3. APPROXIMATIONS

(a) (b)

Figure 2.9: Sign abstraction lattices: (a) does not enjoy a Galois connection, while (b)
does.

Figure 2.9 proposes formally two variants. A naive version, (a), has only four elements:
positive (≥ 0), negative (≤ 0), ⊥, and ⊤, with the natural concretization: γ((≥ 0)) = N,
γ((≤0)) = −N, γ(⊥) = ∅, and γ(⊤) = Z. We note that the set of representable properties
is not closed under intersection; indeed, γ((≥0)) ∩ γ((≤0)) = {0}, but {0} is not exactly
representable in the abstract. In fact, {0} has two incomparable abstractions: (≥ 0) and
(≤ 0), but no best abstraction. Hence, no Galois connection can exist for this lattice.
Observe also that, in the abstract, we have (≥ 0) ⊓ (≤ 0) = ⊥, which is not a sound
abstraction of γ((≥0)) ∩ γ((≤0)) = {0}.

On the other hand, if we complete the lattice with a dedicated 0 abstract element with
the natural interpretation γ(0) = {0}, then we obtain the lattice in Fig. 2.9.(b), which
enjoys a Galois connection. We simply define:

α(X) =

⊥ if X = ∅
0 if X = {0}
(≥0) otherwise if X ⊆ N

(≤0) otherwise if X ⊆ −N

⊤ otherwise

♦

2.3.4 Galois Embeddings

We saw, for instance in Ex. 2.10, that γ ◦ α is extensive and generally not the identity, as
abstracting looses precision. Concretizing, however, does not loose precision, so we would
expect α ◦ γ to be the identity. When this is the case, we have a Galois embedding:

Definition 2.13. A Galois connection (C,≤) −−−→←−−−α

γ
(A,⊑) is a Galois embedding if any

of the following, equivalent properties hold:

1. α is surjective: ∀a ∈ A:∃c ∈ C: α(c) = a;

2. γ is injective: ∀a, a′ ∈ A: γ(a) = γ(a′) =⇒ a = a′;

Version 2025-05-26 39

CHAPTER 2. ELEMENTS OF ABSTRACT INTERPRETATION

3. α ◦ γ = id.

We denote a Galois embedding as (C,≤) −−−→−→←−−−−
α

γ
(A,⊑). ■

Proof. We prove that these three definitions are equivalent:
1 =⇒ 2.

Assume that a, a′ ∈ A such that γ(a) = γ(a′); we prove that a = a′

By surjectivity of α, take c, c′ ∈ C such that a = α(c) and a′ = α(c′).
Then γ(α(c)) = γ(α(c′)), hence α(γ(α(c))) = α(γ(α(c′))).
As α ◦ γ ◦ α = α, α(c) = α(c′), i.e., a = a′.

2 =⇒ 3.
Given a ∈ A, we know that γ(α(γ(a))) = γ(a).
By injectivity of γ, α(γ(a)) = a, hence, α ◦ γ = id.

3 =⇒ 1.
Given a ∈ A, we have α(γ(a)) = a.
Hence, ∃c ∈ C: α(c) = a, using c = γ(a), i.e., α is surjective.

Properties 1 and 2 state that every abstract element is useful: there is no redundancy
as every abstract element abstracts a different concrete element. Property 3 allows us to
view the abstract domain A as isomorphic to a subset of the concrete domain C. This is
depicted in Fig. 2.8.(b).

Example 2.13 (Galois embedding).

1. The interval Galois connection from Ex. 2.10 is actually an embedding.

2. Consider the following, alternate interval abstraction:

{ [a, b] | a ∈ Z ∪ {+∞,−∞}, b ∈ Z ∪ {+∞,−∞}}

with order [a, b] ⊑ [c, d] def⇐⇒ (a ≥ c) ∧ (b ≤ d) and natural concretization:
γ([a, b]) def= {x ∈ Z | a ≤ x ≤ b }. Then, we have γ([a, b]) = ∅ for any pair [a, b] such
that a > b: the concrete element ∅ has several representations in the abstract.
We can construct an abstraction function α as follows: α(S) def= [min S, max S],
so that (α, γ) is a Galois connection. However, it is not a Galois embedding. The
abstraction α differs from that of the interval abstraction from Ex. 2.10 only for
the empty set, where α(∅) = [+∞,−∞]. Note that, in order for the set of intervals
{ [a, b] | a > b } representing the empty set to have a least element, we had to al-
low +∞ as lower bound and −∞ as upper bound; with only a slight extension of
notations, we state that min ∅ = +∞ and max ∅ = −∞. ♦

2.3.5 Derived Galois Connections

Similarly to the way we can derive new ordered structures from basic ones (Def. 2.7), we
can derive new Galois connections by applying generic constructions to existing ones:

Version 2025-05-26 40

2.3. APPROXIMATIONS

Definition 2.14 (Deriving Galois connections). Assume we have a Galois connection
(C,≤) −−−→←−−−α

γ
(A,⊑), we can derive new Galois connections as follows:

1. Duality: (A,⊒) −−−→←−−−γ

α (C,≥).

2. Point-wise lifting: (S → C, ≤̇) −−−→←−−−
α̇

γ̇
(S → A, ⊑̇) where

f ≤̇ f ′ def⇐⇒ ∀s ∈ S: f(s) ≤ f ′(s)
f ⊑̇ f ′ def⇐⇒ ∀s ∈ S: f(s) ⊑ f ′(s)
α̇(f) def= λs ∈ S. α(f(s))
γ̇(f) def= λs ∈ S. γ(f(s))

and S is an arbitrary set.

3. Composition: (X1,⊑1) −−−−−−→←−−−−−−
α2◦α1

γ1◦γ2 (X3,⊑3),

given (X1,⊑1) −−−→←−−−
α1

γ1 (X2,⊑2) −−−→←−−−
α2

γ2 (X3,⊑3). ■

Proof. We prove that the three constructions in the definition are indeed Galois connec-
tions:

1. Duality: applying (2.5) on (C,≤) −−−→←−−−α

γ
(A,⊑) gives α(c) ⊑ a ⇐⇒ c ≤ γ(a). This

is equivalent to γ(a) ≥ c ⇐⇒ a ⊒ α(c), which is (2.5) on (A,⊒) −−−→←−−−γ

α (C,≥).
2. Point-wise lifting:

α̇(c) ⊑̇ a

⇐⇒ ∀x: α(c)(x) ⊑ a(x) (by definition)
⇐⇒ ∀x: c(x) ≤ γ(a)(x) (by (2.5))
⇐⇒ c ≤̇ γ̇(a) (by definition)

3. Composition:

(α2 ◦ α1)(c) ⊑3 a

⇐⇒ α1(c) ⊑2 γ2(a) (by (2.5) on (α2, γ2))
⇐⇒ c ⊑1 (γ1 ◦ γ2)(a) (by (2.5) on (α1, γ1))

The second point is useful to lift Galois connections on single variables to Galois connec-
tions on multi-variable program states. We will use it extensively in Chap. 4 to define
non-relational domains.

The third point is useful to build complex abstractions by composing several small
abstraction steps, encouraging a modular view of abstractions.

Version 2025-05-26 41

CHAPTER 2. ELEMENTS OF ABSTRACT INTERPRETATION

2.3.6 Operator Approximation

In order to construct a static analysis by abstraction, any operator that operates in the
concrete world must be replaced with a similar operator but operating within the abstract
world. Even with only a concretization function and no Galois connection, the notion of
sound and exact abstraction (Def. 2.11) carries naturally from domain elements to domain
operators:

Definition 2.15 (Sound and exact operator abstraction). Given a concretization γ from
an abstract domain (A,⊑) to a concrete domain (C,≤), a concrete operator f : C → C,
and an abstract operator g : A→ A:

1. g is a sound abstraction of f if ∀a ∈ A: f(γ(a)) ≤ γ(g(a));

2. g is an exact abstraction of f if f ◦ γ = γ ◦ g. ■

An exact abstraction is always sound. For a sound abstraction to be exact, the concrete
image of any abstract-representable element must also be abstract-representable (e.g., the
image of an interval is an interval), which is quite rare.

When we have a Galois connection, we can additionally transport the notion of best
abstraction (Thm. 2.5) to operators:

Definition 2.16 (Best operator abstraction). Given a Galois connection (C,≤) −−−→←−−−α

γ
(A,

⊑) and a concrete operator f : C → C, the best abstraction of f is given by α ◦ f ◦ γ.
■

Indeed, note that the soundness definition, f(γ(a)) ≤ γ(g(a)) from Def. 2.15.1, can
be written equivalently, given the definition of Galois connections (Def. 2.5), as ∀a ∈
A: α(f(γ(a))) ⊑ g(a). Hence, a sound abstraction g of f is any operator that is greater
than α ◦ f ◦ γ. This means that α ◦ f ◦ γ is thus the best abstraction, i.e., the smallest
sound abstraction, of f .

Example 2.14 (Operator abstraction). Consider the following concrete operator on inte-
ger sets: f

def= λX. {x + 1 | x ∈ X }. Then g1
def= λ[a, b]. [−∞, +∞] is a sound abstraction

of f in the interval domain, while g2
def= λ[a, b]. [a+1, b+1] is a sound and exact abstraction

of f .
Consider now f

def= λX. { 2x | x ∈ X }. Then g
def= λ[a, b]. [2a, 2b] is the best abstraction

of f in the interval domain, but it is not exact. Indeed, the concrete image of an interval is
not necessarily an interval. Consider, for instance, that f({0, 1}) = {0, 2}, while g([0, 1]) =
[0, 2], which contains the spurious value 1. ♦

Definition 2.16 is a powerful tool as it allows deriving the abstract semantics sys-
tematically from the concrete one and a Galois connection. Note, however, that this is
a constructive mathematical definition that cannot generally be implemented as is, as
neither its components α, f , γ are likely to be computable. Rather, it is the designer’s
responsibility to turn this mathematical definition into an algorithm. Sometimes, it is not

Version 2025-05-26 42

2.3. APPROXIMATIONS

easy to derive such an algorithm, or the algorithm might not be sufficiently efficient. Fi-
nally, there is always the case of abstract domains without a Galois connection (Ex. 2.11).
In those cases, the designer has to rely on intuition to invent a suitable abstract operator,
several choices being possibles, and then prove its soundness through Def. 2.15, without
relying on Def. 2.16.

2.3.7 Operator Composition

It is best to keep our abstractions as modular and composable as possible. As we will see
in the next chapter, the semantics of a program is generally obtained by composing atomic
semantic functions from a limited library, corresponding to basic language operations. This
lends itself well to a modular abstraction scheme, where we design abstract operators only
for this alphabet of basic operations, and compose the abstract operators following the
same rules as in the concrete semantics. This is made possible because sound and exact
abstractions compose:

Theorem 2.6 (Operator composition). Assume that f, f ′ : C → C are concrete operators,
and g, g′ : A→ A are abstract operators:

1. if g and g′ are sound abstractions of respectively f and f ′, and f is monotonic, then
g ◦ g′ is a sound abstraction of f ◦ f ′;

2. if g and g′ are exact abstractions of respectively f and f ′, then g ◦ g′ is an exact
abstraction of f ◦ f ′. ■

Proof.
1. By soundness of g′, we have ∀a ∈ A: f ′(γ(a)) ≤ γ(g′(a)).

By monotonicity of f , we get (f ◦ f ′ ◦ γ)(a) ≤ (f ◦ γ ◦ g′)(a).
Finally, by soundness of g, (f ◦ γ ◦ g′)(a) ≤ (γ ◦ g ◦ g′)(a).

2. This is a straightforward consequence of the exactness of g and g′: f ◦ f ′ ◦ γ =
f ◦ γ ◦ g′ = γ ◦ g ◦ g′.

The technical condition requiring that f is monotonic for sound abstractions to compose
is not very severe: it concerns the concrete world, which, unlike the abstract world, is
monotonic, as we will see in the next chapter.

Naturally, as best abstractions are sound, then, if g and g′ are the best abstractions
respectively of f and f ′, then g ◦ g′ is a sound abstraction of f ◦ f ′. However, it is not
necessarily the best abstraction of f ◦ f ′, as shown below:

Example 2.15 (Non-composability of optimality). Consider, in the concrete domain of
integer sets, the operators f

def= λX. {x ∈ X | x ≤ 1 } and f ′ def= λX. { 2x | x ∈ X }. Con-
sider now their best abstractions g and g′ in the interval domain: g

def= λ[a, b]. [a, min(b, 1)]
and g′ def= λ[a, b]. [2a, 2b]. Then, g◦g′ is not the best abstraction of f ◦f ′ as (g◦g′)([0, 1]) =
[0, 1] while (α ◦ f ◦ f ′ ◦ γ)([0, 1]) = [0, 0].

Version 2025-05-26 43

CHAPTER 2. ELEMENTS OF ABSTRACT INTERPRETATION

More, generally, composing best abstractions gives α ◦ f ◦ γ ◦ α ◦ f ′ ◦ γ, while the best
abstraction of the composition would be α ◦ f ◦ f ′ ◦ γ. The former performs an additional
trip trough the abstract world, γ ◦ α, between f and f ′, which is a source of imprecision
and the reason the composition is no longer optimal. ♦

As a side-note, although composing two optimal abstractions does not necessarily result
in an optimal abstraction, applying an exact abstraction and then an optimal abstraction
results in an optimal abstraction.

The lack of general composability for the notion of best abstraction has rather impor-
tant practical ramifications. The precision of an analysis depends on the granularity of
the decomposition of the program semantics into atomic operations abstracted indepen-
dently. The finer the decomposition, the larger the risk of some imprecision appearing.
A coarser decomposition allows, on the other hand, optimal abstractions for larger code
blocks. It may not be practicable, however, as the number of possible blocks grows in a
combinatorial fashion with block size. There is generally a trade-off to achieve. It may also
be worth keeping the semantics small and modular, and turn instead to more expressive
abstract domains to alleviate the loss of precision (i.e., increasing the probability of exact
abstractions for atomic instructions).

To conclude, it is important to keep in mind that, despite our best efforts, the analysis
results will seldom be the most precise information representable in the abstract, even if
it employs solely best abstractions. For instance, an interval analysis will seldom output
the tightest variable bounds possible.

2.3.8 Fixpoint Approximation

Critical parts of the semantics of a program are defined as least fixpoints lfp f of some
monotonic or continuous operator f : C → C in the concrete domain (C,≤). In order
to abstract lfp f in an abstract domain (A,⊑), a natural idea is to start with a sound
abstraction g : A → A of f . Then, there exists many variants of fixpoint approximation
theorems that provide guidelines on how to use g to soundly approximate lfp f . We mention
here two of them that will be useful in the rest of the tutorial.

Kleene fixpoint transfer. A first, natural idea is to mimic the fixpoint computation,
with g instead of f . For instance, relying on the constructive definition of lfp f as the limit
of an iteration sequence from Kleene’s theorem (Thm. 2.2), we get:

Theorem 2.7 (Kleenian fixpoint approximation). If f : C → C is continuous in a CPO
(C,≤,∨,⊥), and g : A → A is a sound — not necessarily monotonic — abstraction of f
in a poset abstract domain (A,⊑,⊥′), and the sequence { gi(⊥′) | i ∈ N } has a limit x in
A, then it is a sound approximation of lfp f , i.e., lfp f ≤ γ(x). ■

Proof. We first apply the Kleene fixpoint theorem, Thm. 2.2, to get lfp f = ⊔{ f i(⊥) | i ∈
N }.
We prove by recurrence that ∀i ∈ N: f i(⊥) ≤ γ(gi(⊥′)).

Version 2025-05-26 44

2.3. APPROXIMATIONS

By soundness of g, ∀c ∈ C: f(γ(a)) ≤ γ(g(a)). Note also that ⊥ ≤ γ(⊥′), thus, at rank 0,
f(⊥) ≤ f(γ(⊥′)) ≤ γ(g(⊥′)).
Moreover, if this holds at rank i, then, by monotonicity of f , we get f(f i(⊥)) ≤
f(γ(gi(⊥′))) and, by soundness of g, f i+1(⊥)) ≤ γ(gi+1(⊥′)).
Passing to the limit, we get ⊔{ f i(⊥) | i ∈ N } ≤ ⊔{ γ(gi(⊥′)) | i ∈ N }.
Note that ∀j: gj(⊥′) ⊑ ⊔{ gi(⊥′) | i ∈ N } and, by monotony of γ, ∀j: γ(gj(⊥′)) ≤
γ(⊔{ gi(⊥′) | i ∈ N }). We deduce that ⊔{ γ(gi(⊥′)) | i ∈ N } ≤ γ(⊔{ gi(⊥′) | i ∈ N }),
which concludes the proof.

The theorem relies on the fact that, at each step i, gi(⊥′) is a sound approximation of f i(⊥),
and passes to the limit. In particular, if gi(⊥′) stabilizes after some finite step N (e.g.,
when there are no strictly increasing infinite chains in A) then gN (⊥′) over-approximates
our concrete fixpoint. Note that we only guarantee soundness, not optimality, even if
g is the best abstraction of f . Indeed, we compose g many times, and we know that the
composition of best abstractions is not necessarily the best abstraction of the composition.

Tarski fixpoint transfer. A second theorem we will use is based on Tarski’s charac-
terization of lfp f as the smallest postfixpoint (Thm. 2.1) and the observation that any
abstract postfixpoint of a sound abstraction represents, through γ, a concrete postfixpoint,
thus, an overapproximation of lfp f .

Theorem 2.8 (Tarskian fixpoint approximation). Given a complete lattice concrete do-
main (C,≤,∨,∧,⊥,⊤), a monotonic concrete function f : C → C, and a sound — not
necessarily monotonic — abstraction g : A → A of f in a poset abstract domain (A,⊑),
then any postfixpoint a of g, i.e., such that g(a) ⊑ a, is a sound abstraction of lfp f , i.e.,
lfp f ≤ γ(a). ■

Proof. We first apply the Tarski’s fixpoint theorem, Thm. 2.1, to get lfp f = ∧{x | f(x) ≤
x }. Then, it is sufficient to prove that γ(a) is a postfixpoint of f :

g(a) ⊑ a (a is a postfixpoint)
=⇒ γ(g(a)) ≤ γ(a) (by monotony of γ)
=⇒ f(γ(a)) ≤ γ(a) (by soundness of g)
=⇒ lfp f ≤ γ(a) (by Tarski’s theorem)

The theorem does not state how a postfixpoint of g can be computed in the abstract. While
it is conceivable to compute a least fixpoint in the abstract world, as for Thm. 2.7, the
theorem can be applied in the useful case where abstract fixpoints are hard to compute,
or do not even exist at all. Indeed, we will see important examples where, while fixpoints
exist in the concrete, they are not guaranteed to exist in the abstract, either because
the abstract domain is not a complete lattice nor a CPO (such as the affine inequalities
domain) or the abstract functions are not monotonic. It is important to keep in mind that

Version 2025-05-26 45

CHAPTER 2. ELEMENTS OF ABSTRACT INTERPRETATION

we are only trying to compute an abstraction of a concrete fixpoint, and do not require
computing an abstract fixpoint: this would be too limiting. In these cases, we may use
fixpoint acceleration techniques, as described below, to get a postfixpoint, even in the
absence of fixpoints.

2.3.9 Fixpoint Acceleration

In order to solve the convergence problem in abstract domains, Cousot and Cousot [1977]
introduced a specific binary operator, the widening ▽:

Definition 2.17. A binary operator ▽ : A×A→ A is a widening operator in an abstract
domain (A,⊑) if:

1. it computes upper bounds: ∀x, y ∈ A: x ⊑ x ▽ y and y ⊑ x ▽ y;

2. and it enforces convergence: for any sequence (yi)i∈N in A, the sequence (xi)i∈N

computed as x0 def= y0, xi+1 def= xi ▽ yi+1 stabilizes in finite time: ∃k ≥ 0: xk+1 = xk.
■

The first point allows us to construct increasing sequences by iterating abstract operators
that are not necessarily monotonic. Another consequence of the first point is that the
result x ▽ y is a sound approximation of the concrete join γ(a) ∨ γ(b).

The second point ensures that all increasing sequences with widening are finite, even
if the abstract domain A has infinite strictly increasing chains.

To illustrate this definition, we propose a simple and naive widening that can be applied
to an arbitrary abstract domain with a greatest element ⊤. It consists simply in putting
an unstable iterate to ⊤:

Example 2.16 (Naive widening).

x ▽ y
def=

{
x if y ⊑ x

⊤ otherwise

♦

We will see many more sophisticated widenings in Chaps. 4–5, when presenting numeric
abstract domains in details.

The following theorem states that widenings can indeed be used to approximate least
fixpoints in the abstract:

Theorem 2.9. If f is a monotonic operator in a complete concrete lattice and g is a
sound abstraction of f , then the following iteration:

x0 def= ⊥
xi+1 def= xi ▽ g(xi)

(2.6)

converges in finite time, and its limit x is a sound abstraction of the least fixpoint lfp f :
lfp f ≤ γ(x). ■

Version 2025-05-26 46

2.4. SUMMARY

The convergence property comes from Def. 2.17.2. Note also that, because of Def. 2.17.1,
the iterates xi, i ∈ N actually form a chain, even if g is not monotonic. The soundness
comes from the fixpoint approximation Thm. 2.8 given that, when encountering a stable
value xi+1 = xi, then f(xi) ⊑ xi ▽ f(xi) = xi+1 = xi, i.e., xi is an abstract postfixpoint.
As we will see, such an iteration is rather naive and can sometimes loose much precision.
More advanced iterations techniques, and a better use of widenings will be presented in
Sect. 4.7, in the context of the interval domain.

2.4 Summary

This chapter presented the mathematical bases of Abstract Interpretation. To sum up,
semantic definitions are stated as operators in ordered structures, such as partial orders,
CPO, lattices, or complete lattices. Additional hypotheses, such as monotonic operators
on lattices or continuous operators on CPO, are necessary to ensure the existence of least
fixpoints, which appear in the semantics of loops in the concrete semantics. We discussed
the connections between a concrete and an abstract semantics, using two methods: a
concretization-only framework, which is very general but can only be used to check the
soundness of hand-crafted operators, and a stronger framework, based on Galois con-
nections, which adds the notion of best abstractions and a closed mathematical formula
to construct them from the concrete semantics. Finally, we discussed the problem of ab-
stracting concrete least fixpoints, even in the general case where the corresponding abstract
operator does not have any fixpoint. The next chapter will apply these results to define
the concrete and sound abstract semantics of a concrete, if simple, programming language.

2.5 Bibliographic Notes

Partial orders are pervasive in Computer Science and, particularly, in program semantics,
through domain theory introduced by Scott and Strachey [1971]. An influential and ref-
erence work on the theory of partial orders and lattices, from an algebraic point of view,
is the book by Birkhoff [1967]. The key fixpoint theorem in lattices was introduced by
Tarski [1955]. Additional fixpoint theorems, based on the notion of (finite, countable, or
transfinite) iteration were introduced by Cousot and Cousot [1979b]. Galois connections
stem from Galois theory, that studies the solvability of polynomial equations; they have
applications in several branches of Mathematics, but their use in Computer Science seems
restricted to Abstract Interpretation.

All the main elements of Abstract Interpretation, including the use of Galois connec-
tions and the invention of widenings, are introduced early, by Cousot and Cousot [1976],
although [Cousot and Cousot, 1977] gives a more complete presentation. There exist closely
related presentations of Abstract Interpretation that replace Galois connections with upper
closure operators, complete join congruences relations, principal ideals, or Moore families;
those are described by Cousot and Cousot [1979a]. Such presentations identify an abstract
domain with the set of concrete elements is represents, which we avoided here, but makes

Version 2025-05-26 47

CHAPTER 2. ELEMENTS OF ABSTRACT INTERPRETATION

it possible to manipulate more easily abstract domains as first class objects and derive do-
main constructions. We will see a classic application in Sect. 6.1, while Cortesi et al. [1997]
provide additional constructions. The distributivity of abstract domains was discussed by
Cousot and Cousot [1979a]. Finally, Schmidt [2009] provided an interesting connection
between Abstract Interpretation and topology.

In another direction, Cousot and Cousot [1992b] introduce the revised Abstract
Interpretation framework, which can dispense from Galois connections and allows a
concretization-only presentation, with revised notions of soundness and widenings. We
based on presentation on the revised framework as some of our domains do not feature
a Galois connection, although Cousot and Cousot [1992b] is even more general and more
relaxed.

Cousot and Cousot [1992a] discuss the widening operator, one of the less understood
aspect of Abstract Interpretation, and justify its usefulness by showing that infinite height
domains with widenings are more powerful than finite height domains. The theory of
widenings is further investigated by Cortesi and Zanioli [2011].

Version 2025-05-26 48

Chapter 3

Language and Semantics

In this chapter, we introduce the target language of our static analysis. It is a very sim-
ple language, with limited constructions and idealized semantics, so that we can fully
present the design of various static analyses and compare them. It is also a purely nu-
meric language, as we focus on numeric invariants, with idealized, mathematical numbers.
Nevertheless, the method we develop in this chapter and the followings can be applied
to realistic languages, as seen for example in the Astrée static analyzer for C [Bertrane
et al., 2015]. Note also that, despite its simplicity, the language allows unbounded program
executions and unbounded numeric values for variables, so that the problem of inferring
invariants is actually undecidable, following Rice [1953]’s result.

We first present the syntax of our language. We then present its concrete semantics,
that is, the most precise mathematical expression of the program behaviors. Actually,
the term “precise” is relative: as we focus on numeric invariants, we choose a concrete
semantics that expresses numeric invariants, and numeric invariants only. It is thus less
expressive than other kinds of semantics that could, for instance, discuss about program
termination, efficiency, security, etc. It is the “most precise” semantics in that, if we could
compute it, it would answer perfectly our original question and infer the tightest program
invariants. But we cannot, and so, we will require further abstractions, losing precision
and completeness to gain decidability. This concrete semantics, which is tailored to the
problem at hand and not (yet) adapted to the finitary computational power of computers,
is called the collecting concrete semantics. Finally, this chapter will present a generic static
analysis parameterized by an abstract domain, which is a first step towards automatic but
approximate invariant inference. The analysis will be completed in the next chapters by
providing abstract domain instances and iterations strategies.

The static analysis we develop is formally sound by construction, as we leverage the
Abstract Interpretation theory presented in the previous chapter. However, the proof of
soundness is only relative to the concrete semantics: if the concrete semantics does not
match the actual behaviors of the programs, then the analysis may well be incorrect! It is
thus critical to state the concrete semantics in the simplest, clearest, unambiguous way,
so that all parties can agree on its validity, before moving on to designing static analyses.

Version 2025-05-26 49

CHAPTER 3. LANGUAGE AND SEMANTICS

stat ::= V ← expr (assignment, V ∈ V)
| stat; stat (sequence)
| if cond then stat else stat endif (conditional)
| while cond do stat done (loop)
| skip (no-op)
| assert cond (assertion)

Figure 3.1: Syntax of programs.

expr ::= V (variable, V ∈ V)
| c (numeric constant, c ∈ I)
| −expr (negation)
| expr ⋄ expr (binary operator, ⋄ ∈ {+,−,×, /})
| [c1, c2] (input, c1, c2 ∈ I ∪ {−∞, +∞})

Figure 3.2: Syntax of (numeric) expressions.

In practice, this is not an easy task, as actual programming languages are complex and
often underspecified, and the normative documents, such as the C language specification
[ISO/IEC JTC1/SC22/WG14 working group, 2007], are written in a natural, informal
language: English.

Once the concrete semantics is agreed upon, various flavors of sound static analyses
can be safely developed using the Abstract Interpretation theory, and the analysis user
does not need to know the intricate details of the abstractions we currently use to trust
the validity of the analysis results — such information is useful, however, for the user to
understand the precision and limits of the analysis.

3.1 Syntax

Figures 3.1–3.3 present the syntax of our target language as a grammar in BNF form.
We assume a fixed, finite set V of program variables, with numeric values. We denote

by I the domain of variables, and assume that I ∈ {Z, Q, R}. Some of our abstract domains
will only work for integer-valued variables, others only for real-valued ones, some for both
but, in all cases, we assume here, for simplicity, that we use some perfect mathematical
version of numeric sets and not machine-integers nor floating-point numbers used actually
in most computer languages.

cond ::= expr ▷◁ expr (comparison, ▷◁∈ {≤,≥, <, >, =, ̸=})
| b (boolean constant, b ∈ B)
| ¬cond (logic negation)
| cond ∧ cond (logic and)
| cond ∨ cond (logic or)

Figure 3.3: Syntax of (boolean) conditions.

Version 2025-05-26 50

3.1. SYNTAX

The program statements stat are presented in Fig. 3.1. They include as-
signments “V ← expr”; instruction sequencing with a semicolon; conditionals
“if cond then stat else stat endif”; while loops “while cond do stat done”; no-
ops “skip” — used, e.g., to fill-in unused branches of conditionals — and assertions
“assert cond”, which stop the program when a given condition does not hold.

Numeric expressions expr are presented in Fig. 3.2: they include variable use V ∈ V,
usual unary (−) and binary (+, −, ×, /) arithmetic operators, and constants c ∈ I.
Additionally, expressions feature a non-standard construction: [c1, c2], where c1 and c2 are
constants in I or an infinity. Each evaluation of [c1, c2] returns a value within the bounds,
independent from the previous evaluations. It is intended to denote non-deterministic
inputs, out of the control of the program. We assume that [c1, c2] is not empty, that is,
c1 ∈ I ∪ {−∞}, c2 ∈ I ∪ {+∞}, and c1 ≤ c2.

Finally, Fig. 3.3 presents the syntax of boolean conditions cond, that appear in condi-
tionals, assertions, and loops. These include the boolean constants in B

def= {true, false},
unary (¬) and binary (∧, ∨) logic operators, as well as comparisons of two numeric ex-
pressions (=, ̸=, ≤, ≥, <, >). Note that variables, which are numeric, can only appear in
numeric expressions expr , and not in boolean conditions cond.

Non-determinism. Due to the [c1, c2] construction, the semantics of a program may
be non-deterministic: different executions of the program may exhibit different behaviors.
What it means for verification is that, for the program to be considered correct, the whole
space of its possible executions must be proved correct. Hence, to be sound, our semantics
will consider, at each [c1, c2] expression, the set of all outcomes, and return a set of program
states, even when starting in a well-defined state. Non-determinism has many applications:

• We can analyze programs that interact with an outside environment. One example
is a program accessing a file or a network: by modelling write accesses as no-ops
and read-accesses as non-deterministic values in the range of the data type, we can
prove that a program is correct whatever the behavior of the environment. Another
example is the analysis of embedded control-command systems, such as found in
planes or cars, which fetch physical values through sensors. Additional hypotheses
about sensor ranges, if trusted, can be used to refine the bounds of [c1, c2] expressions.

• We can analyze a family of programs parameterized by the value of some variable N .
Instead of performing one analysis for each value of N , we perform a single analysis
after initializing N with a non-deterministic expression, hence factoring the analyses.
It is thus possible to analyze efficiently, in a single step, a program family with a
large, or even unbounded range of values of N .

• We can model floating-point rounding errors using small non-deterministic intervals.
For instance, a floating-point operation e1 +e2 is modelled as [1−ϵ, 1+ϵ]×(e1 +e2)+
[−ε, ε], where ϵ and ε account respectively for a relative and an absolute rounding
error. The latter expression can then be fed to an analyzer that assumes a real

Version 2025-05-26 51

CHAPTER 3. LANGUAGE AND SEMANTICS

semantics (such as the one we present here) to obtain a sound over-approximation
of the floating-point results.

• We can use [c1, c2] expressions to model parts of the program that are omitted —
e.g., because they are in libraries, their source code is not available, or they are too
complex. For instance, a program using the sin function can be verified assuming
only that sin returns a value in [−1, 1], without the need to specify which value is
computed, nor how.

• Finally, note that non-deterministic control flow can also be modeled, using [c1, c2],
by writing if [0, 1] = 0 then stat else stat endif . This can provide a way, for
instance, to model non-deterministic interrupts.

3.2 Atomic Statement Semantics
There are traditionally two different ways of presenting program semantics in Abstract
Interpretation, which differ in the way compound constructions, such as conditionals and
loops, are handled: either by induction on the syntax or through an equation system reflect-
ing the control-flow graph. They lead to slightly different static analysis algorithms, with
their own strengths and weaknesses, so, we will present both in the next sections. Never-
theless, they coincide on their treatment of expressions, conditions, and atomic statements
(such as assignments and assertions). We present here these common parts.

3.2.1 Concrete Domain

We are interested in inferring program invariants, i.e., properties of the memory state a
program can be in at each program location. Hence, our concrete collecting semantics
operates on a domain of sets of memory states. A memory state, denoted as ρ ∈ E , is a
function mapping each variable to its value: E def= V→ I. The concrete domain is thus the
powerset complete lattice:

(D,⊆,∪,∩, ∅, E) where D def= P(E) (3.1)

3.2.2 Expression Semantics

Given a single memory state ρ ∈ E , an expression e ∈ expr can evaluate to one or more (due
to non-determinism) values in I. The evaluation function, denoted as EJ e K : E → P(I), is
defined in Fig. 3.4 by induction on the syntax. For instance, a binary operator such as +
evaluates its sub-expressions to get sets of values in P(I), and returns all the possible sums
of these values. For divisions, we take care to avoid dividing by zero. As a consequence, it
is possible for EJ e Kρ to return an empty set — denoting a definite division by zero. When
it appears in the evaluation of a sub-expression, the empty set is naturally propagated,
and the whole expression evaluates to ∅.

Example 3.1 (Expression evaluation).

Version 2025-05-26 52

3.2. ATOMIC STATEMENT SEMANTICS

EJ expr K : E → P(I)

EJ V Kρ def= {ρ(V)}
EJ c Kρ def= {c}
EJ [c1, c2] Kρ def= {x ∈ I | c1 ≤ x ≤ c2 }
EJ − e Kρ def= {−v | v ∈ EJ e Kρ }
EJ e1 + e2 Kρ def= { v1 + v2 | v1 ∈ EJ e1 Kρ, v2 ∈ EJ e2 Kρ }
EJ e1 − e2 Kρ def= { v1 − v2 | v1 ∈ EJ e1 Kρ, v2 ∈ EJ e2 Kρ }
EJ e1 × e2 Kρ def= { v1 × v2 | v1 ∈ EJ e1 Kρ, v2 ∈ EJ e2 Kρ }
EJ e1/e2 Kρ def= { v1/v2 | v1 ∈ EJ e1 Kρ, v2 ∈ EJ e2 Kρ, v2 ̸= 0 }

Figure 3.4: Semantic of expressions.

• EJ 1 + (2/0) Kρ = ∅ as EJ 2/0 Kρ = ∅.

• EJ [−1, 1]/0 Kρ = ∅ as all non-deterministic choices result in a division by zero.

• EJ 1/[−1, 1] Kρ = {−1, 1} as, although the expression evaluation performs a division
by zero when [−1, 1] evaluates to 0, for other values, it returns a result: either −1
or 1. ♦

3.2.3 Condition Semantics

Conditions are used to filter out memory states, keeping only those that satisfy the condi-
tion. As our semantics ultimately outputs sets of memory states, a natural semantics for
conditions is an operator CJ cond K : D → D that takes as input a set of memory states,
and outputs the subset of states that pass the test. This semantics is presented in Fig. 3.5.
To simplify, we assume that all negations ¬ have been removed using DeMorgan’s laws
and usual arithmetic laws: ¬(a ∨ b)→ (¬a) ∧ (¬b), ¬(e1 > e2)→ (e1 ≤ e2), etc.

Note that, for an arithmetic comparison such as e1 = e2 to hold in a given memory
state ρ, given that e1 and e2 can evaluate to several values in ρ, we only require that at
least one possible value of EJ e1 Kρ equals one possible value of EJ e2 Kρ. As a consequence, it
is possible for one state ρ to satisfy both a condition and its negation: CJ [0, 1] = 0 K{ρ} =
CJ¬([0, 1] = 0) K{ρ} = {ρ}.

In case an expression in a condition evaluates to ∅ due to a division by zero, the
condition also evaluates to ∅ — unless the condition is combined with a logic or to a
condition that does not return ∅.

Note that CJ c K has the following useful algebraic property: CJ c K(∪i∈I Ri) =
∪i∈I (CJ c KRi) for arbitrary families (Ri)i∈I of state sets, i.e., it is a join morphism. In
fact, for such a function, its result on an arbitrary set can be derived by joining the result
on each independent value: CJ c KR = ∪{CJ c K{ρ} | ρ ∈ R }. Moreover, a join morphism is
necessarily monotonic and continuous.

Finally, the function is also reductive: CJ c KR ⊆ R, and idempotent: CJ c K ◦ CJ c K =
CJ c K.

Version 2025-05-26 53

CHAPTER 3. LANGUAGE AND SEMANTICS

CJ cond K : D → D

CJ true KR def= R

CJ false KR def= ∅

CJ c1 ∧ c2 KR def= CJ c1 KR ∩ CJ c2 KR
CJ c1 ∨ c2 KR def= CJ c1 KR ∪ CJ c2 KR

CJ e1 = e2 KR def= { ρ ∈ R | ∃v1 ∈ EJ e1 Kρ, v2 ∈ EJ e2 Kρ: v1 = v2 }
CJ e1 ̸= e2 KR def= { ρ ∈ R | ∃v1 ∈ EJ e1 Kρ, v2 ∈ EJ e2 Kρ: v1 ̸= v2 }
CJ e1 < e2 KR def= { ρ ∈ R | ∃v1 ∈ EJ e1 Kρ, v2 ∈ EJ e2 Kρ: v1 < v2 }
CJ e1 > e2 KR def= { ρ ∈ R | ∃v1 ∈ EJ e1 Kρ, v2 ∈ EJ e2 Kρ: v1 > v2 }
CJ e1 ≤ e2 KR def= { ρ ∈ R | ∃v1 ∈ EJ e1 Kρ, v2 ∈ EJ e2 Kρ: v1 ≤ v2 }
CJ e1 ≥ e2 KR def= { ρ ∈ R | ∃v1 ∈ EJ e1 Kρ, v2 ∈ EJ e2 Kρ: v1 ≥ v2 }

Figure 3.5: Semantic of conditions.

Example 3.2 (Condition semantics).

• CJ 1 = (1/0) KR = ∅ due to the division by zero.

• CJ (1 = 1/0) ∨ true KR = R despite the division by zero, as all the states pass the
condition true. Note that, unlike the “shortcut semantics” of a language such as C,
both boolean expressions of a ∨ operator get evaluated in our language, even if the
first one evaluates to true. ♦

3.2.4 Atomic Statements

Simple atomic statements, which operate in one step and do not contain any control nor
sub-statement, include assignments, assertions, and no-ops (skip). The effect of a statement
is to change a memory state into another one or, in case of non-determinism, one of several
possible ones. A natural domain for the semantic function SJ s K of a statement s is thus
E → D. However, statements are meant to be composed (e.g., by sequence) and it is easier
to compose functions that have the same domain as codomain — we can then use the
regular function composition ◦. So, we extend the semantic function naturally to live in
D → D, as a join morphism: SJ s KR = ∪{SJ s K{ρ} | ρ ∈ R }. Given a set of memory
states before the statement, the semantic function associates the set of possible memory
states after the statement. Such a semantic function is often called transfer function, and
is, at its core, an input/output relation.

The semantic function, denoted as SJ stat K : D → D, is presented in Fig. 3.6. The effect
of an assignment V ← e on a set R of memory states is to update, in every state ρ ∈ R, the
value of V with one of the possible values for e in ρ. We note that, if e evaluates to ∅ for a
state ρ ∈ R, i.e., there is a division by zero, then there is no possible output corresponding
to this state: the program blocks for ρ — although it can continue its execution for other
states in R.

Version 2025-05-26 54

3.3. DENOTATIONAL-STYLE SEMANTICS

SJ stat K : D → D

SJ V ← e KR def= { ρ[V 7→ v] | ρ ∈ R, v ∈ EJ e Kρ }
SJ assert c KR def= CJ c KR
SJ skip KR def= R

Figure 3.6: Semantic of atomic statements.

SJ stat K : D → D

SJ V ← e KR def= { ρ[V 7→ v] | ρ ∈ R, v ∈ EJ e Kρ }
SJ assert c KR def= CJ c KR
SJ skip KR def= R

SJ s1; s2 KR def= (SJ s2 K ◦ SJ s1 K)(R)

SJ if c then s1 else s2 endif KR def=
SJ s1 K(CJ c KR) ∪ SJ s2 K(CJ¬c KR)

SJ while c do s done KR def= CJ¬c K(lfp F)
where F (X) def= R ∪ SJ s K(CJ c KX)

Figure 3.7: Denotational concrete semantics of programs.

The semantics of assertions blocks the program whenever the expression encounters a
division by zero, but also if the condition is not satisfied, as CJ c KR filters out states that
cannot satisfy c.

The skip statement simply returns its set of states unchanged.

3.3 Denotational-Style Semantics

One simple way to present the concrete semantics of a program is to generalize the formula
we presented in Fig. 3.6 for atomic statements to compound statements. We keep a concrete
function SJ stat K : D → D and handle compound statements by induction on the syntax.
This extended definition is presented in Fig. 3.7. The sequence of statements “s1; s2” is
simply function composition while the, more complex, semantics of conditionals and loops
is detailed below.

3.3.1 Conditionals

A conditional “if c then s1 else s2 endif” first filters the input states to keep only those
that can pass the test CJ c K, and then applies the effect SJ s1 K of the then statement
s1 to these states. In parallel, it filters input states to keep only those that can fail the
test CJ¬c K, and then applies the effect SJ s2 K of the else branch s2 to them. Finally, the
function returns the join of all these states, stating that the program can continue after
the conditional with the memory states from both the then and the else branch.

Version 2025-05-26 55

CHAPTER 3. LANGUAGE AND SEMANTICS

3.3.2 Loops

The semantics of loops “while c do s done” is the most complex one. It operates in
two steps. We study first the first, more involved step: computing the least fixpoint lfp F
of the operator F (X) def= R ∪ SJ s K(CJ c KX). This fixpoint corresponds to the notion of
tightest loop invariant. A loop invariant, in Hoare-Floyd logic [Hoare, 1969, Floyd, 1967],
is a property that is true every time the program reaches the test of the loop, either for the
first time or after a loop iteration, before determining whether to exit the loop or perform
another iteration.

Let us denote the set of states before the loop starts as R, and the states composing
the loop invariant as I. Then, ρ ∈ I can be interpreted by induction through the above
definition as:

• either we have not performed any loop iteration yet, and ρ ∈ R;

• or we have performed one or more loop iterations, that is, there is some state ρ′ ∈ I,
the result of the previous iteration, that additionally satisfies the loop condition c
and lead to ρ after executing the loop body s, i.e., ρ ∈ SJ s K(CJ c K{ρ′}).

We have thus established the following equation: I = R ∪ SJ s K(CJ c KI), which can be
rewritten as I = F (I) given our definition of F . An invariant set I is thus any fixpoint
of F . By computing the least fixpoint lfp F , we indeed retrieve the smallest, tightest loop
invariant.

The following theorem states that this least fixpoint indeed exists:

Theorem 3.1. For any statement s ∈ stat, the semantic function SJ s K : D → D is a join
morphism; hence, it is monotonic and continuous. As a consequence, the least-fixpoints
used in the semantics of loops are also well-defined, through both Tarski’s and Kleene’s
fixpoint theorems (Thms. 2.1, 2.2). ■

Applying Kleene’s theorem to lfp F provides additional insights on this invariant and
a connection with the iterative nature of loops. Indeed, Thm. 2.2 states that lfp F =
∪i∈N F i(∅). We observe that:

• F 0(∅) = ∅;

• F 1(∅) = R is the set of states before entering the loop;

• F 2(∅) = R ∪ SJ s K(CJ c KI) is the set of states after zero or one loop iteration;

• more generally, F n(∅) is the set of states at the loop head (before testing the condition
c) after at most n− 1 loop iterations;

• the limit ∪i∈N F i(∅) is thus the set of states after an arbitrary number of loop
iterations.

Version 2025-05-26 56

3.3. DENOTATIONAL-STYLE SEMANTICS

We can view F (X) def= R ∪ SJ s K(CJ c KX) as applying one more loop iteration to the
memory states X: it first selects which states in X will continue the loop, using CJ c K, and
then apply the loop body SJ s K to them, shifting X by one loop iteration, and then add
back R to get back the 0-iteration case. Hence, we accumulate in the least fixpoint the
effect of all possible loop iterations. Thus, the tightest invariant also corresponds exactly
to the set of reachable states at the loop head.

The second step, after computing lfp F , is to filter out the values by CJ¬c K, keeping
only those states that can exit the loop by failing the loop condition c.
Example 3.3 (Loop semantics). We come back to the modulo example from Fig. 1.1 —
see also Fig. 3.8.(a) — starting with A = 10, B = 3. When reaching the loop at line 3,
the unique possible memory state is X = {(10, 3, 0, 10}, denoting in that order the values
of variables A, B, Q, R. The loop invariant is computed as follows:

• we always have F 0(∅) = ∅ and F 1(∅) = X;

• we have CJ R ≥ B KX = X and SJ R← R−B; Q← Q + 1 K = {(10, 3, 1, 7)}, so that
F 2(∅) = {(10, 3, 0, 10), (10, 3, 1, 7)};

• then F 3(∅) = {(10, 3, 0, 10), (10, 3, 1, 7), (10, 3, 2, 4)};

• and F 4(∅) = {(10, 3, 0, 10), (10, 3, 1, 7), (10, 3, 2, 4), (10, 3, 3, 1)};

• we then note that CJ R ≥ B KF 4(∅) = F 3(∅), so that we repeat the previous compu-
tation, and F 5(∅) = F 4(∅): we have reached the fixpoint.

This computation leads to the the following memory state after the loop:
CJ R < B KF 4(∅) = {(10, 3, 3, 1)}.

Although this example demonstrates a convergence after a finite number of iterations,
this is not necessarily the case. Consider, instead of a singleton X, all the states satisfying
the specification A ≥ 0, B ≥ 0, i.e., X = { (a, b, 0, a) | a, b ∈ N }. We could then show,
by induction on i, that F i(∅) = { (a, b, k, a − kb) | a ≥ 0, b ≥ 0, 0 ≤ k < i, a − kb ≥ 0 }.
At iteration k < i of the loop, provided that a ≥ kb, the current remainder is a− kb. The
sets F i(∅) keep increasing indefinitely and, at the limit, we get: ∪i F i(∅) = { (a, b, k, a −
kb) | a ≥ 0, b ≥ 0, k ≥ 0, a − kb ≥ 0 }. When exiting the loop, we have the set of states
{ (a, b, k, a − kb) | a ≥ 0, b ≥ 0, 0 ≤ a − kb < b }. This is sufficient information to state
that the function indeed computes the Euclidian division and remainder of its arguments.
This result has been obtained systematically, almost mechanically, through computation,
aided with some induction to go to the limit. ♦

Nested loops. In the case of nested loops, the semantics features nested fixpoint com-
putations. When interpreted using Kleene iterations, nested fixpoints lead to nested it-
erations, so that, for each iteration of the outer loop, we must compute again the whole
sequence of iterations of the inner loop up to its limit.

In many ways, the denotational semantics follows the evaluation of an interpreter,
except that it manipulates sets of memory states instead of single state, and it follows both
branches of conditionals and accumulates along all (possibly unbounded) loop iterations.

Version 2025-05-26 57

CHAPTER 3. LANGUAGE AND SEMANTICS

Infinite loops. In the case of possibly infinite loops, the fixpoint semantics lfp F com-
putes a loop invariant that takes into account all executions: those that exit the loop and
those that stay within the loop; it enriches the reachable states with new states at each
iteration. However, as the semantics of the loop CJ¬c K(lfp F) only keeps the states that
additionally satisfy the exit condition ¬c, the semantics continues after the loop only with
the states from executions that do exit the loop, discarding information about infinite
loops. As a consequence, when the semantics of the loop is ∅, we know that the loop
never terminates but, when it is not ∅, although some executions terminate, this does not
prevent other executions from looping forever.

Example 3.4 (Infinite loops).

1. Consider the loop “Y ← X; while Y ̸= 0 do Y ← Y + 1 done” starting in a
singleton state set R = {(x, 0)} where X has value x > 0 and Y has value 0. Then, the
loop invariant computed is lfp F = { (x, y) | y ≥ x }. Moreover, CJ Y = 0 K(lfp F) =
∅, which indicates an unreachable point, as there are no possible states where the
loop terminates.

2. When starting the same loop in the state set R = { (x, 0) | x ∈ Z } where X has an
unknown value, we get lfp F = { (x, y) | x, y ∈ Z, x ≤ y ∧ (x ≤ 0 =⇒ y ≤ 0) } and
CJ Y = 0 K(lfp F) = { (x, 0) | x ≤ 0 }. This indicates that the program terminates
only if the value of X (which is also the initial value of Y) is negative, and it states
that the value of Y is zero upon termination. However, it says nothing about non-
terminating executions, i.e., when X > 0.

3. Finally, consider a loop with non-deterministic body “Y ← X; while Y > 0 do Y ←
Y − [0, 1] done.” Then, given an initial state such that X ≥ 0, some execu-
tions terminate when Y reaches 0, while some others loop forever with Y > 0,
depending on the sequence of non-deterministic choices. We get as loop invariant
lfp F = { (x, y) | 0 ≤ y ≤ x } and, as exit states, { (x, 0) | x ≥ 0 }. This states
that, for all executions that terminate and such that X ≥ 0, they terminate in a
state where Y = 0, and it says nothing about non-terminating executions such that
X ≥ 0. ♦

Multiple fixpoints. We have justified by Kleene’s theorem that the states reachable
after an arbitrary number of loop iterations correspond to the least fixpoint of F . How-
ever, F may have other fixpoints, which correspond to invariants containing non-reachable
points.

Example 3.5 (Multiple fixpoints). Consider, for instance, the loop:

while true do
if [0, 1] = 0 then

if x ≤ 5 then x← x + 1 endif
endif

done

Version 2025-05-26 58

3.4. EQUATION-BASED SEMANTICS

starting in the state R
def= {0}. Then, the loop body semantic function is F (X) def= R ∪

({x + 1 | x ∈ X, x ≤ 5 } ∪ X). The least fixpoint is lfp F = {0, 1, 2, 3, 4, 5}. However,
{0, 1, 2, 3, 4, 5, 6} is also a fixpoint, and there are many others, up to the greatest fixpoint,
Z. This is due to the presence of X in F (X), caused by the implicit else branch of the
non-deterministic conditional if [0, 1] = 0. This presence allows self-justification, in the
fixpoint, of values, such as 6, which are never computed by Kleene iterations: they appear
in F (X) because we put them in X. ♦

3.3.3 Program Semantics

Given a program p ∈ stat and a set of initial states I ⊆ E , our semantics SJ p KI computes
the set of memory states at the end of the program execution. The semantics does not
exactly output the program invariants at all locations, then, only at the end, although it
does compute all of them during the evaluation. It would be a simple matter to instrument
the semantics to store, in a table, these invariants as they are computed, which we omitted
as it does not fit well the functional-style definition of Fig. 3.7.

Additionally, we stated that, in the semantics of atomic statements, errors, such as
assertion failures or divisions by zero, discard memory states, as does the semantics of loops
for non-terminating executions. An empty set ∅ is propagated by all semantic functions
as they are strict, i.e., SJ s K∅ = ∅. Hence, the semantics of a program outputs the set of
memory states at the end of the executions that terminate without any error, and provides
no information about other executions. In practice, an analyzer would actually report any
division by zero or assertion failure, as well as definite non-termination (i.e., a loop with
non-empty input but an empty output), either through side-effects (e.g., print an error
message) or through a set of error locations that is threaded through the interpretation of
the program and ultimately returned with the final invariant. For the sake of simplicity,
we do not present these refinements in our semantics, focusing on invariants instead.

3.4 Equation-Based Semantics
Another popular view of a program semantics is through an equation system.

We start with an example, in Fig. 3.8.(a), showing the modulo program from Fig. 1.1,
rewritten in our syntax and annotated with the program locations: ℓ1, . . . , ℓ7. Fig-
ure 3.8.(b) gives its corresponding equation system. The variables of the system correspond
to invariants to be computed at each program location. We denote by Xi the variable for
program point ℓi. Its value is a set of states, in D def= P(E). The equations then have the
form Xi = Fi(X1, . . . ,Xn) and express the invariant at each program point ℓi as a function
of the states at previous program points or, in the case of loops, following program points.

The equation system is closely related to the control-flow graph of the program, as
shown in Fig. 3.8.(c): each node in the graph is a program location, and each arc cor-
responds to an assignment or a condition. Note that, in the presence of loops, there are
dependency cycles between the variables of the system.

We now present the systematic construction of this equation system, and its solving.

Version 2025-05-26 59

CHAPTER 3. LANGUAGE AND SEMANTICS

ℓ1 R← Q;
ℓ2 while ℓ3 R ≥ B do

ℓ4 R← R−B;
ℓ5 Q← Q + 1

ℓ6 done ℓ7

X2 = SJ R← Q KX1
X3 = X2 ∪ X6
X4 = CJ R ≥ B KX3
X5 = SJ R← R−B KX4
X6 = SJ Q← Q + 1 KX5
X7 = CJ R < B KX3

1

R ← Q

2

R ≥ B

R ← R - B

Q ← Q + 1

R < B
3

4

5

6

7

(a) (b) (c)

Figure 3.8: Modulo program from Fig. 1.1 but in our syntax (a), the corresponding
semantic equation system (b), and its control-flow graph (c).

cfg [stat] ∈ P(L × (D → D)× L)

cfg
[

ℓ1 V ← e ℓ2] def= {(ℓ1, SJ V ← e K, ℓ2)}
cfg

[
ℓ1 assert c ℓ2] def= {(ℓ1, CJ c K, ℓ2)}

cfg
[

ℓ1 skip ℓ2] def= {(ℓ1, id, ℓ2)}
cfg

[
ℓ1 s1; ℓ2 s2

ℓ3] def= cfg
[

ℓ1 s1
ℓ2]
∪ cfg

[
ℓ2 s2

ℓ3]
cfg

[
ℓ1 if c then ℓ2 s1

ℓ3 else ℓ4 s2
ℓ5 endif ℓ6] def=

{(ℓ1, CJ c K, ℓ2), (ℓ1, CJ¬c K, ℓ4), (ℓ3, id, ℓ6), (ℓ5, id, ℓ6)} ∪
cfg

[
ℓ2 s1

ℓ3]
∪ cfg

[
ℓ4 s2

ℓ5]
cfg

[
ℓ1 while ℓ2 c do ℓ3 s ℓ4 done ℓ5] def=
{(ℓ1, id, ℓ2), (ℓ2, CJ c K, ℓ3), (ℓ2, CJ¬c K, ℓ5), (ℓ4, id, ℓ2)} ∪
cfg

[
ℓ3 s ℓ4]

Figure 3.9: Control-flow graph generated from a program.

3.4.1 Equation System Construction

Figure 3.9 presents the systematic construction of a control-flow graph cfg [p] given a
program p ∈ stat suitably annotated with control locations — as red superscripts. We
denote as L the set of all control locations in p, which also correspond to the nodes of
the control-flow graph. Note that, for a loop “ ℓ1 while ℓ2 c do ℓ3 s ℓ4 done ℓ5 ,” location ℓ2
corresponds to the loop invariant. Then, cfg [p] ∈ P(L×(D → D)×L) gives the arcs of the
graph as a set of triples (ℓ1, F, ℓ2), where ℓ1 and ℓ2 are location nodes and F : D → D is
an atomic semantic function to apply to the states at ℓ1 to get the states at ℓ2. Naturally,
some nodes have several incoming arcs, such as when the two branches of a conditional
merge, and for loops.

The construction operates by induction on the syntax of the program, so that a graph
for a compound statement is composed from the graphs of its sub-statements, linked
through additional arcs. The semantics functions F are limited to assignments SJ V ← e K,

Version 2025-05-26 60

3.4. EQUATION-BASED SEMANTICS

conditions CJ c K, and the identity id. The equation system is then defined as follows:

∀j ∈ L:Xj =
{

I if j = 1
∪(i,F,j)∈cfg[p] F (Xi) otherwise

(3.2)

i.e., we join, at each program location ℓj, the effect of each arc (i, F, j) with destination
ℓj applied to the variable at the origin location ℓi. Additionally, we set the variable at the
first program point X1 to a fixed, user-defined value I ∈ D corresponding to the initial
memory states when the program starts.

3.4.2 Equation Solving

We now justify that the equation system (3.2) always has solutions, and even a smallest
solution, i.e., a solution such that every Xj is minimal for ⊆.

We can indeed view (3.2) as a fixpoint equation. We denote the set of all equation
variables in vector form: X⃗ def= (X1, . . . ,X|L|) ∈ D, where D def= L → D is a complete
powerset lattice obtained by extending D pointwise to functions mapping each program
location to a set of states. Then (3.2) can be written as X⃗ = F⃗ (X⃗) where F⃗ is a combination
of semantic operators and joins. As the atomic semantic functions are continuous in D,
so is F⃗ in D, hence, F⃗ has a smallest fixpoint, by both Tarski’s and Kleene’s fixpoint
theorems (Thms. 2.1, 2.2).

Additionally, Kleene’s theorem provides a solving method by iteration. Starting from
the least element, we iterate:

∀j ∈ L: X 0
j

def= ∅

∀j ∈ L: X k+1
j

def=
{

I if j = 1
∪(i,F,j)∈cfg[p] F (X k

i) otherwise
(3.3)

and take the limit. The tightest invariant at program point i is: ∪k≥0X k
i .

Notwithstanding the fact that the iteration may not converge in finite time, as we
are still in the concrete world, note that this iteration scheme is rather naive, as it re-
computes every equation at each iteration, even if no variable Xi used in the equation
has changed since the last iteration. Smarter iteration techniques exist, such as chaotic
iterations introduced by Cousot [1977] and subsequently refined by Bourdoncle [1993b].
In these techniques, only one equation is recomputed at each iteration, and it is carefully
chosen to improve state propagation and avoid useless computations.

3.4.3 Comparison with the Denotational Semantics

Both the denotational semantics from Fig. 3.7 and the equational semantics from (3.3)
compute the same invariants. The denotational semantics can be seen as an equation
solving restricted to a specific iteration scheme that must follow the control-flow of the
program, while general chaotic iterations on equation systems are much more flexible. It

Version 2025-05-26 61

CHAPTER 3. LANGUAGE AND SEMANTICS

is also easier to generalize the equational semantics to control-flow constructions, such as
goto and break. Finally, it is also straightforward to extend the equational semantics to
parallel programs, by computing the product of the control-flow graphs of the parallel
processes.

On the other hand, the equation-based semantics requires one variable in D per pro-
gram location, which is not practicable for programs with a realistic size. The denotation-
style semantics is much more parsimonious. For instance, in a sequence s1; s2, the input
state R before s1 can be discarded as soon as R′ def= SJ s1 K R has been computed, and
R′ as soon as the result SJ s2 KR′ has been computed: in general, we do not need to keep
the intermediate results around. More precisely, we only need to keep additional state
sets when computing the effect of both branches of a conditional, or when accumulating
a loop invariant at a loop head. Hence, the maximum number of state sets during the
computation is linear in the maximum depth of nested loops and conditionals, which is
generally much lower than the total size of the program. This is the reason a static analyzer
targeting large programs, such as Astrée [Bertrane et al., 2015], uses a denotational-style
semantics.

Given that each method has its benefits and drawbacks, we will not settle for one in
particular. This is possible, as we will see, because a large part of the design of a static
analyzer is actually independent from this choice.

3.5 Abstract Semantics

Sections 3.3–3.4 presented two concrete collecting semantics, able to express exactly the
most precise program invariants. Unfortunately, they are not computable, due to three
reasons:

1. the concrete elements live in D def= P(E), and so, are not all representable in a
computer — even when restricting the domain of variables I to be finite machine-
integers or floats, although D becomes finite, it remains extremely large, so that a
naive representation of sets in extension is not practicable;

2. the semantic operators for atomic statements SJ V ← e K, CJ c K and join ∪ are not
computable — or, given a finite D, would be too costly to evaluate individually on
each memory state;

3. the iterations required in the semantics of loops, for the denotational semantics, or
for general solving in the equational semantics, may not converge in finite time —
or, for finite D, may require iterating on finite, yet extremely long chains.

We solve points 1 and 2 through abstraction, and point 3 through convergence acceleration,
leveraging the Abstract Interpretation framework of Chap. 2.

Version 2025-05-26 62

3.5. ABSTRACT SEMANTICS

3.5.1 Abstract Domains

We will replace the computation in the concrete domain D with a computation in some
abstract domain D♯. We do not set the domain yet: the following two chapters will be
devoted entirely to presenting abstract domains. Our goal here is to present a generic static
analyzer parameterized by an abstract domain, and to list the operators and properties
required on this domain. We thus assume that we have the following components:

Definition 3.1 (Abstract domain). An abstract domain is given by:

• a set D♯ of computer-representable abstract values;

• an effective partial order ⊑♯ on D♯;

• a monotonic concretization function γ : D♯ → D;

• a smallest element ⊥♯ ∈ D♯ and a largest element ⊤♯ ∈ D♯ that represent respectively
∅ and E;

• (optionally) a Galois connection (D,⊆) −−−→←−−−α

γ
(D♯,⊑♯) (Def. 2.12);

• sound and effective abstractions of assignments and atomic arithmetic conditions:

S♯J V ← e K : D♯ → D♯

C♯J e1 ▷◁ e2 K : D♯ → D♯

such that:
∀X♯ ∈ D♯: (SJ V ← e K ◦ γ)X♯ ⊆ (γ ◦ S♯J V ← e K)X♯

∀X♯ ∈ D♯: (CJ e1 ▷◁ e2 K ◦ γ)X♯ ⊆ (γ ◦ C♯J e1 ▷◁ e2 K)X♯

• sound and effective abstractions of set union ∪ and set intersection ∩:

∪♯ : D♯ ×D♯ → D♯

∩♯ : D♯ ×D♯ → D♯

such that:
∀X♯, Y ♯ ∈ D♯: γ(X♯) ∪ γ(Y ♯) ⊆ γ(X♯ ∪♯ Y ♯)
∀X♯, Y ♯ ∈ D♯: γ(X♯) ∩ γ(Y ♯) ⊆ γ(X♯ ∩♯ Y ♯)

• a widening operator ▽ (Def. 2.17). ■

We use the traditional convention of distinguishing the abstract version X♯ of an
operator or an element from its concrete version X by adding a ♯ superscript. Note that
the abstract elements must come with a computer representation, and operators must be
given as effective algorithms. Hence, the choice of an abstract domain is not only a choice
of semantics and expressiveness, but also an algorithmic one.

Version 2025-05-26 63

CHAPTER 3. LANGUAGE AND SEMANTICS

S♯J stat K, C♯J cond K : D♯ → D♯

S♯J V ← e KR♯ given
C♯J e1 ▷◁ e2 KR♯ given

S♯J assert c KR♯ def= C♯J c KR♯

S♯J skip KR♯ def= R♯

S♯J s1; s2 KR♯ def= (S♯J s2 K ◦ S♯J s1 K)R♯

S♯J if c then s1 else s2 endif KR♯ def=
S♯J s1 K(C♯J c KR♯) ∪♯ S♯J s2 K(C♯J¬c KR♯)

S♯J while c do s done KR♯ def= C♯J¬c K(lim F ♯)
where F ♯(X♯) def= X♯ ▽ (R♯ ∪♯ S♯J s K(C♯J c KX♯))

C♯J true KR♯ def= R♯

C♯J false KR♯ def= ⊥♯

C♯J c1 ∧ c2 KR♯ def= C♯J c1 KR♯ ∩♯ C♯J c2 KR♯

C♯J c1 ∨ c2 KR♯ def= C♯J c1 KR♯ ∪♯ C♯J c2 KR♯

Figure 3.10: Denotational abstract semantics of programs.

Additionally, note that we only require soundness through a concretization function
(Def. 2.15). A Galois connection, if it exists, can be used to derive optimal abstract oper-
ators as α ◦ F ◦ γ (Def. 2.16), but is not mandatory. If it exists, optimal abstractions can
also be constructed for binary operations, such as X♯ ∪♯ Y ♯ def= α(γ(X♯) ∪ γ(Y ♯)).

Finally, note that the abstract domain needs only have few structure: it is required to
be a poset, but not necessarily a CPO nor a lattice. Even if D♯ is a lattice, we do not
require that ∪♯ and ∩♯ correspond to the lub ⊔♯ and glb ⊓♯.

3.5.2 Abstract Denotational Semantics

Figure 3.10 presents the abstract version of the denotational semantics of Fig. 3.7. The
semantics now operates only in the abstract domain D♯. It uses the abstract version of
assignments, tests, join, and meet operators we assume given with the domain. It composes
them to construct the semantics of more complex statements and tests by induction on
the syntax, and we can see that it follows very closely the concrete definition, up to the
use of ♯ symbols.

Another key difference is that the concrete least fixpoint lfp F used in the semantics of
loops has been replaced with lim F ♯, which computes the limit of the iterates of F ♯ from
⊥♯, as in (2.6):

lim F ♯ def= F ♯δ(⊥♯)
where δ is the minimal value such that F ♯δ+1(⊥♯) = F ♯δ(⊥♯)

The definition of the widening, Def. 2.17.2, ensures that this limit is always reached

Version 2025-05-26 64

3.5. ABSTRACT SEMANTICS

after a finite number of iterations. The result of the analysis is sound: it is the compo-
sition of sound abstractions (Thm. 2.6) and sound fixpoint abstractions with widening
(Thm. 2.9), so:

Theorem 3.2 (Termination and soundness). S♯J p K always terminates and is sound: ∀p ∈
stat, I♯ ∈ D♯: SJ p K (γ(I♯)) ⊆ γ(S♯J p KI♯). ■

3.5.3 Abstract Equational Semantics

Similarly, we can construct an effective, sound, abstract version of the equational semantics
from Sect. 3.4. Instead of a variable Xi with value in D at each program point i, we have
a variable X ♯

i with value in our abstract domain D♯. The control-flow graph cfg [p] of a
program p ∈ stat remains the same as described in Fig. 3.9 but, in the equation system,
for each arc (i, F, j) ∈ cfg [p], we replace the concrete function F : D → D with a sound
abstraction F ♯ : D♯ → D♯, and ∪ with a sound abstraction ∪♯. As all the F functions
are assignments or conditions, they are assumed to be directly provided by the abstract
domain or, for complex boolean conditions, derivable from them using the definition of
C♯J c K from Fig. 3.10. Finally, we assume I♯ to be a sound abstraction of the initial states
I. We can then change the iteration described in (3.3) into an abstract version:

∀j ∈ L:X ♯0
j

def= ⊥♯

∀j ∈ L:X ♯k+1
j

def=

I♯ if j = 1
∪♯

(i,F,j)∈cfg[p] F ♯(X ♯k
i) otherwise

Unfortunately, this iteration is not guaranteed to terminate, as the right-hand sides
are not guaranteed to be monotonic, and the abstract domain may have infinite increas-
ing chains. We can, as for the denotational semantics, ensure the convergence using the
widening operator ▽. It is, however, unnecessary to apply the widening at each equation,
and we will see on an example in Sect. 4.7.1 that a careless use of widening can signifi-
cantly reduce the precision. In order to ensure the convergence, it is sufficient to apply a
widening only for a set of control points such that every cycle of the control flow graph
passes through one such point.

We assume, now, that we are given such a set W ⊆ L of control points, that we
call widening points. On our control-flow graphs, for instance, it is sufficient to select all
loop heads, where the loop invariants are computed, as widening points, but more general
algorithms have been developed by Bourdoncle [1993b] to find suitable widening points
on arbitrary graphs. Then, we can use the following iteration scheme:

∀j ∈ L:X ♯0
j

def= ⊥♯

∀j ∈ L:X ♯k+1
j

def=

I♯ if j = 1
X ♯k

j ▽
(
∪♯

(i,F,j)∈cfg[p] F ♯(X ♯k
i)

)
if j ∈ W

∪♯
(i,F,j)∈cfg[p] F ♯(X ♯k

i) otherwise

(3.4)

Version 2025-05-26 65

CHAPTER 3. LANGUAGE AND SEMANTICS

The gives an effective, sound, and terminating static analyzer, as stated by the following
theorem:

Theorem 3.3 (Termination and soundness).
∀p ∈ stat, I♯ ∈ D♯: if I ⊆ γ(I♯), then the limit (X ♯

i)i∈L of iteration (3.4) is reached in
finite time and is a sound abstraction of the limit (Xi)i∈L of iteration (3.3), i.e., ∀i ∈
L:Xi ⊆ γ(X ♯

i). ■

Similarly to clever choices of widening points, Bourdoncle [1993b] also presents ad-
vanced iteration techniques, based on chaotic iterations by Cousot [1977], to avoid useless
abstract computations when some variables do not change, and in order to improve both
speed and precision. Unlike the concrete case, different iteration techniques, and differ-
ent choices of widening points, may change not only the number of iterations, but also
the actual result of the analysis. We will discuss this point further and present advanced
abstract iteration techniques in Sect. 4.7, illustrated on interval analyses.

3.6 Bibliographic Notes

Three broad classes of semantics have been proposed. Firstly, the work of Floyd [1967] and
Hoare [1969] founded axiomatic semantics and presented applications to proving programs
through logic. Secondly, denotational semantics, founded by Scott and Strachey [1971],
aims at assigning to programs mathematical functions that abstract away the internal
computation to focus on the input/output relationship. Finally, operational semantics,
founded by Kahn [1987] and Plotkin [1981], describes instead these computation steps in
minute details.

Generally, Abstract Interpretation employs an operational-style approach to describe
the collecting concrete semantics precisely enough to expose the correctness properties
of interest. The first analyses, by Cousot and Cousot [1977], are presented on so-called
flowchart programs, not unlike the control-flow graphs of our programs, and lead to se-
mantics in equational-style that are still widely used in static analysis. Later presentations
of Abstract Interpretation, such as [Cousot, 1981], start from transition systems, a very
general and minimalist flavor of operational semantics, to state results independently from
the specific choice of programming language. The connection between the collecting se-
mantics and the aximoatic semantics of Hoare [1969] and Floyd [1967] is discussed by
Cousot [1980]. State-based concrete semantics, which we use in this tutorial, are general-
ized to trace-based semantics in later presentations of Abstract Interpretation. This allows
recasting the alternate proof method by Burstall [1974], which is not state-based, as an
Abstract Interpretation in [Cousot and Cousot, 1993]. Cousot [2002] presents a hierarchy
of semantics based on (finite and infinite) traces and shows how natural semantics [Kahn,
1987] and denotational semantics [Scott and Strachey, 1971] can be seen as abstractions of
trace semantics. We only focus here on Abstract Interpretation as a tool to design effective
and sound static analyses, but the works cited above show that it is also a powerful tool

Version 2025-05-26 66

3.6. BIBLIOGRAPHIC NOTES

to cast seemingly incomparable semantics into a common framework and highlight novel
connections.

Analyses based on solving abstract equation systems are present since the beginning
of Abstract Interpretation in [Cousot and Cousot, 1977], and are further developed by
Bourdoncle [1993b]. Such equations appeared previously in data-flow analyses, pioneered
by Kildall [1973], but restricted to finite-height lattices and without the soundness and
optimality guarantees that come from a connection with the concrete collecting semantics
— both points are addressed by Abstract Interpretation, which thus goes beyond data-flow
analyses. On the other hand, Bertrane et al. [2010] advocate for the use of a denotational-
style semantics, as an interpretation by induction on the syntax. We present both views
in this tutorial.

We only briefly discussed in Chap. 1 the notion of backward analysis. This notion is
already present in the early work of Cousot and Cousot [1979a] and further developed by
Bourdoncle [1993a], on equational-style semantics.

Version 2025-05-26 67

Chapter 4

Non-Relational Abstract Domains

The previous chapter presented a simple language and a generic static analyzer param-
eterized by the choice of an abstract domain equipped with a well-defined set of sound
abstract operators. This chapter and the following present several such abstract domains.

In Chap. 2, we illustrated the notion of abstract domain by constructing abstractions
for sets of integers, such as intervals. A natural idea is to lift such abstractions to memory
states so that we can assign to each variable an abstraction of its set of possible values.
We already demonstrated this idea informally in Sect. 1.1 with interval and sign analyses.
This leads to a family of analyses that abstract each program variable independently, but
do not take variable relationships into account. This chapter presents in a fully formal way
these so-called non-relational analyses on the numeric programs of Chap. 3.

We start by formalizing value abstractions, providing necessary operators, and state
the relationship with the abstract domains of the previous chapter. We then provide well-
known instances, starting with simple domains, the sign domain and the constant domain,
and moving up to domains that are widely used in practice: the interval domain and
the congruence domain. This chapter will also discuss advanced iteration techniques with
widening, that are necessary to obtain a reasonable precision in practice on domains with
infinite height. We will motivate and illustrate these techniques on the interval domain.

4.1 Value and State Abstractions

Recall that, to construct a static analysis, it is sufficient to provide an abstract domain
of memory states obeying the requirements of Def. 3.1. All non-relational analyses share
this idea of lifting value abstractions to state abstractions. We present here this generic
lifting procedure, so that the rest of the chapter can focus on various value abstractions.
This presentation also allows factoring out, for non-relational analyses, a large part which
is independent from the choice of the value abstraction.

Version 2025-05-26 69

CHAPTER 4. NON-RELATIONAL ABSTRACT DOMAINS

4.1.1 Value Abstract Domain

Recall that our language manipulates numeric values in a set I, which can be Z, Q, or
R. Thus, our concrete domain of interest is the complete powerset lattice (P(I),⊆,∪,∩,
∅, I). Given sets of possible values, the arithmetic operators, +, −, ×, /, return a set of
possible values in the concrete. Similarly to Def. 3.1, an abstract domain will be defined
as an abstraction of this concrete world, together with sound abstractions of the concrete
operators. We denote it as B♯, and use a b subscript, in addition to the ♯ superscript,
in order to distinguish the operations on abstract sets of values from the operations on
abstract sets of states (in D♯):

Definition 4.1 (Abstract value domain). An abstract domain of values is given by:

• a set B♯ of computer-representable abstract values;

• an effective partial order ⊑♯
b on B♯;

• a monotonic concretization function γb : B♯ → P(I);

• a smallest ⊥♯
b and a largest element ⊤♯

b ∈ B♯ that represent respectively ∅ and I;

• (optionally) a Galois connection (P(I),⊆) −−−→←−−−
αb

γb (B♯,⊑♯
b) (Def. 2.12);

• a sound and effective abstraction of constants and non-deterministic intervals:

∀c ∈ I: c♯
b such that: c ∈ γb(c♯

b)
∀c1, c2 ∈ I ∪ {±∞}: [c1, c2]♯b such that: [c1, c2] ⊆ γb([c1, c2]♯b)

of unary operators:

−♯
b ∈ B♯ → B♯

such that:
∀X♯ ∈ B♯: {−x | x ∈ γb(X♯) } ⊆ γb(−♯

bX♯)

and of binary operators:

+♯
b,−♯

b,×♯
b, /♯

b ∈ B♯ × B♯ → B♯

such that:
∀X♯, Y ♯ ∈ B♯: {x + y | x ∈ γb(X♯), y ∈ γb(Y ♯) } ⊆ γb(X♯ +♯

b Y ♯)
∀X♯, Y ♯ ∈ B♯: {x− y | x ∈ γb(X♯), y ∈ γb(Y ♯) } ⊆ γb(X♯ −♯

b Y ♯)
∀X♯, Y ♯ ∈ B♯: {x× y | x ∈ γb(X♯), y ∈ γb(Y ♯) } ⊆ γb(X♯ ×♯

b Y ♯)
∀X♯, Y ♯ ∈ B♯: {x/y | x ∈ γb(X♯), y ∈ γb(Y ♯), y ̸= 0 } ⊆ γb(X♯/♯

bY ♯)

• a sound and effective abstraction of set union ∪ and set intersection ∩:

∪♯
b, ∩♯

b : B♯ × B♯ → B♯

such that:
∀X♯, Y ♯ ∈ B♯: γb(X♯) ∪ γb(Y ♯) ⊆ γb(X♯ ∪♯

b Y ♯)
∀X♯, Y ♯ ∈ B♯: γb(X♯) ∩ γb(Y ♯) ⊆ γb(X♯ ∩♯

b Y ♯)

Version 2025-05-26 70

4.1. VALUE AND STATE ABSTRACTIONS

• a widening operator ▽b (Def. 2.17). ■

As for memory state domains, the Galois connection, if it exists, can be used to derive the
best abstraction of each operator; for instance:

X♯ +♯
b Y ♯ def= αb({x + y | x ∈ γb(X♯), y ∈ γb(Y ♯) })

but it is otherwise optional.

4.1.2 State Abstract Domain

To derive the abstraction D♯ of D def= P(V→ I) from the abstraction B♯ of P(I), we apply
the coalescent version of point-wise lifting (Def. 2.7), which maps each variable in V to an
abstract element in B♯, coalescing all elements where ⊥♯

b appears into a unique ⊥♯ element:

D♯ def= (V→ (B♯ \ {⊥♯
b})) ∪ {⊥

♯} (4.1)

Many of the operators needed on D♯ can be derived from those available on B♯ by point-
wise lifting:

Definition 4.2 (Non-relational state abstraction).
Given operators on B♯ following Def. 4.1, we define the following operators on D♯:

• X♯ ⊑ Y ♯ def⇐⇒ (X♯ = ⊥♯) ∨
(X♯, Y ♯ ̸= ⊥♯ ∧ ∀V ∈ V: X♯(V) ⊑♯

b Y ♯(V))

• γ(X♯) def=
{
∅ if X♯ = ⊥♯

{ ρ ∈ E | ∀V ∈ V: ρ(V) ∈ γb(X♯(V)) } otherwise

• α(R) def=
{
⊥♯ if R = ∅
λV ∈ V. αb({ ρ(V) | ρ ∈ R } otherwise

when αb exists.

• ⊤♯ def= λV ∈ V.⊤♯
b

• X♯ ∪♯ Y ♯ def=

Y ♯ if X♯ = ⊥♯

X♯ if Y ♯ = ⊥♯

λV ∈ V. X♯(V) ∪♯
b Y ♯(V) otherwise

• X♯ ▽ Y ♯ def=

Y ♯ if X♯ = ⊥♯

X♯ if Y ♯ = ⊥♯

λV ∈ V. X♯(V) ▽b Y ♯(V) otherwise

• X♯ ∩♯ Y ♯ def=

⊥♯ if X♯ = ⊥♯ or Y ♯ = ⊥♯

⊥♯ if ∃V ∈ V: X♯(V) ∩♯
b Y ♯(V) = ⊥♯

b

λV ∈ V. X♯(V) ∩♯
b Y ♯(V) otherwise

■

Version 2025-05-26 71

CHAPTER 4. NON-RELATIONAL ABSTRACT DOMAINS

Note in particular that, if B♯ enjoys a Galois connection (P(I),⊆) −−−→←−−−
αb

γb (B♯,⊑♯
b), then this

is also the case for the domainD♯ we derive: (D,⊆) −−−→←−−−α

γ
(D♯,⊑♯). All the operators derived

above are also sound, and optimal if the underlying value operator in B♯ is optimal. Finally,
the widening ▽ satisfies Def. 2.17: termination is ensured by stabilizing independently the
abstract value associated to each variable.

We are now only missing the abstraction of assignments and conditions. We first re-
mark that it is always possible to resort to the following sound, but very coarse, fallback
definitions, whatever the abstract value domain B♯:

Definition 4.3 (Fallback abstract operators).
The following abstract operators are always sound:

S♯J V ← e KX♯ def= X♯[V 7→ ⊤♯
b]

C♯J e1 ▷◁ e2 KX♯ def= X♯
(4.2)

■

The fallback assignment is obviously sound as it forgets any information on the value of
the assigned variable. For the condition, we simply remark that, as the concrete semantics
removes some possible states, it is sound to use the identity instead, as it refrains from
removing any state.

In the following, we will provide more accurate definitions, but it is important to know
that we can always count on the fallback operators to perform a sound analysis, in case
more accurate definitions are not available, or are too costly to apply.

4.1.3 Abstract Expression Evaluation

The concrete semantics of expressions, from Fig. 3.4, evaluates the expression on a single
state by induction on the syntax, propagating a set of possible values. This algorithm can
be translated easily into the abstract: we take as input an abstract representation of a
set of values for each variable and propagate, by induction on the syntax, an abstract
representation of sets of values.

Figure 4.1 presents such an abstract evaluation of expressions. It is naturally sound as
it composes sound abstraction, i.e.:

Theorem 4.1 (Soundness of abstract expression evaluation).
∀e ∈ expr :∀X♯ ∈ D♯:∀ρ ∈ γ(X♯): EJ e K ρ ⊆ γb(E♯J e KX♯). ■

Note, however, that this operation may not be optimal, even if every abstract operator
in B♯ is optimal. This is in particular the case when one variable occurs several times in the
expression, as the algorithm cannot exploit the fact that both occurrences of the variable
evaluate to the exact same value in a given state, as demonstrated below:

Example 4.1 (Non-optimality of non-relational abstract evaluation). Consider an ab-
stract state X♯ such that γ(X♯(V)) = {0, 1}, for instance using an interval abstraction

Version 2025-05-26 72

4.1. VALUE AND STATE ABSTRACTIONS

E♯J expr K : D♯ → B♯

E♯J V KX♯ def= X♯(V)
E♯J c KX♯ def= c♯

b

E♯J [c1, c2] KX♯ def= [c1, c2]♯b
E♯J − e KX♯ def= −♯

b(E♯J e KX♯)
E♯J e1 + e2 KX♯ def= (E♯J e1 KX♯) +♯

b (E♯J e2 KX♯)
E♯J e1 − e2 KX♯ def= (E♯J e1 KX♯)−♯

b (E♯J e2 KX♯)
E♯J e1 × e2 KX♯ def= (E♯J e1 KX♯)×♯

b (E♯J e2 KX♯)
E♯J e1/e2 KX♯ def= (E♯J e1 KX♯) /♯

b (E♯J e2 KX♯)

Figure 4.1: Abstract semantic of expressions in a non-relational domain.

and X♯(V) = [0, 1]. Consider the expression V − V . Then, naturally EJ V − V Kρ = {0}
for any state ρ and a forciori when ρ ∈ γ(X♯). However, E♯J V − V KX♯ = X♯(V)−♯

b X♯(V)
which evaluates using interval arithmetic — as we will see in more details in Sect. 4.5 —
to [0, 1]−♯

b [0, 1] = [−1, 1]. We thus have γb(E♯J V − V KX♯) = {−1, 0, 1}, although the con-
crete result, {0}, can be exactly represented in the interval domain. Hence, E♯J V − V K is
not optimal, although −♯

b is. ♦

We can now state a generic, non-optimal but still rather precise, abstraction for the
assignment as:

S♯J V ← e K(X♯) def=
{
⊥♯ if X♯ = ⊥♯ or E♯J e KX♯ = ⊥♯

b

X♯[V 7→ E♯J e KX♯] otherwise
(4.3)

Note the special handling of the case where, due to divisions by zero, the abstract evalu-
ation returns an empty set of values ⊥♯

b.
A generic algorithm to handle arbitrary tests of the form C♯J e1 ▷◁ e2 K along the same

principles exists, but it is rather more complicated, and we delay its presentation to
Sect. 4.6, where it will be presented in-context with application to the interval domain.

4.1.4 Data-Structures and Cost

When discussing the cost, in memory and time, of non-relational domains, we can assume
that an abstract value in B♯ has a constant memory cost, and that every operation in
Def. 4.1, which manipulates one or two elements in B♯, has a constant time cost, indepen-
dently from the program size or the number of variables. As we will see in the following
sections, an element in B♯ is generally represented as an element of an enumeration (e.g.,
a sign) or as one or two numeric values (e.g., a constant, or two interval bounds), and an
operation in B♯ reduces to a few arithmetic operations at worst. A discussion about the
cost of a non-relational domain D♯ is largely independent from the choice of B♯, but rather
depends on the choice of how to represent maps in D♯ and how to implement the generic
operations from Def. 4.2 and Fig. 4.1. Note that the total time cost of an analysis also

Version 2025-05-26 73

CHAPTER 4. NON-RELATIONAL ABSTRACT DOMAINS

depends greatly on the number of loop iterations in the abstract, which varies widely and
can be unpredictable. Iteration techniques will be addressed in Sect. 4.7, while we discuss
here only the time cost of individual operators.

A non-relational element in D♯ associates an element in B♯ to each variable. A natural
representation is thus through arrays, or hash tables. This yields a memory cost linear in
|V|, and a constant time access to abstract values. The cost of evaluating an expression
E♯J e K is linear in the size of the expression e. The time cost of operations is thus dominated
by the need to copy arrays and, for binary operations such as ∪♯ and ⊑♯, to scan every
array element, hence it is in O(|V|). In fact, abstract operators generally update only a
limited number of abstract values, and we should exploit this to improve the performance.
Consider, for instance, a simple conditional “if c then s1 else s2 endif”. Then, we expect
the ∪♯ operator applied at the end of the conditional to have a cost that depends only
on the number of variables modified in s1 and s2, not on the total number of program
variables.

To solve this problem, Blanchet et al. [2003] suggest switching from arrays to a func-
tional array data-structure based on balanced binary trees — such as AVL trees [Cormen
et al., 2001, Chap. 13] — which have the following characteristics:

1. Access cost is in O(log |V|). This is higher than the constant access of arrays.

2. Updating a variable while keeping the original requires O(log |V|) in time and space.
This is lower than the O(|V|) time and space cost of arrays as they require a copy
to keep the original.

3. The join ∪♯ traverses both trees but, as it is idempotent, sub-trees that are physically
equal (i.e., have the same address in memory) in both arguments do not need to be
traversed recursively. Observe that, in practice, the join is often applied to elements
stemming from a common element, as in F ♯(X♯) ∪♯ G♯(X♯) for a conditional, where
F ♯ models the then branch and G♯ models the else branch. Then, F ♯(X♯) and
G♯(X♯) differ from X♯ in only O(log |V|) tree nodes times the number n of variable
updates by F ♯ and G♯. The remaining tree nodes are shared in memory with X♯, and
will not be traversed by a smart join. Hence, the cost of ∪♯ is in O(n log |V|), which
is often much lower than O(|V|). Other binary operations, ∩♯, ⊑♯, operate similarly.

The higher cost of accesses is more than compensated by the lower cost of updates and
binary operations. Additionally, this data-structure is very cache-friendly as it accesses
preferentially memory parts that have been accessed recently. Blanchet et al. [2003] ob-
served a significant performance gain when switching from arrays to functional arrays when
analyzing large programs. Alternate scalable solutions include the use of sparse arrays, as
suggested by Oh et al. [2012].

4.2 The Sign Domain
The first, simplest value abstract domain we present is the sign domain we already men-
tioned in our informal presentation (Sect. 1.1). The simple sign domain contains only a

Version 2025-05-26 74

4.2. THE SIGN DOMAIN

≤0≥0

0

⊑

>0 <0

≠0

⊤

⊥

(a) (b)

Figure 4.2: Hasse diagrams for: (a) the simple sign domain, and (b) the extended sign
domain.

few elements: ⊥♯
b, 0, (≥ 0), (≤ 0), ⊤♯

b. However, we can also design an extended version
that includes strict signs as well as the complementary of 0: ⊥♯

b, 0, (≥ 0), (> 0), (≤ 0),
(<0), (̸=0), ⊤♯

b.
The Hasse diagrams for both lattices are presented in Fig. 4.2. The diagrams implicitly

define the abstract order ⊑♯
b, the lub ⊔♯

b, and the glb ⊓♯
b. We now define the remaining

operations required by Def. 4.1.

Galois connection. Both sign domains enjoy a Galois connection. For the sake of con-
cision, we only present that of the simple sign domain; the case of extended signs is similar:

αb(C) def=

⊥♯
b if C = ∅

0 if C = {0}
(≥0) else if ∀c ∈ C: c ≥ 0
(≤0) else if ∀c ∈ C: c ≤ 0
⊤♯

b otherwise

γb(⊥♯
b) def= ∅

γb(0) def= {0}
γb(≥0) def= { c ∈ I | c ≥ 0 }
γb(≤0) def= { c ∈ I | c ≤ 0 }
γb(⊤♯

b) def= I

(4.4)

Abstract value operators. We set ∪♯
b

def= ⊔♯
b and ∩♯

b
def= ⊓♯

b. The intersection ∩♯
b is

exact, which is expected of an abstract domain enjoying a Galois connection (Thm. 2.4).
The join ∪♯

b is also exact in both sign domains, which is actually quire rare — the union
of the sets represented by two abstract elements is seldom exactly representable.

The optimal version of the arithmetic operators is given by the well-known rule of
signs. Figure 4.3 gives three examples: +♯

b, ×
♯
b, and /♯

b on the simple sign domain. Note
that ⊥♯

b is absorbing: the result is ⊥♯
b whenever one argument is ⊥♯

b. Most of the time,
⊤♯

b is absorbing as well, except for the case of multiplying by 0, which returns 0 even if
the other input is undetermined. The division is similar to the multiplication, except that
division by 0 leads to ⊥♯

b instead of 0.
We omit the other arithmetic operators, which are similar. Finally, abstracting con-

stants c♯
b and intervals [c1, c2]♯b is straightforward, by looking at the signs of c, c1, and

c2.

Version 2025-05-26 75

CHAPTER 4. NON-RELATIONAL ABSTRACT DOMAINS

+ ≥ 0 ≤ 0 0 ⊤ ⊥
≥ 0 ≥ 0 ⊤ ≥ 0 ⊤ ⊥
≤ 0 ⊤ ≤ 0 ≤ 0 ⊤ ⊥
0 ≥ 0 ≤ 0 0 ⊤ ⊥
⊤ ⊤ ⊤ ⊤ ⊤ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

× ≥ 0 ≤ 0 0 ⊤ ⊥
≥ 0 ≥ 0 ≤ 0 0 ⊤ ⊥
≤ 0 ≤ 0 ≥ 0 0 ⊤ ⊥
0 0 0 0 0 ⊥
⊤ ⊤ ⊤ 0 ⊤ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

/ ≥ 0 ≤ 0 0 ⊤ ⊥
≥ 0 ≥ 0 ≤ 0 0 ⊤ ⊥
≤ 0 ≤ 0 ≥ 0 0 ⊤ ⊥
0 ⊥ ⊥ ⊥ ⊥ ⊥
⊤ ⊤ ⊤ 0 ⊤ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Figure 4.3: Abstract arithmetic operations the simple sign domain.

Abstracting tests. In order to handle conditions C♯J e1 ▷◁ e2 K, in the absence of a
generic algorithm working for arbitrary expressions e1 and e2, a practical solution is to
define ad-hoc functions for simple and useful cases, and revert to the identity as fall-back
(Def. 4.3). Here is a first example for V ≤ 0 on the simple signs, which adds the information
that V is negative to existing information on V , possibly resulting in V becoming 0:

C♯J V ≤ 0 KX♯ def=
{

X♯[V 7→ 0] if X♯(V) ∈ {0, (≥0)}
X♯[V 7→ (≤0)] if X♯(V) ∈ {⊤♯

b, (≤0)}

This second example, again on the simple signs, shows how, in a test relating two variables,
we can use the information available on each variable to refine the other one:

C♯J V ≤W KX♯ def=
{

X♯[V 7→ (≤0)] if X♯(W) ∈ {0, (≤0)}
X♯ otherwise
∩♯{

X♯[W 7→ (≥0)] if X♯(V) ∈ {0, (≥0)}
X♯ otherwise

We omitted the case where the argument X♯ is bottom ⊥♯, in which case the result is
always ⊥♯: all our test operators are strict.

Convergence of iterations. Both sign domains are finite. They have no infinite increas-
ing chain, so that any increasing iteration will naturally converge. Recall that the widening
operator ▽ is used to stabilize the iterations F ♯i(⊥♯) of a sound abstraction F ♯ of a con-
crete function F into an over-approximation of the least fixpoint of F (Thm. 2.9). Here,
it is sufficient to state ▽b

def= ⊔♯
b. This ensures that the iteration X♯

n+1
def= X♯

n ▽ F ♯(X♯
n)

will be increasing, and thus will converge in finite time, without any hypothesis on F ♯

Version 2025-05-26 76

4.3. THE CONSTANT DOMAIN

Figure 4.4: Hasse diagram for the constant domain.

— in particular, for the sake of generality, we do not require F ♯ to be monotonic, so
that. while the iteration X♯

n+1
def= F ♯(X♯

n) is not guaranteed to converge, the iteration
X♯

n+1
def= X♯

n ⊔♯ F (X♯
n) is.

4.3 The Constant Domain
Another simple static analysis is constant propagation. It allows detecting whether some
variables or some expressions take only a single, fixed value during all possible executions,
and enables compiler optimisation.

This analysis can be cast as a static analysis by Abstract Interpretation. We consider,
as abstract domain: B♯ def= I∪{⊥♯

b,⊤
♯
b}, meaning that a variable is either a specific constant

in I, or has no possible value, ⊥♯
b, or may possibly take more than one value, ⊤♯

b.

Order structure. The Hasse diagram for B♯ is presented in Fig. 4.4. This corresponds
to a very flat, yet infinite complete lattice. We can define the lub and glb as follows:

x ⊔♯
b y

def=

x if x = y

x if y = ⊥♯
b

y if x = ⊥♯
b

⊤♯
b otherwise

x ⊓♯
b y

def=

x if x = y

x if y = ⊤♯
b

y if x = ⊤♯
b

⊥♯
b otherwise

Moreover, the constant domain enjoys a Galois connection:

αb(C) def=

⊥♯

b if C = ∅
c if C = {c}
⊤♯

b otherwise

γb(⊥♯
b)

def= ∅
γb(c) def= {c}
γb(⊤♯

b)
def= I

Abstract operators. As for the sign domains, we set ∪♯
b

def= ⊔♯
b and ∩♯

b
def= ⊓♯

b. The
intersection ∩♯

b is exact. The join ∪♯
b is optimal, but not exact: the join of two different

constants is ⊤♯
b, which represents all possible values, I.

Figure 4.5 presents a few representative examples of abstract operators: +♯
b and ×♯

b.
Most of the times, we simply apply the corresponding arithmetic operation on constant

Version 2025-05-26 77

CHAPTER 4. NON-RELATIONAL ABSTRACT DOMAINS

+ ⊥ c ⊤
⊥ ⊥ ⊥ ⊥
c′ ⊥ c + c′ ⊤
⊤ ⊤ ⊤ ⊤

× ⊥ 0 c ̸= 0 ⊤
⊥ ⊥ ⊥ ⊥ ⊥
0 ⊥ 0 0 0

c′ ̸= 0 ⊥ 0 c× c′ ⊤
⊤ ⊤ 0 ⊤ ⊤

Figure 4.5: Some abstract operators in the constant domain.

arguments, and revert to ⊥♯
b and ⊤♯

b if one of the arguments is not constant. An exception
is multiplication, as 0 ×♯

b ⊤
♯
b = 0. Abstracting constants is straightforward: c♯

b
def= c and

[c1, c2]♯b
def= c1 when c1 = c2, and ⊤♯

b otherwise.
We abstract tests similarly as in the sign domains, by handling precisely two simple

cases and reverting to the identity for all the other cases:

C♯J V = c KX♯ def=
{
⊥♯

b if X♯(V) /∈ {c,⊤♯
b}

X♯[V 7→ c] otherwise

C♯J V = W + c KX♯ def=
{

X♯ if X♯(W) ∈ {⊥♯
b,⊤♯

b}
C♯J V = X♯(W) + c KX♯ otherwise
∩♯{

X♯ if X♯(V) ∈ {⊥♯
b,⊤♯

b}
C♯J W = X♯(V)− c KX♯ otherwise

The constant domain is infinite in width but very flat. As fixpoint iterations follow
increasing chains, and the domain has no infinite increasing chain, we can enforce conver-
gence by stating simply ▽b

def= ⊔♯
b.

Example 4.2 (Constant analysis). Consider the following very simple program:

X ← 0; Y ← 10;
while X < 100 do

Y ← Y − 3;
X ← X + Y ; ℓ1

Y ← Y + 3
done

An analysis with the non-relational constant domain in denotational style, following
Sect. 3.5, will iterate the loop twice. At the first loop iteration, at program point ℓ1, we
would get X = 10, Y = 7. During the second iteration, we join at the loop head abstract
states where X can have two different values: 0 and 10, hence X is not constant. We get
at program point ℓ1 that X = ⊤♯

b, Y = 7. The result is stable after the second iteration,
so that X = ⊤♯

b, Y = 7 is a program invariant at ℓ1: we have proved that Y equals 7 for
every execution whenever it reaches ℓ1.

While this result may seem straightforward, we point out that Y varies during the
execution of the program: it has a different constant value at different program points,

Version 2025-05-26 78

4.4. THE CONSTANT SET DOMAIN

which our analysis can capture as it is flow-sensitive. More importantly, the value 7 found
at ℓ1 is not a literal constant of the program, i.e., the analysis is actually semantic and
not syntactic. ♦

4.4 The Constant Set Domain
There are many circumstances where a variable is not constant, but can only take few
possible values. We can easily extend the constant domain to track several values instead
of one. However, we must be wary of loops generating a large or even unbounded number
of different values.

Bounded set domain. A first idea to solve this problem is to bound a priori the
number of constants for each variable with a value k chosen before the analysis is started.
We use, as abstract domain, B♯ def= P≤k(I)∪{⊤♯

b}, where P≤k(I) denotes the sets containing
at most k numbers from I. Note that P≤k(I) contains ∅, so that there is no need to add
a ⊥♯

b element in B♯. We keep ⊤♯
b in order to represent I, but also to abstract any set of

values with more than k elements. We then have a straightforward order relation and a
Galois connection:

X♯ ⊑ Y ♯ def⇐⇒ (Y ♯ = ⊤♯
b) ∨ (X♯, Y ♯ ̸= ⊤♯

b ∧X♯ ⊆ Y ♯)

γb(X♯) def=
{

I if X♯ = ⊤♯
b

X♯ otherwise

αb(C) def=
{

C if |C| ≤ k

⊤♯
b otherwise

and all the operators are similar to the concrete ones, which operate on sets, with the
following modifications:

• we must handle the case where one or both arguments is ⊤♯
b, in which case we

generally return ⊤♯
b, except in some special cases, such as ⊤♯

b +♯
b ∅

def= ∅ and ⊤♯
b ×

{0} def= {0};

• whenever a set reaches a size larger than k, we return ⊤♯
b instead.

For instance:

X♯ ⊔♯
b Y ♯ def=

⊤♯

b if X♯ = ⊤♯
b or Y ♯ = ⊤♯

b

⊤♯
b else if |X♯ ∪ Y ♯| > k

X♯ ∪ Y ♯ otherwise

X♯ +♯
b Y ♯ def=

∅ if X♯ = ∅ or Y ♯ = ∅
⊤♯

b else if X♯ = ⊤♯
b or Y ♯ = ⊤♯

b

⊤♯
b else if |{x + y | x ∈ X♯, y ∈ Y ♯ }| > k

{x + y | x ∈ X♯, y ∈ Y ♯ } otherwise

Version 2025-05-26 79

CHAPTER 4. NON-RELATIONAL ABSTRACT DOMAINS

This ensures that the sets never exceed k in size. Note that increasing chains have a
maximum height of k + 2: ∅ ⊑♯

b {c1} ⊑♯
b {c1, c2} ⊑♯

b · · · ⊑
♯
b {c1, . . . , ck} ⊑♯

b ⊤
♯
b. Hence, we

can use, as widening, ▽b
def= ⊔♯

b.

Unbounded set domain. A second idea is to allow sets of any size, as long as they are
finite, so that we can represent them in extension in a computer. We note: B♯ def= Pfinite(I)∪
{⊤♯

b}, We still need ⊤♯
b to abstract infinite sets, such as I.

The operators are the same as in the previous constant set domain, except that we
no longer systematically set abstract elements to ⊤♯

b after they reach a certain size, for
instance:

X♯ ⊔♯
b Y ♯ def=

{
⊤♯

b if X♯ = ⊤♯
b or Y ♯ = ⊤♯

b

X♯ ∪ Y ♯ otherwise

X♯ +♯
b Y ♯ def=

∅ if X♯ = ∅ or Y ♯ = ∅
⊤♯

b else if X♯ = ⊤♯
b or Y ♯ = ⊤♯

b

{x + y | x ∈ X♯, y ∈ Y ♯ } otherwise

However, our domain now has infinite increasing chains, and a proper widening is necessary
to ensure the convergence of iterates. A simple idea is to ensure that the size of a set output
by the widening never exceeds a user-defined constant k by using, as widening, the join
∪♯

b operator from the bounded set domain, which replaces large sets with ⊤♯
b. Hence, our

widening is:

X♯ ▽b Y ♯ def=

⊤♯

b if X♯ = ⊤♯
b or Y ♯ = ⊤♯

b

⊤♯
b else if |X♯ ∪ Y ♯| > k

X♯ ∪ Y ♯ otherwise

While we still use a bound k for set sizes, this bound only concerns, unlike the case of
the bounded set domain, the invariants at program points where a widening is applied,
while sets can be larger at other program points. We gain in expressiveness by lifting
the restriction on set sizes, only enforcing the minimum constraints needed to ensure
termination.

The idea of using powersets to construct, from one domain, a more expressive one,
is a general idea. It can be applied to other domains than the constant one. The generic
construction, called powerset completion, will be described in details and applied to more
expressive domains in Sect. 6.3.

4.5 The Interval Domain
We already mentioned interval abstractions several times in the previous chapters. Based
on interval arithmetic, introduced by Moore [1966] for numeric analysis, and adapted to
static analysis since the beginning of Abstract Interpretation by Cousot and Cousot [1976],
it remains one of the most popular abstract domains because it is, as all non-relational

Version 2025-05-26 80

4.5. THE INTERVAL DOMAIN

domains, both simple and inexpensive, and yet it can express and infer valuable properties
for program verification.

The interval domain abstracts the set of possible values of a variable as an interval.
The abstract values are either non-empty intervals with finite or infinite bounds, or ⊥♯

b:

B♯ def= { [a, b] | a ∈ I ∪ {−∞}, b ∈ I ∪ {+∞}, a ≤ b } ∪ {⊥♯
b} (4.5)

The greatest element can be represented as the interval [−∞, +∞], so there is no need to
add a separate ⊤♯

b element; it will be used to denote [−∞, +∞].

4.5.1 Order Structure

We have a lattice structure on B♯ and a concretization function:

[a, b] ⊑♯
b [c, d] def⇐⇒ (a ≥ c) ∧ (b ≤ d)

[a, b] ⊔♯
b [c, d] def= [min(a, c), max(b, d)]

[a, b] ⊓♯
b [c, d] def=

{
[max(a, c), min(b, d)] if max(a, c) ≤ min(b, d)
⊥♯

b otherwise

γb(⊥♯
b) def= ∅

γb([a, b]) def= {x ∈ I | a ≤ x ≤ b }

Recall that we often omit the cases where one argument at least is ⊥♯
b, but these are

straightforward: ∀X♯ ∈ B♯:⊥♯
b ⊑

♯
b X♯; ⊥♯

b is neutral for ⊔♯
b and absorbing for ⊓♯

b. The
Hasse diagram of the lattice was presented in Fig. 2.3 for the case of integers.

When I = Z or I = R, the lattice is complete: we can extend the lub and the glb
to infinite families, respectively as ⊔♯

b { [ai, bi] | i ∈ I } def= [mini∈I ai, maxi∈I bi], and
⊓♯

b { [ai, bi] | i ∈ I } def= [maxi∈I ai, mini∈I bi] or ⊥♯
b when the left bound is greater than the

right bound. Indeed, the minimum and the maximum of an arbitrary (possibly infinite)
set always exists in I ∪ {±∞}.

Likewise, we can define an abstraction function so that our domain enjoys a Galois
connection:

αb(X) def=
{
⊥♯

b if X = ∅
[min X, max X] otherwise

(4.6)

Note that this is not possible when I = Q as the minimum and maximum is not always
defined — consider, for instance, the set {x ∈ Q | x2 ≤ 2 }, which has no maximum in Q.
In that case, the lattice is not complete, and some sets may not have a best abstraction.

4.5.2 Abstract Operators

As for the previous domains, we set ∪♯
b

def= ⊔♯
b and ∩♯

b
def= ⊓♯

b. The intersection ∩♯
b is exact

and the join ∪♯
b is optimal, but not exact. Consider for instance, for integer intervals, that

γb([0, 0] ∪♯
b [2, 2]) = γb([0, 2]) = {0, 1, 2}, while γb([0, 0]) ∪ γb([2, 2]) = {0} ∪ {2} = {0, 2}.

Version 2025-05-26 81

CHAPTER 4. NON-RELATIONAL ABSTRACT DOMAINS

c♯
b

def= [c, c]
[c, c′]♯b

def= [c, c′]
−♯

b[a, b] def= [−b,−a]
[a, b] +♯

b [c, d] def= [a + c, b + d]
[a, b]−♯

b [c, d] def= [a− d, b− c]
[a, b]×♯

b [c, d] def= [min(ac, ad, bc, bd), max(ac, ad, bc, bd)]

[a, b]/♯
b[c, d] def=

[min(a/c, a/d), max(b/c, b/d)] if 1 ≤ c

[min(b/c, b/d), max(a/c, a/d)] if d ≤ −1
([a, b]/♯

b([c, d] ∩♯
b [1, +∞])) ∪♯

b ([a, b]/♯
b([c, d] ∩♯

b [−∞,−1])) otherwise

Figure 4.6: Abstract arithmetic operators in the interval domain.

Value operators. Figure 4.6 presents the arithmetic operators in the interval domain.
We omitted the cases where at least one argument is ⊥♯

b as the result is always ⊥♯
b.

Most definitions are straightforward: c♯
b, [c1, c2]♯b, +♯

b, and −♯
b give extract abstractions.

Multiplication ×♯
b is exact on rationals and reals, but only optimal on integers — consider

for instance [0, 1]×♯
b [2, 2] = [0, 2] while, in the concrete, [0, 1]× [2, 2] = {0, 2}. Division is

more involved: we first consider the case where the divisor is necessarily positive or when
it is necessarily negative, in which case the result is representable as an interval; when the
divisor contains both positive and negative values, we split it into its positive and negative
parts, perform both divisions independently, and join the results with ∪♯

b to get a single,
approximate interval. Because division in the concrete does not always return a convex
set, /♯

b is not exact, even in R and Q.
An additional complexity comes from handling infinities. We extend the natural oper-

ations +, −, ×, / used on bounds from I to I ∪ {±∞} as follows:

• ∀c ∈ I∪ {+∞}: c + (+∞) = +∞, ∀c ∈ I∪ {−∞}: c + (−∞) = −∞ as expected; note
that we always add either two upper bounds or two lower bounds, so that we never
add +∞ to −∞, which would be undefined; the subtraction operator − is similar;

• ∀c > 0: c×(+∞) = +∞, c×(−∞) = −∞ while ∀c < 0: c×(+∞) = −∞, c×(−∞) =
+∞, following the rule of signs, as expected;

• 0×(+∞) = 0×(−∞) = 0, which is non-standard; this is required to handle cases such
as [1, +∞]×♯

b [0, 1] = [0, +∞]; a intuitive interpretation is to consider that 0×M = 0
for any finite M , so that, when M tends towards +∞ or −∞, by continuity, we keep
0 as result;

• division / also follows the rule of signs, such as ∀c > 0: (+∞)/c = +∞;

• we finally state ∀c: c/(+∞) = c/(−∞) = 0, including (+∞)/(+∞) = 0; the intuition

Version 2025-05-26 82

4.5. THE INTERVAL DOMAIN

here is that a/b = a×(1/b); hence, (+∞)/(+∞) = (+∞)×(1/(+∞)) = (+∞)×0 =
0, for compatibility with the definition of multiplications.

Condition abstraction. To abstract conditions, we can handle simple cases precisely,
as in the previous domains, and revert to the identity for others:

C♯J V ≤ v KX♯ def=

X♯[V 7→ [a, min(b, v)] if a ≤ v

⊥♯ if a > v

C♯J V ≤W KX♯ def=

X♯[V 7→ [a, min(b, d)],

W 7→ [max(a, c), d]]
if a ≤ d

⊥♯ if a > d

where X♯(V) = [a, b] and X♯(W) = [c, d]

In the test V ≤ W , we use the upper bound of W to refine the upper bound of V , since
any value of V which is greater than W ’s upper bound cannot be part of a state satisfying
the test. Similarly, we use the lower bound of V to refine the lower bound of W . We will
see in Sect. 4.6 a more general test abstraction that can handle arbitrary expressions.

Standard widening. The interval domain has infinite strictly increasing chains, such
as for instance [0, 1], [0, 2], . . . , [0, n], Hence, a proper widening is required to enforce
convergence. The standard interval widening consists in replacing any unstable upper
bound with +∞, and any unstable lower bound with −∞:

[a, b] ▽b [c, d] def=
[{

a if a ≤ c

−∞ otherwise
,

{
b if b ≥ d

+∞ otherwise

]
(4.7)

Once a bound is pushed to infinity, it becomes stable, as the widening never tightens
bounds. Each bound of each variable is handled independently. The widening ▽ on D♯,
derived from ▽b, will converge in at most 2|V| iterations.

4.5.3 Example Analysis

Example 4.3 (Interval analysis). Consider a simple loop “X ← 0; while X < 40 do X ←
X+1 done” to be analyzed using the equation-based semantics (Sect. 3.4) over the interval
domain. The control-flow graph generated by the generic method of Fig. 3.9 is presented
in Fig. 4.7.(a). In Fig. 4.7.(b), we follow (3.4) to give at each program point ℓ in [1, 6] the
abstract iterates, showing only the most interesting ones. Moreover, following Sect. 3.5,
we choose to apply the widening at the loop head, that is, control point 2.

• At iterate 0, the abstract value of X is [−∞, +∞] at point 1 and ⊥♯
b elsewhere.

• Iterates 1 to 4 propagate the non-⊥♯
b value from point 1 to point 2 after the assignment

X ← 0, then to point 3 after the test X < 40, then to point 4 after the incrementation
X ← X + 1. We only show the end-result at iteration 4 in the figure.

Version 2025-05-26 83

CHAPTER 4. NON-RELATIONAL ABSTRACT DOMAINS

X ← 0

2

X < 40

X ← X + 1

X ≥ 40
3

4

5

6

1

ℓ X ♯0
ℓ X ♯4

ℓ X ♯5
ℓ X ♯7

ℓ X ♯8
ℓ

1 ⊤ ⊤ ⊤ ⊤ ⊤
2 ⊥ 0 0 0 0
3 ▽ ⊥ 0 [0, +∞] [0, +∞] [0, +∞]
4 ⊥ 0 0 [0, 39] [0, 39]
5 ⊥ 1 1 [1, 40] [1, 40]
6 ⊥ ⊥ ⊥ [40, +∞] [40, +∞]

(a) (b)

Figure 4.7: Interval analysis example: (a) control-flow graph of a simple loop incrementing
X, and (b) abstract iterations.

• Iterate 5 shows the first application of the widening as the interval [0, 0] gets increased
to [0, 1] after getting some loop feed-back from X = 1 at point 5. We get X ♯5

3
def= X ♯4

3 ▽b

(X ♯4
2 ⊔

♯
b X

♯4
5), i.e., [0, 0] ▽b ([0, 0] ⊔♯

b [1, 1]) = [0, 0] ▽b [0, 1] = [0, +∞].

• This information gets propagated in iterations 6 and 7 to enlarge the value of X at
point 4 after the test X < 40, and at point 5 after the incrementation X ← X + 1.
Moreover, starting from iteration 6, the loop invariant [0, +∞] also passes the test
X ≥ 40 to give, at point 6, [40, +∞].

• Iterate 8 gives the exact same result as iterate 7, hence, we have reached an abstract
invariant.

On this example, the interval analysis proves that X is always within [0, 40] in the loop body,
and greater than 40 after the loop. Note, in particular, that the computation only requires
8 iterations, far less than the 40 iterations in the concrete semantics. More importantly,
the number of abstract iterations does not depend on the constant 40: we could have a far
larger number of iterations in the concrete and still only 8 abstract iterations.

Our result is not the most precise invariant as, actually, X ∈ [0, 40] also holds at point
3 and, when the loop stops, X = 40 at point 6. We will see in Sect. 4.7 different iteration
strategies to improve this result, as well as the influence of the choice of widening points.

♦

4.6 Advanced Abstract Tests

We presented in Fig. 4.1 a generic method to abstract assignments in non-relational do-
mains, using evaluation in the abstract value domain by induction on the syntax. The case
of tests is slightly different: instead of computing the value of an expression given abstract
variable values, we assume some information about the value of two expressions, such as
e1 ≤ e2, and wish to refine the abstract values of variables. This is a classic constraint
programming problem, and we can employ a constraint solving method to solve it.

Version 2025-05-26 84

4.6. ADVANCED ABSTRACT TESTS

−
⊤♯

b

+
⊤♯

b

Z
[3, 5]

X
[0, 10]

Y
[2, 10]

−
[−3, 17]

+
[2, 20]

Z
[3, 5]KS

X
[0, 10]

Y
[2, 10]

(a) (b)

⊓♯
b

−
[−3, 0]

+
[2, 20]

Z
[3, 5]

X
[0, 10]

Y
[2, 10]

��

−
[−3, 0]

+
[2, 5]

Z
[3, 5]

X
[0, 3]

Y
[2, 5]

(c) (d)

Figure 4.8: Abstract test C♯J (X + Y)− Z ≤ 0 K in the interval domain, starting from
the abstract state [X 7→ [0, 10], Y 7→ [2, 10], Z 7→ [3, 5]].

4.6.1 Propagation Algorithm

To simplify, we consider tests of the form e ≤ 0; other tests can be put into this, or a similar
form. Our algorithm is based on HC4-revise, introduced by Benhamou et al. [1999]. It oper-
ates in three steps. It is illustrated in Fig. 4.8 on the evaluation of C♯J (X + Y)− Z ≤ 0 K in
the interval domain, starting from an abstract state [X 7→ [0, 10], Y 7→ [2, 10], Z 7→ [3, 5]].

Firstly, the expressions are evaluated by induction on the syntax tree, bottom-up,
from leaves (variables and constants) to the expression root, similarly to E♯J e K in Fig. 4.1;
however, we remember the abstract value at each syntax tree node. This is illustrated in
Fig. 4.8 as steps (a)–(b).

Secondly, the interval at the root, here [−3, 17] is intersected with the condition for
the test to be true, in this case [−∞, 0], as the result of the expression should be negative.
This yields [−3, 0] in Fig. 4.8.(c).

Thirdly, this information is propagated backwards, top-down towards the leaves, as
shown in Fig. 4.8.(d). For instance, [−3, 17] spawned from [2, 20]−[3, 5] but, for [2, 20]−[3, 5]
to be actually included in [−3, 0], it is necessary for the left-hand side to be less than 5,
so that we replace [2, 20] with [2, 5]. This interval, which corresponds to [0, 10] + [2, 10] is
propagated backward to refine [0, 10] into [0, 3] and [2, 10] into [2, 5]. Hence, the output of
the test is the abstract state [X 7→ [0, 3], Y 7→ [2, 5], Z 7→ [3, 5]].

Version 2025-05-26 85

CHAPTER 4. NON-RELATIONAL ABSTRACT DOMAINS

4.6.2 Backward Abstract Value Operators

Our algorithm manipulates abstract values, and can be applied to any non-relational
domain, and not only intervals. The first part of the algorithm uses the existing abstract
arithmetic operators +♯

b, etc. (Def. 4.1). The second and third parts use backward versions
that, given the original arguments, and some novel information on the result, return refined
versions of the arguments, removing as many values as possible that cannot contribute to
the new expected result. Hence, we require the following operators, denoted with a leftward
arrow to distinguish them from the regular abstract operators:

• ←−≤ 0♯
b : B♯ → B♯ to add the information that an interval is negative;

• backward unary operators: ←−− ♯
b : B♯ × B♯ → B♯;

• backward binary operators: ←−+ ♯
b,
←−− ♯

b,
←−× ♯

b,
←−
/ ♯

b : B♯ × B♯ × B♯ → B♯ × B♯.

with the following soundness conditions:

X♯′ =←−≤ 0♯
b(X♯) =⇒

{x ∈ γb(X♯) | x ≤ 0 } ⊆ γb(X♯′)

X♯′ =←−− ♯
b(X♯, R♯) =⇒

{x | x ∈ γb(X♯), −x ∈ γb(R♯) } ⊆ γb(X♯′)

(X♯′, Y ♯′) =←−+ ♯
b(X♯, Y ♯, R♯) =⇒

{x ∈ γb(X♯) | ∃y ∈ γb(Y ♯), x + y ∈ γb(R♯) } ⊆ γb(X♯′)
{ y ∈ γb(Y ♯) | ∃x ∈ γb(X♯), x + y ∈ γb(R♯) } ⊆ γb(Y ♯′)

and similarly for the other binary operators, which state that the new inputs X♯′, Y ♯′ still
cover all possible ways to satisfy a condition (for ≤ 0) or to generate the new output R♯

(for +, −, etc.).
In the presence of a Galois connection (αb, γb), we can derive systematically the best

refinement operators using αb, for instance:

←−− ♯
b(X

♯, R♯) def= αb({x | x ∈ γb(X♯), −x ∈ γb(R♯) })

Alternatively, we can easily synthesize sufficiently precise backward abstract operators
from the forward ones used in standard evaluation. Consider, for instance, the case of←−+ ♯

b(X♯, Y ♯, R♯). We observe that, if R = X + Y , then X = R − Y , and we can use the
new value of R and the previously known value of Y to get the new value of X, i.e.,
X♯′ def= X♯ ∩♯

b (R♯ −♯
b Y ♯). Based on such identities, we can derive all backwards operators

as presented in Fig. 4.9. The division takes extra care as:

• R = X/Y does not imply Y = X/R, but rather (Y = X/R)∨ (Y = 0) as we have to
consider the case of a division by zero that does not produce a value in R;

Version 2025-05-26 86

4.6. ADVANCED ABSTRACT TESTS

←−≤ 0♯
b(X♯) def= X♯ ∩♯

b [−∞, 0]♯b
←−− ♯

b(X♯, R♯) def= X♯ ∩♯
b (−♯

bR♯)
←−+ ♯

b(X♯, Y ♯, R♯) def= (X♯ ∩♯
b (R♯ −♯

b Y ♯), Y ♯ ∩♯
b (R♯ −♯

b X♯))
←−− ♯

b(X♯, Y ♯, R♯) def= (X♯ ∩♯
b (R♯ +♯

b Y ♯), Y ♯ ∩♯
b (X♯ −♯

b R♯))
←−× ♯

b(X♯, Y ♯, R♯) def= (X♯ ∩♯
b (R♯/♯

bY ♯), Y ♯ ∩♯
b (R♯/♯

bX♯))
←−
/ ♯

b(X♯, Y ♯, R♯) def= (X♯ ∩♯
b (S♯ ×♯

b Y ♯), Y ♯ ∩♯
b ((X♯/♯

bS♯) ∪♯
b [0, 0]♯b))

where S♯ def=
{

R♯ if I ̸= Z

R♯ +♯
b [−1, 1]♯b if I = Z

Figure 4.9: Synthesizing abstract backward operators from forward ones.

• when considering integers, R = X/Y rounds its result, so, we first have the perform
the inverse of the rounding operation, which we model as replacing R with S

def= R+
[−1, 1], before proceeding with X = Y × S and Y = X/S.

Note that these formulas may not provide the best backward abstractions; indeed, we are
combining several abstract operators, so that, even if they are individually optimal, their
combination may not be optimal.

Applying these formulas to the case of intervals gives us, for instance:

←−≤ 0♯
b([a, b]) def=

{
[a, min(b, 0)] if a ≤ 0
⊥♯

b otherwise
←−− ♯

b([a, b], [r, s]) def= [a, b] ∩♯
b [−s,−r]

←−+ ♯
b([a, b], [c, d], [r, s]) def= ([a, b] ∩♯

b [r − d, s− c], [c, d] ∩♯
b [r − b, s− a])

4.6.3 Local Iterations

In the concrete world, a test is idempotent, as testing again some condition immediately
after testing it a first time gives the identity. However, this may not be the case in the
abstract: iterating our algorithm several times may improve the precision. This is partic-
ularly the case if some variable X appears twice or more in the expression. In that case,
the refinement process will provide several distinct abstract values for X. They are all
valid, so that we can store their abstract intersection into the abstract memory state. As
we have refined the leaves of the expression tree, running the bottom-up evaluation may
provide more precise abstract values which, in turn, will refine the leaves some more, i.e.,
the abstract memory state.

This also applies to the case where a variable appears in different atomic tests combined
with the boolean operators ∧ and ∨. Recall that this case is handled by induction on the
syntax as, for instance, C♯J c1 ∨ c2 KR♯ def= C♯J c1 K R♯ ∪♯ C♯J c2 KR♯. The idea of iterating,
for a few times, or until a fixpoint occurs — possibly using extrapolation operators for

Version 2025-05-26 87

CHAPTER 4. NON-RELATIONAL ABSTRACT DOMAINS

decreasing sequences that we will describe in Sect. 4.7.2 — was proposed by Granger [1992]
as local iterations.

Example 4.4 (Local iterations). We consider as example the case of a complex boolean
condition (X ≥ Y)∧ (Z ≥ X), in the interval environment [X 7→ [0, 10], Y 7→ [5, 15], Z 7→
[−10, 10]]. This is modeled as C♯J X ≥ Y KR♯ ∩♯ C♯J Z ≥ X KR♯:

• The first application, in parallel, of both atomic tests X ≥ Y and Z ≥ X will
give respectively: [X 7→ [5, 10], Y 7→ [5, 15], Z 7→ [−10, 10]], refining X, and [X 7→
[0, 10], Y 7→ [5, 15], Z 7→ [0, 10]], refining Z.

• Their combination through ∩♯ gives [X 7→ [5, 10], Y 7→ [5, 15], Z 7→ [0, 10]].

• As the lower bound of X has changed, the test Z ≥ X can gather more information
from this new bound. Indeed, we get, after C♯J Z ≥ X K, the abstract state: [X 7→
[5, 10], Y 7→ [5, 15], Z 7→ [5, 10]], refining Z again.

• Further applications of atomic test operators do not change the result; we have
reached a fixpoint in two iterations. ♦

4.7 Advanced Iteration Techniques

Inferring loop invariants is a major challenge in program analysis. Abstract interpretation
solves this problem using iteration with widenings. We saw a simple example of this pro-
cess, which gave rather coarse results in Fig. 4.7. Many techniques have been developed
to improve on this. We will present of few of the simplest, most popular techniques.

4.7.1 Choice of Widening Points

Firstly, we justify our choice of using loop heads as widening points. We consider again
the analysis of “X ← 0; while X < 40 do X ← X + 1 done” from Fig. 4.7, but apply
widening at program point 4 instead of 3. The result is given in Fig. 4.10. Now, the result
at program points 4 and 5 are respectively [0, +∞] and [1, +∞], instead of [0, 39] and
[1, 40], which is far less precise.

The intuitive explanation is that, when widening at program point 3, the propagation
of the loss of precision from this point is limited as the following instructions, either
staying in or exiting the loop, are tests, which add some bounds to X. However, when the
widening occurs at program point 4, it gets propagated by the incrementation X ← X + 1
into program point 5, and then 3, without any intervening test to bound the intervals.

This phenomenon was empirically shown to be significant by Bourdoncle [1993b], hence
we follow his recommendation by widening at loop heads.

Version 2025-05-26 88

4.7. ADVANCED ITERATION TECHNIQUES

X ← 0

2

X < 40

X ← X + 1

X ≥ 40
3

4

5

6

1

ℓ X ♯0
ℓ X ♯4

ℓ X ♯5
ℓ X ♯6

ℓ X ♯8
ℓ

1 ⊤ ⊤ ⊤ ⊤ ⊤
2 ⊥ 0 0 0 0
3 ⊥ 0 [0, 1] [0, 1] [0, +∞]
4 ▽ ⊥ 0 0 [0, +∞] [0, +∞]
5 ⊥ 1 1 1 [1, +∞]
6 ⊥ ⊥ ⊥ ⊥ [40, +∞]

(a) (b)

Figure 4.10: Interval analysis of Fig. 4.7 with a different widening point.

4.7.2 Decreasing Iterations

A first idea in order to improve the precision of loop analysis is to start from the result of
the iteration with widening after stabilization, and try and refine it a posteriori.

Recall that we wish to approximate some concrete fixpoint lfp F , so we iterate X♯ 7→
X♯ ▽ F ♯(X♯) until finding X♯ such that X♯ = X♯ ▽ F ♯(X♯). For such a X♯, by definition
of widening (Def. 2.17), F ♯(X♯) ⊑♯ X♯, and we know, from Thm. 2.8, that any abstract
postfixpoint X♯ over-approximates lfp F : lfp F ⊆ γ(X♯). Applying F , we get, on the one
hand, F (lfp F) = lfp F and, on the other hand, F (γ(X♯)) ⊆ γ(F ♯(X♯)), hence, F ♯(X♯) is
also a sound approximation of lfp F and, as F ♯(X♯) ⊑♯ X♯, it can only improve on X♯.

We can continue iterating F ♯: we always get sound approximations of lfp F , but the
abstract sequence is not necessarily decreasing, and does not necessarily terminate. To
solve the first problem, we can iterate:

Y ♯0 def= X♯ Y ♯n+1 def= Y ♯n ⊓♯ F ♯(Y ♯n) (4.8)

where X♯ is the limit found by iteration with widening. We assume that a glb operator ⊓♯

exists, which is the case for all the domains we have seen.
In case the abstract domain does not feature infinite decreasing chains, such as the

constant or the sign domains, the sequence (4.8) always terminates in finite time. Other-
wise, we can use the narrowing operator △, introduced by Cousot and Cousot [1977]. Its
definition is superficially similar to that of the widening (Def. 2.17):

Definition 4.4. A binary operator △ : D♯ × D♯ → D♯ is a narrowing operator in an
abstract domain D♯ if:

1. ∀X♯, Y ♯ ∈ D♯: X♯ ⊓♯ Y ♯ ⊑♯ X♯ △ Y ♯ ⊑♯ X♯;

2. for any sequence (Y ♯i)i∈N in D♯, the sequence (Z♯i)i∈N computed as Z♯0 = Y ♯0,
Z♯i+1 = Z♯i △ Y ♯i+1 stabilizes in finite time: ∃k ≥ 0: Z♯k+1 = Z♯k. ■

The first point states that △ refines its left argument while being a sound approximation.
The second point enforces termination.

Version 2025-05-26 89

CHAPTER 4. NON-RELATIONAL ABSTRACT DOMAINS

Using a narrowing, we can now replace (4.8) with:

Y ♯0 def= X♯ Y ♯n+1 def= Y ♯n △ F ♯(Y ♯n) (4.9)

and ensure convergence towards a better approximation of lfp F than the initial X♯ ob-
tained using widening only.

For non-relational domains, △ can be constructed, as all our binary operators, point-
wise by applying a value narrowing △b : B♯ × B♯ → B♯ independently on each variable.
Here is an example narrowing for intervals:

[a, b] △b [c, d] def=
[{

c if a = −∞
a otherwise

,

{
d if b = +∞
b otherwise

]
(4.10)

This gives naturally an over-approximation of ⊓♯
b as we sometimes choose to refine the

iterate, i.e., the interval [a, b], using the result of a new loop body analysis, i.e., the interval
[c, d], and sometimes refrain from refining it. More precisely, we refine a bound in [a, b]
only when the bound is infinite. As each infinite bound can be only refined once, this
necessarily terminates in at most 2|V| steps.

Equation 4.9 can be directly plugged into the abstract denotational semantics of loops
in Fig. 3.10. When employing an equational-style analysis, it is sufficient to employ nar-
rowing only at selected program points W such that every cycle in the control-flow graph
passes through a narrowing point. Equation 3.4 becomes, after replacing widening ▽ with
narrowing △:

∀j ∈ L:X ♯k+1
j

def=

I♯ if j = 1
X ♯k

k △
(
∪♯

(i,F,j)∈cfg[p] F ♯(X ♯k
i)

)
if j ∈ W

∪♯
(i,F,j)∈cfg[p] F ♯(X ♯k

i) otherwise
(4.11)

Note that we can use, as narrowing points, the exact same points we used for widenings,
i.e., the loop heads, reasoning that these are the program points where there was the most
loss of precision, and thus, the most in need of refinement.

Example 4.5 (Decreasing iterations). Consider again the loop “X ← 0; while X <

40 do X ← X + 1 done” analyzed in the interval domain. We start from the result X ♯8
ℓ of

the analysis after widening at point 3, in Fig. 4.7. We then apply iterations with narrowing
(4.11) at point 3, and we get the sequence described in Fig. 4.11. More precisely:

• at 3, we get Y♯1
3

def= X ♯8
3 △b (X ♯8

2 ⊔
♯
b X

♯8
5) = [0, +∞] △b ([0, 0] ⊔♯

b [1, 40]) = [0, +∞] △b

[0, 40] = [0, 40], retrieving a precise loop invariant;

• this propagates, after the loop exit test X ≥ 40, to [40, 40] at program point 6, hence,
we have proved that the program terminates with X = 40;

• further iterations give the same result, so that the iteration is finished.

Version 2025-05-26 90

4.7. ADVANCED ITERATION TECHNIQUES

ℓ Y♯0
ℓ = X ♯8

ℓ Y♯1
ℓ Y♯2

ℓ

1 ⊤ ⊤ ⊤
2 0 0 0
3 ▽ [0, +∞] [0, 40] [0, 40]
4 [0, 39] [0, 39] [0, 39]
5 [1, 40] [1, 40] [1, 40]
6 [40, +∞] [40, +∞] [40, 40]

Figure 4.11: Interval analysis of Fig. 4.7 with decreasing iterations.

Thanks to narrowing, we have inferred the best invariants at all program points. Note
again that the total number of iterations with widening and narrow is much smaller that
the number of concrete iterations of the loop, and does not depend on the value of the
constant 40. ♦

It is important to note the conceptual difference between widenings and narrowings. A
widening performs an extrapolation step which must necessarily be applied until reaching
stabilization as, only at this point can we be sure that we have found a sound fixpoint
abstraction; previous iterations may be unsound. A narrowing refines an already correct
result. In fact, we can stop iterations (4.9) and (4.11) at any point, and still get a refined
but correct result. In particular, when a domain does not feature any narrowing, we can
simply apply (4.8), using an intersection ⊓♯, for a finite fixed number of steps, which is
sound and, by construction, terminates.

4.7.3 Widening with Thresholds

Another natural solution to improve the precision of loop invariants is to design gentler
widenings, that do not immediately abort unstable computations and push bounds to
infinity. Consider, for instance, an iteration sequence starting with [10, 10], followed with
[9, 10]. Then, instead of widening the sequence immediately to [−∞, 10], we can first widen
this sequence to [0, 10] and, only if the lower bound of the next iterate becomes strictly
negative, replace it with −∞. The widening will effectively stop at 0 to test its stability
on the way to infinity. Formally, we defined ▽0 as:

[a, b] ▽0
b [c, d] def=

a if a ≤ c

0 if 0 ≤ c < a

−∞ otherwise
,

b if b ≥ d

0 if 0 ≥ d > b

+∞ otherwise

 (4.12)

Example 4.6 (Widening at zero). Consider the simple decrementing loop: “X ←
40; while X ̸= 0 do X ← X − 1 done”. We show in, Fig. 4.12, its control-flow graph and
the result of an interval analysis with the standard widening ▽b (4.7). At the loop head, the
first iteration gives [40, 40] ▽b [39, 40] = [−∞, 40], which is the loop invariant the analysis
outputs.

For comparison, Fig. 4.12.(b) presents the result of an analysis of the same program
with the extended signs of Fig. 4.2.(b). Interestingly, this domain is able to find that X ≥

Version 2025-05-26 91

CHAPTER 4. NON-RELATIONAL ABSTRACT DOMAINS

X ← 40

2

X ≠ 0

X ← X - 1

X = 0
3

4

5

6

1
ℓ intervals ▽ signs intervals ▽0

1 ⊤ ⊤ ⊤
2 40 > 0 40
3 ▽ [−∞, 40] ≥ 0 [0, 40]
4 [−∞, 40] > 0 [1, 40]
5 [−∞, 39] ≥ 0 [0, 39]
6 0 ≥ 0 0

(a) (b)

Figure 4.12: Analysis of a decrementing loop using signs and intervals with various
widenings.

0. Although the interval domain is far more expressive than the sign domain, and the
interval domain can exactly represent X ≥ 0, it fails to infer a simple invariant found
by the sign domain. This is naturally due to a too coarse widening. Using our refined
widening ▽0

b (4.12) allows the interval domain to find this invariant, though, as we get
[40, 40] ▽0

b [39, 40] = [0, 40], which is stable.
Finally, it is interesting to note that the coarse loop invariant [−∞, 40] found with ▽

cannot be refined using decreasing iterations. Indeed, [−∞, 40] at point 3, is propagated
into [−∞, 40] after the test X ̸= 0 and then [−∞, 39] after the assignment X ← X − 1,
so that the iteration gives [−∞, 40] △b ([40, 40] ⊔♯ [−∞, 39]) = [−∞, 40] △b [−∞, 40], i.e.,
no refinement. ♦

The idea of testing the stability of some bounds can be generalized to a widening with
thresholds ▽T , parameterized with a user-specified finite set T of bounds that includes
±∞:

[a, b] ▽T
b [c, d] def=

[{
a if a ≤ c

max {x ∈ T | x ≤ c } otherwise
,

{
b if b ≥ d

min {x ∈ T | x ≥ d } otherwise

] (4.13)

In the worst case, each value of T is tested for each variable bound, hence, we get 2|V|×|T |
iterations, but the analysis nevertheless terminates.
Example 4.7 (Widening with thresholds). Consider the following loop:

X ← 0;
while [0, 1] = 0 do

if [0, 1] = 0 then
X ← X + 1;
if X > 40 then X ← 0 endif

endif
done

An interval analysis with standard widening (4.7) will find X ∈ [0, +∞] as loop invariant.
Moreover, as in Ex. 4.6, narrowing is ineffective to retrieve any precision because the

Version 2025-05-26 92

4.7. ADVANCED ITERATION TECHNIQUES

effect of the loop body on an invariant [0, +∞] is [0, +∞]. Indeed, there is a control path
in the body where the value of X is unchanged. A widening with thresholds ▽T (4.13) will,
however, find as loop invariant X ∈ [0, c], where c is the smallest value in T that is greater
than 40. If 40 ∈ T , we will find the most precise loop invariant X ∈ [0, 40] but, if 40 /∈ T ,
we will find a coarser invariant. ♦

Analyzers rely on external heuristics to guess a good threshold set T , on a per variable
and per loop basis. One strategy is to use the lexical constants used as array bounds in
array declarations (possibly plus or minus 1), when interested in proving the absence of
out-of-bound array accesses. When checking for the absence of arithmetic overflows, a good
strategy is to consider as T an exponential ramp, such as {±2i | i ∈ [0, 64] }. That way,
we can hope to find an approximate bound up to a factor of 2, which is often sufficient as
there is generally a significant buffer between the actual maximal value and the overflow
threshold.

The ineffectiveness of narrowing in these examples warrants some explanation. The
general idea of a decreasing iteration is to start with an abstraction X♯ of a postfixpoint
γ(X♯), and refine it downwards towards the least fixpoint. To ensure soundness, the it-
eration stays above this least fixpoint. However, the iteration also stays above any other
fixpoint that is smaller than γ(X♯). So, in case the iteration with widening skipped over
several fixpoints above the least one, the decreasing sequence will get stuck at these fix-
points and will not be able to “jump” below them towards the least fixpoint. For instance,
in Ex. 4.7, any interval of the form [0, c] with c ≥ 40 is a concrete fixpoint, hence, the
narrowing cannot improve on such an interval. Recently Halbwachs and Henry [2012] pro-
posed more aggressive decreasing iteration techniques, which jump below fixpoints, but
then requires a new round of increasing iterations to make sure that the result is above
the concrete least fixpoint.

4.7.4 Delayed Widening

Another, complementary way to make the widening gentler is to delay its application.
Hence, (2.6) is replaced with:

X♯0 def= ⊥♯

X♯i+1 def= F ♯(X♯i) if i < N

X♯i+1 def= X♯i ▽ F ♯(X♯i) if i ≥ N

for some fixed N . This is particularly useful when the first few iterates of the loop differ
from the following ones, and it is always a good idea to start extrapolating only after
having accumulated a few iterations. This way, the widening can make a more educated
guess about the loop behavior. After a finite, fixed number N of iterations, we revert to
widening, so that termination is preserved.

Version 2025-05-26 93

CHAPTER 4. NON-RELATIONAL ABSTRACT DOMAINS

Example 4.8 (Delayed widening). Consider the following loop:

V ← 0;
while [0, 1] = 0 do

if V = 0 then V ← 1 endif ; . . .
done

The first iteration of the loop sets V from 0 to 1, but then, V remains at 1 for the next
iterations — we can think of V as a flag indicating whether we are in the first loop itera-
tion, which is a common pattern in reactive programs consisting in a large loop including
an initialization phase. The standard widening ▽ will see the sequence [0, 0], [0, 1], then
conclude that the upper bound is increasing and replace it with [0, +∞]. When delaying
the widening by one step, it is applied to [0, 1] and [0, 1], which gives back [0, 1]. Thus, by
giving some time to X to stabilize by itself, we avoided a gross over-approximation. ♦

4.7.5 Loop Unrolling

When the first few iterations behave extremely differently from the following ones, it
can be useful to analyze them separately. Indeed, when performing iterations, even with
delayed widening (Sect. 4.7.4), we ultimately expect to compute a single loop invariant that
summarizes the behaviors of all iterates. By keeping a separate abstract values for each
iterate for the first few iterates, and an abstract value to summarize the loop behaviors
after these iterates, we avoid some loss of precision due to the join.

This technique is easily implemented in the denotational-style abstract analysis. The
semantics of loop S♯J while c do s done KR♯ from Fig. 3.10, which we recall as:

X♯0 def= R♯

X♯n+1 def= X♯n ▽ F ♯(X♯n)
where F ♯(X♯) def= R♯ ∪ S♯J s K(C♯J c KX♯)

is changed into:
X♯0 def= R♯

X♯n+1 def= S♯J s K (C♯J c KX♯n) if n < N

X♯n+1 def= X♯n ▽ F ♯(X♯n) if n ≥ N

where F ♯(X♯) def= R♯ ∪ S♯J s K(C♯J c KX♯)

(4.14)

and X♯i for 0 ≤ i < N correspond to the loop executed exactly i times, while the limit X♯

of X♯n with widening for n ≥ N corresponds to the loop executed N times or more.
Although they are computed separately, these invariants must be joined in the end in

order to compute the output of the loop:

(∪♯ {C♯J¬c K(X♯i) | 0 ≤ i < N }) ∪♯ C♯J¬c K(X♯)

Note that we apply the exit loop condition separately to each invariant, and then join
them. Joining as late as possible prevents the loss of precision in non-distributive lattices
such as intervals (Sect. 2.1.6).

Version 2025-05-26 94

4.7. ADVANCED ITERATION TECHNIQUES

Example 4.9 (Loop unrolling). Consider a more refined version of Ex. 4.8, where the
initialization phase (when V = 0) initializes the variable W from unknown to 0:

V ← 0; W ← [−∞, +∞];
while [0, 1] = 0 do

if V = 0 then W ← 0; V ← 1 endif ;
W ←W + 1

done

The first abstract loop iteration in the interval domain computes [V 7→ [1, 1], W 7→ [1, 1]].
However, without loop unrolling, this information is merged with the invariant before any
loop iteration takes place, [V 7→ [0, 0], W 7→ [−∞, +∞]], so that we continue iterating
with the join [V 7→ [0, 1], W 7→ [−∞, +∞]]. Hence, the loop invariant states that W ∈
[−∞, +∞] and, as a consequence, there is no information on W at the position of the
incrementation W ←W + 1. In the concrete, however, W is always positive at this point.
Applying (4.14) with N = 1, the loop invariant we compute starts in the state [V 7→
[1, 1], W 7→ [1, 1]] and goes on iterating with [V 7→ [1, 1], W 7→ [1, +∞]]. This corresponds
only to the loop invariant for the executions reaching the loop header after at least one
loop iteration. ♦

4.7.6 Non-Monotonicity of the Widening

Remark that the standard interval widening ▽b (2.6) is monotonic in its second argument,
but not in his first argument. As a counter-example for the non-monotonicity, consider
that [1, 1] ⊑♯

b [1, 52], but [1, 1] ▽b [1, 52] = [1, +∞] while [1, 52] ▽b [1, 52] = [1, 52]. Given a
coarser first argument, we get a more precise result, because the first argument happens
now to be stable.

A consequence is that the semantics of a loop in the denotational-style semantics is
not monotonic.

Example 4.10 (Non-monotonicity of the widening). Consider the loop:

while V ≤ 50 do V ← V + 2 done

which increments V up to 52. The loop semantics is:

C♯J V > 50 K(lim λX♯. X♯ ▽b (R♯ ∪♯ S♯J V ← V + 2 K(C♯J V ≤ 50 K(X♯))))

where R♯ is the abstract state at the loop entry. We can check that:

• when starting with R♯ = [V 7→ [1, 1]], the loop invariant with widening is [1, +∞], so
that the semantics of the loop returns [51, +∞];

• when starting with R♯ = [V 7→ [1, 52]], then X♯ is stable at the first iteration, so that
the loop invariant is [1, 52], and we return [51, 52], which is much more precise. ♦

Version 2025-05-26 95

CHAPTER 4. NON-RELATIONAL ABSTRACT DOMAINS

Recall that, although in the concrete we asked for the semantic operators to be mono-
tonic for fixpoints to exist, we took extra care to avoid making any such hypothesis in
the abstract. Indeed, this turns out not to be the case in practice, and the additional
complexity of designing loop invariant inference using non-monotonic abstract functions
now pays of.

One common case is that of nested loops in the denotational-style semantics. The outer
loop must iterate some function F ♯, which contains the possibly non-monotonic semantics
of the inner loop, due to the non-monotonicity of the widening. The case of interval
widening is not isolated: Cousot [2015] proved that a widening cannot be monotonic in its
first argument, unless the domain has only finite increasing chains — in which case the
widening can be replaced with a join anyway.

4.7.7 Widening, Induction, and Invariants

To finish our general discussion on advanced iterations, we review the notions of invariants
and inductive reasoning, pervasive in formal program verification, and tie them to the
notion of widening, specific to Abstract Interpretation. As we stated in Sect. 3.3, the least
fixpoint lfp F we seek is a constructive expression of the tightest loop invariant, which
is also the exact reachable set of program states. Due to undecidability, we settle for an
invariant, I, that is, any overapproximation I ⊇ lfp F .

Hoare-Floyd logic [Hoare, 1969, Floyd, 1967] requires an invariant such that F (I) ⊆ I.
This is an inductive invariant. Note that F (I) ⊆ I =⇒ lfp F ⊆ I by Tarski’s fixpoint
theorem (Thm. 2.1), so that any inductive invariant is indeed an invariant. However,
the converse is not true: the notion of inductive invariant is stronger than that of plain
invariant. It adds the notion of checkability. Proving that I is an inductive invariant is
much simpler than proving that lfp F ⊆ I: it requires only giving a proof that F (I) ⊆ I,
i.e., computing F , while checking lfp F ⊆ I would require actually computing lfp F , which
we wished to avoid in the first place. This explains the focus of deductive methods on
inductive invariants.

Abstract Interpretation, however, does not rely on user-given proofs, but on compu-
tation in the abstract. Analyzing a loop consists in finding X♯ such that F ♯(X♯) ⊑♯ X♯,
i.e., we are looking for an invariant that can be proved to be inductive in the abstract,
by actually computing F ♯(X♯) and ⊑♯ in the abstract domain which, unlike computing F
and ⊆, is feasible automatically and efficiently. We can thus view iteration with widening
as a search process that tries to guess some X♯ such that F ♯(X♯) ⊑♯ X♯. The specificity
of this method is that it starts evaluating the loop, accumulates reachability information,
and tries to extrapolate from it. It is a form of inductive reasoning in the classic sense
of philosophical logic: a generalization from a finite set of observations. It should not be
confused with mathematical induction, which actually consists in applying a well-defined
rule or axiom scheme, and is thus deductive in nature.

Usually, inductive reasoning is known to give incorrect results (e.g., deducing that the
sun will raise every day, for all eternity, from the fact that we have observed it do so, so far).
However, Abstract Interpretation turns this very human and error-prone reasoning method

Version 2025-05-26 96

4.8. THE CONGRUENCE DOMAIN

into a formally valid method because iterations always reach an abstract postfixpoint in
finite time, thanks to widening. This is possible because our abstract domains have a ⊤♯

element, meaning “no information” and a widening can default to ⊤♯ if no meaningful
inductive invariant could be inferred.

4.8 The Congruence Domain
The last non-relational abstract domain we present is a congruence domain, specific to
integers, introduced by Granger [1989]. We thus assume I = Z, and infer value abstractions
of the form X ∈ aZ + b, meaning that X equals some multiple of a plus b. This domain is
particularly useful to track pointer offsets in arrays and data-structures, prove alignment
properties, or infer array access patterns. We set as abstract values:

B♯ def= { (aZ + b) | a ∈ N, b ∈ Z } ∪ {⊥♯
b } (4.15)

The greatest element can be represented as 1Z + 0, which equals Z, while a singleton {c}
can be represented as 0Z + c. However, an element ⊥♯

b representing ∅ is explicitly added.

Order structure. The lattice structure is depicted in Fig. 4.13. This lattice is based on
some basic arithmetic results concerning divisors and so-called cosets. As we mentioned
in Ex. 2.6, non-zero integers form a (non complete) lattice for divisibility: (N∗, |, lcm, gcd),
where | is the “divides” partial order relation, lcm and gcd are the least common multiple
and the greatest common divisor. We first have to extend this lattice to the case 0, which
is useful in the domain to represent singletons:

• y|y′ def⇐⇒ y divides y′, i.e., ∃k ∈ N: y′ = ky, including ∀y: y|0;

• x ≡ x′ [y] def⇐⇒ y|(|x− x′|), in particular, x ≡ x′ [0] ⇐⇒ x = x′;

• ∨ is the lcm is extended with y ∨ 0 def= 0 ∨ y
def= 0;

• ∧ is the gcd extended with y ∧ 0 def= 0 ∧ y
def= y.

Then, (N, |,∨,∧, 1, 0) is a complete distributive lattice. We can define on top of this arith-
metic lattice a complete lattice structure over (B♯,⊑♯

b,⊔
♯
b,⊓

♯
b,⊥

♯
b, (1Z + 0)), where:

• (aZ + b) ⊑♯
b (a′Z + b′) def⇐⇒ a′|a and b ≡ b′ [a′]

• (aZ + b) ⊔♯
b (a′Z + b′) def= (a ∧ a′ ∧ |b− b′|)Z + b

• (aZ + b) ⊓♯
b (a′Z + b′) def=

{
(a ∨ a′)Z + b′′ if b ≡ b′ [a ∧ a′]
⊥♯

b otherwise
where b′′ is such that b′′ ≡ b [a] ≡ b′ [a′], and is given by Bézout’s identity and can
be computed using the extended Euclidean algorithm.

Version 2025-05-26 97

CHAPTER 4. NON-RELATIONAL ABSTRACT DOMAINS

1ℤ+0

2ℤ 2ℤ+1 3ℤ

6ℤ 6ℤ+3

0ℤ+6 0ℤ+3

 ⊥

Figure 4.13: Hasse diagram for the congruence domain.

Galois connection. We can construct a Galois connection as follows:

γb(X♯
b) def=

{
{ ak + b | k ∈ Z } if X♯

b = (aZ + b)
∅ if X♯

b = ⊥♯
b

αb(C) def=
⊔♯

c∈C (0Z + c)

Note that γb is not injective as several different abstract elements can represent the same
concrete set, e.g., 2Z + 0 and 2Z + 2. However, ⊑♯

b corresponds exactly to the inclusion:
γb(X♯) ⊆ γb(Y ♯) ⇐⇒ X♯ ⊑♯

b Y ♯. We can test for γb(X♯) = γb(Y ♯) by checking both
X♯ ⊑♯

b Y ♯ and Y ♯ ⊑♯
b X♯ — technically, ⊑♯

b is not a partial order but a pre-order, by lack of
anti-symmetry, but this has no consequence in practice in the design of our abstractions.
Alternatively, we can ensure a unique representation by requiring that, in aZ + b, either
a = 0 (singleton), or 0 ≤ b < a (infinite integer set).

Abstract operators. As in the previous domains, we set ∪♯
b

def= ⊔♯
b and ∩♯

b
def= ⊓♯

b, and
the intersection ∩♯

b is exact while the join ∪♯
b is optimal, but not exact — for instance,

γb(3Z) ∪ γb(3Z + 1) cannot be exactly represented and is abstracted as Z.
Figure 4.14 presents the abstract arithmetic operators needed to evaluate expressions.

All operators except the division are optimal, but generally not exact. For the division,
we handle simple cases, such as divisions by 0, or by a singleton value that divides exactly
the first argument, and we revert to no information (1Z + 0) in other cases.

For tests, we can use the method described in Sect. 4.6 using the backward oper-
ators synthesized from the forward ones in Fig. 4.9. Note, however, that the formula←−≤ 0♯

b(X♯) def= X♯ ∩♯
b [−∞, 0]♯b gives the identity as [−∞, 0]♯b = 1Z + 0; hence, it is worth

using a domain-specific version of←−≤ 0♯
b(X♯) that returns ⊥♯

b when X♯ = 0Z + c with c > 0.
Although the domain has an infinite height, there is no infinite strictly increasing chain.

Indeed, the a component in aZ + b in any strictly increasing chain must strictly decrease,
and it is bounded by 1. We can thus use, as widening: ▽b

def= ⊔♯
b. The domain however

has infinite strictly decreasing chains, such as 2Z, 4Z, . . . , 2nZ, Hence, it is useful to
define a narrowing operator △b to stabilize decreasing sequences in finite time. We present

Version 2025-05-26 98

4.8. THE CONGRUENCE DOMAIN

c♯
b

def= 0Z + c

[c, c′]♯b
def=

{
0Z + c if c = c′

1Z + 0 otherwise

−♯
b(aZ + b) def= aZ + (−b)

(aZ + b) +♯
b (a′Z + b′) def= (a ∧ a′)Z + (b + b′)

(aZ + b)−♯
b (a′Z + b′) def= (a ∧ a′)Z + (b− b′)

(aZ + b)×♯
b (a′Z + b′) def= (aa′ ∧ ab′ ∧ a′b)Z + bb′

(aZ + b)/♯
b(a′Z + b′) def=

⊥♯
b if a′ = 0 and b′ = 0

(a/|b′|)Z + (b/b′) if a′ = 0, b′ ̸= 0, b′|a, and b′|b
1Z + 0 otherwise

Figure 4.14: Abstract arithmetic operators in the congruence domain.

here a simple choice:

(aZ + b) △b (a′Z + b′) def=
{

a′Z + b′ if a = 1
aZ + b otherwise

i.e., we only refine the left argument when it is the greatest value, 1Z + 0.

Example 4.11 (Congruence analysis). Consider the program:

X ← 0; Y ← 2;
while X < 40 do

X ← X + 2;
if X < 5 then Y ← Y + 18 endif ;
if X > 8 then Y ← Y − 30 endif

done

Note that, except when an abstract value represents a constant, any test of the form X < 40
or X > 8 is abstracted as the identity. Our static analysis will infer, as loop invariant,
X ∈ 2Z + 0, i.e., X is even, and Y ∈ 6Z + 2, where 6 is the gcd of 18 and 30 as, at any
loop iteration, Y may be incremented by 18 or decremented by 30. ♦

Rational congruences. The congruence domain can be extended to rationals, instead
of integers, as proposed by Granger [1997]. For this domain, I = Q, and we have the
following abstract values:

B♯ def= { (aZ + b) | a ∈ Q+, b ∈ Q } ∪ {⊥♯
b,⊤

♯
b }

i.e., we represent sets of the form { ak + b | k ∈ Z } where a and b can now be rationals
instead of only integers. Such sets include singletons as 0Z + b. We add a representation

Version 2025-05-26 99

CHAPTER 4. NON-RELATIONAL ABSTRACT DOMAINS

⊥♯
b for ∅ and ⊤♯

b for Q. Many arithmetic notions, such as the divides relation |, gcd, and
lcm extend naturally to rationals. For instance, gcd(a

b , c
d) def= gcd(ad,bc)

bd . Likewise, abstract
arithmetic operators are similar to the integer case. However, now that the domain has
both increasing and decreasing infinite chains, we need both a widening and a narrowing.

This domain has less applications than classic, integer congruences, so, we will not
detail its operators further and refer instead the reader to Granger [1997].

4.9 The Cartesian Abstraction

To conclude this presentation of classic non-relational domains, and before moving on to
relational domains, we return to the generic construction of the state domain from the
value domain from Def. 4.2 and justify the term “non relational”.

Consider setting B♯ def= P(I). We do not obtain an effective static analyzer, but we can
study, from a semantic point of view, the loss of precision due to the non-relational aspect
before value sets are further abstracted. Using the identity as γb and αb in Def. 4.2, we
get the following Galois connection:

γ(X♯) def=
{
∅ if X♯ = ⊥♯

{ ρ ∈ E | ∀V ∈ V: ρ(V) ∈ X♯(V) } otherwise

α(R) def=
{
⊥♯ if R = ∅
λV ∈ V. { ρ(V) | ρ ∈ R } otherwise

and:
(γ ◦ α)(R) = { ρ ∈ D | ∀V ∈ V:∃ρ′ ∈ R: ρ(V) = ρ′V } (4.16)

This function characterizes the loss of precision due to non-relationality, and is called the
Cartesian abstraction.

Example 4.12 (Cartesian abstraction). Consider the set of states in Z2: R
def= {(0, 0), (0,

2), (2, 0)}. Then, R′ = (γ ◦ α)(R) = {(0, 0), (0, 2), (2, 0), (2, 2)}, i.e., we added a spurious
point at (2, 2), because there exists a state where the first variable is 2 and a state where
the second variable is 2, notwithstanding the fact that there is no state in R where both
variables are 2 simultaneously.

Note that R can be expressed in logic form as X ∈ {0, 2} ∧ Y ∈ {0, 2} ∧X + Y ≤ 2.
To express R′ in logic, it is sufficient to remove any relation between X and Y , i.e., we
discard X + Y ≤ 2 to get: X ∈ {0, 2} ∧ Y ∈ {0, 2}. Hence the term non-relational. ♦

From a purely semantic point of view, disregarding algorithmic and representation
issues, we can characterize non-relational domains as the domains where all elements
representable in the abstract are left invariant by (4.16).

Version 2025-05-26 100

4.10. SUMMARY

4.10 Summary

This chapter introduced several numeric abstract domains obeying Def. 3.1, thus com-
pleting the design of an effective static analyzer by Abstract Interpretation started in the
previous chapter. We restricted ourselves to non-relational domains, which abstract the
set of possible values of each variable independently from the other variables.

The following table sums up the different domains we proposed, and their expressive-
ness:

signs 0, (≥0), (>0), (≤0), (<0), (̸=0) Sect. 4.2
constants c ∈ I Sect. 4.3
constant sets C ∈ Pfinite(I) Sect. 4.4
intervals [a, b] Sect. 4.5
congruences aZ + b Sect. 4.8

The data-structures and algorithms for these domains are largely independent from
the choice of domain and can be factored-out. Binary operators — ordering, meet, join,
widening — are defined point-wise; assignments are based on abstract expression evalu-
ation by structural induction; conditionals employ constraint-programming methods. We
advocated for the use of a functional array data-structure, which allows implementing
atomic operators that have a sub-linear cost with respect to the total number of variables.
We tried, as much as possible, to provide Galois connections and optimal value operators
— based, for instance, on interval arithmetic, or basic number theory for congruences —
but, keeping in mind that optimality does not compose, the assignments and conditions
and, ultimately, the result of the full analysis is seldom optimal.

The interval domain features infinite increasing and descending chains, which led us
to a lengthy discussion about the nature of fixpoints and how to approximate them in
finite time. We proposed several acceleration techniques based on widening and narrowing
that give good results in some practical cases, being understood that the problem of
optimal fixpoint approximation of general semantic functions in infinite-height domains is
undecidable anyway.

We can sum up the design of an abstract domain as the choice of a static approximation:
the set of properties representable in the abstract; and a choice of a dynamic approxima-
tion: a convergence acceleration technique. Even after the former is fixed, there is room for
improvement in the later — e.g., because we know that the program invariants at all points
are expressible in the domain, but the widening causes too much over-approximation to
find the expected inductive loop invariants, so that it must be refined.

4.11 Bibliographic Notes

The sign and constant domains are generally not expressive enough for program verifica-
tion; they are often presented as first examples of abstractions for pedagogical purpose,
as in [Cousot and Cousot, 1977]. Nevertheless, the constant domain also allows recasting,

Version 2025-05-26 101

CHAPTER 4. NON-RELATIONAL ABSTRACT DOMAINS

as Abstract Interpretation, constant propagation, an instance of data-flow analysis used
in program optimization and formalized by Kildall [1973] — other, non-numeric data-
flow analyses used in program optimization can also be seen as Abstract Interpretation
restricted to finite-height lattices.

The interval domain, on the other hand, is one of the most widely used domain in pro-
gram verification. It is based on interval arithmetic by Moore [1966], and it is introduced
as a complete abstract domain with widening early at the beginning of Abstract Interpre-
tation, by Cousot and Cousot [1976]. While we only focused on programs manipulating
prefect integers, rationals, and reals, intervals are also useful to analyze more realistic
numeric types. In particular, the monotonicity of floating-point rounding functions makes
it easy to use intervals to abstract floating-point computations, as recalled for instance by
Miné [2004]. The analysis of machine integers is made slightly more difficult by the wrap-
around of computations in case of overflows; this leads to alternate versions of intervals,
such as wrapped intervals by Gange et al. [2015], or modular intervals by Miné [2012].
The congruence domain is introduced by Granger [1989], and later adapted to rational
congruences by Granger [1997]. Other, less used non-relational domains, include algebraic
powers by Mastroeni [2004]. Non-relational domains are also used in non-numeric set-
tings; for instance, typing can be seen as a form of abstraction, as explained by Cousot
[1997], and classic monomorphic typing becomes an instance of non-relational Abstract
Interpretation.

The problem of computing fixpoint approximations in infinite-height domains, and
in particular the interval domain, has been widely studied. The iteration with widening
and narrowing originally introduced in Cousot and Cousot [1976] has been refined, and
we discussed several improvements. We refer the reader to the description of the Astrée
analyzer by Bertrane et al. [2010] for additional information on how the classic iteration
scheme can be made precise and efficient in practical analysis settings. New approaches
have also been advocated. Halbwachs and Henry [2012] proposed improvements based
on more aggressive decreasing sequences. Policy iteration has been proposed by Costan
et al. [2005] as an alternative to iteration with widening; this technique, based on game
theory, can compute the exact least fixpoint in the interval domain given some restrictions
on the equation system. The connection between widening and narrowing from Abstract
Interpretation and interpolation from logic is discussed by Cousot [2015], which leads to
novel iteration techniques.

Version 2025-05-26 102

Chapter 5

Relational Abstract Domains

While the previous chapter focused on non-relational numeric domains, we present here re-
lational domains, able to infer relationships between variables. More precisely, we focus on
domains inferring affine relationships. which are the most widely used relational domains.
On the one hand, a large portion of useful program invariants involve affine expressions,
and we will see several examples. On the other hand, the algorithms underlying affine
domains still have a reasonable complexity, compared to non-affine domains.

After some motivating examples, we present several affine domains that achieve differ-
ent trade-offs between cost and expressiveness: an affine equalities domain, an affine in-
equalities domain (also known as polyhedra domain), and restricted forms, sub-polyhedra,
which trade precision for efficiency.

5.1 Motivation

For many static analysis applications, inferring a bound information is sufficient (e.g.,
arithmetic overflow detection, optimization, etc.). Hence, the interval domain, presented
in details in the previous chapter, seems expressive enough for this task. However, the
interval domain is not guaranteed to find the tightest possible bounds, and it seldom
does in practice, except for the simplest programs. We show here a few examples where,
although our ultimate goal is to infer bounds, the interval domain is not precise enough,
and we have to resort to more expressive, more expensive abstract domains.

5.1.1 Relational Tests

One cause of precision loss is that the combination of optimal operators is not necessarily
optimal (Ex. 2.15). A common case is when we need, locally, a more expressive invariant,
as shown in the following example:

Example 5.1 (Relational test). Consider the following program, which computes in X

Version 2025-05-26 103

CHAPTER 5. RELATIONAL ABSTRACT DOMAINS

the minimum of X and Y , and then subtracts it from Y :

X ← [0, 10];
Y ← [0, 10];
if X ≥ Y then X ← Y endif ;
D ← Y −X;
assert D ≥ 0

As a consequence, Y −X is always positive, and there is no assertion failure. In the interval
domain, however, the test C♯J X ≥ Y K will be abstracted as the identity, as both X and
Y have the same initial bounds, [0, 10]. Hence, in Y − X, we get that X ∈ [0, 10] and
Y ∈ [0, 10], and so, D = Y −X ∈ [−10, 10]. The assertion D ≥ 0 is not proved correct,
although it is expressible in the interval domain.

To prove the assertion, it is necessary to deduce that, at the end of the then branch of
if X ≥ Y then X ← Y endif we have X = Y and, at the end of the implicit else branch,
we have X < Y so that, after joining the two branches, X ≤ Y holds. This requires, in
particular, a precise handling of C♯J¬(X ≥ Y) K and of S♯J X ← Y K. Then, it is necessary
to exploit the invariant X ≤ Y in the evaluation of Y − X to deduce that it is positive.
The polyhedra domain, that we will present in Sect. 5.3, is able to do this reasoning. In
this example, the shape of the test X ≥ Y and the assignment D ← Y −X alone are good
indicators that we need a relational domain. ♦

5.1.2 Relational Loop Invariants

Another, less obvious case where we need, locally, a more expressive domain than required
to express the invariant we seek is that of loops, as shown in the following example:

Example 5.2 (Relational loop invariant). Consider the following loop from I = 1 to 1000
that also increments X at each loop iteration:

I ← 1;
X ← 0;
while I ≤ 1000 do

I ← I + 1;
X ← X + 1

done;
assert X ≤ 1000

The interval analysis of the previous chapter, with widening and narrowing (Sect. 4.7.2),
is able to prove that I ∈ [1, 1001] is a loop invariant, and that I = 1001 after the loop.
However, it finds that X ∈ [0, +∞] at both program points, which is correct but imprecise.
In particular, neither the decreasing sequence with narrowing, nor the other advanced
iteration methods we presented in Sect. 4.7, are able to infer an upper bound for X. The
problem is that, as each variable is handled independently, the analysis is similar for X to
that of the following program slice: “X ← 0; while [0, 1] = 0 do X ← X +1 done” where,
indeed, X ∈ [0, +∞]. The reason we can find a precise answer for I and not X is that
there is a test, I ≤ 1000, explicitly bounding I, but no such test exists for X. The only

Version 2025-05-26 104

5.1. MOTIVATION

max(X, Y)
if X > Y then Y ← X endif ;
if Y < 0 then Y ← 0 endif

max(X, Y)
X ′ ← X;
Y ′ ← Y ;
if X ′ > Y ′ then Y ′ ← X ′ endif ;
if Y ′ < 0 then Y ′ ← 0 endif

(a) (b)

Figure 5.1: A function computing the maximum of X, Y and 0 into Y : (a) in original
form and (b) instrumented for modular analysis.

way for the interval domain to find a precise bound for X would be to actually unroll the
loop 1000 times, effectively executing the program in the concrete, which is not an option,
especially if 1000 is replaced with a larger constant.

Relational domains can help by inferring a relational loop invariant: I = X + 1 ∧ I ∈
[1, 1001]. This invariant is inductive, hence, it can be found by iteration with widening. As
we will see in Sect. 5.3, the polyhedra domain can infer it in very few iterations, without any
unrolling. The number of abstract iterations is small, and independent from the number of
concrete iterations, 1000. This invariant implies X ∈ [0, 1000] at the loop head and, after
the loop, X = 1000. ♦

5.1.3 Modular Analyses

A last application of relational domains is the modular analysis of programs. In a modular
analysis, we would like to analyze separately each program part and combine the analysis
results to get the analysis of the full program. In particular, we would analyze a function
only once, and deduce a function summary that can be used at each call context, without
having to reanalyze fully the function body each time, hence improving the scalability of
the analysis.

Example 5.3 (Modular analysis). Consider the simple function in Fig. 5.1.(a). It takes
as arguments X and Y , and stores into Y the maximum of X, Y , 0. A summary for this
function is an input-output relation, able to express the changes made by the function in
a symbolic way, without information on the input.

To infer such a summary, we construct an instrumented version of the function, as
shown in Fig. 5.1.(b): we add primed versions of each variable, X ′ and Y ′, initialized to X
and Y , and modify the code to update X ′ and Y ′ instead of X and Y . The invariant at the
end of the function provides information about both the memory state at the beginning of
the function and that at the end of the function. Using the polyhedra domain of Sect. 5.3,
we get X = X ′ ∧ Y ′ ≥ Y ∧ Y ′ ≥ X ∧ Y ′ ≥ 0, stating that X is not changed, while Y is
changed to become greater than both X, the initial value of Y , and 0.

While a non-relational domain can be used for the analysis, this will not be of great
interest as there is no information on X and Y to propagate; we will only be able to deduce
that Y ′ ≥ 0. On the other hand, a relational domain can infer — without hypotheses on X

Version 2025-05-26 105

CHAPTER 5. RELATIONAL ABSTRACT DOMAINS

and Y — relationships between X, Y and X ′, Y ′. It will thus output a summary reusable
in all contexts. ♦

5.2 The Affine Equalities Domain (Karr’s Domain)
The first relational domain we propose focuses on inferring affine equalities. This domain
was introduced by Karr [1976].

More precisely, the invariants we infer have the form:
m∧

j=1

|V|∑
i=1

αijVi = βj , αij , βj ∈ I

i.e., a conjunction of affine equalities. The number m of equalities, as well as the exact
value of the coefficients αij and βj , is inferred by the analysis. Another, more geometric
view, is to consider that abstract elements are affine subsets:

D♯ ≃ { affine subspaces of V→ I }

We use an equivalence ≃ here because the actual machine representation will use matrices,
as detailed in the next section.

The domain and its operators are based on basic affine algebra and affine spaces.
We assume some familiarity with these theories and only recall the relevant results useful
here. Further information can be found in textbooks, such as Lang [1997]. A first important
remark is that we use algorithms specific to fields, which do not work on integers. Hence,
we assume here that I ∈ {Q, R}. Secondly, as mentioned in Chap. 2, we can assimilate
memory states in E def= V → I to points or vectors in a vector space. More precisely we
define: P

def= I|V|.

5.2.1 Abstract Representation

Constraint representation. An affine subspace is represented either by ⊥♯, to denote
the empty set, or by a pair ⟨M, C⃗ ⟩ where:

• M ∈ Im×n is a m× n matrix, where n
def= |V| and m ≤ n;

• C⃗ ∈ Im is a column vector with m rows.

In this representation, each row of M and the corresponding row of C⃗ represents an affine
equality constraint, while each column of M corresponds to a different variable. Moreover,
a set of constraints stands for the conjunction of these constraints. We call ⟨M, C⃗ ⟩ a
constraint representation. We have the following concretization function:

γ(⊥♯) def= ∅
γ(⟨M, C⃗ ⟩) def= { V⃗ ∈ P |M× V⃗ = C⃗ }

(5.1)

There are often several ways to represent the same affine subspace as a matrix-vector pair.
Hence, we impose the following additional condition:

Version 2025-05-26 106

5.2. THE AFFINE EQUALITIES DOMAIN (KARR’S DOMAIN)

Definition 5.1 (Row-echelon form). M is in row-echelon form when ∀i ≤ m: ∃ki: Miki
= 1

and ∀c < ki: Mic = 0 ∧ ∀t ̸= i: Mtki
= 0. Moreover ∀i < i′: ki < ki′. ■

In row-echelon form, every row starts with some 0, then features a 1, followed by
arbitrary coefficients. The column with this 1 is called the variable in leading position. If a
variable appears in leading position in some row, by Def. 5.1, it cannot occur in any other
row, i.e., the coefficient of the variable is 0 in the other equations. In particular, a variable
can be leading only in one row. Note, however, that it is possible for a variable not to be
leading in any row, and thus appear in zero, one, or several rows, with coefficients different
from 1. The name echelon comes from the fact that rows are organized by increasing leading
variable column.

Example 5.4 (Row-echelon form). The following matrix:
1 0 0 5 0
0 1 0 6 0
0 0 1 7 0
0 0 0 0 1

corresponds to the equation system V0 +5V3 = c0∧V1 +6V3 = c1∧V2 +7V3 = c2∧V4 = c3,
given V

def= {V0, V1, V2, V3, V4} and the vector of constant coefficients C⃗
def= [c0, c1, c2, c3].

While V0, V1, and V2 appear in leading position, this is not the case for V3, which can thus
appear in several equations, with coefficients different from 1. ♦

The row-echelon form has many useful properties:

• every non-empty affine subspace can be represented in row-echelon form; the full
space P is represented as the empty matrix (no row implies no constraint); the
empty set cannot be represented, hence we add ⊥♯;

• the representation is unique; hence, row-echelon forms enriched with ⊥♯ constitute
a normal form for affine subspaces;

• a row-echelon form has at most |V| rows; hence, we can bound the size of our abstract
representation by |V|2.

We thus state:

D♯ def= {⊥♯} ∪ { ⟨M, C⃗ ⟩ | M ∈ Im×n, C⃗ ∈ Im, 0 ≤ m ≤ n = |V|,
M is in row-echelon form }

Normalization. Sometimes, as a consequence of applying some operator, we get a pair
⟨M, C⃗ ⟩ which is not in row-echelon form. However, it can be easily normalized into row-
echelon form using Gaussian elimination. We do not detail here this well-known algorithm.
Suffice to say that it combines rows (replacing rows with affine combination of rows,
thus preserving the affine subspace represented) to put as many variables as possible in
leading position. The complexity of this algorithm is cubic, in O(|V|3). It is the most costly
algorithm used in the domain, and the bottleneck for its complexity.

Version 2025-05-26 107

CHAPTER 5. RELATIONAL ABSTRACT DOMAINS

Generator representation. There exists an alternate way to represent affine sub-
spaces, using a point O⃗ ∈ P, called the origin, and a set of vectors G def= {G⃗1, . . . , G⃗m},
called the basis. Then, the pair [G, O⃗], put in brackets to avoid ambiguity with the con-
straint representation ⟨M, C⃗ ⟩ seen above, and called the generator representation, repre-
sents the affine subspace obtained by linear combinations of the vectors and the origin:

γ([G, O⃗]) def= { O⃗ + G× λ⃗ | λ ∈ Im } (5.2)

Without loss of generality, we can assume the vectors in G to be linearly independent,
which implies that m ≤ |V|.

It is possible to switch from one representation to the other, by solving equations. For
instance, to convert a generator representation [G, O⃗] to constraints, we can see (5.2) as an
equation system: ∃λ⃗: V⃗ = O⃗ +G× λ⃗ and solve it in terms of λ⃗ using Gaussian elimination,
keeping only the equations where no λ appears.

In his original work, Karr [1976] advocated for the use of the constraint representation
only, arguing that, in practice, program invariants are likely to require only few constraints
but many generators to be represented. Hence, we will not discuss generators further, until
Sect. 5.3 at least.

5.2.2 Lattice Structure

Intersection. Affine subspaces form a lattice for inclusion. Affine subspaces are natu-
rally closed by intersection. As the constraint representation is a conjunction of constraints,
it is easy to construct an intersection by simply putting all the constraints from both ar-
guments together, and applying a normalization step afterwards (which we leave implicit
in our formulas):

⟨M1, C⃗1 ⟩ ⊓♯ ⟨M2, C⃗2 ⟩ def=
〈[

M1

M2

] [
C⃗1

C⃗2

]〉

Partial order. Inclusion can be tested by using the classic set identity A ⊆ B ⇐⇒
A ∩B = A and recalling that, as we have a normal form, testing whether ⟨M1, C⃗1 ⟩ and
⟨M2, C⃗2 ⟩ represent the same set amounts to comparing the matrices and the vectors
element-wise. Hence:

⟨M1, C⃗1 ⟩ ⊑♯ ⟨M2, C⃗2 ⟩ def⇐⇒ ⟨M1, C⃗1 ⟩ ⊓♯ ⟨M2, C⃗2 ⟩ = ⟨M1, C⃗1 ⟩

Join. Constructing the join, i.e., the smallest affine space that contains two affine spaces,
is a little more involved. Karr [1976] introduces a rather complex but efficient algorithm
based on iteratively relaxing both argument matrices, column by column, until they are
equal. We propose here a simpler, more algebraic take on union, based on the work of
Benoy et al. [2005], which we will mention again when discussing the more complex case
of polyhedra (Sect. 5.3) on which this technique was originally developed.

A point V⃗ ∈ P is in the affine join if it is an affine combination of a point V⃗ 1 ∈
γ(⟨M1, C⃗1 ⟩) and a point V⃗ 2 ∈ γ(⟨M2, C⃗2 ⟩), i.e., ∃λ1, λ2 ∈ R: V⃗ = λ1V⃗ 1 + λ2V⃗ 2 and

Version 2025-05-26 108

5.2. THE AFFINE EQUALITIES DOMAIN (KARR’S DOMAIN)

λ1 + λ2 = 1. Hence, we have the following equation system expressing that V⃗ is in the
join:

M1 × V⃗ 1 = C⃗1

M2 × V⃗ 2 = C⃗2

V⃗ = λ1V⃗ 1 + λ2V⃗ 2

λ1 + λ2 = 1

which, once λ1, λ2, V⃗ 1, and V⃗ 2 are eliminated, gives a constraint system expressing the
join. Note, however that this system is not linear, due to the products λ1V⃗ 1 and λ2V⃗ 2,
where several variables appear. We can solve this problem with a change of variables. Let
us write W⃗ 1 def= λ1V⃗ 1 and W⃗ 2 def= λ2V⃗ 2. Then, by multiplying the first equation by λ1

and the second equation by λ2, we can get rid of V⃗ 1 and V⃗ 2, and replace them with W⃗ 1

and W⃗ 2, to get:
M1 × W⃗ 1 = λ1C⃗1

M2 × W⃗ 2 = λ2C⃗2

V⃗ = W⃗ 1 + W⃗ 2

λ1 + λ2 = 1

(5.3)

We can now eliminate W⃗ 1, W⃗ 2, λ1, and λ2 from this system using Gaussian elimination, as
it is linear in these variables. We then get an equation system in V⃗ expressing that V⃗ is in
the join of ⟨M1, C⃗1 ⟩ and ⟨M2, C⃗2 ⟩, i.e., we have constructed a constraint representation
of the join ⊔♯.

Example 5.5 (Join of affine subspaces). Consider the simple case of joining two points:

P⃗ 1 def= (1, 10) and P⃗ 2 def= (2, 12), represented as
〈[

1 0
0 1

]
,

[
1
10

]〉
and

〈[
1 0
0 1

]
,

[
2
12

]〉
.

We have to eliminate all W and λ in the following system, instantiated from (5.3):

W 1
1 = λ1

W 1
2 = 10λ1

W 2
1 = 2λ2

W 2
2 = 12λ2

V1 = W 1
1 + W 2

1
V2 = W 1

2 + W 2
2

λ1 + λ2 = 1

This gives 2V1 + 8 = V2, which is indeed the smallest affine subspace containing both P⃗ 1

and P⃗ 2.
Similar examples occur frequently. For instance, P⃗ 1 and P⃗ 2 may be memory states

constructed after 0 and 1 iteration of a loop, and the join is performed at the loop head as
part of computing a loop invariant accumulating all iterates. This example illustrates how
non-trivial relational invariants (here, an equality) are inferred from non-relational ones
(here, two constant points): through the join operation. ♦

Version 2025-05-26 109

CHAPTER 5. RELATIONAL ABSTRACT DOMAINS

Galois connection. We can use the join ⊔♯ to get the smallest affine subspace α(S)
that contains a given set of points S:

α(S) def= ⊔♯ { ⟨ I, P⃗ ⟩ | P⃗ ∈ S }

where I is the identity matrix of size |V|, so that ⟨ I, P⃗ ⟩ represents the singleton {P⃗}.
Note that α(S) is well-defined, even if S is infinite. Indeed, we observe that X♯ ⊔♯ Y ♯

either equals X♯, or generates an affine subspace of strictly greater dimension. As the
dimension is bounded by |V|, the process of adding new points always terminates. Hence,
we have a Galois connection (P(P),⊆) −−−→←−−−α

γ
(D♯,⊑♯).

5.2.3 Abstract Operators

As for previous domains, we set ∪♯
b

def= ⊔♯
b, which is optimal, and ∩♯

b
def= ⊓♯

b, which is exact.

Conditions. For abstract tests C♯J c K, we handle precisely only the affine case, i.e.:∑
j αjVj = β, which is easy as such a test can be exactly represented in our domain:

C♯J
∑

j αjVj = β K⟨M, C⃗ ⟩ def=
〈[

M
α1 · · ·αn

]
,

[
C⃗
β

]〉
hence, this operator is exact. In all other cases, we revert to the sound, but coarse, identity:
C♯J c KX♯ def= X♯.

Assignments. Likewise, we handle exactly only affine assignments. For the other cases,
we revert to the non-deterministic assignment S♯J Vj ← [−∞, +∞] K, which is always a
sound abstraction of S♯J Vj ← e K, for any e.

The non-deterministic assignment Vj ← [−∞, +∞] can be modeled by removing all
the constraints involving Vj . If Vj appears in leading position, there is only one constraint
featuring Vj , and we remove it to obtain the exact abstraction of the non-deterministic
assignment. If Vj appears in non-leading position, it may appear in several constraints.
Removing all these constraints would lead to a sound approximation, but a coarse one: we
know that when assigning a variable, we gain only one degree of freedom, i.e., the resulting
equation system should have only one less equation than the original one. Our solution
is to use one equation where Vj appears, and combine it with other equations to remove
all other occurrences of Vj ; then, this equation is the only remaining one with Vj , and it
is removed. Additionally, choosing to use the latest row where Vj appears to eliminate all
others and be removed ensures that the system stays in row-echelon form. Geometrically,
this operation is a projection — projecting out Vj . In logic, this operation is a quantifier
elimination — removing the existential quantifier in ∃Vj : M× V⃗ = C⃗.

Example 5.6 (Non-deterministic assignment). Consider modeling V2 ← [−∞, +∞] in
the following equation system: {

V0 + V2 = 10
V1 + V2 = 7

Version 2025-05-26 110

5.2. THE AFFINE EQUALITIES DOMAIN (KARR’S DOMAIN)

We first subtract the second equation from the first one, and then keep only the first equa-
tion. We get: V0 − V1 = 3. We have fully eliminated V2 while still keeping one equation.

♦

Handling affine assignments is better done backwards. The reader familiar with Hoare
logic [Hoare, 1969] will recall the rule for assignment: {P [V/e]}V ← e{P}. It states that,
if we have a program invariant P valid after the assignment, then we can infer a program
invariant P [V/e] valid before the assignment (it is actually the weakest precondition, as
shown by Dijkstra [1975]) by substitution. Indeed, if some property is true of V after the
assignment, it is true of e before. The constraint representation of our abstract elements is
very similar to a logical formula, and so, the same substitution principle applies. However,
unlike Hoare and Dijsktra’s logic, we operate forward as we must deduce an invariant after
the assignment from an invariant before the assignment. To solve this problem, we have
to distinguish two cases:

• In the assignment Vj ←
∑

i αiVi+β, if αj ̸= 0, the assignment is said to be invertible:
we can express the current value of Vj as a function of its value after the assignment:
e

def= (Vj −
∑

i ̸=j αiVi − β)/αj . The result of the assignment is then obtained by
substituting, in the argument, every occurrence of Vj with e. Naturally, the system
remains an affine system, and the abstract operator is exact.

• In case αj = 0, inverting the assignment is not possible: the assignment is said
to be non-invertible. More precisely, a non-invertible assignment is one where it is
impossible to express the value of the variable before the assignment as a func-
tion of the value of variables after the assignment: the value is irremediably lost.
We know, however, that the value of Vj in the output is defined by the affine
constraint c

def= (Vj −
∑

i Viαi − β = 0). Hence, the assignment is handled as:
C♯J c K ◦ S♯J Vj ← [−∞, +∞] K. This is also an exact operator.

Example 5.7 (Affine assignments). Consider the abstract element represented, in logical
rather than matrix form for compactness, as X + Z = 1 ∧ Y + 2Z = 0.

The assignment Z ← Z +1, which is invertible, is handled by substituting Z with Z−1,
and we get X + Z = 2 ∧ Y + 2Z = 2.

The assignment X ← Y , which is not invertible, is handled by forgetting X + Z = 1
where X occurs, and adding the constraint X−Y = 0. Hence, we get X−Y = 0∧Y +2Z = 0
which gives, after putting the result into row-echelon form: X + 2Z = 0∧Y + 2Z = 0. ♦

Widening. We have already mentioned that the affine equalities domain has no infinite
chain, as any two distinct elements in the chain must also have distinct dimensions, i.e.,
distinct numbers of rows in the row-echelon normal form. As the dimension is bounded
in [0, |V|], the chain is finite. Thus, we can use as widening the join, ▽ def= ⊔♯, to enforce
the monotonicity of abstract iterates without requiring extra steps to enforce convergence.
Likewise, to perform decreasing iterations, we can simply use the intersection as narrowing
△

def= ⊓♯.

Version 2025-05-26 111

CHAPTER 5. RELATIONAL ABSTRACT DOMAINS

5.2.4 Affine Equalities Analysis Example

Example 5.8 (Affine analysis). Consider again Ex. 5.2, which motivated the introduction
of relational domains: ℓ1 I ← 1; X ← 0; ℓ2 while ℓ3 I ≤ 1000 do ℓ4 I ← I + 1; X ←
X+1 ℓ5 done ℓ6 . We analyze this program using the equational-style analysis with widening
(implemented as ⊔♯) at loop head (program point 3). The most relevant iterates are as
follows:

ℓ X ♯0
ℓ X ♯4

ℓ X ♯5
ℓ X ♯8

ℓ

1 ⊤ ⊤ ⊤ ⊤
2 ⊥ I = 1, X = 0 I = 1, X = 0 I = 1, X = 0
3 ▽ ⊥ I = 1, X = 0 I = X + 1 I = X + 1
4 ⊥ I = 1, X = 0 I = 1, X = 0 I = X + 1
5 ⊥ I = 2, X = 1 I = 2, X = 1 I = X + 1
6 ⊥ I = 1, X = 0 I = 1, X = 0 I = X + 1

• At iteration 4, the effect of the assignments I ← 1 and X ← 0 have been propagated
over the first loop iteration. Note that both C♯J I ≤ 1000 K and C♯J¬(I ≤ 1000) K are
handled as the identity.

• At iteration 5, the join between I = 1 ∧ X = 0 from X ♯4
2 and I = 2 ∧ X = 1 from

X ♯4
5 gives the relation I = X + 1 for program point 3.

• This relation is propagated throughout the following iterations until, at iteration 8,
the invariants are stable.

At the end of the analysis, we find as loop invariant the relation I = X + 1. Note that
this is the best loop invariant expressible in the domain, but we miss the bounds on I that
would require expressing inequalities. At the end of the program, as C♯J¬(I ≤ 1000) K is the
identity, we also find I = X +1. The most precise invariant would be I = 1001∧X = 1000,
which is expressible in the affine domain but, due to approximations in the loop invariants,
cannot be found by the domain. ♦

5.2.5 Handling Integers

Up to now, we have assumed I ∈ {Q, R}: variables take real or rational values, as do the
matrix and vector coefficients in the abstract representation. Assume now that I = Z,
i.e., variables take integer values. We cannot use integers as coefficients in the abstract
representation as it would lead to unsound algorithms. For instance, it is not possible to
put an integer system into row-echelon form as the integer division truncates its result:
2X + Y = 19 would lead, by normalization of the leading coefficient, to X = 9, which is
not equivalent to 2X + Y = 19.

Integer concretization. To handle integers, our solution is to keep an abstract rep-
resentation in Q, but state that it does not represent the affine subspace, but rather the

Version 2025-05-26 112

5.2. THE AFFINE EQUALITIES DOMAIN (KARR’S DOMAIN)

integer-valued memory states in this affine subspace. We change γ from (5.1) into γZ as
follows:

γZ(X♯) def= γ(X♯) ∩ Z|V| (5.4)
By changing the definition of γ, we also change the notion of soundness, optimality, and
exactness of the abstract operators. We can check that the operators we proposed are still
sound with respect to γZ. They are not exact nor optimal as often as in the rational case,
though, as shown in the following example:

Example 5.9 (Non-exactness of the integer semantics). Consider the abstract state
X♯ def= ⟨ [2 −1], [0] ⟩ representing the equation 2V0−V1 = 0, and the assignment V0 ← 0. As-
suming real or rational variable values, in the concrete, we get SJ V0 ← 0 Kγ(X♯) = {0}× I:
V0 is null and V1 can have any value. In the abstract, we get γ(S♯J V0 ← 0 KX♯) =
γ(⟨ [1 0], [0] ⟩) = {0} × I, which represents exactly the concrete result.

Assume now an integer semantics. We get in the concrete SJ V0 ← 0 KγZ(X♯) = {0} ×
2Z, i.e., V1 is necessarily even. In the abstract γZ(S♯J V0 ← 0 KX♯) = γZ(⟨ [1 0], [0] ⟩) =
{0}×Z, which is strictly larger. This is expected as our abstract domain cannot represent
the information that V1 is even.

We can construct similar examples where the result is optimal in Q and R but not
optimal in Z. ♦

Hence, we can use the affine domain directly to soundly analyze integer programs,
paying only a small price in precision. Intuitively, the analysis is not able to exploit the
“integerness” of our numbers. Interestingly, we see here rationals and reals as abstractions
of integers — not the converse — as they forget this “integerness” property.

Linear congruence equality domain. Another possible adaptation of affine equali-
ties to the analysis of integer programs is to embrace the additional expressive power of
integers: we enrich the domain to represent not only affine equalities but also congruence
information. Granger [1991] proposed such an extension: the domain of linear congruence
equalities, able to represent invariants of the form:

∧
j

|V |∑
i=1

αijVi ≡ βj [kj], αij , βj , kj ∈ Z

Such invariants are closed under more operations than the affine equalities domain and,
as a consequence, it is possible to define exact abstractions for many more operators,
such as non-invertible assignments, which limits the loss of precision. The domain is based
on an extended version of Euclid’s algorithm, instead of Gaussian elimination, in order
to combine rows and eliminate variables. We will not detail here the, more complex,
algorithms, and refer instead the read to [Granger, 1991]. Suffice to say that the domain
is more expensive due to the more involved algorithms.

In practice, when it is necessary to analyze integer programs, it is far more convenient
to opt for the first, ad-hoc and approximate solution: use rational-valued affine equalities
to approximate sets of integer points.

Version 2025-05-26 113

CHAPTER 5. RELATIONAL ABSTRACT DOMAINS

5.3 The Affine Inequalities Domain (Polyhedra Domain)

The polyhedra domain has been introduced by Cousot and Halbwachs [1978] in order to
infer affine inequalities among variables. It combines the ability to represent bounds, which
was already the case for the interval domain we presented in Sect. 4.5, with the ability to
infer relations. More precisely, the polyhedra domain infers invariants of the form:

∧
j

|V|∑
i=1

αijVi ≥ βj , αij , βj ∈ I (5.5)

Note that this domain subsumes both intervals and affine equalities, being strictly more
expressive than both. While the interval domain is one of the most used non-relational
abstract domain, the polyhedra domain is one of the most widespread relational domain.

All the properties and algorithms of this domain are based on the theory of convex
polyhedra and linear programming. We will use advanced results without proof, and refer
the reader to classic textbooks on the subject, such as [Schrijver, 1986], for more informa-
tion on the underlying theory.

Similarly to linear algebra, we must assume we work in a field, i.e., we assume I ∈ {Q, R}
— although, as we will see, integer programs can be analyzed with rational polyhedra,
albeit losing precision guarantees.

Equation 5.5 represents, in general, a convex, topologically closed polyhedron. Note
that the polyhedron can be bounded (i.e., a polytope), but also unbounded (such as
X ≥ 0):

D♯ ≃ { closed convex polyhedra of P }

where we recall that P
def= I|V|.

5.3.1 Dual Representations

A key result of polyhedra theory, the Weyl-Minkowski Theorem, states that polyhedra
have dual representations: one using constraints, and one using generators. The classic
presentation and implementation of the polyhedra domain uses both representations, as
most operators have one preferred representation on which they are much easier to compute
than on the other. Which representation is easier, however, varies from one operator to
the other. Maintaining and making use of both representations simultaneously results in
the double description method for polyhedra.

Constraint representation. A first, straightforward representation is in term of affine
inequality constraints, which can be written in matrix form: a pair ⟨M, C⃗ ⟩ of a matrix
M ∈ Im×n and a vector C⃗ ∈ Im, where n

def= |V| is the number of variables and m is the
number of constraints. Such a pair denotes the following set:

γ(⟨M, C⃗ ⟩) def= { V⃗ ∈ P |M× V⃗ ≥ C⃗ } (5.6)

Version 2025-05-26 114

5.3. THE AFFINE INEQUALITIES DOMAIN (POLYHEDRA DOMAIN)

P1

P2

P3

P4

P5

P1

P2

P3

R1

R2

Figure 5.2: Generator representation for bounded polyhedra (left) and unbounded poly-
hedra (right).

where, similarly to affine equalities, each row of M and the associated element of C⃗ cor-
respond to a constraint, and each column of M represents a variable.

When more convenient, though, we may use a constraint set notation, {
∑

i αijVi ≥
βj | j ∈ [1, m] }, or a logical notation,

∧m
j=1

∑
i αijVi ≥ βj , which are equivalent to the

matrix notation. Using the dot product notation, we can alternative write these constraints
as { α⃗j · V⃗ ≥ βj | j ∈ [1, m] } and

∧m
j=1 α⃗j · V⃗ ≥ βj .

Generator representation. The second representation is based on so-called generators,
that is, vectors representing either vertices or rays. A bounded polyhedron can be seen as
the convex hull of a finite set of vertices: there is a set P = {P⃗1, . . . , P⃗p} ⊆ P of vertices
such that every point in the polyhedron is an affine combination of P. To be able to
represent an unbounded polyhedron, it is necessary to consider, additionally, rays, that is,
a finite set of directions R = {R⃗1, . . . , R⃗r} ⊆ P that can be followed at any length. More
precisely, given a pair [P, R], put in brackets to avoid any ambiguity with the constraint
representation ⟨M, C⃗ ⟩, we assign the following meaning:

γ([P, R]) def=

 p∑

j=1
αjP⃗j

 +

 r∑
j=1

βjR⃗j

 | ∀j: αj , βj ≥ 0,

p∑
j=1

αj = 1

 (5.7)

Figure 5.2 gives two examples of polyhedra defined by generators. On the left, a
bounded polyhedron with generators [{P⃗1, . . . , P⃗5}, ∅], and an example affine combina-
tion, in red, of these generators. On the right, an unbounded polyhedron with generators
[{P⃗1, P⃗2, P⃗3}, {R⃗1, R⃗2}]: a polyhedron point, in red, is an affine combination of {P⃗1, P⃗2, P⃗3},
translated by some positive factor of either or both rays in {R⃗1, R⃗2}.

Redundancy. Constraint and generator representations are not unique. Figure 5.3 gives
three syntactically different representations for the same polyhedron, the point (0, 0), in
logical form. Note that Fig. 5.3.(a) contains four constraints, one of which, y ≥ −5,
is clearly useless as we already know that y ≥ 0 from y + x ≥ 0 and y − x ≥ 0. More
generally, a redundant constraint is a constraint that can be removed without changing the
concretization. A minimal representation, as presented in Fig. 5.3.(b), is a representation
where no constraint can be removed without changing the concretization.

Version 2025-05-26 115

CHAPTER 5. RELATIONAL ABSTRACT DOMAINS

(a) (b) (c)

Figure 5.3: Three constraint representations for a single point (0, 0): (a) y+x ≥ 0∧y−x ≥
0 ∧ y ≤ 0 ∧ y ≥ −5; (b) y + x ≥ 0 ∧ y − x ≥ 0 ∧ y ≤ 0; (c) x ≤ 0 ∧ x ≥ 0 ∧ y ≤ 0 ∧ y ≥ 0

Minimal representations are desirable as they reduce the memory footprint. Minimal
representations are not, however, normal forms, which will make testing for equality more
involved than for affine equalities. In fact, there can exist polyhedra for which the different
minimal representations do not even feature the same number of constraints. This is
exemplified by Fig. 5.3.(c) which, as Fig. 5.3.(b), is a minimal representation for (0, 0),
but has more constraints.

Naturally, the notion of redundant and minimal representations carries to generator
representations as well, and we can have spurious, useless vertices and rays.

Empty polyhedron. There is one generator representation of the empty set, with no
generator [∅, ∅], and infinitely many constraint representations for the empty set. As for
intervals, it is easier to use a separate element ⊥♯ to represent the empty set. In the follow-
ing, when defining the various operators, we always assume that the arguments are not ⊥♯.
Their generalisation to ⊥♯ is straightforward; most operators are strict (F ♯(⊥♯) def= ⊥♯),
with the exception of join ∪♯ and widening ▽ where ⊥♯ is a neutral element.

Absence of Galois connection. Unlike the affine equalities domain, there is no upper
bound on the size of polyhedra representations, even minimal ones: we can imagine poly-
hedra with as many constraints as we want. A classic example is the sequence of regular
polygons tangent to a disc D

def= { (x, y) | x2 + y2 ≤ 1 }: we can construct a polygon with
as many (non-redundant) constraints as we wish. This construction also illustrates the
fact that there is no abstraction function α, and so, no Galois connection for polyhedra
as, for instance, D has no best abstraction as a polyhedron.

Duality. The constraint and generator representations are not independent; they are
linked by a useful notion of duality. We only provide some intuition here as the precise
development can be technical [Schrijver, 1986, LeVerge, 1992].

Duality is best illustrated on the restricted case of polyhedra cones. A cone is a poly-
hedron that is defined only by linear constraints, i.e., C⃗ = 0⃗, and we have γ(M) def= { V⃗ ∈
P | M × V⃗ ≥ 0⃗ }. The generator representation of a cone contains only a set of rays:
γ(R) def= {

∑r
j=1 βjR⃗j | ∀j: βj ≥ 0 }, with an implicit vertex 0⃗ at the origin. Linear con-

straints and rays can be seen uniformly as vectors in P. Then, given the constraints of a
cone C, interpreting them as generators gives the dual cone C∗. More precisely, the cone

Version 2025-05-26 116

5.3. THE AFFINE INEQUALITIES DOMAIN (POLYHEDRA DOMAIN)

dual C∗ of a cone C is defined as: C∗ def= { x⃗ ∈ P | ∀c⃗ ∈ C: c⃗ · x⃗ ≥ 0 }. A classic result
states that C∗∗ = C, hence the generators of C are also the constraints of C∗. This result
extends to arbitrary (possibly non-conic) polyhedra, following an encoding of polyhedra
into cones as described, for instance, by LeVerge [1992]. In the polyhedra domain, the
main use of duality is to justify that, when considering the problem of converting from
one representation to the other, we only need to consider the case of converting from con-
straints to generators. Indeed, by duality, applying the very same algorithm on a generator
representation gives back a constraint representation.

Beyond representation, duality extends to operators as well: given an operation on a
constraint representation, it can be useful to study the effect of the very same operation on
a generator representation. For instance, we will see that, while joining constraints models
the intersection, joining generators models the convex hull, hence, intersection and convex
hull can be thought as dual operations.

5.3.2 Representation Conversion: Chernikova’s Algorithm

As we will see, given the right representation, most operators are extremely simple and
efficient. The best representation varies from one operator to the other, so, it is important
to have a way to convert from one representation to the other. This conversion operation is
complex and expensive: all the algorithmic complexity of the polyhedra domain is crystal-
lized in this operation. The standard algorithm used in polyhedra libraries is due originally
to Chernikova [1968] and significantly improved by LeVerge [1992]. We only illustrate its
principles here, by presenting a simplified version.

Given a constraint representation ⟨M, C⃗ ⟩, the algorithm constructs an equivalent
generator representation [P, R] incrementally, by starting from a generator representation
of the whole space, and adding the constraints one by one. More precisely, at step 0, the
generator representation for the whole space is simply:{

P0 = { 0⃗ } (origin)
R0 = { v⃗i, −v⃗i | 1 ≤ i ≤ n } (axes)

where v⃗i is the basis vector where all the components equal 0, except at position i where it
equals 1. Then, step k constructs [Pk, Rk] from [Pk−1, Rk−1] by adding the k−th constraint
in ⟨M, C⃗ ⟩, which we denote as M⃗k · V⃗ ≥ Ck. Adding this constraint consists in keeping
the generators from [Pk−1, Rk−1] that satisfy the constraint, removing those that do not,
and creating new generators by combining them so that they saturate the constraint, i.e.,
lie on or are parallel to it. More precisely:

• If P⃗ ∈ Pk−1 s.t. M⃗k · P⃗ ≥ Ck, keep P⃗ in Pk (P⃗ satisfies the constraint).
If M⃗k · P⃗ < Ck, discard it.

• If R⃗ ∈ Rk−1 s.t. M⃗k · R⃗ ≥ 0, keep R⃗ in Rk (R⃗ satisfies the constraint).
If M⃗k · R⃗ < 0, discard it.
Indeed, a ray satisfies a constraint if, given any point in the polyhedron, we stay in
the polyhedron by following the ray.

Version 2025-05-26 117

CHAPTER 5. RELATIONAL ABSTRACT DOMAINS

O

P

Q

P

R

S

R

O

(a) (b)

Figure 5.4: Combining two generators to build a new generator O⃗ in Chernikova’s algo-
rithm: (a) combining two vertices, and (b) combining two rays.

• For P⃗ , Q⃗ ∈ Pk−1 s.t. M⃗k · P⃗ > Ck and M⃗k · Q⃗ < Ck, add to Pk:

O⃗
def= (Ck − M⃗k · Q⃗)P⃗ − (Ck − M⃗k · P⃗)Q⃗

M⃗k · P⃗ − M⃗k · Q⃗

(P⃗ satisfies the constraint strictly and Q⃗ does not)
which corresponds to the point at the intersection of the segment [P⃗ , Q⃗] and the
hyper-plane supporting the constraint. This is illustrated in Fig. 5.4.(a).

• For R⃗, S⃗ ∈ Rk−1 s.t. M⃗k · R⃗ > 0 and M⃗k · S⃗ < 0, add to Rk:

O⃗
def= (M⃗k · R⃗)S⃗ − (M⃗k · S⃗)R⃗

(R⃗ satisfies the constraint strictly and S⃗ does not)
which corresponds to rotating S⃗ towards R⃗ until it is parallel to the constraint. This
is illustrated in Fig. 5.4.(b).

• For P⃗ ∈ Pk−1, R⃗ ∈ Rk−1 s.t. M⃗k · P⃗ > Ck and M⃗k · R⃗ < 0, add to Pk:

O⃗
def= P⃗ + Ck − M⃗k · P⃗

M⃗k · R⃗
R⃗

(P⃗ satisfies the constraint strictly and R⃗ does not)
i.e., move the vertex P⃗ in the direction of the ray R⃗ until it touches the hyper-plane
defining the constraint.
The case M⃗k · P⃗ < Ck and M⃗k · R⃗ > 0 is similar.

One major improvement, mentioned by LeVerge [1992], consists in treating specially
equalities: greater efficiency can be obtained by incorporating Gaussian elimination for
equalities rather than treating them as pairs of inequalities. Another major improvement
is minimization: modern versions of Chernikova’s algorithm minimize their representations
on the fly, hence solving two difficult problems at once. The key to effective redundancy
removal is to maintain the relationship between the constraint and the generator represen-
tations we build, by creating a saturation matrix remembering which generators saturate
which constraints. A classic result states that generators with a non-maximal set of satu-
rated constraints are redundant.

Version 2025-05-26 118

5.3. THE AFFINE INEQUALITIES DOMAIN (POLYHEDRA DOMAIN)

We mentioned that Chernikova’s method can be costly. Indeed, it can have an expo-
nential cost. Unfortunately, this worse-case scenario is unavoidable as, for some polyhedra,
one (minimal) representation is exponentially larger than the other. Consider, for instance,
the case of an axis-aligned hyper-cube. It has a constraint representation that is linear in
|V|, for instance:

∧n
i=1 0 ≤ Vi ≤ 1. However, the minimal generator representation is

exponential in |V|: { V⃗ ∈ P | ∀i ∈ [1, n]: Vi ∈ {0, 1} }.

5.3.3 Abstract Operators

We are now ready to present the operators on polyhedra, assuming both constraint and
generator representations are available for all arguments.

Ordering. The ordering X♯ ⊑♯ Y ♯ is semantically equivalent to set inclusion, γ(X♯) ⊆
γ(Y ♯), and is implemented by checking that each generator of X♯ satisfies every constraint
of Y ♯:

X♯ ⊑♯ Y ♯ def⇐⇒
{
∀P⃗ ∈ PX♯ : MY ♯ × P⃗ ≥ C⃗Y ♯

∀R⃗ ∈ RX♯ : MY ♯ × R⃗ ≥ 0⃗

We solve the problem of semantic equality checking without a normal form through
checking the double inclusion: γ(X♯) = γ(Y ♯) ⇐⇒ (X♯ ⊑♯ Y ♯)∧ (Y ♯ ⊑♯ X♯). Technically,
⊑♯ is a pre-order as it does not satisfy the antisymmetry condition but, by identifying
elements in D♯ with the same concretization, we obtain a partial order. We even get a
lattice (D♯,⊑♯,⊔♯,⊓♯), although it is not complete (a disc, which is not a polyhedron, can
be constructed as the join of an infinite family of polyhedra, as well as the meet of an
infinite family of polyhedra).

Intersection. The abstract intersection ∩♯ def= ⊓♯ is simply joining constraint sets, and
it is an exact operator:

X♯ ⊓♯ Y ♯ def=
〈[

MX♯

MY ♯

]
,

[
C⃗X♯

C⃗Y ♯

]〉

Join. The abstract union ∪♯ def= ⊔♯ necessarily conveys some approximation as the set
union of two polyhedra may not be a polyhedron. Although there is no abstraction function
α, there always exists a smallest polyhedron that contains two polyhedra.

Given two bounded polyhedra P1, P2 ⊆ P, this join is the convex hull P , which is the
set of points obtained by a convex combination of points in P1 and P2: P

def= {λp⃗1 + (1−
λ)p⃗2 | p⃗1 ∈ P1, p⃗2 ∈ P2, λ ∈ [0, 1] }. As every point p⃗1 ∈ P1 is a convex combination of
P1’s generators and p⃗2 ∈ P2 is a convex combination of P2’s generators, we note that a
point p⃗ ∈ P in their convex hull is a convex combination of the generators of P1 and P2.
Hence, the convex hull can be simply obtained by joining the generators of P1 and P2.
This is illustrated in Fig. 5.5.(a).

Version 2025-05-26 119

CHAPTER 5. RELATIONAL ABSTRACT DOMAINS

(a) (b)

Figure 5.5: Abstract join of two polyhedra: (a) join of two bounded polyhedra, and (b)
join of a point and an unbounded line.

This generalizes to possibly unbounded polyhedra, by joining rays as well as vertices:

X♯ ⊔♯ Y ♯ def=
[[

PX♯ PY ♯

]
,
[
RX♯ RY ♯

]]
In the presence of rays, however, the result is not exactly the convex hull, but rather the
topological closure of the convex hull. This is illustrated in Fig. 5.5.(b): the convex hull of
a point (0, 0) and a line { (1, y) | y ∈ R } is not representable as a polyhedron as it is not
closed: it misses the points in { (0, y) | y ̸= 0 }. The join ⊔♯ adds these closure points.

Note that the join, as well as the intersection, can generate redundant constraints
or generators from minimal representations, hence, it can be useful to apply a round
of Chernikova’s algorithm, even when the correct representation is available, in order to
ensure that the representations stays minimal.

Abstract conditions. Similarly to the case of the affine equalities domain, we han-
dle precisely assignments and tests that can be exactly represented in our domain, and
revert, respectively, to non-deterministic assignments and the identity to abstract other
assignments and tests.

We can abstract exactly affine inequality tests by adding the test directly to the con-
straint representation:

C♯J
∑

i αiVi ≥ β KX♯ def=
〈[

MX♯

α1 · · ·αn

]
,

[
C⃗X♯

β

]〉

Abstract assignments. We can abstract exactly the non-deterministic assignment
Vj ← [−∞, +∞] using the generator representation, by simply adding two opposite rays
in the two basic vector directions v⃗j and −v⃗j . Indeed, assigning a random value r to Vj

can be viewed as adding some positive or negative value r− c to the current value c of Vj .
Hence, we define:

S♯J Vj ← [−∞, +∞] KX♯ def=
[

PX♯ ,
[
RX♯ v⃗j (−v⃗j)

]]
Version 2025-05-26 120

5.3. THE AFFINE INEQUALITIES DOMAIN (POLYHEDRA DOMAIN)

Finally, we can also abstract exactly affine assignments S♯J Vj ←
∑

i αiVi + β KX♯ using
the constraint representation. We use the same technique as we did for the affine equalities
domain, with two cases depending on αj :

• In case αj ̸= 0, the assignment is invertible and we simply replace, in every constraint,
Vj with (Vj −

∑
i ̸=j αiVi − β)/αj , which expresses the old value of Vj as a function

of the new value.

• In case αj = 0, the assignment is non-invertible and we revert to forgetting the value
of Vj , which is not used to express the new value of Vj anyway, and add an equality
constraint, modelled as a pair of inequalities:

S♯J Vj ←
∑

i αiVi + β K def=
C♯J Vj =

∑
i αiVi + β K ◦ S♯J Vj ← [−∞, +∞] K

An alternate view of an affine assignment S♯J Vj ←
∑

i αiVi + β KX♯ is as an affine
transformation on the set of points in γ(X♯). Given a polyhedron in generator represen-
tation, as any such a point is already a linear expression of the generators, it is possible
to obtain the polyhedron after the assignment by applying the transformation to the gen-
erators only. More precisely, we apply the affine transformation to the vertices, while we
apply the associated linear transformation Vj ←

∑
i αiVi to the rays.

5.3.4 Convergence Acceleration

We need a widening as the polyhedra domain has infinite strictly increasing chains. We use
the same idea as for the interval domain except that, instead of putting unstable bounds
to infinity, i.e., removing bounds, we remove unstable constraints.

Naive widening. A first idea for the widening is thus: X♯▽Y ♯ def= { c ∈ X♯ | Y ♯ ⊑ {c} },
viewing the abstract element X♯ as sets of constraints, and Y ♯ ⊑ {c} meaning that the
polyhedron Y ♯ is included in the half-space defined by the constraint c from the constraint
representation of X♯. This widening indeed satisfies Def. 2.17, as it returns an upper bound
and iterations with widening necessarily terminate as the set of constraints decreases.
However, it is not entirely satisfactory precision-wise, as shown by the following example.

Example 5.10 (Representation-dependent widening). Consider computing X♯▽Y ♯ where
X♯ and Y ♯ are defined by constraint sets as follows: X♯ def= {x ≥ 1, y ≥ 1, y ≤ 1} and
Y ♯ def= {x ≥ y, y ≥ 1, y ≤ 2}. Then, our naive widening definition outputs X♯ ▽Y ♯ = {x ≥
1, y ≥ 1}.

Note now that another constraint set that represents the exact same half-line as X♯ is
X♯′ def= {x ≥ y, y ≥ 1, y ≤ 1}. With this representation, the widening becomes X♯′ ▽ Y ♯ =
{x ≥ y, y ≥ 1}. Hence, the widening is not fully semantics: it does not depend only on the
polyhedron as a set of points, but also on the set of constraints chosen to represent this set
of points.

Version 2025-05-26 121

CHAPTER 5. RELATIONAL ABSTRACT DOMAINS

It is also interesting to note that X♯′▽Y ♯ is more precise than X♯▽Y ♯ as the constraint
x ≥ y gives a more precise information than x ≥ 1. Note that the constraint x ≥ y is also
satisfied in X♯, but it is not kept in X♯ ▽ Y ♯ because, unlike for X♯′ in X♯′ ▽ Y ♯, the
constraint does not appear syntactically in X♯. ♦

Semantic widening. In order to solve this problem, Cousot and Halbwachs [1978] pro-
posed a refined widening that is able to take into account both the constraints in the
left and in the right argument. More precisely, X♯ ▽ Y ♯ not only keeps stable constraints
from X♯, but also keeps constraints from Y ♯, provided that they can be swapped with a
constraint from X♯ without changing γ(X♯):

X♯ ▽ Y ♯ def= { c ∈ X♯ | Y ♯ ⊑♯ {c} } ∪
{ c ∈ Y ♯ | ∃c′ ∈ X♯: X♯ =♯ (X♯ \ {c′}) ∪ {c} }

where X♯ =♯ Y ♯ means (X♯ ⊑♯ Y ♯) ∧ (Y ♯ ⊑♯ X♯), i.e., γ(X♯) = γ(Y ♯).
It is easy to see that this widening still outputs an upper bound of X♯ and Y ♯, as we

only keep constraints satisfied by both X♯ and Y ♯. This operator also enforces termination
as, although the set of constraints is not strictly decreasing, any new constraint added to
the iterates is traded for an equivalent constraint (assuming, as additional technical con-
dition, that the arguments are minimal, so that we do not trade one constraint for several
redundant ones). Less obviously, this widening can be proved to be semantic, i.e., inde-
pendent from the chosen representation [Bagnara et al., 2005a]. Intuitively, the widening
is more precise as it chooses, among the possible equivalent constraint representations of
the first argument, the one that maximizes the number of constraints that are kept, based
on the second argument.

Advanced widenings. Similarly to the case of the interval domain, we can design
more complex, more precise widenings. We saw in Sect. 4.7.3 a widening with thresholds
that allows gradually relaxing bounds instead of setting them to infinity immediately. For
polyhedra, a widening with thresholds is parameterized by a finite set C of constraints.
Then, X♯ ▽Y ♯ keeps the constraints from X♯ (or equivalent ones from Y ♯) stable in Y ♯, as
before, but also includes all the threshold constraints c ∈ C satisfied by both X♯ and Y ♯.
This gives the iterates the opportunity to check whether the constraints in C are useful in
establishing an inductive loop invariant, before discarding them at the next iterate if they
are not. More advanced widenings for polyhedra have been proposed by Bagnara et al.
[2005a].

Decreasing iterations. The polyhedra domain also has infinite decreasing chains, but
it does not feature any standard narrowing per se. As mentioned in Sect. 4.7, this is not
a real problem: we can replace the application of a narrowing △ until stabilization with a
limited number of applications of the intersection ⊓♯. After a selected number of iterations
has been reached, we keep the result, without waiting further for stabilization.

Version 2025-05-26 122

5.3. THE AFFINE INEQUALITIES DOMAIN (POLYHEDRA DOMAIN)

5.3.5 Polyhedral Analysis Example

Example 5.11 (Polyhedra analysis). Consider the following program, which is a slightly
more complex version of Ex. 5.2 requiring a polyhedral relational inductive loop invariant:

X ← 2; I ← 0;
while I < 10 do

if [0, 1] = 0 then X ← X + 2
else X ← X − 3 endif ;
I ← I + 1

done

This program either adds 2 to X or subtract 3 at each loop iteration. At the loop head,
increasing iterations with widening give the following sequence:

X ♯
1 = {X = 2, I = 0}
X ♯

2 = {X = 2, I = 0} ▽ ({X = 2, I = 0} ∪♯ {X ∈ [−1, 4], I = 1})
= {X = 2, I = 0} ▽ { I ∈ [0, 1], 2− 3I ≤ X ≤ 2I + 2 }
= {I ≥ 0, 2− 3I ≤ X ≤ 2I + 2}

Then, a step of decreasing iteration allows, similarly to the interval case (see Ex. 4.5),
retrieving a finite upper bound for I:

X ♯
3 = {X = 2, I = 0} ∪♯ { I ∈ [1, 10], 2− 3I ≤ X ≤ 2I + 2 }

= {I ∈ [0, 10], 2− 3I ≤ X ≤ 2I + 2}

When exiting the loop, applying C♯J I ≥ 10 K allows finding that I = 10 when the program
stops which, combined with the relation 2 − 3I ≤ X ≤ 2I + 2 between X and I, allows
finding that X ∈ [−28, 22] as well. It is interesting to note that, as before, the relational
information is synthesized from non-relational ones by the join used to merge two loop
iterations at the loop head, while the role of the widening is rather to filter out those
relations that do not appear to be inductive. Also, as before, the number of abstract loop
iterations (3) is independent from the number of concrete loop iterations (here 10), and is
significantly smaller. ♦

5.3.6 Constraint-Only Implementation

Much of the cost of the polyhedra domain comes from the need to convert from one
representation to the other. We saw, in particular, the example of the hyper-cube, where
the generator representation is exponentially larger than the constraint representation,
justifying the cost of the conversion algorithm by the cost of its output. Unfortunately,
axis-aligned hyper-cubes are frequent in program analysis: they correspond to an abstract
information representable in the interval domain, i.e., bounds for each variables and no
relation. There is thus much incentive to abandon the double description method and use
solely the constraint representation, as advocated for instance by Simon and King [2005].

Version 2025-05-26 123

CHAPTER 5. RELATIONAL ABSTRACT DOMAINS

In order to present a polyhedra domain based solely on the constraint representa-
tion, we must provide alternate algorithms for those abstract operators that currently use
generators: inclusion checking, minimization, non-deterministic assignment, and join —
widening uses generators, but only indirectly, when it checks for inclusion or equality. The
first two operators can be implemented thanks to linear programming, while the two other
operators use Fourier-Motzkin elimination, both classic methods in affine theory.

Linear programming. A large number of optimisation problems can be stated in the
form of linear programming: given a polyhedron ⟨M, C⃗ ⟩ in constraint form and a vector
v⃗, find the optimum LP(⟨M, C⃗ ⟩, v⃗) in the polyhedron of p⃗ · v⃗:

LP(⟨M, C⃗ ⟩, v⃗) def= min { p⃗ · v⃗ |M× p⃗ ≥ C⃗ } (5.8)

The function to minimize, λp⃗. p⃗ · v⃗ is called the objective function. This problem has been
extensively studied and very efficient algorithms have been devised to solve it, such as the
pervasive Simplex method. We refer the reader to classic textbooks, such as [Schrijver,
1986], for more information on the subject.

Viewing polyhedra X♯, Y ♯ as sets of constraints, we can exploit linear programming to
test the inclusion. Note first that if LP(X♯, α⃗) ≥ β, then all the points V⃗ ∈ γ(X♯) satisfy
the constraint α⃗ · V⃗ ≥ β. Then, by checking X♯ against every constraint in Y ♯, we can
ensure that X♯ ⊑♯ Y ♯, i.e., that γ(X♯) ⊆ γ(Y ♯).

X♯ ⊑♯ Y ♯ ⇐⇒ ∀(α⃗ · V⃗ ≥ β) ∈ Y ♯: LP(X♯, α⃗) ≥ β

Additionally, the constraint c
def= (α⃗ · V⃗ ≥ β) ∈ X♯ is redundant and can be safely

removed from X♯ if and only if LP(X♯ \ {c}, α⃗) ≥ β. Hence, a simple algorithm to re-
move redundant constraints is to consider each constraint in turn, and compute a linear
programming to see if it can be removed, before considering the next one. Note that this
process must be done sequentially and not in parallel: given two constraints c1, c2 ∈ X♯,
it is possible that any one of c1 or 2 can be removed but not both, so that after noticing
that c1 can be removed, the test on c2 should be performed against X♯ \ { c1 } and not X♯

— the later would deduce that c2 can be removed as well, which is no longer true after
having removed c1.

Although linear programming is consdiered to be efficient, our abstract domain will
perform many calls to this procedure. It is thus worth trying cheaper solutions before
resorting to general linear programming, such as testing a constraint against the bounding
box of the polyhedron. We refer the reader to the work of Simon and King [2005] for
additional methods to improve the efficiency of constraint-based operators.

Fourier-Motzkin elimination. Another key operation in logic is quantifier elimina-
tion: given a formula ∃Vj : P (Vj), it finds a closed form of P where Vj no longer appears.
Geometrically, this corresponds to a projection, as we remove one coordinate. Semantically,
this corresponds to forgetting the value of a variable, i.e., to a non-deterministic assignment

Version 2025-05-26 124

5.3. THE AFFINE INEQUALITIES DOMAIN (POLYHEDRA DOMAIN)

Vj ← [−∞, +∞]. The key algorithm to achieve quantifier elimination is Fourier-Motzkin
elimination. This algorithm is similar to Gauss elimination in that it combines constraints
linearly in order to eliminate some coefficients. However, as we manipulate inequalities
and not equalities, we must take care to always multiply by a positive value. Given a set
of constraints X♯ and a variable Vj , Fourier-Motzkin elimination FM (X♯, Vj) constructs
a new constraint system where Vj does not appear. Naturally, it first keeps unchanged
the constraints from X♯ where Vj does not already appear, but then, it also enriches this
set with all possible combinations of pairs of constraints from X♯ where Vj has a positive
coefficient in one constraint and a negative one in the other constraint, so that multiplying
them by some positive value and adding them make Vj disappear, More precisely:

FM (X♯, Vj) def= { (
∑

i αiVi ≥ β) ∈ X♯ | αj = 0 } ∪
{ (−α−

j)c+ + α+
j c− |

c+ = (
∑

i α+
i Vi ≥ β+) ∈ X♯, α+

j > 0,

c− = (
∑

i α−
i Vi ≥ β−) ∈ X♯, α−

j < 0 }

This provides an exact abstraction S♯J Vj ← [−∞, +∞] KX♯.

Join. The join is quite similar to the join we defined in the affine equalities domain, in
(5.3), which was also a relational domain based only on constraints. A point V⃗ ∈ P is
in the convex hull of polyhedra ⟨M1, C⃗1⟩ and ⟨M2, C⃗2⟩ if it is a convex combination of
points V⃗ 1 and V⃗ 2 in these polyhedra. We express this as the (non-affine) equation system:

V⃗ = λ1V⃗ 1 + λ2V⃗ 2

M1 × V⃗ 1 ≥ C⃗1

M2 × V⃗ 2 ≥ C⃗2

λ1 + λ2 = 1
λ1, λ2 ≥ 0

which can be rewritten, similarly to (5.3), after the change of variables W⃗ 1 def= λ1V⃗ 1 and
W⃗ 2 def= λ2V⃗ 2, into the following affine system:

V⃗ = W⃗ 1 + W⃗ 2

M1 × W⃗ 1 ≥ λ1C⃗1

M2 × W⃗ 2 ≥ λ2C⃗2

λ1 + λ2 = 1
λ1, λ2 ≥ 0

(5.9)

We can now eliminate W⃗ 1, W⃗ 2, λ1, and λ2 from this system using Fourier-Motzkin elim-
ination. Benoy et al. [2005] prove that this indeed gives the optimal abstract join, even
in the more complex case of unbounded polyhedra. Note that the join performs a large
number of Fourier-Motzkin eliminations, generating many redundant constraints in the

Version 2025-05-26 125

CHAPTER 5. RELATIONAL ABSTRACT DOMAINS

process. Hence, it is beneficial to apply minimization regularly during this computation.
Additional insights on the structure of this problem also allows removing redundant con-
straints more easily, such as applying Kohler’s rule, as advocated by Simon and King
[2005].

5.3.7 Conversion with Intervals

When interested in inferring variable bounds, the interval and the polyhedra domains stand
at opposite ends of the cost versus precision spectrum, and it might be difficult to know
which one to choose for a given analysis. We can, however, achieve a better flexibility
if we can switch dynamically from one domain to the other. For this, it is sufficient to
design operators able to convert from one abstract representation to the other. To be
sound, when the abstract element cannot be represented in the other domain, we return
an over-approximation. We take care to output the smallest over-approximation, i.e., our
operators are optimal.

Conversion from intervals. Any element I♯ in the interval domain can always be
represented exactly as a polyhedron: given an abstract element I♯ that associates to each
variable Vi an interval I♯(Vi) = [ai, bi], we associate a pair of constraints Vi ≥ ai and
Vi ≤ bi. We denote as Poly(I♯) this polyhedron.

Conversion to intervals. Not all polyhedra can be exactly represented in the interval
domain. An efficient way to find the optimal interval element, i.e., the bounding box, is to
use the generator representation X♯ = [P, R] of the polyhedron:

• first, compute in the interval domain the join ⊔♯
P ∈P P⃗ of every vertex P⃗ , viewed as

an interval element representing a single point;

• then, for every ray R⃗ ∈ R and for every variable Vi, set Vi’s upper bound to +∞ if
the i−th coordinate of R⃗ is strictly positive, Ri > 0, and set its lower bound to −∞
if Ri < 0.

We denote by Int(X♯) this interval element.
Alternatively, in case the generator representation is not available, then the optimal

interval element can be constructed by solving a linear programming problem for the upper
bound and another one for the lower bound of every variable.

Fallback operators. Another interesting application of abstract domain conversion is
to design better fallback operators. Recall that the interval domain features assignment
and test operators that can handle arbitrary expressions, even non-affine ones, while the
polyhedra domain reverts to coarse abstractions for non-affine expressions. Hence, a more
precise fallback solution would exploit the interval operators. We would use, to model an
assignment V ← e:

S♯J V ← [−∞, +∞] KPolyX♯ ∩♯ Poly(S♯J V ← e KInt(Int(X♯)))

Version 2025-05-26 126

5.3. THE AFFINE INEQUALITIES DOMAIN (POLYHEDRA DOMAIN)

Note that, although the interval assignment, denoted here as S♯J V ← e KInt , provides a
precise value for V , it looses all the relations in the argument. Hence, we combine it,
using ∩♯, with the fall-back assignment we used in Sect. 5.3.3 that does not provide any
information on the value of V but imports from X♯ relations that are still valid after the
assignment.

A condition c would be similarly modeled as:

X♯ ∩♯ Poly(C♯J c KInt(Int(X♯)))

and we import all the relations from X♯ as we know they are still valid after the test.

5.3.8 Handling Strict Inequalities

While any non-strict affine inequality test can be exactly modeled, this is not
the case for strict inequalities. Hence, C♯J

∑
i αiVi + β > 0 K must be relaxed into

C♯J
∑

i αiVi + β ≥ 0 K, which is a sound, but non-exact approximation.
Alternatively, it is possible to increase the expressiveness of polyhedra to include both

strict and non-strict inequalities. A classic technique, reviewed for instance by Bagnara
et al. [2002], consists in adding a synthetic variable Vϵ, used to encode strictness. Then, we
can encode any polyhedron mixing strict and non-strict constraints over V as a polyhedron
with only non-strict constraints over Vϵ

def= V ∪ {Vϵ}. More precisely:∑
i αiVi + β ≥ 0 is represented as

∑
i αiVi + 0Vϵ + β ≥ 0∑

i αiVi + β > 0 is represented as
∑

i αiVi − cVϵ + β ≥ 0

where c > 0 is an arbitrary positive constant. To tie a constraint system over Vϵ to a set
of points over V, we need to slightly change the concretization into γ> as follows:

γ>(X♯) def= { (V1, . . . , Vn) ∈ P | ∃Vϵ > 0: (V1, . . . , Vn, Vϵ) ∈ γ(X♯) }

where γ is the regular concretization (5.6).
For the most part, the algorithms we designed for regular polyhedra work correctly,

that is, applying them while considering Vϵ as a regular variable also gives sound results
with respect to our new concretization γ>. There are however small technical difficul-
ties concerning minimization and more advanced widenings, which require enriching the
generator representation to remember which vertices actually belong to the polyhedron,
and which belong only in the closure of the polyhedron, which are now distinct objects.
We refer the reader to the work of Bagnara et al. [2002] for technical details about these
changes.

5.3.9 Handling Integers

As in the affine equalities domain, we have assumed that I = Q or R in order to apply
classic linear algebra and safely manipulate constraints and vectors. In order to analyze
programs with integer-valued variables, we have the same two choices as for affine equalities
in Sect. 5.2.5.

Version 2025-05-26 127

CHAPTER 5. RELATIONAL ABSTRACT DOMAINS

Modeling integers as rationals. The first, and simplest choice is to keep using the
same algorithms, using as coefficients exact rationals, but change our concretization to
convey the fact that the program variables have only integer values. We reuse γZ from
(5.4):

γZ(X♯) def= γ(X♯) ∩ Z|V|

where γ is the regular polyhedra concretization (5.6). As before, we maintain soundness,
but we lose exactness and optimality of operators, which hold with respect to γ but no
longer to γZ. For instance, Ex. 5.9 describing the non-exactness of the assignment V0 ← 0
on the set of points defined by the affine equality 2V0 = V1, still holds in the polyhedra
domain — it gives a non-optimal result.

Modeling integer sets using relational polyhedra results in a loss of precision. However,
there are some situations where it is easy to exploit the “integerness” information to
gain back a little precision. Consider, for instance, a constraint such as 2V0 + 4V1 ≥ 3.
As we know that both V0 and V1 are integer, then 2V0 + 4V1 is necessarily even, and
we can strengthen the constraint into 2V0 + 4V1 ≥ 4. More generally, assuming that we
have reduced the constraints to the form

∑
i αiVi ≥ β where all the αi are integers, we

can increase β to the next multiple of the greatest common denominator gcdi αi. Such
strengthening is not sufficient to recover the optimality or exactness for all cases, but it
does improve the precision in practice, at a very low cost. Such methods are implemented
in libraries, such as Apron [Jeannet and Miné, 2009].

If even more precision needs to be achieved, more heavyweight methods, such as integer
linear programming, could be employed, but with a greater impact on performance: integer
linear programming is NP-hard, whereas regular linear programming is polynomial. Classic
techniques, such as Gomory’s cut, described for instance by Schrijver [1986], can generate
additional, non-trivial constraints that exploit the “integerness” property and shrink the
polyhedron closer to the integer point lattice, at the cost of increasing the size of the
constraint representation.

Improving the expressiveness. Some operations, such as projection, can no longer be
exact when switching to integers, as their result is not expressible as a polyhedron. Thus,
a second choice consists in increasing the expressiveness of the domain, and represent
exactly the projection. Note, however, that, if we are able to exactly model projection,
we can also model the join exactly (at least for bounded polyhedra) even though, in
the rational world, projection was exact but not join. Indeed, given polyhedra P1 and P2,
viewed as logic formulas, and a fresh variable V , consider the convex hull P of (V = 0)∧P1
and (V = 1)∧P2. Then, γZ(P) is exactly the set of integer points that satisfy the formula
((V = 0) ∧ P1) ∨ ((V = 1) ∧ P2). Its projection ∃V : P , when represented exactly, gives
exactly P1 ∨ P2. The expressiveness of our domain then escalates quickly, so that it can
represent exactly formulas in Presburger arithmetic.

While Presburger arithmetic is a decidable theory, its cost is super-exponential, making
it rather impractical. Nevertheless, effective abstract operators have been designed for it,
such as the Omega test by Pugh [1992] or automata-based approaches by Bartzis and

Version 2025-05-26 128

5.4. THE ZONE AND OCTAGON DOMAINS

Bultan [2003], including a widening operator [Bartzis and Bultan, 2004].

5.4 The Zone and Octagon Domains
For many programs, the interval domain is insufficient to provide precise bounds for the
variables, which motivated our introduction of the polyhedra domain. Unfortunately, the
polyhedra domain is much more costly: it has been observed to have exponential cost
in practice [Nguyen Que, 2010], while interval domain operations are linear, at worst, in
the number of variables. This motivated the introduction of so-called weakly relational
abstract domains, that is, relational domains in-between, both in expressiveness and in
cost, between intervals and polyhedra. They allow trading precision for efficiency.

The first of these domains we present here is the so-called zone domain, introduced by
Miné [2001], which can represent only very restricted forms of affine invariants, bounds
of variable differences, but has a quadratic cost on its memory representation (in the
number of variables) and cubic worst-case time cost. Its algorithms are based on radically
different principles than polyhedra: we eschew the double description method, Chernikova’s
algorithm, linear programming, and Fourier-Motzkin elimination in favor of graph-based
algorithms modeling constraint propagation.

5.4.1 Representation

In this domain, we revert to I ∈ {Z, Q, R}, i.e., our domain can natively represent sets of
integer-valued memory states, as well as rational and real ones, without any change in
algorithms nor loss of precision. The domain infers invariants of the form:∧

i,j Vj − Vi ≤ mij∧
i ai ≤ Vi ≤ bi

Note that the simple loop example from Ex. 5.2: “I ← 1; X ← 0; while I ≤ 1000 do I ←
I + 1; X ← X + 1 done” only features invariants of this form, e.g., (I = X + 1) ∧ (I ∈
[0, 1000]) for the loop invariant. It can be analyzed precisely in the zone domain, without
resorting to the, more costly, polyhedra domain.

Potential graphs. We first focus on constraints of the form Vj − Vi ≤ mij only. They
are called potential constraints, because any solution of a conjunction of such constraints
is defined up to a constant. Given a solution (v1, . . . , vn), adding the same value c to each
coordinate gives us another solution: (v1 + c, . . . , vn + c).

A conjunction of potential constraints
∧

ij Vj − Vi ≤ mij can be represented as an
oriented weighted graph, with one node for each variable Vi ∈ V, and an arc Vi

mij−→ Vj

from Vi to Vj with weight mij ∈ I for every constraint Vj − Vi ≤ mij in the conjunction.
If there is no constraint on Vj − Vi, there is no arc from Vi to Vj . Note that if two
constraints Vj−Vi ≤ mij and Vj−Vi ≤ m′

ij exist, it is sufficient to keep the strongest one:
Vj − Vi ≤ min(mij , m′

ij), hence, in the following, we assume that there is at most one arc
from a given Vi to a given Vj .

Version 2025-05-26 129

CHAPTER 5. RELATIONAL ABSTRACT DOMAINS

Example 5.12 (Potential graph). Figure 5.6.(a) gives an example potential graph, and
the potential constraints it represents in Fig. 5.6.(c). ♦

Difference bound matrices. An equivalent representation for potential constraints is
using matrices. A difference bound matrix, or DBM, m is a n × n square matrix, where
n

def= |V|, with elements in I ∪ {+∞}, where:

• mij ∈ I denotes a constraint Vj − Vi ≤ mij ;

• mij = +∞ denotes the absence of any constraint of the form Vj − Vi ≤ c, that is,
there is no upper bound on Vj − Vi or, equivalently, the upper bound is +∞.

Such a DBM m is actually the adjacency matrix of the potential graph representing
the same set of constraints. We will use matrices and graphs interchangeably: while graphs
provide additional insights on some operations, some others are better described on ma-
trices. Additionally, when the constraint sets are dense, which will actually often be the
case, a matrix representation may be more compact in memory, and allows efficient access.

A DBM m represents the following set of points in P:

γ(m) def= { (v1, . . . , vn) ∈ P | ∀i, j ∈ [1, n]: vj − vi ≤ mij } (5.10)

Example 5.13 (DBM). Figure 5.6.(b) gives the DBM equivalent to the potential graph in
Fig 5.6.(a) and the potential constraints it represents in Fig. 5.6.(c). The concretization
of Fig. 5.6.(a)–(c) is given in Fig. 5.6.(d). ♦

Representing zones. In order to be at least as expressive as intervals, we add to po-
tential constraints unary constraints, able to represent variable bounds: Vi ∈ [ai, bi]. To
seamlessly introduce these constraints into potential graphs and DBM, we view them as
potential constraints using a special variable V0, which is assumed to be a constant set
to zero. Our abstract elements are now (n + 1) × (n + 1) matrices for n actual program
variables. More precisely:

• Vi ≤ bi is represented as Vi − V0 ≤ bi, i.e., m0i = bi;

• Vi ≥ ai is represented as V0 − Vi ≤ −ai, i.e., mi0 = −ai.

The concretization is updated to reflect this new meaning:

γ(m) def= { (v1, . . . , vn) ∈ P | ∀i, j ∈ [0, n]: vj − vi ≤ mij ∧ v0 = 0 } (5.11)

The shapes defined by such constraints are called zones. From now on, we will use this
zone concretization and will not consider the potential constraint concretization from
(5.10) anymore.

Example 5.14 (Zones). Figure 5.6.(e) gives the zone constraints represented by the po-
tential graph in Fig. 5.6.(a) and the DBM in Fig. 5.6.(b). We simply replace V0 with 0 in
Fig. 5.6.(c). Figure 5.6.(f) gives the set of points enclosed by this zone, which is the prism
from Fig. 5.6.(d) intersected with the plane V0 = 0. ♦

Version 2025-05-26 130

5.4. THE ZONE AND OCTAGON DOMAINS

V04

 3 ��
V1

−1

??

V2

−1ll

1
oo

V0 V1 V2
V0 +∞ 4 3
V1 −1 +∞ +∞
V2 −1 1 +∞

(a) (b)

V1 − V0 ≤ 4
V0 − V1 ≤ −1
V2 − V0 ≤ 3
V0 − V2 ≤ −1
V1 − V2 ≤ 1

V0

V1

V2

(c) (d)

V1 ≤ 4
V1 ≥ 1
V2 ≤ 3
V2 ≥ 1
V1 − V2 ≤ 1

V0

V1

V2

V0=0

(e) (f)

Figure 5.6: A potential graph (a) and its equivalent difference bound matrix (b); their
interpretation as a set of potential constraints over variables {V0, V1, V2} (c) and the asso-
ciated set of points by γ (5.10) in (d); their interpretation as zone constraints over {V1, V2}
(e) and the associated set of points by γ (5.11) in (f).

Version 2025-05-26 131

CHAPTER 5. RELATIONAL ABSTRACT DOMAINS

5.4.2 Ordering and Closure

Lattice structure. The set I ∪ {+∞} is totally ordered with the regular arithmetic
order ≤. The point-wise extension of this order on DBM with coefficients in I ∪ {+∞}
gives a partial order, and we have actually a lattice structure, with max as join and min
as meet. We naturally have a greatest element ⊤♯, where all coefficients equal +∞, but no
least element, as I ∪ {+∞} has no least element. Hence, we add a least element ⊥♯. More
precisely, we have the following lattice (D♯,⊑♯,⊔♯,⊓♯,⊥♯,⊤♯):

D♯ def= (I ∪ {+∞})(n+1)×(n+1) ∪ {⊥♯}

∀i, j:
[
⊤♯

]
ij

def= +∞

m ⊑♯ n def⇐⇒ ∀i, j: mij ≤ nij

∀i, j:
[
m ⊔♯ n

]
ij

def= max(mij , nij)

∀i, j:
[
m ⊓♯ n

]
ij

def= min(mij , nij)

Naturally, γ (5.11) is monotonic, i.e., if m ⊑♯ n, then γ(m) ⊆ γ(n).
As for the case of intervals, the lattice is complete when min and max exist for arbitrary

(possibly infinite) families of numbers in I: this is the case for integers and reals, but not
rationals.

Normal form. We note that γ is not one-to-one: we can have two different matrices,
m ̸= n, representing the same set: γ(m) = γ(n). Likewise, γ(m) ⊆ γ(n) does not neces-
sarily imply m ⊑♯ n. We need a notion of normal form in order to effectively test, in the
abstract, for equality and inclusion.

Example 5.15 (Local propagation). Consider the following two equation systems, with
associated potential graph:

V0 − V1 ≤ 3
V1 − V2 ≤ −1
V0 − V2 ≤ 4

V0 − V1 ≤ 3
V1 − V2 ≤ −1
V0 − V2 ≤ 2

V1
3

��
V2

−1
??

4
// V0

V1
3

��
V2

−1
??

2
// V0

(a) (b)

The graphs are not equal, and yet, they represent the same set of points through γ. Actually,
we can see that (b) is smaller, for ⊑♯, than (a), giving a tighter representation. This is
not necessarily the case, and there are examples of graphs that are not even comparable
and yet represent the same set.

On our example, we note that (b) can be constructed from (a) by summing the con-
straints V0 − V1 ≤ 3 and V1 − V2 ≤ −1 that already exist in (a), to get V0 − V2 ≤ 2 that

Version 2025-05-26 132

5.4. THE ZONE AND OCTAGON DOMAINS

only exists in (b). This transformation has strengthened the constraints without changing
the concretization. On the potential graph, we have replaced the weight on the arc from V2
to V0, originally 4, with the sum of weights along the path V2

−1−→ V1
3−→ V0, i.e., 2. ♦

The preceding example suggests a natural operation on systems of zone constraints:
constraint propagation, by adding two or more constraints such that the sum simplifies
into a zone constraint. This also corresponds to adding the weight of edges along a path in
the graph. To construct our normal form, we will propagate the constraints until a fixpoint
is reached. From a logical point of view, this operation is a saturation. From a graph point
of view, we construct the shortest-path closure.

Formally, given a DBM m, its shortest-path closure is denoted as m∗ and defined as:

∀i ̸= j: m∗
ij

def= min∀N : ⟨i=i1,...,iN =j⟩
∑N−1

k=1 mik ik+1

∀i: m∗
ii

def= 0
(5.12)

Note that the minimum is defined if and only if the graph does not contain any cycle
with a strictly negative total weight; otherwise, we can constructs paths of increasing
lengths with arbitrary negative total weight by simply repeating the cycle. When no such
cycle exists, only simple paths need to be considered in the sum, and the result is a
matrix with elements in I∪{+∞}. Interestingly, a cycle with strictly negative total weight
corresponds to a set of constraints the sum of which is a constraint of the form 0 ≤ c for
c < 0, as all the left-hand sides cancel each others, i.e., an unsatisfiable constraint. We
actually have an equivalence. When there is no such cycle, then, the shortest-path closure,
m∗, is the smallest matrix, for ⊑♯, which represents γ(m). A geometric intuition is that
every constraint in m∗ saturates the set γ(m), i.e., for every mij , there exists a point in
(v1, . . . , vn) ∈ γ(m) such that vj − vi = mij . The following theorem summarizes these
findings and applies them to implement equality and inclusion tests:

Theorem 5.1 (Normal form, equality and inclusion checking).

1. γ(m) = ∅ def⇐⇒ the graph of m has a cycle with strictly negative weight.

2. If γ(m) ̸= ∅, the shortest-path m∗ is a normal form:

m∗ = min
⊑♯
{n | γ(m) = γ(n) } (5.13)

3. If γ(m), γ(n) ̸= ∅, then γ(m) = γ(n) ⇐⇒ m∗ = n∗.

4. If γ(m), γ(n) ̸= ∅, then γ(m) ⊆ γ(n) ⇐⇒ m∗ ⊑♯ n. ■

Hence, to check for equality, it is sufficient to compare syntactically the normal forms.
To check inclusion, we note that m∗ ⊑♯ n ⇐⇒ m∗ ⊑♯ n∗ because n∗ ⊑♯ n, so that we do
not need the normal form of the second argument.

As we will see, the normal form also plays an important role to ensure the precision
of several abstract operators. Intuitively, normalizing a matrix makes implicit constraints

Version 2025-05-26 133

CHAPTER 5. RELATIONAL ABSTRACT DOMAINS

explicit, i.e., an upper bound on Vj − Vi in γ(m) that could only be discovered by adding
several constraints from m will now be explicit in mij . Another intuition is that m∗ is
solving linear programming problems [Schrijver, 1986] over a zone γ(m) for all objective
functions of the form Vj −Vi as m∗

ij is indeed, by Thm. 5.1.2, max { vj − vi | (v1, . . . , vn) ∈
γ(m) }.

Closure algorithm. To construct the normal form, we need a so-called all pairs short-
est path closure algorithm. Several algorithms exist. We employ here the Floyd–Warshall
algorithm, a classic algorithm described for instance in Cormen et al. [2001], which is
simple, has a very deterministic cubic time complexity, and can be extended to handle
more complex constraints, as we will see in Sect. 5.4.5. As we will see shortly, the algo-
rithm is also useful in the case where the graph has negative cycles and no shortest path
closure exists. The algorithm can be described as computing mn+1 through the following
sequence:

m0 def= m
∀i, j, k: mk+1

ij
def= min(mk

ij , mk
ik + mk

kj)
(5.14)

i.e., for each node Vk in turn, it checks in parallel for all pairs (Vi, Vj) whether it is faster to
go through Vk when going from Vi to Vj . Note that each Vk needs only be considered once,
hence the cubic cost. This also corresponds to applying, may times, the local constraint
propagation we saw in Ex. 5.15. We then have the following properties:

Theorem 5.2 (Floyd-Warshall algorithm).

1. If γ(m) ̸= ∅, then m∗ = mn+1 as computed in (5.14).
(up to setting ∀i: m∗

ii = 0)

2. γ(m) = ∅ ⇐⇒ ∃i: mn+1
ii < 0. ■

By applying the Floyd–Warshall algorithm to an arbitrary DBM we can check whether
it represents an empty set by looking at the diagonal — i.e., constraints of the form
Vi − Vi ≤ mii — in which case we return ⊥♯; otherwise, we return the result of the
algorithm, after resetting the diagonal to 0. In all cases, we obtain the normal form.

Galois connection. In order to construct a Galois connection, we can define the fol-
lowing abstraction function α:

α(S) def= ⊥♯ if S = ∅
[α(S)]ij

def= max { vj − vi | (v1, . . . , vn) ∈ S ∧ v0 = 0 } if S ̸= ∅

Naturally, α is only guaranteed to exist if I ∈ {Z, R}, but not on rationals, as some rational
sets have no rational maximum. In all cases — even when I = Q — α(γ(m)) exists, and
m∗ = α(γ(m)), again as a consequence of Thm. 5.1.2.

Version 2025-05-26 134

5.4. THE ZONE AND OCTAGON DOMAINS

(a) (b) (c)

Figure 5.7: Two zones reduced to a non-relational box (a); their least upper bound ⊔♯,
which is no more precise than the interval join (b); and their abstract union ∪♯, which
contains relational information and is more precise (c).

5.4.3 Abstract Operators

Union and intersection. As D♯ forms a lattice, we are tempted to implement union
and intersection as joins and meets: ∪♯ def= ⊔♯ and ∩♯ def= ⊓♯. This works well with ∩♯,
and we obtain the exact intersection because, as convex polyhedra, zones are closed under
intersection, and ⊓♯ is indeed a conjunction of constraints, keeping only the most strict
bound for each expression Vj−Vi. For unions, however, we obtain a sound but not optimal
abstraction, as shown in the following example:

Example 5.16 (Non-optimal join and abstract union). Consider the zones X♯ and Y ♯

defined by the constraints:

X♯ def= (0 ≤ V1 ≤ 1) ∧ (0 ≤ V2 ≤ 1)
Y ♯ def= (1 ≤ V1 ≤ 2) ∧ (1 ≤ V2 ≤ 2)

illustrated in Fig. 5.7.(a). Their least upper bound is X♯ ⊔♯ Y ♯ = (0 ≤ V1 ≤ 2)∧ (0 ≤ V2 ≤
2), and is illustrated in Fig. 5.7.(b). Note that X♯ and Y ♯ are boxes, exactly representable
in the interval domain. Then, X♯ ⊔♯ Y ♯ is also a box: the result is no more precise in
the zone domain than it would be in the interval domain. The smallest zone, for ⊆, that
contains γ(X♯) and γ(Y ♯) is depicted in Fig. 5.7.(c). It additionally features the zone
constraint −1 ≤ V1 − V2 ≤ 1. ♦

To achieve the optimal abstract union, we must compute the least upper bound on the
normal forms:

m ∪♯ n def= m∗ ⊔♯ n∗

Considering again Ex. 5.16, the closure exposes the constraint −1 ≤ V1−V2 ≤ 1 in both X♯

and Y ♯, hence, their join ⊔♯ after closure will also feature the constraint −1 ≤ V1−V2 ≤ 1.
In fact, we have the following stronger property:

m∗ ⊔♯ n∗ = min
⊑♯
{o | γ(m) ∪ γ(n) ⊆ γ(o) }

which proves that, not only is γ(m∗ ⊔♯ n∗) the tightest approximation of the join γ(m) ∪
γ(n), but also that m∗ ⊔♯ n∗ is already in normal form.

Dually, while the intersection ∩♯ def= ⊓♯ does not require normalized arguments, the
result may not be normalized, even if both arguments are.

Version 2025-05-26 135

CHAPTER 5. RELATIONAL ABSTRACT DOMAINS

Conditions. We can model easily and exactly tests of the form Vj −Vi ≤ c (and respec-
tively Vi ≤ c, Vi ≥ c): it is sufficient to update the matrix element at position (i, j) —
respectively (0, i) and (i, 0). For instance:

∀k, l:
[
C♯J Vj − Vi ≤ c Km

]
kl

def=
{

min(mkl, c) if (i, j) = (k, l)
mkl otherwise

For other tests, we state, as usual C♯J c Km = m.

Assignments. We can exactly model assignments of the form Vj ← c and Vj ← Vi + c.
For other assignments, we revert to a non-deterministic assignment Vj ← [−∞, +∞],
which can also be handled exactly.

Let us first consider Vj ← [−∞, +∞]. A natural idea is to remove all the constraints
involving Vj , i.e., we put all the elements at line j and all the elements at column j to
+∞. Similarly to the join, however, this operation is only guaranteed to be exact if it is
applied on a matrix in normal form, hence, we define:

∀k, l:
[
S♯J Vj ← [−∞, +∞] Km

]
kl

def=
{

+∞ if k = j or l = j

m∗
kl otherwise

On a non-normalized matrix, we may lose precision as we discard implicit constraints
between two variables that are distinct from Vj , and yet related to it through constraints.
For instance, removing V1 in (V1 − V0 ≤ 1) ∧ (V2 − V1 ≤ 1) would give ⊤♯ while, when
using the normalization, we get V2 − V0 ≤ 2 instead, which is more precise. Indeed, the
normalization makes explicit in the matrix all possible combinations of constraints using
V1 before it is discarded.

Assignments of the form Vj ← c and Vj ← Vi + c for i ̸= j are non-invertible.
We can model them, as in the affine domains, as: S♯J Vj ← e K def= C♯J Vj = e K
◦S♯J Vj ← [−∞, +∞] K. As both abstractions are exact, their composition is also an ex-
act abstraction (Thm. 2.6). An assignment of the form Vj ← Vj + c is invertible. It is
handled exactly by adding c to all the elements in the j−th column, and subtracting c to
the j−th line:

∀k, l:
[
S♯J Vj ← Vj + c Km

]
kl

def=

mkl − c if k = j and l ̸= j

mkl + c if l = j and ̸= j

mkl otherwise

Conversion with intervals. As explained in Sect. 5.3.7, it can be useful to convert
between one abstract domain and another, for instance to switch abstract domains dy-
namically during the analysis, or benefit from abstract operators available in the interval
domain. We can convert easily an interval element into a zone, as zones can encode directly
variable bounds; the conversion is exact. Given a zone described as a DBM m, it is also
easy to extract an interval abstract element that over-approximates it: the bounds of each
variables can be read at line 0 and at column 0 of the matrix. Moreover, if m is normalized,

Version 2025-05-26 136

5.4. THE ZONE AND OCTAGON DOMAINS

as a consequence of Thm. 5.1.2, the bounds we extract are the tightest possible, i.e., our
conversion operator gives the best abstraction.

Conversion with polyhedra. Likewise, we can convert between zones and polyhedra.
Given a DBM m representing a zone, we can easily obtain an exact representation as a
polyhedron by interpreting each matrix element mij as a constraint Vj − Vi ≤ mij . To
convert from a polyhedron to a zone in a sound way, we use the same technique as in
the conversion from polyhedra to intervals from Sect. 5.3.7. Starting from the generator
representation [P, R]:

• First, we compute, in the zone domain, the join ⊔♯

P⃗ ∈P
P⃗ of every vertex P⃗ in the

polyhedron, each one being viewed as zone representing a single point.

• Then, for every ray R⃗ ∈ R, and for every pair of coefficients Ri, Rj of R⃗ such that
i ̸= j and Rj − Ri > 0, we set mij to +∞. Indeed, such a ray allows increasing the
value of Vj−Vi arbitrarily, so that its bound no longer applies. The case Rj−Ri < 0
is equivalent to Ri − Rj > 0, and thus handled by this case as well. Moreover, the
cases i = 0 and j = 0 correspond to removing, respectively, the upper bound of Vj

or the lower bound of Vi when, respectively, Rj > 0 or Ri < 0.

Alternatively, linear programming can be employed to find an upper bound for every
expression Vj − Vi, i.e., a value for mij .

Applications include switching dynamically between the polyhedra and the zone do-
mains, but also improving the precision of assignments and tests that cannot be handled
precisely by the zone domain. Consider, for instance, an affine assignment V ← e. We can
define:

S♯J V ← e KZone
def= Zone ◦ S♯J V ← e KPoly ◦ Poly

i.e., convert to a polyhedron (Poly), apply the polyhedron assignment (S♯J V ← e KPoly),
and convert back to a zone (Zone). The two first operations are exact abstractions, and
the third one is a best abstraction. Hence, the combination gives back a best abstraction
for affine assignments in zones. The same holds for affine tests.

Note, however, that a conversion from a zone to a polyhedron and back requires either
at least one application of Chernikova’s algorithm, as we generate a constraint represen-
tation but expect back a generator representation, or many linear programming problems
to extract the difference bounds from the constraint representation. Both are very costly.

Approximate affine operators. We now propose a more practical abstract assignment
operator for arbitrary affine expressions on zones: it trades precision for efficiency as it is
no longer a best abstraction, but it has a quadratic cost instead of the possibly exponential
cost of the assignment based on polyhedra.

Consider an affine expression e
def=

∑
i αiVi + β, and the assignment Vj ← e. The idea

is to exploit the abstract evaluation of expressions in the interval domain, which is the
generic way to handle assignments in a non-relational domain (Fig. 4.1) but, unlike an

Version 2025-05-26 137

CHAPTER 5. RELATIONAL ABSTRACT DOMAINS

interval assignment, we will not only infer the bounds of the assigned variable Vj , but also
of expressions Vj − Vi for all variables Vi ∈ V. More precisely, we define:

∀k, l:
[
S♯J Vj ← e KZonem

]
kl

def=

max(E♯J e KIntInt(m)) if k = 0 and l = j

−min(E♯J e KIntInt(m)) if k = j and l = 0
max(E♯J e− Vk KIntInt(m)) if k ̸= 0, j and l = j

−min(E♯J e + Vl KIntInt(m)) if k = j and l ̸= 0, j

mij otherwise

(5.15)

where E♯J e KInt is the evaluation of e in the interval domain (Figs. 4.1, 4.6) and Int(m)
is the conversion from zones to intervals described above. Moreover, we assume that an
expression such as e−Vk is simplified symbolically before being fed to E♯J e KInt , i.e., e−Vk

is
∑

i ̸=k αiVi + (αk − 1)Vk + β. For instance, given the assignment X ← Y + Z, then our
operator will use the bound of Z to derive a bound in X − Y . Although our operator
cannot exploit relational information, as expressions are evaluated in the interval domain,
it is nevertheless able to infer new relations, which is more than what the interval domain
can do.

Example 5.17 (Approximate zone assignments). Figure 5.8 presents three different ab-
stractions of the assignment X ← Y −Z on the zone (Y ∈ [0, 10])∧(Z ∈ [0, 10])∧(Y −Z ∈
[0, 10]) (Fig. 5.8.(a)). In the results, boldface numbers correspond to non-optimal bounds:

1. Fig. 5.8.(b) presents the result obtained by only evaluating the bounds of X in the
interval domain. Bounds on X − Y and X −Z are then retrieved by normalization,
combining the novel bounds for X with the existing bounds for Y and Z. This is the
least precise operator, as four bounds are non-optimal.

2. Fig. 5.8.(c) presents the result using the operator we defined in (5.15). The result
is much more precise as we infer optimal bounds for X − Y using the bound of Z,
which are then combined by the normalization with the bounds of Y −Z to get optimal
bounds for X − Z. Only one bound is not optimal: the lower bound of X.

3. Fig. 5.8.(d) presents the result using the polyhedra domain. It is the most precise as
it is guaranteed to be optimal, but also the most costly. ♦

A similar operator can be designed for affine tests: given a test such as e ≤ 0, we will
derive bounds for each Vj − Vi by evaluating, in the interval domain, Vj − Vi + e after
symbolic simplification.

5.4.4 Convergence Acceleration

As for intervals and polyhedra, the zone domain has both infinite increasing chains and
infinite decreasing chains.

Version 2025-05-26 138

5.4. THE ZONE AND OCTAGON DOMAINS

(a){ 0 ≤ Y ≤ 10
0 ≤ Z ≤ 10
0 ≤ Y − Z ≤ 10

⇓ X ← Y − Z

−10 ≤ X ≤ 10
−20 ≤ X − Y ≤ 10
−20 ≤ X − Z ≤ 10
0 ≤ Y ≤ 10
0 ≤ Z ≤ 10
0 ≤ Y − Z ≤ 10

−10 ≤ X ≤ 10
−10 ≤ X − Y ≤ 0
−10 ≤ X − Z ≤ 10
0 ≤ Y ≤ 10
0 ≤ Z ≤ 10
0 ≤ Y − Z ≤ 10

0 ≤ X ≤ 10
−10 ≤ X − Y ≤ 0
−10 ≤ X − Z ≤ 10
0 ≤ Y ≤ 10
0 ≤ Z ≤ 10
0 ≤ Y − Z ≤ 10

(b) (c) (d)

Figure 5.8: Three operators to model the assignment X ← Y−Z on the zone (a): (b), non-
relational operator based on the interval domain; (c), approximate operator from (5.15);
and (d), optimal operator based on the polyhedra domain. Boldface numbers correspond
to non-optimal bounds.

Widening. Similarly to the interval domain, the zone domain manipulates bounds,
hence, we can design similar widenings. The standard widening ▽ simply puts unstable
bounds to infinity:

∀i, j: [m ▽ n]ij
def=

{
mij if nij ≤ mij

+∞ otherwise
(5.16)

We can also define a widening with thresholds, ▽T , similarly to the interval one
(Sect. 4.7.3). Given a finite set of thresholds T containing +∞, unstable bounds are set
to the next value in T , until they become stable or +∞ is reached:

∀i, j: [m ▽T n]ij
def=

{
mij if nij ≤ mij

min {x ∈ T | x ≥ nij } if nij > mij

(5.17)

Interaction between normalization and widening. Recall that the zone union was
defined as m∗⊔♯ n∗, i.e., the arguments are put in normal form before applying the lattice
join ⊔♯, and we saw that this is important to guarantee the best precision possible. As
a widening can be seen as a kind of join, relaxed enough to enforce termination, it is
tempting to apply the same reasoning, and try and improve the analysis precision by
replacing m ▽ n with m∗ ▽ n∗. The following example shows that this can lead to non-
termination: while a sequence of the form X♯ n+1 def= X♯ n ▽ Y ♯ n always converges, a
sequence X♯ n+1 def= (X♯ n)∗ ▽ Y ♯ n or X♯ n+1 def= (X♯ n ▽ Y ♯ n)∗ may not. Intuitively, the
convergence is ensured by putting finite elements to +∞, at which point they stay stable
at +∞, while the normalization tightens the bounds, in particular replacing +∞ with
finite bounds, threatening termination.

Version 2025-05-26 139

CHAPTER 5. RELATIONAL ABSTRACT DOMAINS

Example 5.18. Consider the following, rather intricate program:

X ← 0; Y ← [−1, 1];
while [0, 1] = 0 do

R← [−1, 1];
if X = Y then Y ← X + R
else X ← Y + R endif

done

It is comprised of an unbounded loop that either adds a value R in [−1, 1] to X to get a new
Y value, or to Y to get a new X value, at each iteration. An analysis using the widening
without normalization, i.e., as X♯n+1 def= X♯n ▽ F ♯(X♯n), stabilizes the loop invariant in
three iterations:

iter. X Y X − Y
0 0 [−1, 1] [−1, 1]
1 [−∞, +∞] [−1, 1] [−1, 1]
2 [−∞, +∞] [−∞, +∞] [−1, 1]

and outputs that X − Y ∈ [−1, 1] without any bound on X nor Y , which is actually the
most precise invariant.

However, if we compute X♯n+1 def= (X♯n ▽ F ♯(X♯n))∗, we get an infinite iteration
sequence:

iter. X Y X − Y
0 0 [−1, 1] [−1, 1]
1 [−2, 2] [−1, 1] [−1, 1]
2 [−2, 2] [−3, 3] [−1, 1]
.
2j [−2j, 2j] [−2j − 1, 2j + 1] [−1, 1]
2j + 1 [−2j − 2, 2j + 2] [−2j − 1, 2j + 1] [−1, 1]
.

Indeed, at each iteration, either X or Y is set to [−∞, +∞] by the widening, but then, the
normalization combines the variable which was kept finite at this iteration with the invari-
ant X − Y ∈ [−1, 1] to deduce a finite bound for the variable that was set to [−∞, +∞].

♦

A final remark about widening, related to our inability to use normal forms when
iterating, is that the output of the widening m▽n does not only depend on the zones γ(m)
and γ(n) represented by the arguments, but also on the DBM chosen to represent them. As
for the naive polyhedra widening (Sect. 5.3.4), we have a representation-aware widening.
A more semantic widening, that is independent from the DBM chosen to represent the
zone arguments, has been proposed by Bagnara et al. [2009], based on an alternate normal
form that tries to remove as many constraints as possible (i.e., put bounds to +∞).

Narrowing. In order to stabilize decreasing sequences in finite time, we can design a
narrowing operator △ on zones. We take some inspiration form the interval narrowing

Version 2025-05-26 140

5.4. THE ZONE AND OCTAGON DOMAINS

(4.10): we only refine an upper bound if it is +∞. This guarantees that each bound is
refined a most once, and so, there are finitely many refinements:

∀i, j: [m △ n]ij
def=

{
nij if mij = +∞
mij otherwise

(5.18)

5.4.5 The Octagon Abstract Domain

The octagon domain, introduced by Miné [2006a], is a slight extension of the zone domain.
More precisely, instead of expressing only constraints of the form Vj −Vi ≤ c, the octagon
domain can express constraints with two variables and unit coefficients, i.e., each coefficient
can be independently +1 or −1. Octagonal constraints have the form: ±Vi ± Vj ≤ c.

The octagon domain uses the same kinds of data-structures and algorithms as zones,
i.e., potential graphs, difference bound matrices, and shortest path closure. It has also
the same cubic time and quadratic space complexity. As it is more expressive and more
symmetric, it is much more used in practice than zones for program analysis; however,
as it is slightly more complex, we chose to present the zone domain in details, and only
discuss here briefly the additional technical details that are specific to octagons. We will
also illustrate our domains with a static analysis example in the octagon domain.

The term octagon comes from the fact that, in two dimensions, abstract elements are
octagon-shaped, having at most eight corners, although this is no longer true in higher
dimensions. The same shapes are called “simple sections” by Balasundaram and Kennedy
[1989].

Representation. A set of octagonal constraints ±Vj ± Vi ≤ c is encoded as a differ-
ence bound matrix or, equivalently, a potential graph. We use a variable change to map
octagonal constraints to potential constraints. More precisely, for each variable Vi ∈ V, we
consider two versions, V ′

2i−1 and V ′
2i, which correspond respectively to +Vi and −Vi, i.e.,

Vi may appear in a positive or a negative form. Hence:

Vi − Vj ≤ c is encoded as V ′
2i−1 − V ′

2j−1 ≤ c and V ′
2j − V ′

2i ≤ c
Vi + Vj ≤ c is encoded as V ′

2i−1 − V ′
2j ≤ c and V ′

2j−1 − V ′
2i ≤ c

−Vi − Vj ≤ c is encoded as V ′
2i − V ′

2j−1 ≤ c and V ′
2j − V ′

2i−1 ≤ c
Vi ≤ c is encoded as V ′

2i−1 − V ′
2i ≤ 2c

−Vi ≤ −c is encoded as V ′
2i − V ′

2i−1 ≤ −2c

We note that some constraints can be encoded in two ways, and we will assume a coherence
property: whenever a constraint appears in one form with some bound c, the equivalent
one appears with the same bound c. We also note that unary constraints, such as Vi ≤ c,
can be encoded directly as Vi + Vi ≤ 2c, so that we do not need to add a variable V0
representing the constant zero, as we did for zones. Thus, an octagon can be represented
as a DBM with size 2n. As usual, we add the ⊥♯ element to obtain our abstract domain,
hence:

D♯ def= (I ∪ {+∞})(2n)×(2n) ∪ {⊥♯}

Version 2025-05-26 141

CHAPTER 5. RELATIONAL ABSTRACT DOMAINS

V1 + V2 ≤ 3
V2 − V1 ≤ 3
V1 − V2 ≤ 3
−V1 − V2 ≤ −3
2V2 ≤ 2
−2V2 ≤ 8

V ′
1

3 //

3

��

V ′
3

oo

3

��
8

uu
V ′

4

OO

3
//

2

55

V ′
2

oo

OO

V1

V2

(a) (b) (c)

Figure 5.9: A set (a) of octagonal constraints; (b), its representation as a potential graph;
and (c) the octagon it represents.

A DBM m represents the following set γ(m):

γ(m) def= { (v1, . . . , vn) ∈ P | (v1,−v1, . . . , vn,−vn) ∈ γDBM (m) }
where:
γDBM (m) def= { (v1, . . . , v2n) ∈ I2n | ∀i, j ∈ [1, 2n]: vj − vi ≤ mij }

(5.19)

where we reused the concretization of potential constraints (5.10), here denoted as γDBM

to avoid any ambiguity.
Due do our numbering of variables, variable Vi corresponds to the lines and columns

numbered 2i − 1, for +Vi, and 2i, for −Vi. Given i ∈ [1, 2n], we denote as ı̄
def= i − 1

if i is even, and ı̄
def= i + 1 if i is odd, i.e., if i corresponds to +Vj , then ı̄ corresponds

to −Vj , and if i corresponds to −Vj , then ı̄ corresponds to +Vj . Hence, for instance, the
coherence property, stating that the two potential constraint representations of an octagon
constraint are equivalent, is written simply: ∀i, j: mij = mȷ̄̄ı.

Figure 5.9.(a) gives an example of octagonal constraints over {V1, V2}. Then,
Fig. 5.9.(b) gives the encoding as a potential graph, using the set of variables
{V ′

1 , V ′
2 , V ′

3 , V ′
4} representing intuitively {V1,−V1, V2,−V2} (we could have used an equiv-

alent DBM representation as well), and Fig. 5.9.(c) gives the corresponding set of points.

Order structure. The very same order structure we used on DBM representing zones
can be used on DBM representing octagons. We have a lattice (D♯,⊑♯,⊔♯,⊓♯,⊥♯,⊤♯) where
⊑♯, ⊔♯, and ⊓♯ are defined element-wise, and ⊤♯ has all its elements set to +∞. As for
zones, if I ∈ {Z, R}, then the lattice is complete, and we have a Galois connection (P(P),⊆
) −−−→←−−−α

γ
(D♯,⊑♯) with α(∅) def= ⊥♯ and, when S ̸= ∅:

[α(S)]ij
def= max { v′

j − v′
i | ∃(v1, . . . , vn) ∈ S: ∀k: v′

2k−1 = vk = −v′
2k }

Strong normalization. The DBM normal form m∗ is not a normal form with respect
to the octagonal concretization γ (5.19): we can have two different matrices that are closed
by shortest path and yet represent the same octagon. Consider, for instance: (V ′

1 − V ′
2 ≤

Version 2025-05-26 142

5.4. THE ZONE AND OCTAGON DOMAINS

2)∧ (V ′
3 −V ′

4 ≤ 2), which represents (2V1 ≤ 2)∧ (2V2 ≤ 2), and (V ′
1 −V ′

2 ≤ 2)∧ (V ′
3 −V ′

4 ≤
2)∧ (V ′

1 −V ′
4 ≤ 2)∧ (V ′

3 −V ′
2 ≤ 2), which represents (2V1 ≤ 2)∧ (2V2 ≤ 2)∧ (V1 + V2 ≤ 2).

Both systems are in normal form, and yet, both represent the same set. Intuitively, the
problem is that the shortest path closure only saturates our constraint system by applying
deductions of the form (V ′

1 −V ′
2 ≤ a)∧ (V ′

2 −V ′
3 ≤ b) =⇒ (V ′

1 −V ′
3 ≤ a + b). But, because

the relation ∀i: V ′
i = −V ′

ı̄ implicitly holds due to our representation encoding, other forms
of valid deductions are not applied by the shortest path closure. More precisely, from
V ′

i − V ′
ı̄ ≤ a and V ′

ȷ̄ − V ′
j ≤ b, we should be able to deduce that V ′

i − V ′
j ≤ (a + b)/2.

Indeed, V ′
i − V ′

ı̄ ≤ a and V ′
ȷ̄ − V ′

j ≤ b both represent unary constraints over V, and two
unary constraints can be added to derive an octagonal constraint.

Bagnara et al. [2008a] prove that, in order to saturate an octagon with respect to
both kinds of constraints, it is sufficient to first saturate with respect to shortest path
closure, and then saturate with respect to adding unary constraints. We thus replace the
normalization m∗ with the so-called strong normalization, denoted as m• and defined as:

∀i, j: [m•]ij
def= min(m∗

ij , (m∗
īı + m∗

ȷ̄j)/2) (5.20)

where m∗ was defined in (5.12) and can be computed by Floyd–Warshall’s algorithm
(5.14). Note the division by 2: indeed, a unary constraint is encoded as Vi + Vi ≤ a or
−Vi−Vi ≤ b; adding two such constraints gives a constraint of the form ±2Vi±2Vj ≤ a+b,
which must be divided by 2 to obtain an octagonal constraint. Similarly to the closure,
the strong closure can be computed in cubic time.

Abstract operators. The octagon operators are extremely similar to the zone ones; we
simply need to employ the strong normalization instead of the classic one. For instance:

γ(m) = γ(n) ⇐⇒ m• = n•

γ(m) ⊆ γ(n) ⇐⇒ m• ⊑♯ n
m ∪♯ n def= m• ⊔♯ n•

m ∩♯ n def= m ⊓♯ n

(5.21)

The tests and assignments are similar. We can handle exactly the non-deterministic
assignment Vj ← [−∞, +∞], which uses the strong normalization to avoid losing implicit
constraints:

∀k, l:
[
S♯J Vj ← [−∞, +∞] Km

]
kl

def=

+∞ if k ∈ {2j − 1, 2j}

or l ∈ {2j − 1, 2j}
m•

kl otherwise

Exact tests and assignments can be extended to tests of the form ±Vi±Vj ≤ c and assign-
ments of the form Vj ← ±Vi + c. We can also extend the approximate affine assignment
Vj ← e of (5.15) to infer bounds on expressions of the form ±Vj±Vi for every i. Finally, the
widening ▽ (5.16), including more advanced widenings such as widening with thresholds
▽T (5.17), and narrowing △ (5.18), remain exactly the same: they operate point-wise on
every DBM element.

Version 2025-05-26 143

CHAPTER 5. RELATIONAL ABSTRACT DOMAINS

Integer octagons. While the zone domain worked equally well and in a similar fashion
for integers, reals, and rationals, this is not the case for octagons. In particular, we glossed
over the division by 2 in (5.20), required when computing (m∗

īı + m∗
ȷ̄j)/2. While it is sound

to replace it with the stricter integer bound ⌊(m∗
īı + m∗

ȷ̄j)/2⌋, the result does not provide a
normal form. Ensuring the saturation of constraint propagation requires extra propagation
steps. We refer to Bagnara et al. [2008a] for a description of a normalization algorithm for
integer octagons that still runs in cubic time.

5.4.6 Octagon Analysis Example

We illustrate the use of weakly relational domains with the octagon domain, as it is more
used in practice than the zone domain. Consider the following program:

Y ← 0;
while 1 = 1 do

X ← [−128, 128];
D ← [0, 16];
S ← Y ;
Y ← X;
R← X − S;
if R ≤ −D then Y ← S −D endif ;
if R ≥ D then Y ← S + D endif

done

This program is an infinite loop modeling a reactive program, which transforms a stream
of inputs into a stream of outputs, with the help of some internal state. At each loop
iteration, a new input is fetched in [−128, 128] into X and a new output is stored into Y .
The goal is to have Y follow X as closely as possible, with the extra requirement that two
successive values of Y should not differ from more than D in absolute value. To achieve
this, a state variable S is used to remember the value of Y from the previous iteration. We
first set Y to X and, if X − S, stored into R, overflows D, we clamp Y to either X + D
or X −D. The maximal slope D is itself fetched anew at each iteration from an input in
[0, 16]. This program is inspired from an actual embedded control-command code.

The goal of our static analysis is to find a tight bound on Y . In fact, Y actually
ranges in [−128, 128], the same range as X. Because of the assignments Y ← S −D and
Y ← S + D, this is far from obvious. An analysis must be able to exploit the fact that
R = X − S, as well as the guards R ≤ −D and R ≥ D protecting these assignments, to
deduce the correct bound. We compare the analysis performed in the interval domain, the
octagon domain, and the polyhedron domain.

Interval analysis. An interval analysis without widening will compute the following se-
quence of intervals for Y at the loop head trying to infer a loop invariant: [0, 0], [−144, 144],
[−160, 160], etc. More generally, at iteration n, we get Y ∈ [−128−16n, 128+16n], and the
sequence does not converge naturally. Indeed, the tests R ≤ −D and R ≥ D guarding the
assignments Y ← S −D and Y ← S + D do not bring any information using the interval

Version 2025-05-26 144

5.5. THE TEMPLATE DOMAIN

domain, hence, at each iteration, Y is assumed to be increased by [−16, 16], starting at
[−128, 128].

When accelerating the convergence using a widening, we get, after a finite number of
iterations, Y ∈ [−∞, +∞], which is very coarse. Note that, as no interval for Y is stable
in an interval analysis, it is no use employing different widenings, narrowings, or advanced
iteration strategies (4.7): we will always find Y ∈ [−∞, +∞].

Octagon analysis. The octagon domain fares better than the interval one as it is rela-
tional. Note, however, that neither assignments R← X − S, Y ← S −D, nor Y ← S + D
can be exactly modeled. We assume that we are employing the octagon domain version of
the approximate assignment operator for affine expressions we defined for zones in (5.15).
Moreover, we assume that we employ a widening with thresholds ▽T (5.17). Then, the
bounds found for Y are [−c, c], where c = min {x ∈ T | x ≥ 144 }, i.e., we find the tightest
bound greater than 144. Note that we cannot find 128 as bound, but only 144 = 128 + 16
due to the loss of precision caused by constraints, such as R = X − S, that cannot be
exactly represented. Moreover, we rely on thresholds to skip to a stable value, above 144,
instead of going to +∞ directly.

Polyhedra analysis. A polyhedra analysis would find that Y ∈ [−128, 128] by employ-
ing a classic polyhedra widening in very few iterations. No thresholds are needed, and we
find directly the tightest bounds. All the tests and assignments used in the analysis feature
exact abstractions. While the polyhedra analysis is more precise and simpler to setup (no
need for thresholds), it is however more costly in time and memory. True to their words,
weakly relational domains, such as the octagon domain, offer a trade-off between cost and
precision, and are sufficient in some contexts where relational invariants are mandatory.

5.5 The Template Domain

The last relational domain we wish to present is another weakly relational domain, in-
between in terms of cost and precision between intervals and polyhedra. More precisely,
the template domain, introduced by Sankaranarayanan et al. [2005], infers conjunctions of
affine inequalities M× V⃗ ≤ C⃗ but, unlike the polyhedra domain, only the right-hand side
C⃗, i.e., the upper bounds are inferred. The left-hand side M, i.e., the coefficients of the
variables in the constraints, are fixed before the analysis is run, and not inferred during the
analysis. Concerning the expressive power, we can see the zone and the octagon domains
(and even the interval domain) as special cases of the template domain, for specific choices
of M. However, unlike those domains, the shape of the left-hand side M is not fixed by
the domain, but can be configured freely by the user before the analysis.

This domain has two unique features. Firstly, its expressiveness is fully parameterized,
so that a user can decide on a cost versus precision trade-off within the domain, and
also adapt the domain to the requirements of a specific program analysis. Secondly, its
algorithmic core is based on linear programming, which is a change from polyhedra based

Version 2025-05-26 145

CHAPTER 5. RELATIONAL ABSTRACT DOMAINS

on the double description method, and from zones and octagons based on shortest path
closure.

As we use general linear algebra, we assume, as we did for the affine equalities and
inequalities domains, that I ∈ {Q, R}.

Representation. We assume that a matrix M ∈ Im×n is fixed. n = |V| is the number
of variables, while m is arbitrary. Intuitively, the set and number of linear expressions on
the left-hand of constraints can be freely chosen. We call M the template.

An abstract element X♯ ∈ D♯ is given by setting the upper bound of each linear
expression, which we store as a m−dimensional vector C⃗. Note, however, that we need
a way to state that a linear expression in M is unbounded — which was not necessary
for polyhedra — hence, we allow the upper bound to be +∞, and our vectors C⃗ live in
(I ∪ {+∞})m. As usual, we also add a ⊥♯ element, which is a canonical representation of
the empty set, thus:

D♯ def= {⊥♯} ∪ (I ∪ {+∞})m

and the concretization is naturally:

γ(C⃗) def= { V⃗ ∈ P |M× V⃗ ≤ C⃗ }

As stated above, the template domain generalizes the interval, zone, and octagon do-
mains, which become special cases for a fixed template M. More precisely:

• for intervals, m = 2n: there is an affine expression Vi and an affine expression −Vi

for every variable Vi ∈ V;

• for zones, m = n2 +n: there is an affine expression Vj−Vi for every i ̸= j, in addition
to the affine expressions representing intervals.

However, from an algorithmic point of view, the domains are implemented quite differently,
and are much less efficient than the native interval and zone domains we presented in
previous sections. The template domain is useful when M remains small but has a complex
structure, featuring more varied expressions, out of the scope of zones.

Order structure. As for zones, we extend the natural total order on bounds (I ∪
{+∞},≤) to vectors, pointwise, to get our partial order ⊑♯ on D♯. We actually get a
lattice structure (D♯,⊑♯,⊔♯,⊓♯,⊥♯,⊤♯), where ⊔♯ is the point-wise maximum, ⊓♯ is the
point-wise minimum, and ⊤♯ maps all affine expressions to +∞. The lattice is complete
if I = R, and we can define an abstraction function. It associates to each affine expression
M⃗i at line i in M the tightest upper bound:

∀i ≤ m: [α(S)]i = max { M⃗i · V⃗ | V⃗ ∈ S }

when S ̸= ∅, and α(S) = ⊥♯ otherwise.

Version 2025-05-26 146

5.5. THE TEMPLATE DOMAIN

Normalization. The concretization γ is not one-to-one: there exist different abstract
elements that represent the same polyhedron. Similarly to the zone domain, we define
a normal form C⃗∗ that tries to tighten the constraints as much as possible, until they
saturate (i.e., touch) the polyhedron γ(C⃗). We have indeed C⃗∗ = α(γ(C⃗)).

The normal form can be effectively computed using linear programming LP:

∀i ≤ m:
[
C⃗∗

]
i

def= LP(⟨M, C⃗ ⟩, Mi)
where:
LP(⟨M, C⃗ ⟩, V⃗) def= max { P⃗ · V⃗ |M× P⃗ ≤ C⃗ }

(5.22)

We have adapted slightly the definition of LP from (5.8) because we manipulate upper
bounds instead of lower bounds. Additionally, standard LP algorithms are able to deter-
mine whether the set of affine constraints M × V⃗ ≤ C⃗ is satisfiable and, if it is not, we
return ⊥♯.

Abstract operators. Using the normal form, we can decide equality and inclusion
exactly:

γ(X♯) = γ(Y ♯) ⇐⇒ X♯∗ = Y ♯∗

γ(X♯) ⊆ γ(Y ♯) ⇐⇒ X♯∗ ⊑♯ Y ♯

which is similar to the case of zones (Sect. 5.4.3).
Also similarly to zones, we can model the union and the intersection by taking, respec-

tively, for each affine expression, the loosest or the strictest of the constraints from both
arguments. The intersection ∩♯ def= ⊓♯ is exact. The union ∪♯ is not exact and, for it to be
optimal, we must use the normal form, i.e., we state X♯ ∪♯ Y ♯ def= X♯∗ ⊔♯ Y ♯∗. The result
is naturally in normal form.

Modeling a test C♯J e ≤ c KC⃗ is very easy if e is an affine expression that happens to be
precisely in the template M. In that case, we simply replace the corresponding coefficient
Ci in C⃗ with min(Ci, c). Other affine tests can be modeled by applying linear programming
to every linear expression Mi in the template M on the polyhedron enriched with the new
constraint:

∀i:
[
C♯J

∑
j αjVj ≤ β KC⃗

]
i

def= LP(
〈[

M
α1 · · ·αn

]
,

[
C⃗
β

]〉
, Mi) (5.23)

In that case, the operator is not exact, but it is optimal. Note that this is more costly to
compute, but we always have the recourse to model the test as the identity, to improve
performance at the cost of precision.

The non-deterministic assignment Vj ← [−∞, +∞], which serves also as a fallback
operator for non-affine assignments can be modeled by putting to +∞ all the bounds Ci

corresponding to a template expression in M where Vj occurs, i.e, Mij ̸= 0. As in the zone
domain, the operator is exact, provided that the argument is in normal form.

For affine assignments Vj ←
∑

i αiVi + β, a simple and universal method is to ex-
ploit the corresponding operator on polyhedra. A template domain element C⃗ can be
viewed as a polyhedron ⟨M, C⃗⟩, on which we apply the polyhedra operator S♯J V ← e KPoly

Version 2025-05-26 147

CHAPTER 5. RELATIONAL ABSTRACT DOMAINS

(Sect. 5.3.3). The result is a general polyhedron that may not obey the template and may
have left-hand side affine expressions that are not in M. However, we can find the smallest
template element that contains it by applying linear programming for each row M⃗i of the
template: Hence, we state:

∀i ≤ m:
[
S♯J V ← e KC⃗

]
i

def= LP(S♯J V ← e KPoly⟨M, C⃗⟩, Mi)

This technique is similar to that employed in the normalization (5.22) and the general
affine test (5.23).

Convergence acceleration. The template domain features infinite increasing and de-
creasing chains. Note that the domain has a similar structure as the interval and the zone
domains: it is composed of a finite number of bounds of fixed affine expressions. We can
thus construct, as in those domains, widenings and narrowings independently on each
bound. For instance, generalizing the classic zone widenings (5.16) and narrowing (5.18),
we define:

∀i ≤ m:
[
C⃗ ▽ D⃗

]
i

def=
{

Ci if Ci ≥ Di

+∞ otherwise

∀i ≤ m:
[
C⃗ △ D⃗

]
i

def=
{

Di if Ci = +∞
Ci otherwise

We could naturally generalize the widening with thresholds as well (5.17). Finally, note
that the result of the widening should not be put in normal form between two iterations,
as it may jeopardize the convergence — this is shown in Ex. 5.18, which was designed for
the zone domain but also holds for a template domain where the template M is that of a
zone.

Template generation. The template domain assumes that a matrix M of template con-
straints is provided. It is not easy to know, before the analysis, which kinds of constraints
will be useful. Obvious candidates are the affine expressions appearing syntactically in
the program and in the assertions we wish to prove. Sankaranarayanan et al. [2005] note,
however, that an expression appearing syntactically at some program point may only
provide a relevant template at that location and not others. They suggest deriving new
expressions valid at other points by applying the effect of program instructions on the
template, propagating it through the program; this operation is similar to a closure by
weakest precondition computation.

It is also possible to rely on a prior, possibly unsound analysis to derive a relevant
template. For instance, Seladji [2017] suggests computing a limited number of concrete
program runs in order to sample the memory states, and then perform a statistical analysis,
called Principal Component Analysis, in order to derive the templates.

Version 2025-05-26 148

5.6. SUMMARY

5.6 Summary

This chapter presented several relational domains. Although all these domains infer affine
invariants, and can thus be seen as semantic restrictions of the most general affine domain,
polyhedra, they differ significantly in the algorithms they use and the associated cost —
their design exploited a variety of algorithms: Gauss elimination, Chernikova’s algorithm,
linear programming, Fourier-Motzkin elimination, shortest-path closure. We sum up these
domains in the table below, together with the invariants they infer and their cost, roughly
in the order of their expressiveness:

domain invariants memory cost time cost Sect.
affine equalities

∑
i αiVi = β O(|V|2) O(|V|3) 5.2

zones Vj − Vi ≤ c O(|V|2) O(|V|3) 5.4
octagons ±Vj ± Vi ≤ c O(|V|2) O(|V|3) 5.4.5
template

∑
i αiVi ≥ β O(m) polynomial 5.5

polyhedra
∑

i αiVi ≥ β exponential exponential 5.3

The theoretical cost of the polyhedra domain is unbounded, and it relies only on the
widening to limit the growth of the representation. It has nevertheless been observed to
be exponential in practice [Nguyen Que, 2010]. The cost of the template domain depends
on the size m of the template. We showed a polynomial time cost to account for the
theoretical polynomial cost of linear programming.

We also observed that relational domains do not feature generic assignments and con-
ditions working equally well on all expressions: precise operators are instead restricted
to expressions that can be exactly expressed in the domain. In particular, for non-linear
expressions, the best we can do is revert to the generic algorithms introduced for non-
relational domains — more precisely, using intervals. This limitation, as well as the non-
monotonicity of the widening, result in the lack of formal guarantee that a more expressive
domain will result in a more precise analysis, although this is often the case in practice.
Finally, we note that, except for the graph-based domains (zones and octagons), the rela-
tional domains use algorithms that do not generalize easily to integers. Yet, we can safely
resort to simple solutions for integers, at the cost of certain exactness and optimality
results.

Many relational and non-relational domains we have seen have the simple form of
a template: a single, fixed formula, with a finite set of unknown quantities that must be
determined — variable bounds [a, b], bounds of affine expressions

∑
i αiVi ≥ β, or constants

a and b in aZ + b. For those, invariant inference can be viewed as a constraint satisfaction
or an optimization problem: i.e., discover the values of these unknowns. However, this
is not the case for the affine equalities domain nor the affine inequalities domain. The
former domain has a bounded number of unknown quantities, but the shape of the affine
expressions is dynamically updated by Gauss elimination during the analysis. The later
domain does not have a bounded number of unknown quantities. Hence, in general, static
analysis by Abstract Interpretation cannot be reduced to constraint satisfaction.

Version 2025-05-26 149

CHAPTER 5. RELATIONAL ABSTRACT DOMAINS

5.7 Bibliographic Notes

The original presentation of the affine equalities analysis by Karr [1976] predates Abstract
Interpretation, but can nevertheless be seen as an abstract domain, without the need for a
widening. It has been since generalized into congruence equalities by Granger [1991], and
later improved by Müller-Olm and Seidl [2005].

The affine inequalities domain, or polyhedra domain, is introduced by Cousot and
Halbwachs [1978]. It is one of the most used relational abstract domains, due to the im-
portance of affine relations in programs. Publicly available implementations include Apron
[Jeannet and Miné, 2009] and PPL [Bagnara et al., 2008b]. They are based on the dou-
ble description method by Chernikova [1968] and LeVerge [1992]. Further works discuss
the case of non-closed polyhedra [Bagnara et al., 2002] and develop new widening tech-
niques [Bagnara et al., 2005a]. Nguyen Que [2010] provides an experimental evaluation of
the performance of different polyhedra algorithms and implementations. The algorithmic
aspects of polyhedra is still an active research subject. For instance, Singh et al. [2017]
propose a polyhedra decomposition method that improves the domain scalability without
loosing any precision. Additionally, recent works focus on the constraint-only representa-
tion, advocated notably by Simon and King [2005]. A recent proposal by Maréchal et al.
[2017] consists in leveraging parametric linear programming methods in order to project
large sets of variables and obtain directly minimized representations. While standard im-
plementations use arbitrary-precision rationals to ensure exact computations, Chen et al.
[2008] discuss the use of floating-point computations in the abstract and provide solutions
to ensure the soundness despite rounding errors. Dually, Miné [2004] discusses the use of
polyhedra to abstract programs using floating-point arithmetic. Finally, Simon and King
[2007] discuss the use of polyhedra to abstract programs that use machine integers.

The idea of weakly relational domains is introduced with the zone domain by Miné
[2001], later generalized to the octagon domain by Miné [2006a]. The efficiency of these do-
mains has then been improved, firstly through algorithmic improvements, by Bagnara et al.
[2008a] and Bagnara et al. [2009] and, secondly, through implementation improvements,
such as leveraging the parallel execution available in GPU by Banterle and Giacobazzi
[2007]. Alternate weakly relational domains, also based on transitive closure algorithms,
include the less expressive pentagon domain by Logozzo and Fähndrich [2010] and the
more expressive “Two variables per inequality” domain by Simon et al. [2002]. Other re-
strictions of polyhedra that rely on different algorithmic principles have been proposed,
including template polyhedra by Sankaranarayanan et al. [2005], zonotopes by Ghorbal
et al. [2009], and parallelotopes by Amato and Scozzari [2012].

Fewer abstract domains go beyond the expressiveness of polyhedra. Linear absolute
relation analysis by Chen et al. [2011] slightly generalizes polyhedra to add absolute value
operators. Abstract domains for polynomial inequalities — so-called semi-algebraic va-
rieties — have been proposed by Rodríguez-Carbonell and Kapur [2007] based on the
complete algorithmic of Gröbner bases, and by Bagnara et al. [2005b] based on an in-
complete reduction to polyhedra, but they face scalability issues. To address these issues,
domains specialized to very specific subsets of non-linear invariants have been proposed;

Version 2025-05-26 150

5.7. BIBLIOGRAPHIC NOTES

they do not generalize affine inequalities and are incomparable with polyhedra. These in-
clude the ellipsoid domain by Feret [2004] to track quadratic invariants found in digital
filters, the arithmetic-geometric domain by Feret [2005] for selected exponential sequences,
and a domain dedicated to quaternion computations presented by Bertrane et al. [2010].

Version 2025-05-26 151

Chapter 6

Domain Transformers

The last two chapters have presented many numeric abstract domains, with various degree
of expressiveness, cost, and precision. In this chapter, we study domain transformers that
allow deriving new domains by combining existing ones.

We start with the observation that, on the semantic level, the set of abstract domains
can be viewed as a lattice, which will prompt us to construct the meet of abstract domains,
allowing the combination of two — or more — domains into a more precise one. We present
a notion of reduced product construction that complements this semantic construction
with an algorithmic view and makes it effective.

We have seen that most of our domains are not closed under union. The approximation
induced by abstract unions is a major source of precision loss. The second part of the
chapter will address this problem by presenting disjunctive completion methods that add
to arbitrary domains the ability to represent precisely, to some extend, disjunctions.

6.1 The Lattice of Abstractions

In this section, we study and compare abstract domains focusing only on their expressive-
ness. That is, we are only interested in the set of concrete properties that can be exactly
represented in the abstract. Moreover, we assume the presence of a Galois connection or,
more precisely, as an abstract domain is viewed here as a subset of the concrete world, the
presence of a Galois embedding (Sect. 2.3.4).

This view is reductive as it ignores the problem of abstract element representation and,
although it provides a semantic notion of best abstraction α◦F ◦γ of concrete operators F ,
it does not provide effective algorithms, nor does it help computing fixpoints in finite time.
It is also useless to discuss about important abstract domains, such as polyhedra, which do
not feature a Galois connection. Finally, note that expressiveness does not equal precision:
an analysis in a more expressive domain may turn out to be less precise in practice, due
to imprecise abstract operators, accumulating imprecisions when combining them, or due
to widening application — see Sect. 4.7.3 for an example. This view nevertheless provides
important insights which will be useful when we will turn to effective constructions.

Version 2025-05-26 153

CHAPTER 6. DOMAIN TRANSFORMERS

Abstract domains. We focus on numeric abstract domains over a set V of variables
with values in I, so that our concrete domain is D def= P(E) where E def= V→ I. An abstract
domain is a set D♯ connected to D through a Galois embedding (D,⊆) −−−→−→←−−−−

α

γ
(D♯,⊑♯).

By Def. 2.13, γ is injective, so that D♯ is isomorphic to γ(D♯), a subset of D. We will thus
assume, without loss of generality, that D♯ ⊆ D. This amounts, for instance, to stating
that an interval is a convex subset of values, rather than a pair of bounds representing an
interval.

Example 6.1 (Interval abstraction revisited). As an example, the integer interval domain
was abstracted from P(Z) through the abstraction (4.6). We rephrase it as follows, given
our view of intervals as sets:

αitv(S) def=
{
∅ if S = ∅
{x ∈ Z | min S ≤ x ≤ max S } otherwise

Moore families. Recall from Thm. 2.4.6 that the set of properties in an abstract domain
is closed under intersection. Such a set is called a Moore family. As observed by Cousot and
Cousot [1979a], there is an equivalence between being a Moore family and the existence
of a Galois embedding. Given a Galois embedding (α, γ) between D and a subset D♯, the
Moore family is simply D♯ = α(D). Given a Moore family, D♯ ⊆ D, the Galois embedding
is given by:

α(S) def=
⋂
{S♯ ∈ D♯ | S ⊆ S♯ }

γ(S♯) def= S♯
(6.1)

The intersection in the definition of α always exists by virtue of the Moore family property.
Thus, in the following, we will equate an abstract domain with a subset of D which forms
a Moore family.

Partial order. In the previous chapters, when we provided a Galois connection, we
always connected an abstract domain with the concrete domain. As all abstract domains
are now subsets ofD, we can also compare two abstract domains, using the reverse inclusion
⊇: a domain D1 is more precise than a domain D2 if D1 ⊇ D2. Hence, abstractions form
a poset, ordered by ⊇.

To simplify the presentation of the partial order, we illustrate this order on value
abstract domains for integers, i.e., abstracting P(Z), but these can be lifted to abstractions
of P(E) through (4.1). For instance, the simple sign domain (Fig. 4.2.(a)) is an abstraction
of the interval domain, as any set of integers that can be represented by a sign can be
represented by an interval. The congruence domain is not comparable with the interval
domain as neither set of integer sets is included in the other. We illustrate this partial
order in Fig. 6.1.

Lattice structure. An important result, stated by Cousot and Cousot [1979a], is that
the poset of abstractions is actually a complete lattice. The least element, i.e., the most

Version 2025-05-26 154

6.1. THE LATTICE OF ABSTRACTIONS

𝓟(ℤ)
concrete domain

{[a,b]} ∪ {⊥}
intervals

{⊥,0,≥0,≤0,⊤}

signs

⊑

{aℤ+b} ∪ {⊥}

congruences

intervals ∧ congruences

{⊥,⊤}

dead code

no information

{⊤}

{0,⊥,⊤}

nullness

 ℤ ∪ {⊥,⊤}

constants

Figure 6.1: Hasse diagram for a part of the lattice of value abstractions, showing some
domains from Chap. 4, and their combination by lub and glb.

Version 2025-05-26 155

CHAPTER 6. DOMAIN TRANSFORMERS

precise domain, is naturally the concrete domain, at the bottom of Fig. 6.1. The greatest
element, i.e., the least precise domain, at the top of Fig. 6.1, only features a single element
{⊤}, so that it brings no information. The domain immediately below in Fig. 6.1 has two
elements: {⊥,⊤}. While it may not seem very powerful as it cannot give any information
about variable values, it is nevertheless able to distinguish definitely dead code (⊥, as the
variable has no possible value) from potentially live code (⊤).

The least upper bound of two domains gives the most precise domain which is coarser
than both domains. As the intersection of two Moore families remains a Moore family, the
lub simply selects the sets of integers representable in both domains. For instance, the lub
of intervals and congruences gives the constant domain, as shown again in Fig. 6.1. The
lub of signs and constants, which is the same as the lub of signs and congruences, gives
a new domain, nullness {0,⊥,⊤}, only able to state whether a variable is necessarily null
or possibly not.

The greatest lower bound is far more interesting. It gives the coarsest domain that is
more precise than both domains. It must naturally be able to represent properties from
either domain. But, as the result is a Moore family and must be closed under intersection,
the glb must be able to represent exactly conjunctions of properties from both domains.
Generally, this includes many more properties than those in either domain. Another jus-
tification for this is that the union of two Moore families is generally not a Moore family,
and must be enriched with new elements. In Fig. 6.1, we show the glb of the interval and
the congruence domains. We obtain a new domain that can represent exactly integer sets
of the form [a, b] ∩ (cZ + b), such as for instance: {0, 2, 4}.

The glb of domains allows deriving new, more expressive domains, from existing ones,
and is thus an important tool in static analysis design. The next section discusses how to
effectively construct the glb of two, or more domains.

6.2 Product Domains

The previous section justified, from a semantic point of view, the existence of a domain
combiner able to construct a new, more precise abstract domain from two existing domains.

We revert now to a more effective view of abstract domains. We thus assume that we
are given two domains, D♯

1 and D♯
2, following Def. 3.1 — or, when discussing non-relational

domains, two value domains, B♯
1 and B♯

2, following Def. 4.1. We will denote as D♯
1×2 the

glb of both domains. As seen in the last section, D♯
1×2 expresses conjunctions of properties

from the argument domains. We will naturally represent them using a pair of properties,
i.e.:

D♯
1×2

def= D♯
1 ×D

♯
2 (6.2)

hence, D♯
1×2 is a product domain.

Version 2025-05-26 156

6.2. PRODUCT DOMAINS

loc. (a) (b) (c) (d)
3 V ∈ [11, 12] V ∈ 2Z + 1 V ∈ [11, 12] ∧ V ∈ 2Z + 1 V = 11
4 V = 12 V ∈ 2Z + 1 V = 12 ∧ V ∈ 2Z + 1 ⊥
5 V = 0 V ∈ 2Z V = 0 ∧ V = 0 ⊥
6 V ∈ [0, 11] V ∈ Z V ∈ [0, 11] ∧ V ∈ Z V = 11

Table 6.1: Result of the analysis of the program (6.3) at selected program points 3–6
in: (a) the interval domain, (b) the congruence domain, (c) the direct product of intervals
and congruences, and (d) their reduced product.

6.2.1 Motivating Example

We consider, as motivating example, the following program:

1 : V ← 1;
2 : while V ≤ 10 do V ← V + 2 done;
3 : if V ≥ 12 then
4 : V ← 0
5 : endif
6 :

(6.3)

In the concrete, the loop iterates on odd numbers, from 1 to 11, at which point the loop
exits with V = 11 and the then branch of the following conditional is not executed, so
that V remains at 11 when the program ends at point 6. We now consider a static analysis
in the non-relational domains of intervals (Sect. 4.5) and congruences (Sect. 4.8). The
results are summarized in columns (a)–(b) of Table 6.1.

• The interval domain finds, as loop invariant, [0, 12]. It exits the loop with invariant
[11, 12]. Hence, the then branch of the conditional can be executed with V = 12, V
is reset to 0 and we get, at the end of the program, V ∈ [0, 11] — the join of 0 and
11.

• The congruence domain finds, as loop invariant, V ∈ 2Z + 1, i.e., V is odd. The
test V ≥ 12 is abstracted as the identity, so that the then branch is executed and
we find V = 0 at the end of the branch (as congruences can also exactly represent
singletons). After the conditional, we get that V is either odd or 0, hence, we loose
all congruence information: V ∈ Z.

Although the invariant V = 11 at the end of the program is expressible in both domains,
neither domain can infer it on its own. We see, however, that interval and congruence
information would benefit from being combined together to prove that V = 12 is not
possible as V is necessarily odd during the loop.

6.2.2 Direct Product

A first idea to define the operators required on D♯
1×2

def= D♯
1 ×D

♯
2 from those available on

D♯
1 and D♯

2 is to apply them element-wise.

Version 2025-05-26 157

CHAPTER 6. DOMAIN TRANSFORMERS

Definition 6.1 (Direct product). The direct product D♯
1×2 of D♯

1 and D♯
2 is defined as:

• D♯
1×2

def= D♯
1 ×D

♯
2

• γ1×2(A♯
1, A♯

2) def= γ1(A♯
1) ∩ γ2(A♯

2);

• (A♯
1, A♯

2) ⊑♯
1×2 (B♯

1, B♯
2) def⇐⇒ (A♯

1 ⊑
♯
1 B♯

1) ∧ (A♯
2 ⊑

♯
2 B♯

2);

• ⊥♯
1×2

def= (⊥♯
1,⊥♯

2);

• ⊤♯
1×2

def= (⊤♯
1,⊤♯

2);

• α1×2(S) def= (α1(S), α2(S))
optionally, if D♯

1 and D♯
2 feature abstraction functions;

• S♯J s K1×2(A♯
1, A♯

2) def= (S♯J s K1A♯
1, S♯J s K2A♯

2);

• C♯J c K1×2(A♯
1, A♯

2) def= (C♯J c K1A♯
1, C♯J c K2A♯

2);

• (A♯
1, A♯

2) ∪♯
1×2 (B♯

1, B♯
2) def⇐⇒ (A♯

1 ∪
♯
1 B♯

1, A♯
2 ∪

♯
2 B♯

2);

• (A♯
1, A♯

2) ∩♯
1×2 (B♯

1, B♯
2) def⇐⇒ (A♯

1 ∩
♯
1 B♯

1, A♯
2 ∩

♯
2 B♯

2);

• (A♯
1, A♯

2) ▽1×2 (B♯
1, B♯

2) def⇐⇒ (A♯
1 ▽1 B♯

1, A♯
2 ▽2 B♯

2). ■

A pair (A♯
1, A♯

2) ∈ D♯
1×2 represents a conjunction of properties, i.e., the intersection

of the sets defined by γ1(A♯
1) and γ2(A♯

2). We can prove easily that γ1×2 is monotonic,
that all the operators on D♯

1×2 are sound, provided that those on D♯
1 and D♯

2 are, that the
widening enforces termination, and if (α1, γ1) and (α2, γ2) are Galois connections, then so
is (α1×2, γ1×2), i.e., we obey the definition of an abstract domain (Def. 3.1).

The product of two value abstract domains (Def. 4.1) is similarly defined point-
wise. For instance, we would define a sound abstract addition as: (A♯

1, A♯
2) +♯

1×2
(B♯

1, B♯
2) def⇐⇒ (A♯

1 +♯
1 B♯

1, A♯
2 +♯

2 B♯
2).

Example analysis. Coming back to the program example of Sect. 6.2.1, we perform
an analysis in the non-relational abstract domain obtained by instantiating the generic
non-relational construction of Sect. 4.1 with the product of intervals and congruences.
The results, shown in Table 6.1.(c), are disappointing: we still find V ∈ [0, 11] at the end
of the program.

Indeed, at program point 3, the analysis finds the pair of invariants ([11, 12], 2Z + 1).
Then, the test V ≥ 12 is performed independently on both domains, which gives (12, 2Z+1)
at location 4, and the assignment gives (0, 0) at location 5. We get the same result by
analyzing the program in the product domain as when performing the analyses separately,
and then taking the conjunction of the results at each program point.

Version 2025-05-26 158

6.2. PRODUCT DOMAINS

The issue is that, although we perform the analysis in a more expressive domain, our
operators do not benefit from this. To improve the precision, it is necessary to allow some
form of communication between the domains, so that the analysis in each domain benefits
from the information available in the other domain.

6.2.3 Fully Reduced product

The notion of reduced product addresses the precision issues of the direct product from the
previous section. It keeps the idea of applying the abstract operations in parallel in each
domain, but it interleaves these operations with a so-called reduction step, that transfers
information between the components of a pair of abstract elements.

We consider first the ideal case, where both D♯
1 and D♯

2 feature Galois connections. An
optimal reduction can be then be defined as follows:

Definition 6.2 (Optimal reduction). The reduction ρ : D♯
1×2 → D

♯
1×2 between the domains

D♯
1 and D♯

2 is defined as:

ρ(A♯
1, A♯

2) def= (α1(γ1×2(A♯
1, A♯

2)), α2(γ1×2(A♯
1, A♯

2)))

■

Example 6.2 (Reduction between intervals and congruences). We define a reduction on
value abstractions ρb : B♯ → B♯ where B♯ def= B♯

int × B♯
cong is the product of the interval

domain and the congruence domain:

ρb([a, b], cZ + d) def=

(⊥♯

b,⊥
♯
b) if a′ > b′

([a′, a′], 0Z + a′) if a′ = b′

([a′, b′], cZ + d) if a′ < b′

where:
a′ def= min {x ≥ a | x ≡ d [c] }
b′ def= max {x ≤ b | x ≡ d [c] }

This reduction operates in two steps. Firstly, we use the congruence information cZ + d to
tighten the bounds of [a, b], stating that the new bounds must be in cZ+d; we get the interval
[a′, b′]. Secondly, we consider the two special cases where the interval information can be
exactly represented in the congruence domain and refine it: the empty interval ⊥♯

b, and the
singleton [a′, a′]; otherwise, the second step returns the congruence information unchanged.
We can check that these two steps are sufficient to actually compute the optimal reduction,
as defined semantically in Def. 6.2. For instance, ρb([11, 12], 2Z + 1) = ([11, 11], 0Z + 11).

The reduction can then be extended point-wise to non-relational states D♯ based on B♯:
ρ(X♯) def= λV ∈ V. ρb(X♯(V)). ♦

Version 2025-05-26 159

CHAPTER 6. DOMAIN TRANSFORMERS

Analysis with reduction. We now modify the direct product domain defined in
Sect. 6.2.2, applying a reduction after each operation. More precisely:

Definition 6.3 (Reduced product). The reduced product D♯
1×2 of D♯

1 and D♯
2 is defined

as the direct product of Def. 6.1 where the following operators are modified to apply the
reduction ρ:

• S♯J s K1×2(A♯
1, A♯

2) def= ρ(S♯J s K1A♯
1, S♯J s K2A♯

2);

• C♯J c K1×2(A♯
1, A♯

2) def= ρ(C♯J c K1A♯
1, C♯J c K2A♯

2);

• (A♯
1, A♯

2) ∪♯
1×2 (B♯

1, B♯
2) def⇐⇒ ρ(A♯

1 ∪
♯
1 B♯

1, A♯
2 ∪

♯
2 B♯

2);

• (A♯
1, A♯

2) ∩♯
1×2 (B♯

1, B♯
2) def⇐⇒ ρ(A♯

1 ∩
♯
1 B♯

1, A♯
2 ∩

♯
2 B♯

2).

Alternatively, if a reduction ρb is defined on an abstract value domain, we would apply
it after every operator from Def. 4.1, for instance: (A♯

1, A♯
2) +♯

1×2 (B♯
1, B♯

2) def= ρb(A♯
1 +♯

1
B♯

1, A♯
2 +♯

2 B♯
2). ■

The benefit of this method is that we reuse all the data-structures and algorithms
developed for each domain. Each new reduced product only requires a single additional
function tied to the pair of chosen domains, which is much less effort than redesigning a
new domain and all its operators from scratch.

However, this ease may come at the cost of precision. Indeed, applying a reduction
operator after an abstract operator, even in the best scenario where both are optimal,
amounts to combining optimal operators, and we know that it may not give the best
abstraction of the combination.

Example analysis. Coming back to the example of Sect. 6.2.1, we perform an analysis
in the reduced product of intervals and congruences. The results are shown in Table 6.1.(d).
At point 3, the loop outputs the pair ([11, 12], 2Z+1) which is reduced into ([11, 11], 0Z+11)
by the reduction from Ex. 6.2. Thus, the interval test C♯J V ≥ 12 Kint will output⊥♯

int which,
by further reduction, gives (⊥♯

int ,⊥♯
cong), despite the fact that the test is the identity in

the congruence domain. Hence, the then branch is dead for both domains. The program
terminates with the result of the else branch only, i.e., V = 11.

Remark 6.1. Note that, when considering the reduced product of non-relational domains,
we have a choice of either constructing the reduced product of the underlying value abstract
domain, which is then lifted to a state domain following Def. 4.1, or constructing separate
state domains following Def. 4.1, and then apply the reduction lifted to states. Although,
on our example, this does not make any difference, in general, the former is more precise
as the reduction is applied at a finer granularity — e.g., after each abstract operator +♯

b,
−♯

b, etc., instead of once after each atomic statement S♯J V ← e K, C♯J c K. ♢

Version 2025-05-26 160

6.2. PRODUCT DOMAINS

Reduction and widening. Note that the reduced product of Def. 6.3 applies the re-
duction operator ρ after a join ∪♯ and after an intersection ∩♯, but refrains from applying
it after a widening ▽. Indeed, although applying the widening on each component of
the product independently ensures termination, this is no longer the case if we apply a
reduction in-between widening steps. Intuitively, the reduction may strengthen the ab-
stract information, such as providing finite interval bounds, while the widening enforces
convergence by setting bounds to infinity.

Example 6.3. The situation is similar to that of the zone widening from Sect. 5.4.4. We
can actually rephrase the counter-example of Ex. 5.18, initially stated in the zone domain,
as the reduced product of two domains: the interval domain, tracking the bounds of X
and Y , and a special domain that tracks the bound of X − Y only. The optimal reduction
operator ρ would use the bounds discovered on X − Y and X to refine Y , and the bound
on X − Y on Y to refine X — simulating the effect of the zone closure, and preventing
convergence. Additional examples can be found in [Cousot et al., 2006]. ♦

Our solution is to avoid performing a reduction after a widening application. Other
solutions proposed in the literature include strengthening the definition of the widening
to make it robust against interference from reduction, such as proposed by Cousot et al.
[2006].

6.2.4 Partially Reduced Products

The reduction of Def. 6.2 relies on Galois connections, and thus suffers from the same
drawbacks as the optimal abstraction of operators F as α ◦ F ◦ γ (Thm. 2.5). In case no
Galois connection exists, or Def. 6.2 cannot be efficiently implemented, we can settle for
a partial reduction, that is, an operator on D♯

1×2 that is only guaranteed to be sound and
to only improve precision, never degrade it:

Definition 6.4 (Partial reduction). An operator ρ : D♯
1×2 → D

♯
1×2 is a partial reduction

between the domains D♯
1 and D♯

2 if:

(Y ♯
1 , Y ♯

2) = ρ(X♯
1, X♯

2) =⇒ γ1×2(Y ♯
1 , Y ♯

2) = γ1×2(X♯
1, X♯

2) ∧
γ1(Y ♯

1) ⊆ γ1(X♯
1) ∧

γ2(Y ♯
2) ⊆ γ2(X♯

2)

The first condition, i.e., the equality up to γ1×2, states the soundness. The two inclu-
sions state that, although the product concretization is the same, each element has been
strengthened in its respective domain. ■

Our partial reduction can replace the optimal reduction in the reduced product of
Def. 6.3 to obtain a more flexible, partially reduced product, applicable in the absence of
a Galois connection and allowing various cost/precision trade-offs in the reduction.

Version 2025-05-26 161

CHAPTER 6. DOMAIN TRANSFORMERS

Simple reduction. Given an arbitrary pair of domains D♯
1 and D♯

2, we can define the
following reduction that merges the least elements:

ρ(A♯
1, A♯

2) def=
{

(⊥♯
1,⊥♯

2) if (A♯
1 = ⊥♯

1) ∨ (A♯
2 = ⊥♯

2)
(A♯

1, A♯
2) otherwise

This reduction is extremely simple, yet, it is more precise than the direct product and can
be useful in some cases. Consider, for instance, a conditional if · · · else · · · endif , where
the end of one branch can be proven to be unreachable using one domain, i.e., we get an
element (⊥♯

1, A♯
2), while the end of the other branch can be proven to be unreachable using

the other domain, as (A♯
1,⊥♯

2). Then, the reduced product will reduce both branches to
(⊥♯

1,⊥♯
2) and discover that the code after the conditional is not reachable. A non-reduced

product, however, will compute the join (⊥♯
1, A♯

2) ∪♯
1×2 (A♯

1,⊥♯
2) = (A♯

1, A♯
2), and continue

the analysis with a non-empty state after the conditional.

Reducing intervals and affine equalities. As a more interesting example, we consider
a partially reduced product between the interval domain and the affine equalities domain
from Sect. 5.2. Our goal is to construct a relational domain able to express bounds and
also arbitrary affine equalities, without resorting to the polyhedra domain, which is rather
costly.

We can exploit the methods developed in constraint programming to solve interval
linear equality systems to design our reduction. For instance, the interval Gauss-Seidel
method works as follows: given an interval information mapping an interval [ai, bi] to
each variable Vi, then, for each constraint

∑
i αijVi = βj , denoting as Vk the variable

appearing in leading position, i.e., αkj = 1, we refine the bounds of Vk by propagating
the bounds of the Vi in the equation: Vk = βj −

∑
i ̸=k αijVi. Thus, we replace [ak, bk] with

[ak, bk] ∩♯
b (βj −♯

b

∑♯
i ̸=k αij ×♯

b [ai, bi]), evaluated in the interval domain.
The algorithm has a quadratic time cost in the worst case, as each coefficient in the

system is used once. As expected, it does not perform an optimal reduction. We refer the
interested reader to the work of Chiu and Lee [2002] for more information and suggestions
for improvements on the interval Gauss-Seidel method

Local iterations. In the reduction between intervals and affine equalities, we used one
domain (affine equalities) to refine the other one (intervals). Another example, the optimal
reduction between intervals and congruences (Ex. 6.2), could be decomposed into two
steps, where each step refines only one of the domains, using the other one. This idea
is generalized by Granger [1992], who suggests constructing ρ : D♯

1×2 → D
♯
1×2 from two

functions ρ1 : D♯
1×2 → D

♯
1 and ρ2 : D♯

1×2 → D
♯
2, refining one domain at a time. He further

observes that not all information is always transported from one domain to the other in
one application of ρ1 or ρ2, and it is worth iterating them. We then obtain a decreasing
sequence, and actually retrieve the method of local iterations, already mentioned in non-
relational tests (Sect. 4.6.3).

Version 2025-05-26 162

6.2. PRODUCT DOMAINS

While, in constraint programming settings, such iterations are generally performed
until the fixpoint is reached, we can, in order to be more efficient, only iterate a few times,
or use a narrowing operator (Sect. 4.7.2).

In the reduction between intervals and congruences, only one application of each reduc-
tion is necessary, provided we first refine intervals from congruences, and then congruences
from intervals. In the reduction between intervals and affine equalities, although we only
refine one way, from affine equalities to intervals, it is worth iterating this process several
times to gain more precision.

N−ary reduced product. So far, our (partially) reduced products only involved two
abstract domains. It is naturally possible to build (partially) reduced products for more
than two domains.

One simple idea is to consider a n−ary combination as a sequence of binary combina-
tions. For instance, the product of D♯

1, D♯
2, and D♯

3 can be written as (D♯
1 × D

♯
2) × D♯

3 or
D♯

1 × (D♯
2 × D

♯
3), or even D♯

2 × (D♯
1 × D

♯
3). Note that the parenthesizing matters, even if

each product uses an optimal reduction, as optimality does not compose.
Alternatively, we can construct directly a product of N domains D♯

1, . . . , D♯
N . The

optimal reduction of Def. 6.2 generalizes easily to N domains, as:

ρ(A♯
1, . . . , A♯

N) def= (α1(γ(A♯
1, . . . , A♯

N)), . . . , αN (γ(A♯
1, . . . , A♯

N)))
where γ(A♯

1, . . . , A♯
N) def= γ1(A♯

1) ∩ · · · ∩ γN (A♯
N)

and, likewise, the properties a partial reduction for N domains must satisfy can be easily
deduced by generalizing Def. 6.4.

The method by Granger [1992], discussed above on the case of two domains, provides
however a much more practical solution: given D♯ def= D♯

1×· · ·×D
♯
N , we provide a reduction

ρi : D♯ → D♯
i for each domain D♯

i , and apply them in turn, possibly using local decreasing
iterations to improve the precision. With this method, it is extremely easy to add a new
abstract domain to an analysis. Given a domain D♯

N+1 to add, we:

• add a reduction ρN+1 : D♯ → D♯
N+1;

• optionally improve some of the ρi in case they can benefit from the information
available in D♯

N+1, which is now included in D♯.

This leads to an attractive modular, scalable, and extensible design for static analyzers.
We refer the reader to the description of the reduced product used in the Astrée ana-

lyzer by Cousot et al. [2006] for further ideas on the subject and practical implementation
guidelines.

6.2.5 Variable Packing

As a last application of the reduced product, we consider the case where an expensive
domain, such as polyhedra, is not applied to the whole set V of variables, but rather

Version 2025-05-26 163

CHAPTER 6. DOMAIN TRANSFORMERS

to several smaller subsets of V: V1, . . . , VN ⊆ V, called variable packs, in order to trade
precision for efficiency. On the one hand, we will miss relations between variables that do
not belong to the same pack; on the other hand, if we keep the sizes of the packs bounded,
and the number of packs linear in the number of variables, we can hope for an analysis
that scales linearly with the number of variables instead of super-linearly.

More precisely, given a relational base abstract domain D♯, we construct an abstract
domain D♯ where an element is composed of an element of D♯ for each pack:

D♯ def= {1, . . . , N} → D♯

which can be seen as a product of N copies of D♯, albeit with different variable sets.
In an abstract element (X♯

1, . . . , X♯
N) ∈ D♯, each X♯

i can only track the relationships
between the variables in Vi, which causes a loss of precision. To recover some precision,
we allow variables to appear in several packs, i.e., we do not necessary have Vi ∩ Vj = ∅
when i ̸= j. Given i ̸= j such that Vi ∩Vj ̸= ∅, then we can employ a reduction to transfer
information about Vi∩Vj between X♯

i an X♯
j . Variable packing is thus, indeed, an instance

of reduced product.

Reduction. There are several possible reductions over D♯, with different cost versus
precision trade-offs:

1. The simplest reduction would use a value abstraction, such as intervals, to transfer
information about each variable independently. More precisely, for each variable
V ∈ Vi ∩ Vj , we extract a value abstraction A♯ for V from X♯

i and B♯ from X♯
j . We

then compute the intersection, in the value abstraction, A♯ ∩♯
b B♯. Finally, we inject

this value into X♯
i and X♯

j . When using intervals, for instance, the injection can take
the form of conditions C♯J (a ≤ V) ∧ (V ≤ b) K enforcing the new bounds.

2. We can be more precise, and more costly, by transporting relational information
between X♯

i and X♯
j . More precisely, we would first project both X♯

i and X♯
j over the

variable set Vi ∩ Vj by eliminating spurious variables. Then we intersect the results
in D♯ to get a core that is valid in both X♯

i and X♯
j . Finally we inject the core into

X♯
i and X♯

j . One method to perform this injection is to extend the core to discuss
about all variables in Vi — resp. Vj — by setting missing variables to [−∞, +∞],
and then intersect, in D♯, the extended core with X♯

i — resp. X♯
j .

3. Projecting out variables before performing the intersection may lose information.
Thus, we can imagine a more precise, but more costly method that avoids this
loss of information by computing the intersection over Vi ∪ Vj instead of Vi ∩ Vj .
More precisely, both X♯

i and X♯
j are first extended to Vi ∪ Vj by adding missing

variables, initialized to [−∞, +∞]. We then compute the intersection, and project
back respectively onto Vi and Vj to get the new abstract elements, respectively X♯

i

and X♯
j .

Version 2025-05-26 164

6.3. DISJUNCTIVE COMPLETIONS

This method, defined on pairs of packs, can be generalized to more than two packs at
once. Alternatively, the pairwise reduction can be iterated over pairs of packs, following
Granger [1992]’s local iteration method. Further reduction techniques, based on graph
closure algorithms and targeting specifically packing domains, are discussed by Bouaziz
[2012].

Packed domain. We now present the abstract operations on D♯, derived from those
on individual packs in D♯. All the binary operations: join ∪♯, intersection ∩♯, widening ▽,
narrowing △, are performed element-wise, applying the operation on the abstract elements
corresponding to the same pack.

For assignments S
♯J V ← e K, however, we only need to apply the abstract operation

S♯J V ← e KX♯
i to abstract elements X♯

i corresponding to packs Vi where V appear, i.e.,
V ∈ Vi. Indeed, the abstract elements for packs where V does not occur are unchanged.
The problem is that the expression e may feature variables that are not in Vi, so that
S♯J V ← e K cannot be interpreted in X♯

i . A simple solution is to apply S♯J V ← e′ KX♯
i ,

where the expression e′ is obtained from e by replacing any variable W /∈ Vi with a sound
interval, obtained from other packs where W occurs.

Similarly, a condition C
♯J e1 ▷◁ e2 K needs only be applied to abstract elements for packs

containing at least one variable occurring in either e1 or e2. For each such pack Vi, as for
assignments, we project e1 and e2 on the variables of Vi.

Packing heuristics. Similarly to the template domain from Sect. 5.5, the packing do-
main is configured by some external input provided by the user, here in the form of packs.
A good strategy is to group variables that appear syntactically together in the same ex-
pressions, and perform a limited form of transitive closure: to limit the growth of packs,
the accumulation of related variables by transitivity in a pack can be limited at natural
syntactic boundaries, such as functions or code blocks. We refer the reader to [Miné, 2006a]
for a more detailed description of a possible packing technique, applied to the special case
of the octagon domain, which provides packs that are scalable in practice.

6.3 Disjunctive Completions
In general, abstract domains are closed by intersection, but not by union. For such domains,
the abstract intersection ∩♯ is exact, but the abstract union ∪♯ is approximate. Viewing
abstract elements as formulas expressible in some logic, these domains appear as closed
under conjunction, but not under disjunction. Among the domains we presented, only the
extended sign domain (Sect. 4.2) and the constant set domain (Sect. 4.4) were closed by
union, but this was not the case for more expressive domains such as intervals nor the
relational domains.1

1For the sake of completion, let us note that there also exist domains that are closed neither by union,
nor by intersection, such as the zonotope domain by Ghorbal et al. [2009], although we do not discuss
them in this tutorial.

Version 2025-05-26 165

CHAPTER 6. DOMAIN TRANSFORMERS

Unfortunately, static analyses feature a large number of union computations, as they
are involved in the semantics of conditionals and loops. A loss of precision in the abstract
union can thus have a large negative effect on the overall analysis precision, as we will
show in example (6.4).

In this section, we show how to solve this problem through disjunctive completion tech-
niques. We present several domain combiners that, given a base abstract domain, construct
a more precise abstract domain that can additionally express exactly some disjunctions
of the properties expressible in the base domain. They all employ the same basic idea,
generalizing our construction of the constant set domain from Sect. 4.4: we use several ab-
stract elements to represent, symbolically, a disjunction of sets of concrete elements. The
domain combiners differ in how they choose to create and maintain these sets of abstract
elements.

6.3.1 Motivating Example

Before we present our disjunctive completion techniques, we present a simple example mo-
tivating the need for disjunctions, which will also serve to illustrate the various disjunctive
constructions:

1 : X ← [10, 20];
2 : Y ← [0, 1];
3 : if Y ≥ 1 then X ← −X endif ;
4 : assert X ̸= 0

(6.4)

This program stores a random positive value in [10, 20] into X; then, depending on the
value of the non-deterministic variable Y , X is negated or not. Our goal is to prove that,
at the end of the program, X ̸= 0.

Non-disjunctive analysis. A regular analysis in the interval domain (Sect. 4.5) will
take, at point 4, the join of the then branch of the conditional, where X ∈ [−20,−10],
and the else branch, where X ∈ [10, 20]. Hence, we will find X ∈ [−20, 20], which is not
precise enough to rule out the value 0.

Note that the polyhedra domain (Sect. 5.3), while more precise, will not help here
because, as the interval domain, it can only represent convex sets, and we need to represent
the non-convex set [−20,−10] ∪ [10, 20].

We see, however, that, if we could keep several intervals, here [−20,−10] and [10, 20],
in a single abstract element, then we could easily prove that X ̸= 0.

6.3.2 Powerset Completion

A first, natural idea is to use sets of abstract elements or, more precisely, finite sets in
order to maintain an effective representation.

Representation. Assume that D♯ is a domain obeying Def. 3.1, which we call the base
domain. We will denote with a hat, such as D̂♯, the new domain we construct and its
operators, to distinguish them from those in D♯.

Version 2025-05-26 166

6.3. DISJUNCTIVE COMPLETIONS

A first idea is to state D̂♯ def= Pfinite(D♯). However, we note that, given A♯ ⊆ D♯, then
for any Y ♯ ∈ A♯, any other element X♯ ∈ A♯ such that X♯ ⊑♯ Y ♯ would be useless and
redundant. We forbid the presence of redundant base elements and define D̂♯ as follows:

D̂♯ def= {A♯ ∈ Pfinite(D♯) | ∀X♯ ̸= Y ♯ ∈ A♯: X♯ ̸⊑♯ Y ♯ } (6.5)

Then, a set of base abstract elements represents, symbolically, a union, hence the following
concretization:

γ̂(A♯) def= ∪ { γ(X♯) | X♯ ∈ A♯ }
When applied to the interval domain, we obtain an abstract domain able to represent any
finite union of boxes.

Order structure. Determining whether γ̂(A♯) = γ̂(B♯), or even whether γ̂(A♯) ⊆ γ̂(B♯),
is very difficult. We thus use on D̂♯ a much more relaxed ordering relation, called the Hoare
order :

A♯ ⊑̂♯
B♯ def⇐⇒ ∀X♯ ∈ A♯: ∃Y ♯ ∈ B♯: X♯ ⊑♯ Y ♯ (6.6)

which states that, for a set A♯ to be smaller than a set B♯, it is sufficient to ensure that
any base element in A♯ is included in some base element in B♯. The relation ⊑̂♯ is indeed
a partial order, provided that we only compare sets with non-redundant base elements,
which is always the case given our definition of D̂♯ (6.5) — without this technical condition,
we would only have a pre-order, where distinct sets can compare equal for ⊑̂♯.

Naturally, this order implies set inclusion, i.e., A♯ ⊑̂♯
B♯ =⇒ γ̂(A♯) ⊆ γ̂(B♯), while

the converse is not true. This order is, however, effective, and easy to implement: it reduces
to testing the base ordering ⊑♯ on every pair of base abstract elements.

Example 6.4 (Partial order on the powerset domain). Consider the powerset completion
of the interval domain on reals. Then, the following three base abstract elements:

A♯ = {[0, 1]× [0, 1], [0, 2]× [1, 2]}
B♯ = {[0, 1]× [0, 1], [0, 1]× [1, 2], [1, 2]× [1, 2]}
C♯ = {[0, 1]× [0, 2], [0, 2]× [1, 2]}

represent the exact same concrete set through γ̂, although they are different. This is shown
in Fig. 6.2.

According to our order ⊑̂♯, few inclusions actually hold. We have B ⊑̂♯
A♯ ⊑̂♯

C, but
not the converse inclusions. Hence, we cannot prove, in the abstract, that they represent
the same concrete set. ♦

Fig. 6.2.(c) shows a more subtle form of redundancy, which is not ruled out by the condition
∀X♯ ̸= Y ♯ ∈ A♯: X♯ ̸⊑♯ Y ♯ from (6.6). Here, we have two non-redundant boxes which
overlap, so that we could reduce either box and still represent the same set through
γ̂, obtaining, e.g., Fig. 6.2.(a). Finally, although it is not redundant, Fig. 6.2.(b) is less
efficient than Fig. 6.2.(a) as it uses more boxes to represent the same concrete set. We
could, without loss of precision, merge two boxes in Fig. 6.2.(b) to get a more compact
representation, such that the one in Fig. 6.2.(a).

Version 2025-05-26 167

CHAPTER 6. DOMAIN TRANSFORMERS

(a) (b) (c)

Figure 6.2: Three decompositions with boxes of the same, non-convex shape: (a) with
two boxes, (b) with three boxes, and (c) with two overlapping boxes.

S

α(S)

S

not α(S)

(a) (b)

Figure 6.3: A disc S with (a) its best abstraction α(S) in the interval domain, and (b)
one possible abstraction in the powerset of boxes, where no best abstraction exists.

Galois connection. Even if the base domain D♯ enjoys a Galois connection, this is not
necessarily the case for D̂♯. Consider, as example, a disc S

def= { (x, y) ∈ R2 | x2 + y2 ≤ 1 }.
Then, S has naturally a best abstraction in the interval domain: the box [−1, 1]× [−1, 1],
as shown in Fig. 6.3.(a). However, there is no best abstraction in the powerset of boxes:
Fig. 6.3.(b) shows one possible abstraction, but we could always refine it by adding more
horizontal “strips” to fit tighter the curved shape of the disc. There is no limit to the
number of “strips” in a finite union boxes.

Abstract operators. In D̂♯, we can implement the abstract union ∪̂♯ very easily, by
keeping the base abstract elements from both arguments without modification, i.e.:

A♯ ∪̂♯
B♯ def= A♯ ∪B♯

The join is now an exact abstraction, which was indeed the goal of our construction.
The intersection can be abstracted by combining all possible pair-wise intersections in

D♯:
A♯ ∩̂♯

B♯ def= {X♯ ∩♯ Y ♯ | X♯ ∈ A♯, Y ♯ ∈ B♯ }

If ∩♯ is exact in D♯, then so is ∩̂♯ in D̂♯, by distributivity of ∪ over ∩ in the concrete.
However, this operation is expensive as it incurs a potential quadratic blow-up in the
number of base abstract elements.

Unary abstract operations can be performed element-wise on the base domain:

Ŝ♯J s KA♯ def= {S♯J s KX♯ | X♯ ∈ A♯ }
Ĉ♯J c KA♯ def= {C♯J c KX♯ | X♯ ∈ A♯ }

Version 2025-05-26 168

6.3. DISJUNCTIVE COMPLETIONS

Note that, after all operations, it is necessary to remove redundant elements, i.e.,
X♯ ∈ A♯ such that ∃Y ♯ ̸= X♯ ∈ A♯: X♯ ⊑♯ Y ♯, in order to stay in D̂♯.

Simplification. The additional expressiveness of D̂♯ comes at a price in efficiency. In
particular, the number of base abstract elements composing abstractions in D̂♯ tend to
grow large during an analysis through the computation of abstraction unions ∪̂♯ and
intersections ∩̂♯, even if we take care to remove redundancies. It is thus useful to reduce
the size of elements when they grow too large. One possibility is to replace two or more
elements with their abstract join in D♯. For instance, when the size |A♯| exceeds a certain
threshold, we can apply the following collapsing operation that returns an element of D̂♯

reduced to a single base element, their join in D♯:

collapse(A♯) def= {∪♯ {X♯ ∈ A♯} } (6.7)

Naturally, this operator may lose a lot of precision. Deciding more precisely which base
elements to merge, and when, is a difficult problem. Some domains, such as the interval
or the polyhedra domain, feature algorithms to detect whether the abstract join of a set
of base elements will result in a loss of precision, which can be useful to drive the collapse
operation. We refer to the work of Bagnara et al. [2010] for more information on this
subject.

Widening. D̂♯ has infinite increasing chains, firstly, because the number of base elements
is unbounded and, additionally, in case D♯ has infinite increasing chains. A simple solution
to enforce convergence is to use the widening ▽ from D♯ after ensuring that our abstract
elements contain only one base element, using the collapse operation (6.7):

A♯ ▽̂ B♯ def= {X♯ ▽ Y ♯ | collapse(A♯) = {X♯}, collapse(B♯) = {Y ♯} }

While this widening guarantees the termination of the iterates, it looses much precision
and prevents the inference of loop invariants that actually contain disjunctions — although
disjunctions can appear freely during the analysis of the body of the loop. A slight im-
provement can be achieved using delayed widening and unrolling techniques from Sect. 4.7.
More advanced widening techniques have been studied by Bagnara et al. [2004].

Motivating example revisited. We come back to the motivating example from
Sect. 6.3.1 and perform an analysis in the powerset completion of the interval domain:

1. At line 3, before the conditional, we have a single interval abstract element {[10, 20]×
[0, 1]}, denoting the fact that X ∈ [10, 20] and Y ∈ [0, 1].

2. At the end of the then branch of line 3, we also get a single abstract element:
{[−20,−10]× [1, 1]}, due to the filter Y ≥ 1 and the negation of X.

3. At the end of the implicit else branch, we have, similarly, {[10, 20]× [0, 0]}.

Version 2025-05-26 169

CHAPTER 6. DOMAIN TRANSFORMERS

4. At the end of the conditional, we take the join of these two branches, which gives us
a state with two interval abstract elements: {[−20,−10]× [1, 1], [10, 20]× [0, 0]}.

5. The assertion at line 4 is applied independently on the two interval abstract elements,
and both pass the test X ̸= 0 as neither interval for X contains 0.

Hence, while the plain interval domain is not precise enough to analyze our example,
the powerset completion of the interval domain is. The shape of the invariant at line 4
also illustrates our claim that, even if the underlying domain D♯ is non-relational, its
powerset completion D̂♯ is relational: indeed, it expresses that X ∈ [10, 20] when Y = 0,
and X ∈ [−20,−10] when Y = 1, i.e., a relation between X and Y .

Remark 6.2 (Non-relational domains and powerset completion). When focusing on non-
relational domains as basis D♯, we could alternatively construct the powerset at the level
of a value domain B♯ obeying Def. 4.1. Note, however, that when applying the powerset
completion before the non-relational construction of Def. 4.1, we get a drastically differ-
ent result than if we first apply the non-relational construction, and then the powerset
completion.

Consider, for instance, the case of the interval domain. In the first case, we can repre-
sent Cartesian products of the form D1×· · ·×D|V|, where each Di is a union of intervals.
In the second case, we can represent arbitrary unions of finitely many boxes in I|V|. This
domain is much more expressive. Indeed, any element expressible as a Cartesian product
of union of intervals can be expressed, albeit less compactly, as a union of boxes, by dis-
tributivity — for instance: ([1, 2]∪ [5, 6])× ([0, 1]∪ [5, 6]) = ([1, 2]× [0, 1])∪ ([1, 2]× [5, 6])∪
([5, 6]× [0, 1]) ∪ ([5, 6]× [5, 6]). In fact, while the first domain remains non-relational, ac-
cording to our definition based on the Cartesian abstraction of Sect. 4.9, the second domain
is actually relational. ♢

6.3.3 State Partitioning

State partitioning is an alternative to powerset completion, introduced by Cousot [1981],
which provides a more structured approach to expressing disjunctions. It assumes that the
concrete space E is first partitioned into a finite set P ⊆ P(E) of parts. Instead of handling
a single abstract element, the analysis will then track one abstract element per part in the
partition, which focuses on abstracting the subset of the memory states included in this
part. The partition is fixed and does not change during the analysis, only the abstract
element in each part does.

Representation. Assume, as before, that a base abstract domain D♯ obeying Def. 3.1
is chosen. Our domain will associate to each part in the partition an element in D♯. To
simplify the presentation, we will assume that the fixed partitioning of E is also given as
a set of abstract elements in D♯ — although it is possible to use distinct domains. Hence,

Version 2025-05-26 170

6.3. DISJUNCTIVE COMPLETIONS

we assume we are given a partition that is a set P ♯ such that:
P ♯ ∈ Pfinite(D♯)
∪ { γ(X♯) | X♯ ∈ P ♯ } = E

Note that, technically, P ♯ is a covering, not a partitioning, as we do not enforce the
elements in { γ(X♯) | X♯ ∈ P ♯ } to be pairwise disjoint. Some overlapping is sometimes
unavoidable: consider for instance the case where D♯ is the interval domain; then, all
the parts in γ(A♯) are closed boxes that must overlap at least at the borders in order
to cover E . Overlapping should, however, be kept minimal — for instance, we will avoid
having the interior of the boxes intersect. Intuitively, in case of overlapping, any concrete
element belonging to several parts will be represented in several base abstract elements,
which is wasteful. We will keep using the term partitioning as it is standard in the field of
Abstract Interpretation, but the the framework accommodates using a covering without
any problem.

Our derived domain, which we denote as D̃♯, with a tilde to distinguish it from D♯,
associates an abstract element to each part:

D̃♯ def= P ♯ → D♯

An abstract element A♯ ∈ D̃♯ represents the join of the concrete sets γ(A♯(X♯)) represented
by the basic abstract elements A♯(X♯) in each part X♯ ∈ P ♯:

γ̃(A♯) def= ∪ { γ(A♯(X♯)) ∩ γ(X♯) | X♯ ∈ P ♯ }

Note that we restrict each base element γ(A♯(X♯)) to the corresponding part γ(X♯), to
stress on the fact that each base element only gives information about one part of E . In
general, this intersection is not useful as we can ensure that γ(A♯(X♯)) ⊆ γ(X♯) at all
time, i.e., base abstract elements in a part do not bleed over other parts, but we keep it
for generality, as it is useful for domains where this inclusion is not always practical to
achieve — e.g., for domains that are not closed under intersection.
Example 6.5 (Partitioning with boxes.). Figure 6.4 gives an example of a non-convex
concrete set represented exactly in the partitioned domain over the interval domain. We
use the partition P ♯ def= {P1, . . . , P5} of R2 defined as follows:

P1
def= [−∞, 0]× [−∞, +∞] P2

def= [0, 10]× [0, +∞]
P3

def= [0, 10]× [−∞, 0] P4
def= [10, +∞]× [0, +∞]

P5
def= [10, +∞]× [−∞, 0]

The colored part of the figure is represented exactly as the following abstract element,
associating a box to each part in P ♯:

X♯ = [P1 7→ [−6,−5]× [5, 6], P2 7→ ⊥♯,
P3 7→ [9, 10]× [−∞,−1], P4 7→ ⊥♯,
P5 7→ [10, 12]× [−3,−1]]

Note that some parts in P ♯ do not contain any point from X♯; they are associated an empty
box, ⊥♯. ♦

Version 2025-05-26 171

CHAPTER 6. DOMAIN TRANSFORMERS

P1

P2

P3

P4

P5

Figure 6.4: Representing a non-convex set in the partitioned interval domain. The boxes
comprising the partition (delimited with dashed lines) and the abstract element (the col-
ored boxes) are stated in Ex. 6.5.

Order structure. We can derive an order ⊑̃♯ on D̃♯ from the order ⊑♯ on D♯ simply,
by element-wise extension:

A♯ ⊑̃♯
B♯ def⇐⇒ ∀X♯ ∈ P ♯: A♯(X♯) ⊑♯ B♯(X♯)

This is naturally a partial order. Additionally, if ⊑♯ corresponds exactly to set inclusion,
i.e., if X♯ ⊑♯ Y ♯ ⇐⇒ γ(X♯) ⊆ γ(Y ♯), then the same holds for ⊑̃♯: A♯ ⊑̃♯

B♯ ⇐⇒ γ̃(A♯) ⊆
γ̃(B♯). The partitioning order is thus much more precise than the order ⊑̂♯ on powersets
(6.6).

Galois connection. Another strong property states that, if D♯ features a Galois con-
nection (D,⊆) −−−→←−−−α

γ
(D♯,⊑♯), then so does D̃♯, defining the abstraction function α̃ as:

α̃(S) def= λX♯ ∈ P ♯. α(S ∩ γ(X♯))

This function abstracts independently, for each part X♯ ∈ P ♯, the portion of the concrete
set S included in γ(X♯).

Abstract operators. The abstract intersection ∩̃♯ and union ∪̃♯ are defined element-
wise:

A♯ ∩̃♯ B♯ def= λX♯ ∈ P ♯. A♯(X♯) ∩♯ B♯(X♯)
A♯ ∪̃♯ B♯ def= λX♯ ∈ P ♯. A♯(X♯) ∪♯ B♯(X♯)

Note that the abstract union is not exact in general. As it is not possible to keep several
abstract elements in a single part X♯ ∈ P ♯, these elements must be merged with the base
abstract union ∪♯.

Abstracting conditions is also performed simply element-wise:

C̃♯J c KA♯ def= λX♯ ∈ P ♯. C♯J c K A♯(X♯)

Version 2025-05-26 172

6.3. DISJUNCTIVE COMPLETIONS

Figure 6.5: Effect of an assignment X ← X + 1 on a partitioned abstract element
composed of three boxes: after the translation, some boxes cross parts and must be cut;
some parts may end up with several abstract elements, which must be joined with ∪♯.

as we filter out some values independently in each part.
The abstract assignment S̃♯J s K is more involved. It cannot be handled element-wise

because the image of an abstract element from one part can escape this part and come
into one or several other parts. It is thus necessary to cut the images on the boundaries
of the partition. When several images from different original parts land in the same part
of the partition, these must be merged with the base abstract union ∪♯ as we can only
keep a single abstract element in each part. This is illustrated graphically in Fig. 6.5. The
corresponding assignment can be formalized as follows:

S̃♯J s KA♯ def= λX♯ ∈ P ♯. ∪♯ {X♯ ∩♯ S♯J s KA♯(Y ♯) | Y ♯ ∈ P ♯ }

which computes the abstract intersection of every part X♯ ∈ P ♯ with the image of every
element from every part A♯(Y ♯), Y ♯ ∈ P ♯.

Convergence acceleration. D̃♯ has infinite strictly increasing (resp. decreasing) se-
quences only if D♯ has. Convergence acceleration is surprisingly simple — especially com-
pared to the case of the powerset completion — as we can define a widening and a nar-
rowing from those in D♯ element-wise:

A♯ ▽̃ B♯ def= λX♯ ∈ P ♯. A♯(X♯) ▽ B♯(X♯)
A♯ △̃ B♯ def= λX♯ ∈ P ♯. A♯(X♯) △ B♯(X♯)

Motivating example revisited. We come back to the motivating example from
Sect. 6.3.1 and perform an analysis in the interval domain with partitioning. We choose
to partition with respect to the sign of the variable X, hence:

P ♯ def= {X♯
+, X♯

−} where
X♯

+
def= [0, +∞]× Z

X♯
−

def= [−∞, 0]× Z

where the first component of a Cartesian product is the interval of variable X, and the
second one is the interval of variable Y .

1. At line 3, before the conditional, our abstract element is [X♯
+ 7→ [10, 20]×[0, 1], X♯

− 7→
⊥♯].

Version 2025-05-26 173

CHAPTER 6. DOMAIN TRANSFORMERS

2. At the end of the then branch at line 3, we get [X♯
+ 7→ ⊥♯, X♯

− 7→ [−20,−10]×[1, 1]],
as the sign of X has changed.

3. At the end of the implicit else branch, we have, similarly, [X♯
+ 7→ [10, 20] ×

[0, 0], X♯
− 7→ ⊥♯].

4. At the end of the conditional, we take the join of these two branches, which gives us
[X♯

+ 7→ [10, 20]× [0, 0], X♯
− 7→ [−20,−10]× [1, 1]].

5. The assertion at line 4 is applied independently on the two parts of the partition.
As neither satisfies X = 0, the assertion is satisfied.

We are, again, able to prove that the programs ends with X ̸= 0.

Decision tree domains. When the partitioning grows large, representing abstract el-
ements as maps P ♯ → D♯ may be costly. A better representation can be constructed by
exploiting the structure of the partitioning P ♯.

Consider, as concrete example, partitioning with respect to boolean variables. We
assume that a subset VB ⊆ V of the variables are boolean, i.e., can only have value 0 or
1. Assuming that the boolean variables behave in a non-linear way, we wish to partition
the memory states with respect to them: we will use a distinct polyhedron to represent
the memory states for each possible valuation of VB. This would lead to a large number of
parts, 2|VB|, in the partition, which is prohibitive. To address this problem, we can exploit
the Binary Decision Diagram (BDD) structure, introduced by Bryant [1986] to represent
boolean functions, and adapt it to represent our partitioned state more concisely. A BDD
is a binary tree where each level corresponds to a different variable. A node at a level has
two sub-trees, one corresponding to states where the corresponding variable is 0, and the
other where the variable is 1. We represent an abstract element in D̃♯ as a BDD where
the leaves are abstract elements in D♯: the sequence of variable values in a path from the
root to a leaf corresponds to a boolean valuation, i.e., one part of our partition, and the
abstract value at the leaf corresponds to the base abstract element in this part — we
can omit the boolean variables in the base abstract element as their value is completely
determined by the path. The efficiency of BDD comes from the opportunity to share equal
sub-trees, in case some numeric invariants are independent from the value of some boolean
variables.

Figure 6.6 presents an example, where a numeric abstraction over two variables, ex-
pressed using polyhedra, is partitioned with respect to the value of boolean variables A,
B, and C. When A = 1, the invariant is independent from the value of B, hence, the
node at the level of B is omitted in this sub-tree. The case (A = 1) ∧ (C = 0) is more-
over unfeasible, hence, the corresponding leaf is set to ⊥♯. Finally, when A = 0, the cases
(B = 0)∧(C = 1) and (B = 1)∧(C = 0) are identical, hence, they share the same sub-tree
(here, a single leaf). As a consequence, this representation uses only four polyhedra, while
an exhaustive partitioning map would use eight. Note that, in the worst case, we still need
2|VB| polyhedra, but experimental evidence shows that sharing occurs in practice. This

Version 2025-05-26 174

6.3. DISJUNCTIVE COMPLETIONS

A

B

CC C

0

0 0 0

1

1

1 1 1

⊥

Figure 6.6: A binary decision diagram presenting numeric abstractions (at the leaves)
expressed as polyhedra, and partitioned by the value of boolean variables (A, B, and C
as internal nodes).

technique has been used effectively, for instance, in the Astrée analyzer [Bertrane et al.,
2010]. It is further discussed by Schrammel and Jeannet [2011].

The concept of decision tree can be generalized to more complex settings. We can, for
instance, use a n−ary tree allowing more values than 0 and 1, to partition with respect to
enumerated types. We can also partition with respect to unbounded variables, or variables
with large or continuous ranges by using intervals instead of values on arcs between a
node and a sub-tree. This is implemented, for instance, in segmented decision trees by
Cousot et al. [2010]. Decision trees can also feature more general constraints in the nodes,
as in the domain by Urban and Miné [2014]: instead of variables, levels correspond to
affine expressions, and the two sub-trees correspond to splitting the memory space into
the states that satisfy the constraint, and those that do not.

Comparison with the powerset completion. Although both powerset completion
and partitioning are based on the common idea of using several base abstract elements to
represent a disjunction of properties, they have very different characteristics. Partition-
ing is very attractive as it has a strong ordering relation. Moreover, properties from the
base domain, such as Galois connections, and operators, such as widening and narrowing,
translate directly to the partitioned domain; on the contrary, the powerset completion
has a much weaker ordering relation and hard to design widenings. Partitioning has a
predictable cost, as the number of base abstract elements is fixed beforehand, while the
powerset completion must rely on heuristics to limit its cost.

The drawbacks of partitioning are that the join is not exact, and that the domain relies
on an externally-given partitioning. A too fine partitioning results in useless computations,
while a too coarse partitioning results in a loss of precision, in particular for joins, where we
may not exploit the benefit of representing several base abstract elements. The partition
is generally defined by heuristics during a pre-analysis, such as the pre-analysis described
in Bertrane et al. [2010] to partition memory states according to the possible valuations
of boolean variables.

Several extensions of the basic partitioning scheme we presented have also been pro-

Version 2025-05-26 175

CHAPTER 6. DOMAIN TRANSFORMERS

posed. The reduced cardinal power, introduced by Cousot and Cousot [1979a] as an earlier
form of partitioning, uses different abstract domains D♯

1 and D♯
2 to represent, respectively,

the partitioning domain and the partitioned domain, i.e., we get D̂♯ def= D♯
1 → D

♯
2. Bour-

doncle [1992] proposes dynamic partitioning techniques, where the partition is not fixed a
priori, but evolves during the analysis. This solves the problem of choosing a partitioning
and naturally constructs well-adapted partitionings that are based on semantic informa-
tion. A specific widening technique is introduced in order to terminate by enforcing the
stabilization of both the partition and the basic elements in each part of the partition.

6.3.4 Path Partitioning

The last disjunctive domain we present is an alternative to state partitioning: we keep
partitioning but, instead or relying on a criterion related to the memory state, we rely
on the control-flow of the program to distinguish relevant parts of program executions.
Observe that the main loss of precision addressed by disjunctive domains is the loss due
to inexact abstract unions ∪♯, and that joins are applied systematically to merge the
branches of a conditional. Hence, a natural idea is to refrain form performing this join, and
continue the analysis with both abstract elements. This method, called path partitioning,
thus achieves a path-sensitive analysis.

Note that the number of paths in a program is generally unbounded, due to loops.
Symbolic execution, introduced by King [1976], faces the same challenge, and resorts to
a partial, thus unsound, exploration of the program behaviors. Our solution is to only
partition with respect to the last occurrence of each conditional encountered during the
program execution, so that the partitioning space remains finite. We thus achieve only
partial path sensitivity, and still resort to abstract joins and widenings to ensure that our
analysis terminates and remains sound. To sum up, instead of avoiding joins completely,
we delay them. Nevertheless, this often results in an increase in precision: recall that,
when discussing the non-distributivity of abstract domains, in Sect. 2.1.6, we presented an
example where a late join in the interval domain, (A♯ ∩♯ B♯) ∪♯ (A♯ ∩♯ C♯), gives a better
result than an earlier one, A♯ ∩♯ (B♯ ∪♯ C♯).

Representation. In order to distinguish the conditionals occurring in the program, we
assume that the syntax is enriched with control locations, as we used in the equational-
style semantics from in Fig. 3.9. We denote by C ⊆ L the set of control points denoting
conditionals, i.e., in “ ℓ1 if c then ℓ2 s1

ℓ3 else ℓ4 s2
ℓ5 endif ℓ6 ”, we assume that only

ℓ1 ∈ C.
When computing an invariant at some program point ℓ ∈ L, we look back at the

history of the computation we performed to get to this point and, for each conditional in
C, we associate a value:

• true if the latest evaluation of the conditional resulted in the then branch to be
taken;

Version 2025-05-26 176

6.3. DISJUNCTIVE COMPLETIONS

• false if the latest evaluation of the conditional resulted in the else branch to be
taken;

• ⊥ if the conditional has never been encountered.

Note that we go one step further than a flow-sensitive analysis, as we remember which
branch we took even after exiting the conditional. For instance, in the program “if X ≤
0 then X ← X + 1 else X ← X − 1 endif ; Y ← X”, we will distinguish the evaluation
of Y ← X for executions that followed the then branch and incremented X, and for
executions that followed the else branch and decremented X. We will abstract separately
the memory states in these two cases, using two distinct abstract elements, even though
the execution is past the merging point of the conditional.

Formally, the abstract history of execution H is defined as:

H def= C → {true, false,⊥}

and the partitioned abstract domain D̆♯, constructed on top of the base abstract domain
D♯, is defined as:

D̆♯ def= H → D♯

with concretization:
γ̆(A♯) def= ∪ {A♯(h) | h ∈ H}

As C, and thus H, are finite, an element in D̆♯ can be effectively represented in memory.

Order structure. We simply use the element-wise ordering :

A♯ ⊑̆♯
B♯ def⇐⇒ ∀h ∈ H: A♯(h) ⊑♯ B♯(h)

which is naturally a partial order.
It is not possible to provide a meaningful abstraction function α because our con-

crete domain D def= P(E) only contains memory states and has no information about the
control-flow; knowing the past control-flow is needed to decide in which element of H each
memory element must go. We are crippled by our collecting semantics that only discusses
about reachability and not history, which we chose for simplicity in this tutorial. When
starting from a concrete collecting semantics of execution traces, instead of states, as done
for instance by Mauborgne and Rival [2005], we would be able to provide an abstraction
function and a Galois connection — provided D♯ has one. Here, we continue without an
abstraction function α, leveraging the concretization-only framework of Abstract Interpre-
tation.

Abstract operations. As in the state partitioning domain of Sect. 6.3.3, the join ∪̆♯,
intersection ∩̆♯, widening ▽̆, narrowing △̆, and condition C̆♯J c K are defined point-wise.
Unlike state partitioning, however, the assignment S̆♯J X ← e K is also defined point-wise.
Indeed, while an assignment could switch a memory state from one part to another part

Version 2025-05-26 177

CHAPTER 6. DOMAIN TRANSFORMERS

of a state partitioning, it has no influence on which part of the path partitioning we are in.
However, executing a conditional “if · · · then · · · else · · · endif” does. For the first time
in our design of abstract domains, we need to define a non-standard interpretation for a
non-atomic statement — recall that all previous abstract domains and domain combiners
handled conditionals by induction on the syntax, mimicking the concrete semantics.

In this presentation of path partitioning, we focus on the case of an abstract interpreter
in denotational form, as described in Sect. 3.3, but the method can be applied as well to
an equation-based analysis. Recall, from Fig. 3.10, the regular handling of conditionals in
D♯:

S♯J if c then s1 else s2 endif KR♯ def=
S♯J s1 K(C♯J c KR♯) ∪♯ S♯J s2 K(C♯J¬c KR♯)

In our partitioned domain, a condition at location ℓ1 is handled as follows:

S̆♯J ℓ1 if c then s1 else s2 endif KR♯ def=
S̆♯J s1 K(C̆♯J c KR♯

true) ∪̆♯
S̆♯J s2 K(C̆♯J¬c KR♯

false)
where

R♯
v

def= λh.

{
∪♯ {R♯(h[ℓ1 7→ t]) | t ∈ {true, false,⊥}} if h(ℓ1) = v

⊥♯ otherwise

where R♯
true (resp. R♯

false) construct the input state for the then branch (resp. the else
branch) in two steps:

• we first collapse together all the abstract states associated to histories h that only
differ in h(ℓ1), hence the join ∪♯ {R♯(h[ℓ1 7→ t]) | t ∈ {true, false,⊥}}; this is
necessary because we can only remember the latest branch of a conditional and, when
encountering a new branch for that conditional, we cannot keep the old branches in
distinct parts anymore;

• secondly, any history h such that h(ℓ1) ̸= true (resp. false) is set to ⊥♯, to state that
the abstract memory state only lives in parts where the branch is taken.

The two branches are merged, at the end of the conditional, with a ∪̆♯ join. Note, however,
that the states from the then branch have non−⊥♯ memory states only for histories h
where h(ℓ1) = true, and the states from the then branch have non−⊥♯ memory states
only for histories where h(ℓ1) = false; hence, the join ∪̆♯ will never actually merge with
∪♯ two non−⊥♯ memory states, and there will be no loss of precision due to this join —
the loss of precision comes from the necessary collapse at the beginning of a conditional
in step 1.

Motivating example revisited. We come back to the motivating example from
Sect. 6.3.1 and perform an analysis in the interval domain with path partitioning. The
analysis proceeds as follows:

Version 2025-05-26 178

6.3. DISJUNCTIVE COMPLETIONS

• At program point 3, before the conditional is executed, we have a unique non−⊥♯

part, and the abstract state is, omitting histories containing a ⊥♯ memory state,
[[ℓ1 7→ ⊥] 7→ [10, 20]× [0, 1]].

• The then branch ends with the state [[ℓ1 7→ true] 7→ [−20,−10]× [1, 1]].

• The else branch ends with the state [[ℓ1 7→ false] 7→ [10, 20]× [0, 0]].

• At program point 4, after the merge at the end of the conditional, we have the
juxtaposition of both previous states: [[ℓ1 7→ true] 7→ [−20,−10] × [1, 1], [ℓ1 7→
false] 7→ [10, 20]× [0, 0]].

• As before, the assertion is tested on each basic abstract element and, as neither
contains X = 0, the assertion is proved true.

Once again, we are able to prove that the programs ends with X ̸= 0.

Comparison with powerset completion and state partitioning. Path partitioning
is, as state partitioning, a partitioning technique, and it has the same benefits: the domain
is well structured, with a strong notion of order, and easy to design abstract operators
by point-wise extension, including convergence acceleration operators, which were difficult
to design for powerset completions. The difference between state and path partitioning is
the partitioning criterion: whether based on properties of the memory states, or based on
the control flow of the program. On our motivating example, state partitioning required
more input from the user to decide a good partitioning — the sign of X — while path
partitioning flowed naturally – partitioning with respect to the conditional. For larger
programs, however, it may not be possible to partition with respect to all conditionals; we
may be forced to collapse parts at regular intervals — such as at the end of each function
— to avoid an explosion in the number of parts, making path partitioning more adapted
to local reasoning on the program rather than global reasoning. On the other hand, state
partitioning can be useful to track the relationship between a global boolean and some
numeric variables for the duration of the analysis, but it will not scale up to many variables.
It may be more adapted than path partitioning if important control information is encoded
into boolean or enumerated variables — for instance, for programs that implement finite
state machines.

In practice, an effective static analyzer will not restrict itself to one disjunctive method,
but will use all the three methods we presented here, choosing the most relevant one for
each context. They can, also, be combined with packing techniques, as seen in Sect 6.2.5,
to limit the scope of disjunctive combiners to a handful of variables at a time. For a
practical example, we refer the reader to Bertrane et al. [2010] on the design of such an
heterogeneous construction in the Astrée analyzer.

Loop partitioning. In our presentation, we focused on the loss of precision caused by
joins in conditionals. However, loops also feature joins that can cause a significant loss

Version 2025-05-26 179

CHAPTER 6. DOMAIN TRANSFORMERS

of precision. We already addressed this problem through loop unrolling, in Sect. 4.7.5.
As it computes the effect of the first few iterations separately from the effect of the
remaining iterations, loop unrolling has some similarities with path partitioning. However,
loop unrolling required us to compute the merge of the cases — collapsing all the parts
in the partition — at the end of the loop, in order to continue the analysis after the loop
with a single abstract state. Path partitioning of loops can go one step further and keep
these abstract states unmerged even after the loop ends. In practice, we can partition the
program following the loop with respect to the number of iterations spent within the loop.
This can be useful in case this number of iterations plays an important role after the loop.

Trace partitioning. The path partitioning we presented is a specific instance of a
more general method, called trace partitioning, developed notably by Mauborgne and
Rival [2005]. In trace partitioning, the concrete collecting semantics manipulates sequences
of memory states annotated with control locations that remember precisely every single
step of execution since the beginning of the program. We can view path partitioning as
an abstraction that only remembers, for those traces, in addition to the last memory
state, some of the key control points encountered during the execution, and partition the
former with respect to the later. But trace partitioning is more general as it also allows
partitioning criteria to take into account the values of the variables at some arbitrary
point in the execution, not necessarily the last, i.e., current, memory state. We can, for
instance, analyze the body of a function maintaining a separate abstract memory state for
each possible value of some argument at the beginning of the function.

6.4 Summary

This chapter presented briefly the lattice of abstractions, a construction of theoretical
interest that can be exploited to derive various domains from a semantic perspective,
although we only applied it to the derivation of the reduced product. We spent more
effort designing effective constructions of the reduced product. These constructions are
parsimonious, as they reuse all the algorithms defined on the domains we combine, and only
require a few additional operators, to implement the communication between the domains.
As always in Abstract Interpretation, there is a wide spectrum of possible operators to
implement the reduction: in some cases, we can define semantically the optimal reduction,
but we can also settle for very partial reductions, obeying light soundness conditions.
Another contribution of the chapter is the definition of the packing mechanism, which
allows trading precision for efficiency in relational domains, by restricting the inferred
relations to selected packs of variables. Finally, we presented a set of constructions to enrich
an abstract domain with disjunctions. We presented three methods: powerset completion,
state partitioning, and path partitioning. They rely on using several abstract elements
from a base domain to represent a union symbolically, without loss of precision, and they
differ in the way the sets of abstract elements are managed. Each construction has its pros
and cons, and it is possible to combine them.

Version 2025-05-26 180

6.5. BIBLIOGRAPHIC NOTES

The domain operators we presented here — reduced product, packing, powerset com-
pletion, partitioning — play a major role in the practical design of robust and flexible static
analyzers. For instance, the Astrée analyzer, described by Bertrane et al. [2010], employs
a reduced product of a large set of abstract domains, including the interval, congruence,
and octagon domains we presented. The analyzer can be improved by simply adding a new
domain to the reduced product, in order to infer new kinds of invariants without changing
the structure of the analyzer nor modifying existing abstractions. The available domains
can then be selectively enabled, or disabled to improve the efficiency in case they are not
needed. It also features packing and disjunctive completions that can be selectively tuned
to achieve a cost versus precision sweet spot. Domain operators encourage the modular
construction of static analyzers, and thus the scalability of their design.

6.5 Bibliographic Notes

The complete lattice of abstractions is present since the beginning of Abstract Interpre-
tation by Cousot and Cousot [1979a]. It presents the semantic definition of the reduced
product, while the algorithmic aspects are studied by Granger [1992]. A practical study
of large-scale reduced products in the Astrée analyzer is presented by Cousot et al. [2006].
We refer to Cortesi et al. [2013] for a recent survey of product operators in Abstract In-
terpretation. The packing technique is described by Miné [2006a] and later extended by
Bouaziz [2012].

Based on the complete lattice of abstractions, Giacobazzi and Ranzato [1997] introduce
the notions of domain refinement and its inverse, domain compression, which respectively
add and remove elements from an abstract domain. An application of compression, pro-
posed by Giacobazzi and Ranzato [1998], is to remove from a domain abstract elements
that are useless if the domain serves as a base in a disjunctive completion construction.
Another application, by Cortesi et al. [1997], is domain complementation, which acts as
the inverse of the product: it allows “dividing” a domain by another domain to decompose
it as a reduced product. Applications of domain refinement include the construction of
relational domains from non-relational ones by Giacobazzi and Scozzari [1998]. Finally, an
abstract domain can be minimally refined or simplified to achieve completeness, as shown
by Giacobazzi et al. [2000].

The complete lattice of abstractions by Cousot and Cousot [1979a] also introduced
the reduced cardinal power of domains, which lead to state partitioning in Cousot [1981].
Decision-tree data-structures for partitioning take their roots in binary decision diagrams
introduced by Bryant [1986]. A simple use in the Astrée analyzer is described by Bertrane
et al. [2010], while Cousot et al. [2010] present the, more advanced, segmented decision
tree data-structure. An application to inferring termination is also presented by Urban
and Miné [2014]. Dynamic partitioning techniques are pioneered by Bourdoncle [1992] to
infer function summaries with the interval domain, and later applied to the polyhedra
domain by Jeannet [2003].

The powerset construction is also already present in [Cousot and Cousot, 1979a]. It is

Version 2025-05-26 181

CHAPTER 6. DOMAIN TRANSFORMERS

later studied by Filé and Ranzato [1999], while Bagnara et al. [2004] study the design of
widenings for the powerset of numeric domains, and Bagnara et al. [2010] propose algo-
rithms to detect exact joins of numeric elements with application to simplifying elements
in the powerset domain.

Trace partitioning, which is the basis for the path partitioning we presented, is intro-
duced by Handjieva and Tzolovski [1998], and later developed by Mauborgne and Rival
[2005]. Path-enumeration methods are classically used in data-flow analyses [Kildall, 1973]
(in the “meet-over-all-paths” method), and also used in symbolic execution [King, 1976],
but they are limited to finitary settings as, in the former case, the lattice of interpretation
has a bounded height and, in the later case, only a finite number of paths are explored.

Version 2025-05-26 182

Chapter 7

Conclusion

7.1 Summary

In this tutorial, we have presented the basis of numeric invariant inference by Abstract
Interpretation. We first designed an idealized toy-language, with only simple constructions
(assignments, conditionals, loops) and numeric variables with perfect integers, rationals,
or reals, in order to present formally and completely its concrete collecting semantics: the
mathematical expression of the most precise invariants of every program — a well-defined
but uncomputable expression. We then proposed two flavors of approximate computable
static analyses, parameterized by a choice of abstraction: either as solving an abstract equa-
tion system, or by interpretation by induction on the syntax in the abstract world. We
showed the main hypotheses necessary to ensure the soundness of the analysis, discussed
the (optional) derivation of optimal operators, and the fixpoint acceleration techniques
required to make the analysis effective in infinite-height abstract domains. We then pre-
sented some of the most widespread numeric abstractions, starting with non-relational
domains: signs, constants, intervals, congruences; then, moving on to relational domains:
affine equalities, affine inequalities (polyhedra), zones, octagons, templates. Each domain
comes with its specific expressiveness and algorithms, and achieves some cost versus preci-
sion trade-off. Finally, we presented domain transformers that allow deriving more precise
abstractions, either by combining several existing abstractions through a reduced product,
or by lifting abstractions to represent exactly — or more precisely — disjunctions, through
powerset completion, state partitioning, or path partitioning.

7.2 Principles

We now sum up a few key points of Abstract Interpretation and general lessons we en-
countered in this tutorial.

Concrete semantics. We start by defining the concrete collecting semantics: a fully
formal definition of the properties of interest for all programs. As the soundness of the

Version 2025-05-26 183

CHAPTER 7. CONCLUSION

analysis results are only guaranteed with respect to this semantics, it must be unambiguous
and convey the intended meaning of programs clearly to the analysis user. It is expressed
in rich mathematical worlds, using fixpoints of monotonic or continuous operators in CPO
or complete lattices. In our case the semantics expresses the tightest invariants or, equiv-
alently, the reachable memory states at every program point, and it is uncomputable.

Abstract domains. An abstract domain of interpretation is defined on two levels: a
semantic level, stating a subset of concrete properties together with abstract versions of
the semantic operators; and an algorithmic level, describing data-structures and effective
implementations of the abstract operators. This second aspect must not be understated: we
spent a large part of this tutorial describing the algorithmic aspects of abstract domains.
An abstract domain has generally less structure than the concrete one: it only needs to be
a poset, not a CPO nor a lattice (although it is in some cases), and the abstract operators
need not be monotonic — which they are often not, due to widenings and reductions.

Soundness and optimality. The minimum connection we require between the abstract
and the concrete is a concretization function that defines the notion of sound abstraction
— in our case, a sound abstraction leads to an over-approximation of the set of memory
states. On the other hand, while not necessary, Galois connections provide a stronger
connection with a notion of best abstraction. In the concretization-only framework, the
analysis designer must invent abstract operators and prove their soundness a posteriori.
In the Galois connection framework, the abstract semantics can be derived systematically
from the concrete semantics and the Galois connection, although this does not help us
derive effective and efficient algorithms. It is possible to mix both approaches, on a per-
operator basis. In all cases, the soundness of the analysis is formally established.

Expressiveness. The abstract domain must be expressive enough. It must not only be
able to express the invariants at the end of the program, but also the invariants at all
program points, including inductive loop invariants. Such loop invariants generally have a
more complex shape than the invariants at the loop exit. Additionally, imprecisions in the
abstract operators accumulate, as combining optimal operators does not give an optimal
operator. This leads us to require more expressive domains than expected by the properties
of interest only. For instance, the polyhedra domain might be needed even when inferring
only non-relational variable bounds.

Operator design. Even after a domain has been chosen, there is a large leeway in the
design of sound abstract operators, leading to a large choice of cost versus precision trade-
offs, as well as practicality options. On the one hand, we are required to design sound
operators for every language construction, even when the operators do not match the
expressiveness of the domain. For instance, even though polyhedra can only handle natively
affine assignments, we must support non-linear assignments as well. It is fortunate, then,
that most operators have simple, fall-back abstract versions — such as non-deterministic

Version 2025-05-26 184

7.2. PRINCIPLES

assignments, or even resorting to ⊤♯. On the other hand, even when optimal operators
exist semantically, they may have no efficient enough algorithm, or none at all, but it
is easy to revert to approximate ones — such as using the interval assignment for non-
linear assignments in polyhedra. In the end, there is hardly any reason, only drawbacks,
to abandon soundness or to restrict the soundness of the analysis to an unrealistic subset
of the language.

In addition to the approximation embedded in each operator, which is required by the
static choice of a limited set of representable properties in the abstract, there is the need
to approximate fixpoints when the domain has an infinite height. This source of approx-
imation is more dynamic, as it is driven by the sequence of abstract states encountered
during the execution of the analysis, during iterations. It worth noting that, even after
the static approximation is fixed, there is room to improve the dynamic approximation by
designing refined widenings and iteration strategies.

Modularity. Abstract Interpretation encourages modular designs. Firstly, program se-
mantics are defined in a modular way, by combining a small alphabet of atomic semantic
operations, hence, each such operation is abstracted independently, and it is possible to
extend the analysis to new languages by adding new relevant operations. Secondly, ab-
stract domains can be combined through reduced products or disjunctive completions.
This encourages the design of highly reusable abstract domains, which focus on a single
class of invariants at a time. An analyzer can then be constructed by choosing which
building blocks to combine.

Design by refinement. The Abstract Interpretation framework supports a gentle de-
sign policy, where an analyzer is first designed to be sound and precise on a subset of
programs of interest, while still being sound, but possibly coarser and less efficient on
the rest of the programs allowed by the language. Such an analyzer can always be made
more precise afterwards, if needed, either by refining the abstract operators in the current
domains, or by adding new domains [Bertrane et al., 2010].

Local completeness. As the properties we infer are undecidable, a static analyzer can-
not be complete: for every analyzer, there exists an infinite number of programs on which
it will not give sufficiently precise results. Note, however, that, for each of the examples
provided in the tutorial, we always found a combination of abstract domains, abstract
operators, and fixpoint extrapolation operators that managed to analyze it precisely. This
remark can be actually generalized: given a single program, there always exists an ab-
stract domain that can infer the properties of interest. Indeed, for the sake of argument,
note that it is sufficient to select, as abstract elements, the invariants that are used in a
Hoare—Floyd proof of correctness of that specific program. The domain constructed that
way is even finite, and does not require a widening. This theoretic domain has, naturally,
no great value, as it is far too specialized.

On the other hand, a domain such as the interval domain, which has an infinite number

Version 2025-05-26 185

CHAPTER 7. CONCLUSION

of elements, can find precise invariants for an infinite number of programs. This tells us
that the refinement principle suggested in the previous paragraph always succeeds for a
given program, and the end-result is an analyzer that is precise on an infinite family of
programs, while being imprecise on an infinite family of programs. The design of specialized
analyzers, such as Astrée [Bertrane et al., 2010], aims at finding a balance between the
general incompleteness and the local completeness of static analysis, to construct analyzers
that work well on reasonably large families of programs of interest.

7.3 Towards the Analysis of Realistic Programs
This tutorial focused on analyzing an idealized language to better illustrate the principles
of Abstract Interpretation and present the core of numeric abstract domains. Actual static
analyzers for real-life programming languages follow the same principles, and reuse these
abstract domains. Going from the analysis of our language to the analysis of a language
such as C nevertheless presents some additional challenges. To conclude this tutorial, we
list succinctly some of these challenges and provide, without further explanations, some
pointers to related works.

Firstly, we need to adapt our domains from abstracting a semantics on idealized num-
bers to a semantics on machine integers and floating-point numbers, actually used by
programs [Miné, 2004, 2012, Simon and King, 2007]. Then, more complex data-structures,
such as arrays and structures must be handled; abstracting them efficiently, especially when
they are large or possibly unbounded, is difficult. An additional difficulty, in C, comes from
the union types, which allow several data of incompatible types and bit-representations
to share the same memory [Miné, 2006b]. We would also require an analysis for pointers.
Pointer arithmetic in C can be reduced to integer arithmetic on offsets, which gives an-
other use for our numeric domains. We also need to infer the set of variables a pointer
may point to. In the presence of dynamic memory allocation, some abstraction of the pos-
sibly unbounded allocated memory blocks is necessary; these range from simple site-based
abstractions to more complex non-uniform abstractions [Venet, 2004]. Most additional
control structures found in actual languages do not pose much challenge: they can be
handled either on a control-flow graph level, or through an encoding into continuations.
Functions may require additional abstractions: while it is possible to inline function calls,
provided that the call stack is bounded, this is not always efficient enough; a more scalable
approach to, possibly unbounded, function calls (including the case of recursive functions)
would employ a more modular approach [Ancourt et al., 2010].

For a practical example, the interested reader is encouraged to consult the description
of the design of the Astrée static analyzer in [Bertrane et al., 2010].

Version 2025-05-26 186

BIBLIOGRAPHY

Bibliography

E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost analysis of Java
bytecode. In Proc. of the 16th European Symposium on Programming, LNCS, pages
157–172. Springer, 2007.

G. Amato and F. Scozzari. The abstract domain of parallelotopes. Electronic Notes in
Theoretical Computer Science, 287:17–28, 2012. Proceedings of the Fourth International
Workshop on Numerical and Symbolic Abstract Domains, NSAD 2012.

C. Ancourt, F. Coelho, and F. Irigoin. A modular static analysis approach to affine loop
invariants detection. Electronic Notes in Theoretical Computer Science, 267(1):3 – 16,
2010. Proceeding of the Second International Workshop on Numerical and Symbolic
Abstract Domains: NSAD 2010.

R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra
and the Parma Polyhedra Library. In Static Analysis: Proceedings of the 9th Interna-
tional Symposium, volume 2477 of LNCS, pages 213–229. Springer, 2002.

R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset domains. In
Proc. of the 5h Int. Conf. on Verification, Model Checking, and Abstract Interpretation
(VMCAI’04), volume 2477 of LNCS, pages 135–148. Springer, 2004.

R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex
polyhedra. Science of Computer Programming, 58(1–2):28–56, October 2005a.

R. Bagnara, E. Rodríguez-Carbonell, and E. Zaffanella. Generation of basic semi-algebraic
invariants using convex polyhedra. In Static Analysis: 12th International Symposium,
SAS 2005, pages 19–34. Springer, 2005b.

R. Bagnara, P. M. Hill, and E. Zaffanella. An improved tight closure algorithm for integer
octagonal constraints. In Verification, Model Checking and Abstract Interpretation:
Proceedings of the 9th International Conference (VMCAI 2008), volume 4905 of LNCS,
pages 8–21. Springer, 2008a.

R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware and
software systems. Science of Computer Programming, 72(1–2):3–21, 2008b.

Version 2025-05-26 187

BIBLIOGRAPHY

R. Bagnara, P. M. Hill, and E. Zaffanella. Weakly-relational shapes for numeric abstrac-
tions: Improved algorithms and proofs of correctness. Formal Methods in System Design,
35(3):279–323, 2009.

R. Bagnara, P. M. Hill, and E. Zaffanella. Exact join detection for convex polyhedra and
other numerical abstractions. Computational Geometry: Theory and Applications, 43
(5):453–473, 2010.

G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 executables. In Proc. of
the Int. Conf. on Compiler Construction (CC’04), number 2985 in LNCS, pages 5–23.
Springer, 2004.

V. Balasundaram and K. Kennedy. A technique for summarizing data access and its use
in parallelism enhancing transformations. In ACM PLDI’89, pages 41–53. ACM Press,
1989.

F. Banterle and R. Giacobazzi. A fast implementation of the octagon abstract domain
on graphics hardware. In Static Analysis: 14th International Symposium, SAS 2007,
Kongens Lyngby, Denmark, August 22-24, 2007. Proceedings, pages 315–332. Springer,
2007.

C. Bartzis and T. Bultan. Efficient symbolic representations for arithmetic constraints in
verification. Int. J. Found. Comput. Sci., 14(4):605–624, 2003.

C. Bartzis and T. Bultan. Widening arithmetic automata. In Computer Aided Verification,
16th International Conference, CAV, volume 3114 of LNCS, pages 321–333. Springer,
2004.

F. Benhamou, F. Goualard, L. Granvilliers, and J.-F. Puget. Revisiting hull and box
consistency. In Proc. of the 16th Int. Conf. on Logic Programming, pages 230–244,
1999.

F. Benoy, A. King, and F. Mesnard. Computing convex hulls with a linear solver. Theory
and Practice of Logic Programming, 5(1–2):259–271, 2005.

Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development.
Springer, 2004.

J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival. Static
analysis and verification of aerospace software by abstract interpretation. In AIAA
Infotech@Aerospace, number 2010-3385 in AIAA, pages 1–38. AIAA (American Institute
of Aeronautics and Astronautics), April 2010.

J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival. Static
analysis and verification of aerospace software by abstract interpretation. Foundations
and Trends in Programming Languages (FnTPL), 2(2–3):71–190, 2015.

Version 2025-05-26 188

BIBLIOGRAPHY

G. Birkhoff. Lattice theory. In Colloquium Publications, volume 25. Amer. Math. Soc., 3.
edition, 1967.

B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. A static analyzer for large safety-critical software. In Proc. of the ACM
SIGPLAN Conf. on Programming Languages Design and Implementation (PLDI’03),
pages 196–207. ACM, June 2003.

M. Bouaziz. TreeKs: A functor to make numerical abstract domains scalable. In 4th
International Workshop on Numerical and Symbolic Abstract Domains (NSAD 2012),
volume 287, pages 41–52. Elsevier, September 2012.

F. Bourdoncle. Abstract interpretation by dynamic partitioning. J. Funct. Program., 2
(4):407–423, 1992.

F. Bourdoncle. Abstract debugging of higher-order imperative languages. SIGPLAN Not.,
28(6):46–55, June 1993a.

F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In Proc. of the Int.
Conf. on Formal Methods in Programming and their Applications (FMPA’93), volume
735 of LNCS, pages 128–141. Springer, June 1993b.

R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans.
on Computers, 35:677–691, 1986.

R. M. Burstall. Program proving as hand simulation with a little induction. Information
Processing, pages 308–312, 1974.

L. Chen, A. Miné, and P. Cousot. A sound floating-point polyhedra abstract domain. In
Proc. of the Sixth Asian Symp. on Programming Languages and Systems (APLAS’08),
volume 5356 of LNCS, pages 3–18. Springer, December 2008.

L. Chen, A. Miné, J. Wang, and P. Cousot. Linear absolute value relation analysis. In
Proc. of the 20th European Symp. on Programming (ESOP’11), volume 6602 of LNCS,
pages 156–175. Springer, March 2011.

N. V. Chernikova. Algorithm for discovering the set of all the solutions of a linear pro-
gramming problem. USSR Computational Mathematics and Mathematical Physics, 8
(6):282 – 293, 1968.

C. K. Chiu and J. H. M. Lee. Efficient interval linear equality solving in constraint logic
programming. Reliable Computing, 8(2):139–174, April 2002.

E. Clarke, E. Emerson, and A. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Trans. on Programming Languages
and Systems, 8:244–263, 1986.

Version 2025-05-26 189

BIBLIOGRAPHY

E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In In Tools
and Algorithms for the Construction and Analysis of Systems, pages 168–176. Springer,
2004.

T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. The MIT
Press, second edition, 2001.

A. Cortesi and M. Zanioli. Widening and narrowing operators for abstract interpretation.
Computer Languages, Systems & Structures, 37(1):24–42, 2011.

A. Cortesi, G. Filé, F. Ranzato, R. Giacobazzi, and C. Palamidessi. Complementation in
abstract interpretation. ACM Trans. Program. Lang. Syst., 19(1):7–47, January 1997.

A. Cortesi, G. Costantini, and P. Ferrara. A survey on product operators in abstract
interpretation. In Semantics, Abstract Interpretation, and Reasoning about Programs:
Essays Dedicated to David A. Schmidt on the Occasion of his Sixtieth Birthday, pages
325–336, 2013.

A. Costan, S. Gaubert, E. Goubault, M. Martel, and S. Putot. A policy iteration algo-
rithm for computing fixed points in static analysis of programs. In Computer Aided
Verification: 17th International Conference, CAV 2005, pages 462–475. Springer, 2005.

P. Cousot. Asynchronous iterative methods for solving a fixed point system of monotone
equations in a complete lattice. Res. rep. R.R. 88, Laboratoire IMAG, Université scien-
tifique et médicale de Grenoble, September 1977. 15 p.

P. Cousot. Semantic foundations of program analysis. In Program Flow Analysis: Theory
and Applications, chapter 10, pages 303–342. Prentice-Hall, Inc., Englewood Cliffs, New
Jersey, 1981.

P. Cousot. Types as abstract interpretations, invited paper. In Conference Record of the
Twentyfourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 316–331, Paris, France, January 1997. ACM Press.

P. Cousot. Constructive design of a hierarchy of semantics of a transition system by
abstract interpretation. Theoretical Computer Science, 277(1–2):47–103, 2002.

P. Cousot. Abstracting induction by extrapolation and interpolation. In Verification,
Model Checking, and Abstract Interpretation: 16th International Conference, VMCAI
2015, pages 19–42. Springer, 2015.

P. Cousot and R. Cousot. Static determination of dynamic properties of programs. In
Proc. of the 2d Int. Symp. on Programming, pages 106–130. Dunod, Paris, France, 1976.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proc. of the
4th ACM Symp. on Principles of Programming Languages (POPL’77), pages 238–252.
ACM, January 1977.

Version 2025-05-26 190

BIBLIOGRAPHY

P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Conf.
Rec. of the 6th Annual ACM SIGPLAN-SIGACT Symp. on Principles of Programming
Languages (POPL’79), pages 269–282. ACM Press, 1979a.

P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems. Pacific
Journal of Mathematics, 81(1):43–57, 1979b.

P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrowing
approaches to abstract interpretation, invited paper. In Proc. of the Int. Workshop on
Programming Language Implementation and Logic Programming (PLILP’92), volume
631 of LNCS, pages 269–295. Springer, 1992a.

P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic and
Computation, 2(4):511–547, August 1992b.

P. Cousot and R. Cousot. “à la Burstall” intermittent assertions induction principles for
proving inevitability properties of programs. Theoret. Comput. Sci., 120(1):123–155,
1993.

P. Cousot and R. Cousot. A gentle introduction to formal verification of computer systems
by abstract interpretation. In Logics and Languages for Reliability and Security, NATO
Science Series III: Computer and Systems Sciences, pages 1–29. IOS Press, 2010.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables
of a program. In Conf. Rec. of the 5th Annual ACM SIGPLAN/SIGACT Symp. on
Principles of Programming Languages (POPL’78), pages 84–97. ACM, 1978.

P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
Combination of abstractions in the Astrée static analyzer. In Proc. of the 11th Annual
Asian Computing Science Conf. (ASIAN’06), volume 4435 of LNCS, pages 272–300.
Springer, December 2006.

P. Cousot, R. Cousot, and L. Mauborgne. A scalable segmented decision tree abstract
domain. In Pnueli Festschrift, volume 6200 of LNCS, pages 72–95. Springer, 2010.

R. Cousot. Reasoning about program invariance proof methods. Res. rep. CRIN-80-P050,
Centre de Recherche en Informatique de Nancy (CRIN), Institut National Polytechnique
de Lorraine, Nancy, France, July 1980.

P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski. Frama-
C: A software analysis perspective. In Proc. of the 10th International Conference on
Software Engineering and Formal Methods, SEFM’12, pages 233–247. Springer, 2012.

E. W. Dijkstra. Guarded commands, non-determinacy and formal derivation of programs.
Commun. ACM, 18(8):453–457, 1975.

Version 2025-05-26 191

BIBLIOGRAPHY

N. Dor, M. Rodeh, and M. Sagiv. Cleanness checking of string manipulations in C programs
via integer analysis. In Static Analysis: 8th International Symposium, SAS 2001 Paris,
France, July 16–18, 2001 Proceedings, pages 194–212. Springer, 2001.

J. Feret. Static analysis of digital filters. In Proc. of the 13th European Symp. on Pro-
gramming (ESOP’04), volume 2986 of LNCS, pages 33–48. Springer, March 2004.

J. Feret. The arithmetic-geometric progression abstract domain. In Proc. of the 6th
Int. Conf. on Verification, Model Checking, and Abstract Interpretation (VMCAI’05),
volume 3385 of LNCS, pages 42–58. Springer, January 2005.

G. Filé and F. Ranzato. The powerset operator on abstract interpretations. Theoretical
Computer Science, 222(1):77–111, 1999.

R. W. Floyd. Assigning meanings to programs. In Proc. of the American Mathematical
Society Symposia on Applied Mathematics, volume 19, pages 19–32, Providence, USA,
1967.

G. Gange, J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey. Interval analysis
and machine arithmetic: Why signedness ignorance is bliss. ACM Trans. Program. Lang.
Syst., 37(1):1:1–1:35, January 2015.

K. Ghorbal, E. Goubault, and S. Putot. The zonotope abstract domain Taylor1+. In
Proc. of the 21st Int. Conf. on Computer Aided Verification (CAV’09), volume 5643 of
LNCS, pages 627–633. Springer, June 2009.

R. Giacobazzi and F. Ranzato. Refining and compressing abstract domains. In Automata,
Languages and Programming: 24th International Colloquium, ICALP ’97, pages 771–
781. Springer, 1997.

R. Giacobazzi and F. Ranzato. Optimal domains for disjunctive abstract interpretation.
Science of Computer Programming, 32(1):177–210, 1998.

R. Giacobazzi and F. Scozzari. A logical model for relational abstract domains. ACM
Trans. Program. Lang. Syst., 20(5):1067–1109, September 1998.

R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations complete. J.
ACM, 47(2):361–416, March 2000.

P. Granger. Static analysis of arithmetic congruences. Int. Journal of Computer Mathe-
matics, 30:165–199, 1989.

P. Granger. Static analysis of linear congruence equalities among variables of a program.
In Proc. of the Int. Joint Conf. on Theory and Practice of Soft. Development (TAP-
SOFT’91), volume 493 of LNCS, pages 169–192. Springer, 1991.

Version 2025-05-26 192

BIBLIOGRAPHY

P. Granger. Improving the results of static analyses of programs by local decreasing
iterations. In Foundations of Software Technology and Theoretical Computer Science:
12th Conference, pages 68–79. Springer, 1992.

P. Granger. Static analyses of congruence properties on rational numbers (extended ab-
stract). In Static Analysis: 4th International Symposium, SAS ’97, pages 278–292.
Springer, 1997.

N. Halbwachs and J. Henry. When the decreasing sequence fails. In Static Analysis: 19th
International Symposium, SAS 2012, pages 198–213. Springer, 2012.

M. Handjieva and S. Tzolovski. Refining static analyses by trace-based partitioning using
control flow. In Static Analysis: 5th International Symposium, SAS’98, pages 200–214.
Springer, 1998.

C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):
576–580, October 1969.

ISO/IEC JTC1/SC22/WG14 working group. C standard. Technical Report 1124, ISO &
IEC, 2007.

B. Jeannet. Dynamic partitioning in linear relation analysis: Application to the verification
of reactive systems. Formal Methods in System Design, 23(1):5–37, July 2003.

B. Jeannet and A. Miné. Apron: A library of numerical abstract domains for static analysis.
In Proc. of the 21th Int. Conf. on Computer Aided Verification (CAV’09), volume 5643
of LNCS, pages 661–667. Springer, June 2009.

G. Kahn. Natural semantics. Technical Report 601, INRIA, 1987.

M. Karr. Affine relationships among variables of a program. Acta Inf., 6:133–151, 1976.

G. Kildall. A unified approach to global program optimization. In Proc. of the 1st Annual
ACM SIGACT-SIGPLAN Symp. on Principles of Programming Languages (POPL’73),
pages 194–206. ACM, 1973.

J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–394,
1976.

S. C. Kleene. Introduction to metamathematics. Bibliotheca mathematica. North-Holland
Pub. Co., 1964.

S. Lang. Introduction to Linear Algebra. Undergraduate Texts in Mathematics. Springer,
1997.

H. LeVerge. A note on Chernikova’s algorithm. Technical Report 635, IRISA, 1992.

Version 2025-05-26 193

BIBLIOGRAPHY

F. Logozzo and M. Fähndrich. Pentagons: A weakly relational abstract domain for the
efficient validation of array accesses. Science of Computer Programming, 75(9):796–807,
2010.

A. Maréchal, D. Monniaux, and M. Périn. Scalable minimizing-operators on polyhedra
via parametric linear programming. In Static Analysis - 24th International Symposium,
pages 212–231, 2017.

I. Mastroeni. Algebraic power analysis by abstract interpretation. Higher-Order and
Symbolic Computation, 17(4):297–345, December 2004.

L. Mauborgne and X. Rival. Trace partitioning in abstract interpretation based static
analyzer. In Proc. of the 14th European Symp. on Programming (ESOP’05), volume
3444 of LNCS, pages 5–20. Springer, April 2005.

K. McMillan. Symbolic Model Checking. Kluwer, 1993.

A. Miné. A new numerical abstract domain based on difference-bound matrices. In Proc. of
the Second Symposium on Programs as Data Objects (PADO II), volume 2053 of LNCS,
pages 155–172. Springer, May 2001.

A. Miné. Relational abstract domains for the detection of floating-point run-time errors.
In Proc. of the European Symp. on Programming (ESOP’04), volume 2986 of LNCS,
pages 3–17. Springer, March 2004.

A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation, 19(1):
31–100, 2006a.

A. Miné. Field-sensitive value analysis of embedded C programs with union types and
pointer arithmetics. In Proc. of the ACM SIGPLAN/SIGBED Conf. on Languages,
Compilers, and Tools for Embedded Systems (LCTES’06), pages 54–63. ACM, June
2006b.

A. Miné. Abstract domains for bit-level machine integer and floating-point operations.
In Proc. of the 4th Int. Workshop on Invariant Generation (WING’12), number HW-
MACS-TR-0097 in EPiC Series in Computing, page 16. Computer Science, School of
Mathematical and Computer Science, Heriot-Watt University, UK, June 2012.

R. E. Moore. Interval Analysis. Prentice Hall, Englewood Cliffs N. J., USA, 1966.

M. Müller-Olm and H. Seidl. Analysis of modular arithmetic. In Proc. of the 14th European
Symp. on Prog. (ESOP’05), volume 3444 of LNCS, pages 46–60. Springer, April 2005.

D. Nguyen Que. Robust and generic abstract domain for static program analysis: The
polyhedral case. PhD thesis, École des Mines de Paris, 2010.

H. Oh, K. Heo, W. Lee, W. Lee, and K. Yi. Design and implementation of sparse global
analyses for C-like languages. SIGPLAN Not., 47(6):229–238, June 2012.

Version 2025-05-26 194

BIBLIOGRAPHY

S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In Proc.
of the 11th Int. Conf. on Automated Deduction (CADE’92), volume 607 of LNAI, pages
748–752. Springer, June 1992.

G. D. Plotkin. A structural approach to operational semantics, 1981.

W. Pugh. The Omega test: A fast and practical integer programming algorithm for de-
pendence analysis. Commun. of the ACM, 8:4–13, August 1992.

H. G. Rice. Classes of recursively enumerable sets and their decision problems. Trans.
Amer. Math. Soc., 74:358–366, 1953.

E. Rodríguez-Carbonell and D. Kapur. Automatic generation of polynomial invariants of
bounded degree using abstract interpretation. Science of Computer Programming, 64
(1):54 – 75, 2007.

S. Sankaranarayanan, H. Sipma, and Z. Manna. Scalable analysis of linear systems us-
ing mathematical programming. In Proc. of the 6th Int. Conf. on Verification, Model
Checking, and Abstract Interpretation (VMCAI’05), volume 3385 of LNCS, pages 21–47.
Springer, 2005.

D. Schmidt. Abstract interpretation from a topological perspective. In Static Analysis:
16th International Symposium, SAS 2009, pages 293–308. Springer, 2009.

P. Schrammel and B. Jeannet. Logico-numerical abstract acceleration and application to
the verification of data-flow programs. In Static Analysis: 18th International Symposium,
SAS 2011, pages 233–248. Springer, 2011.

A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, Inc., 1986.

D. Scott and C. Strachey. Towards a mathematical semantics for computer languages.
Technical Report PRG-6, Oxford U. Computing Lab, 1971.

Y. Seladji. Finding relevant templates via the principal component analysis. In Veri-
fication, Model Checking, and Abstract Interpretation, VMCAI 2017, pages 483–499.
Springer, 2017.

A. Simon and A. King. Analyzing string buffers in C. In Proceedings of the 9th Inter-
national Conference on Algebraic Methodology and Software Technology, AMAST ’02,
pages 365–379. Springer, 2002.

A. Simon and A. King. Exploiting sparsity in polyhedral analysis. In Proc. of the 12th
Int. Symp. on Static Analysis (SAS’05), volume 3672 of LNCS, pages 336–351. Springer,
September 2005.

A. Simon and A. King. Taming the wrapping of integer arithmetic. In Proc. of the 14th
Int. Symp. on Static Analysis (SAS’07), volume 4634 of LNCS, pages 121–136. Springer,
August 2007.

Version 2025-05-26 195

BIBLIOGRAPHY

A. Simon, A. King, and J. M. Howe. Two variables per linear inequality as an abstract
domain. In Proc. of the 12th Int. Conf. on Logic based program synthesis and transfor-
mation (LOPSTR’02), volume 2664 of LNCS, pages 71–89. Springer, 2002.

G. Singh, M. Püschel, and M. Vechev. Fast polyhedra abstract domain. In Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, pages 46–59. ACM, 2017.

A. Tarski. A lattice theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics, 5:285–310, 1955.

A. Turing. Checking a large routine. In Report of a Conference on High Speed Automatic
Calculating Machines, pages 67–69. University Mathematical Laboratory, 1949.

C. Urban and A. Miné. A decision tree abstract domain for proving conditional termina-
tion. In Proc. of the 21st International Static Analysis Symposium (SAS’14), volume
8373 of LNCS, pages 302–318. Springer, September 2014.

A. Venet. A scalable nonuniform pointer analysis for embedded programs. In Proc. of
the Int. Symp. on Static Analysis (SAS’04), number 3148 in LNCS, pages 149–164.
Springer, 2004.

Version 2025-05-26 196

	Introduction
	A First Static Analysis: Informal Presentation
	Scope and Applications
	Outline
	Further Resources

	Elements of Abstract Interpretation
	Order Theory
	Fixpoints
	Approximations
	Summary
	Bibliographic Notes

	Language and Semantics
	Syntax
	Atomic Statement Semantics
	Denotational-Style Semantics
	Equation-Based Semantics
	Abstract Semantics
	Bibliographic Notes

	Non-Relational Abstract Domains
	Value and State Abstractions
	The Sign Domain
	The Constant Domain
	The Constant Set Domain
	The Interval Domain
	Advanced Abstract Tests
	Advanced Iteration Techniques
	The Congruence Domain
	The Cartesian Abstraction
	Summary
	Bibliographic Notes

	Relational Abstract Domains
	Motivation
	The Affine Equalities Domain (Karr's Domain)
	The Affine Inequalities Domain (Polyhedra Domain)
	The Zone and Octagon Domains
	The Template Domain
	Summary
	Bibliographic Notes

	Domain Transformers
	The Lattice of Abstractions
	Product Domains
	Disjunctive Completions
	Summary
	Bibliographic Notes

	Conclusion
	Summary
	Principles
	Towards the Analysis of Realistic Programs

