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Ariane 5, Flight 501

Maiden flight of the Ariane 5 Launcher, 4 June 1996.
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Ariane 5, Flight 501

40s after launch. . .
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Ariane 5, Flight 501

Cause: software error1

arithmetic overflow in unprotected data conversion
from 64-bit float to 16-bit integer types2

P M DERIVE(T ALG.E BH) :=

UC 16S EN 16NS (TDB.T ENTIER 16S

((1.0/C M LSB BH) * G M INFO DERIVE(T ALG.E BH)));
software exception not caught =⇒ computer switched off
all backup computers run the same software
all computers switched off, no guidance
=⇒ rocket self-destructs

Cost: estimated at more than 370 000 000 US$3

1
J.-L. Lions et al., Ariane 501 Inquiry Board report.

2
J.-J. Levy. Un petit bogue, un grand boum. Séminaire du Département d’informatique de l’ENS, 2010.

3
M. Dowson. ”The Ariane 5 Software Failure”. Software Engineering Notes 22 (2): 84, March 1997.
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How can we avoid such failures?

Choose a safe programming language.
C (low level) / Ada, Java (high level)

yet, Ariane 5 software is written in Ada

Carefully design the software.
many software development methods exist

yet, critical embedded software follow strict development processes

Program well.
is it art or science?

Test the software extensively.

yet, the erroneous code was well tested. . . on Ariane 4!

=⇒ not sufficient!

We should use formal methods.
provide rigorous, mathematical insurance
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Invariants and programs

assume X in [0,1000];

I := 0;

while I < X do

I := I + 2;

assert I in [0,???]

Robert Floyd4

4
R. W. Floyd. ”Assigning meanings to programs”. In Proc. Amer. Math. Soc. Symposia in Applied

Mathematics, vol. 19, pp. 19–31, 1967.
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Invariants and programs

assume X in [0,1000];

{X ∈ [0, 1000]}
I := 0;

{X ∈ [0, 1000], I = 0}
while I < X do

{X ∈ [0, 1000], I ∈ [0, 998]}
I := I + 2;

{X ∈ [0, 1000], I ∈ [2, 1000]}
{X ∈ [0, 1000], I ∈ [0, 1000]}
assert I in [0,1000]

Robert Floyd4

invariant: property true of all the executions of the program

4
R. W. Floyd. ”Assigning meanings to programs”. In Proc. Amer. Math. Soc. Symposia in Applied

Mathematics, vol. 19, pp. 19–31, 1967.
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Invariants and programs

assume X in [0,1000];

{X ∈ [0, 1000]}
I := 0;

{X ∈ [0, 1000], I = 0}
while I < X do

{X ∈ [0, 1000], I ∈ {0, 2, . . . , 996, 998}}
I := I + 2;

{X ∈ [0, 1000], I ∈ {2, 4, . . . , 998, 1000}}
{X ∈ [0, 1000], I ∈ {0, 2, . . . , 998, 1000}}
assert I in [0,1000]

Robert Floyd4

inductive invariant: invariant that can be proved to hold by
induction on loop iterates

4
R. W. Floyd. ”Assigning meanings to programs”. In Proc. Amer. Math. Soc. Symposia in Applied

Mathematics, vol. 19, pp. 19–31, 1967.
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Logics and programs

{P[e/X ]} X := e {P}
{P} C1 {R} {R} C2 {Q}

{P} C1; C2 {Q}

{P & b} C {P}
{P} while b do C {P &¬b}

. . .
Tony Hoare5

sound logic to prove program properties, (rel.) complete

proofs can be checked automatically
(e.g., using proof assistants: Coq, PVS, Isabelle, HOL, etc.)

requires annotations
but manual annotation is not practical for large programs!
(e.g., Windows XP: 45 Mlines6)

5
C. A. R. Hoare. ”An Axiomatic Basis for Computer Programming”. Commun. ACM 12(10): 576-580 (1969).

6
How Many Lines of Code in Windows?”. Knowing.NET. December 6, 2005.
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Computers, programs, data

O(P,D) ∈ {yes, no,⊥}

O P D

The computer O runs the program P on the data D
and answers (yes,no). . . or does not answer (⊥).
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Computers, programs, data

O(P,D) ∈ {yes, no,⊥}

O P P ′

Note that programs are also a kind of data!
They can be fed to other programs. (e.g., to compilers)
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Static analysis

Static analyzer A.
Given a program P:

O(A,P) = yes ⇐⇒ ∀D, O(P,D) is safe

O(A,P) 6= ⊥ (the static analysis always terminates)

=⇒ P is proved safe even before it is run!
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Fundamental undecidability

There cannot exist a static analyzer A proving the termination of
every terminating program P.

Proof sketch:

A(P · D) : O(A,P · D) =
yes if O(P,D) 6= ⊥
no otherwise

A′(X ) : while A(X·X) do nothing; no

do we have O(A′,A′) = ⊥ or 6= ⊥? neither!
=⇒ A cannot exist Alan Turing7

All “interesting” properties are undecidable!8

7
A. M. Turing. ”Computability and definability”. The Journal of Symbolic Logic, vol. 2, pp. 153–163, (1937).

8
H. G. Rice. ”Classes of Recursively Enumerable Sets and Their Decision Problems.” Trans. Amer. Math.

Soc. 74, 358-366, 1953.
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Approximate static analysis

An approximate static analyzer A always answers in finite time
( 6= ⊥):

either yes: the program P is definitely safe (soundness)

either no: I don’t know (incompleteness)

Sufficient to prove the safety of (some) programs.
Fails on infinitely many programs. . .

=⇒ We should adapt the analyzer A to

a class of programs to verify, and

a class of safety properties to check.
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Abstract interpretation

Patrick Cousot9

General theory of the approximation and comparison of program
semantics:

unifies many semantics

allows the definition of static analyses
that are correct by construction

9
P. Cousot. ”Méthodes itératives de construction et d’approximation de points fixes d’opérateurs monotones

sur un treillis, analyse sémantique des programmes.” Thèse És Sciences Mathématiques, 1978.
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Abstract interpretation

(S0)
assume X in [0,1000];

(S1)
I := 0;

(S2)
while (S3) I < X do

(S4)
I := I + 2;

(S5)
(S6)

program
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Abstract interpretation

(S0)
assume X in [0,1000];

(S1)
I := 0;

(S2)
while (S3) I < X do

(S4)
I := I + 2;

(S5)
(S6)

Si ∈ D = P({I, X} → Z)

S0 = { (i , x) | i , x ∈ Z } = >
S1 = { (i , x) ∈ S0 | x ∈ [0, 1000] } = F1(S0)
S2 = { (0, x) | ∃i , (i , x) ∈ S1 } = F2(S1)
S3 = S2 ∪ S5

S4 = { (i , x) ∈ S3 | i < x } = F4(S3)
S5 = { (i + 2, x) | (i , x) ∈ S4 } = F5(S4)
S6 = { (i , x) ∈ S3 | i ≥ x } = F6(S3)

program semantics

Concrete semantics Si ∈ D = P({I, X} → Z):

smallest solution of a system of equations

strongest invariant (and an inductive invariant)

not computable in general
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Abstract interpretation

(S0)
assume X in [0,1000];

(S1)
I := 0;

(S2)
while (S3) I < X do

(S4)
I := I + 2;

(S5)
(S6)

S]i ∈ D]

S]0 = >]

S]1 = F ]
1 (S]0)

S]2 = F ]
2 (S]1)

S]3 = S]
2 ∪] S

]
5

S]4 = F ]
4 (S]3)

S]5 = F ]
5 (S]4)

S]6 = F ]
6 (S]3)

program semantics

Abstract semantics S]i ∈ D]:
D] subset of properties of interest
(with a machine representation)

F ] : D] → D] over-approximates the effect of F : D → D in D]
(with effective algorithms)
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Numeric abstract domain examples

concrete sets D: {(0, 3), (5.5, 0), (12, 7), . . .}

not computable
abstract polyhedra D]

p: 6X + 11Y ≥ 33 ∧ · · · exponential cost
abstract octagons D]

o : X + Y ≥ 3 ∧ Y ≥ 0 ∧ · · · cubic cost

abstract intervals D]
i : X ∈ [0, 12] ∧ Y ∈ [0, 8] linear cost

Trade-off between cost and expressiveness / precision
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Correctness proof and false alarms

The program is correct (blue ∩ red = ∅).

The polyhedra domain can prove the correctness (cyan ∩ red = ∅).
The interval domain cannot (green ∩ red 6= ∅, false alarm).
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Numeric abstract domain examples (cont.)

abstract semantics F ] in the interval domain D]i
I:=I+2: (I ∈ [`, h]) 7→ (I ∈ [`+2, h+2])

∪]: (I ∈ [`1, h1]) ∪] (I ∈ [`2, h2])
= (I ∈ [min(`1, `2),max(h1, h2)])

. . .
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Galois connection

(D,⊆) −−−→←−−−α
γ

(D],⊆])

α(X ) ⊆] Y ] ⇐⇒ X ⊆ γ(Y ])

Évariste Galois

Use:

α(X ) is the best abstraction of X in D]

F ] = α ◦ F ◦ γ is the best abstraction of F in D] → D]

Example: in the interval domain D]
i

[`1, h1] ⊆]
i [`2, h2] ⇐⇒ `1 ≥ `2 ∧ h1 ≤ h2

γi ([`, h]) = { x ∈ Z | ` ≤ x ≤ h }
αi (X ) = [min X ,max X ]
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Resolution by iteration and extrapolation

Challenge: the equation system is recursive: ~S] = ~F ]( ~S]).

Solution: resolution by iteration: ~S] 0 = ∅], ~S] i+1 = ~F ]( ~S] i ).

e.g., S]3 : I ∈ ∅, I = 0, I ∈ [0, 2], I ∈ [0, 4], . . . , I ∈ [0, 1000]

Challenge: infinite or very long sequence of iterates in D]

Solution: extrapolation operator O

e.g., [0, 2] O [0, 4] = [0,+∞[

remove unstable bounds and constraints

ensures the convergence in finite time

inductive reasoning (through generalisation)

=⇒ effective solving method −→ static analyzer!
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The Astrée static analyzer
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The Astrée static analyzer

Analyseur statique de programmes temps-réels embarqués
(static analyzer for real-time embedded software)

developed at ENS (since 2001)
B. Blanchet, P. Cousot, R. Cousot, J. Feret,
L. Mauborgne, D. Monniaux, A. Miné, X. Rival

industrialized and made commercially available by AbsInt
(since 2009)

Astrée
www.astree.ens.fr

AbsInt
www.absint.com
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The Astrée static analyzer

Specialized:

for the analysis of run-time errors
(arithmetic overflows, array overflows, divisions by 0, etc.)

on embedded critical C software
(no dynamic memory allocation, no recursivity)

in particular on control / command software
(reactive programs, intensive floating-point computations)

intended for validation
(analysis does not miss any error and tries to minimise false alarms)

Approximately 40 abstract domains are used at the same time:

numeric domains (intervals, octagons, ellipsoids, etc.)

boolean domains

domains expressing properties on the history of computations
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Astrée applications (at ENS)

Airbus A340-300 (2003) Airbus A380 (2004)

(model of) ESA ATV (2008)

size: from 70 000 to 860 000 lines of C

analysis time: from 45mn to '40h

alarm(s): 0 (proof of absence of run-time error)
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Other applications of abstract interpretation

Analysis of dynamic memory data-structures (shape analysis).

Analysis of parallel, distributed, and multi-thread programs.

Analysis of probabilistic programs.

Analysis of biological systems.

Security analysis (information flow).

Termination analysis.

Cost analysis.

Analyses to enable compiler optimisations.

. . .
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