Introduction
 MPRI 2-6: Abstract Interpretation, application to verification and static analysis

Antoine Miné
CNRS, École normale supérieure
course i, 2012-2013

Ariane 5, Flight 501

Maiden flight of the Ariane 5 Launcher, 4 June 1996.

Ariane 5, Flight 501

40s after launch...

Ariane 5, Flight 501

- Cause: software error ${ }^{1}$
- arithmetic overflow in unprotected data conversion from 64-bit float to 16 -bit integer types ${ }^{2}$

```
P_M_DERIVE(T_ALG.E_BH) :=
UC_16S_EN_16NS (TDB.T_ENTIER_16S
((1.0/C_M_LSB_BH) * G_M_INFO_DERIVE(T_ALG.E_BH)));
```

- software exception not caught \Longrightarrow computer switched off
- all backup computers run the same software all computers switched off, no guidance \Longrightarrow rocket self-destructs
- Cost: estimated at more than 370000000 US\$3

[^0]
How can we avoid such failures?

- Choose a safe programming language.

C (low level) / Ada, Java (high level)

- Carefully design the software. many software development methods exist
- Program well. is it art or science?
- Test the software extensively.

How can we avoid such failures?

- Choose a safe programming language.

C (low level) / Ada, Java (high level) yet, Ariane 5 software is written in Ada

- Carefully design the software. many software development methods exist yet, critical embedded software follow strict development processes
- Program well. is it art or science?
- Test the software extensively. yet, the erroneous code was well tested... on Ariane 4!
\Longrightarrow not sufficient!

How can we avoid such failures?

- Choose a safe programming language.

C (low level) / Ada, Java (high level) yet, Ariane 5 software is written in Ada

- Carefully design the software. many software development methods exist yet, critical embedded software follow strict development processes
- Program well. is it art or science?
- Test the software extensively. yet, the erroneous code was well tested... on Ariane 4! \Longrightarrow not sufficient!

We should use formal methods.
provide rigorous, mathematical insurance

Invariants and programs

```
assume X in [0,1000];
I := 0;
while I < X do
    I := I + 2;
assert I in [0,???]
```

[^1]
Invariants and programs

```
assume X in [0,1000];
I := 0;
while I < X do
    I := I + 2;
assert I in [0,1000]
```

[^2]
Invariants and programs

$$
\begin{aligned}
& \text { assume } X \text { in }[0,1000] ; \\
& \{X \in[0,1000]\} \\
& I \quad:=0 ; \\
& \{X \in[0,1000], I=0\} \\
& \text { while } I<X \text { do } \\
& \quad\{X \in[0,1000], I \in[0,998]\} \\
& \quad I \quad:=I+2 ; \\
& \quad\{X \in[0,1000], I \in[2,1000]\} \\
& \{X \in[0,1000], I \in[0,1000]\} \\
& \text { assert I in }[0,1000]
\end{aligned}
$$

Robert Floyd ${ }^{4}$
invariant: property true of all the executions of the program

[^3]
Invariants and programs

$$
\begin{aligned}
& \text { assume } X \text { in }[0,1000] ; \\
& \{X \in[0,1000]\} \\
& \text { I }:=0 ; \\
& \{X \in[0,1000], I=0\} \\
& \text { while } I<X \text { do } \\
& \quad\{X \in[0,1000], I \in\{0,2, \ldots, 996,998\}\} \\
& \quad I \quad:=I+2 ; \\
& \quad\{X \in[0,1000], I \in\{2,4, \ldots, 998,1000\}\} \\
& \{X \in[0,1000], I \in\{0,2, \ldots, 998,1000\}\} \\
& \text { assert } I \text { in }[0,1000]
\end{aligned}
$$

Robert Floyd ${ }^{4}$
inductive invariant: invariant that can be proved to hold by induction on loop iterates

[^4]
Logics and programs

$$
\overline{\{P[e / X]\} \mathrm{X}:=\mathrm{e}\{P\}} \quad \frac{\{P\} \mathrm{C}_{1}\{R\} \quad\{R\} \mathrm{C}_{2}\{Q\}}{\{P\} \mathrm{C}_{1} ; \mathrm{C}_{2}\{Q\}}
$$

$$
\frac{\{P \& b\} \mathrm{C}\{P\}}{\{P\} \text { while } \mathrm{b} \text { do } \mathrm{C}\{P \& \neg b\}}
$$

Tony Hoare ${ }^{5}$

- sound logic to prove program properties, (rel.) complete
- proofs can be checked automatically (e.g., using proof assistants: Coq, PVS, Isabelle, HOL, etc.)

[^5]
Logics and programs

$$
\overline{\{P[e / X]\} \mathrm{x}:=\mathrm{e}\{P\}} \quad \frac{\{P\} \mathrm{C}_{1}\{R\} \quad\{R\} \mathrm{C}_{2}\{Q\}}{\{P\} \mathrm{C}_{1} ; \mathrm{C}_{2}\{Q\}}
$$

$$
\frac{\{P \& b\} \mathrm{C}\{P\}}{\{P\} \text { while } \mathrm{b} \text { do } \mathrm{C}\{P \& \neg b\}}
$$

Tony Hoare ${ }^{5}$

- sound logic to prove program properties, (rel.) complete
- proofs can be checked automatically (e.g., using proof assistants: Coq, PVS, Isabelle, HOL, etc.)
- requires annotations but manual annotation is not practical for large programs! (e.g., Windows XP: 45 Mlines ${ }^{6}$)

[^6]
Computers, programs, data

$$
O(P, D) \in\{\text { yes }, n o, \perp\}
$$

P

D

The computer O runs the program P on the data D and answers (yes,no)... or does not answer (\perp).

Computers, programs, data

$$
O(P, D) \in\{\text { yes }, n o, \perp\}
$$

P

P^{\prime}

Note that programs are also a kind of data!
They can be fed to other programs. (e.g., to compilers)

Static analysis

Static analyzer A.
Given a program P :

- $O(A, P)=$ yes $\Longleftrightarrow \forall D, O(P, D)$ is safe
- $O(A, P) \neq \perp \quad$ (the static analysis always terminates)

Static analysis

Static analyzer A.
Given a program P :

- $O(A, P)=$ yes $\Longleftrightarrow \forall D, O(P, D)$ is safe
- $O(A, P) \neq \perp \quad$ (the static analysis always terminates)
$\Longrightarrow P$ is proved safe even before it is run!

Fundamental undecidability

There cannot exist a static analyzer A proving the termination of every terminating program P.

Proof sketch:
$A(P \cdot D): O(A, P \cdot D)=\left\lvert\, \begin{aligned} & \text { yes if } O(P, D) \neq \perp \\ & n o \text { otherwise }\end{aligned}\right.$
$A^{\prime}(X)$: while $\mathrm{A}(\mathrm{X} \cdot \mathrm{X})$ do nothing; no
do we have $O\left(A^{\prime}, A^{\prime}\right)=\perp$ or $\neq \perp$? neither!
$\Longrightarrow A$ cannot exist

Alan Turing ${ }^{7}$

[^7] Soc. 74, 358-366, 1953.

Fundamental undecidability

There cannot exist a static analyzer A proving the termination of every terminating program P.

Proof sketch:
$A(P \cdot D): O(A, P \cdot D)=\left\lvert\, \begin{aligned} & \text { yes if } O(P, D) \neq \perp \\ & n o \text { otherwise }\end{aligned}\right.$
$A^{\prime}(X)$: while $\mathrm{A}(\mathrm{X} \cdot \mathrm{X})$ do nothing; no
do we have $O\left(A^{\prime}, A^{\prime}\right)=\perp$ or $\neq \perp$? neither!
$\Longrightarrow A$ cannot exist

All "interesting" properties are undecidable! ${ }^{8}$

Alan Turing ${ }^{7}$

Approximate static analysis

An approximate static analyzer A always answers in finite time $(\neq \perp)$:

- either yes: the program P is definitely safe
- either no: I don't know
(incompleteness)

Sufficient to prove the safety of (some) programs.
Fails on infinitely many programs...

Approximate static analysis

An approximate static analyzer A always answers in finite time $(\neq \perp)$:

- either yes: the program P is definitely safe
- either no: I don't know
(incompleteness)

Sufficient to prove the safety of (some) programs.
Fails on infinitely many programs...
\Longrightarrow We should adapt the analyzer A to

- a class of programs to verify, and
- a class of safety properties to check.

Abstract interpretation

Patrick Cousot ${ }^{9}$

Université Scientifique et Médicale de Grenoble
Institut National Polytechnique de Grenoble

an
Patrick cousot
methodes iteratives de construction
ET D'APPROXIMATION DE PCINTS FIXES
OOPERATEURS MONOTONES SUR UN TREILLIS
analyse semantioue des programmes.
**

 ?

General theory of the approximation and comparison of program semantics:

- unifies many semantics
- allows the definition of static analyses that are correct by construction

[^8]
Abstract interpretation

```
    (S S )
    assume X in [0,1000];
    (S S )
    I := 0;
    (\mathcal{S}
    while (\mp@subsup{\mathcal{S}}{3}{}) I < X do
        (S4)
        I := I + 2;
        (\mathcal{S}
    (S S )
program
```


Abstract interpretation

$\left(\mathcal{S}_{0}\right)$
assume X in $[0,1000]$;

$$
\left(\mathcal{S}_{1}\right)
$$

$$
\text { I }:=0
$$

$$
\left(\mathcal{S}_{2}\right)
$$

$$
\text { while }\left(\mathcal{S}_{3}\right) \mathrm{I}<\mathrm{X} \text { do }
$$

$$
\left(\mathcal{S}_{4}\right)
$$

$$
I:=I+2
$$

$$
\begin{array}{ll}
\mathcal{S}_{i} \in \mathcal{D}=\mathcal{P}(\{\mathrm{I}, \mathrm{X}\} \rightarrow \mathbb{Z}) & \\
\mathcal{S}_{0}=\{(i, x) \mid i, x \in \mathbb{Z}\} & =\mathrm{T} \\
\mathcal{S}_{1}=\left\{(i, x) \in \mathcal{S}_{0} \mid x \in[0,1000]\right\} & =F_{1}\left(\mathcal{S}_{0}\right) \\
\mathcal{S}_{2}=\left\{(0, x) \mid \exists i,(i, x) \in \mathcal{S}_{1}\right\} & =F_{2}\left(\mathcal{S}_{1}\right) \\
\mathcal{S}_{3}=S_{2} \cup \mathcal{S}_{5} & \\
\mathcal{S}_{4}=\left\{(i, x) \in \mathcal{S}_{3} \mid i<x\right\} & =F_{4}\left(\mathcal{S}_{3}\right) \\
\mathcal{S}_{5}=\left\{(i+2, x) \mid(i, x) \in \mathcal{S}_{4}\right\} & =F_{5}\left(\mathcal{S}_{4}\right) \\
\mathcal{S}_{6}=\left\{(i, x) \in \mathcal{S}_{3} \mid i \geq x\right\} & =F_{6}\left(\mathcal{S}_{3}\right) \tag{5}
\end{array}
$$ $\left(\mathcal{S}_{6}\right)$

program
semantics

Concrete semantics $\mathcal{S}_{i} \in \mathcal{D}=\mathcal{P}(\{\mathrm{I}, \mathrm{X}\} \rightarrow \mathbb{Z})$:

- smallest solution of a system of equations
- strongest invariant (and an inductive invariant)
- not computable in general

Abstract interpretation

```
        (S S )
        assume X in [0,1000];
        (\mathcal{S}
    I := 0;
    (S S
    while (\mp@subsup{\mathcal{S}}{3}{}) I < X do
        (S S
        I := I + 2;
        (S S )
        (S S )
    program
```

Abstract semantics $\mathcal{S}_{i}^{\sharp} \in \mathcal{D}^{\sharp}$:

- \mathcal{D}^{\sharp} subset of properties of interest (with a machine representation)
- $F^{\sharp}: \mathcal{D}^{\sharp} \rightarrow \mathcal{D}^{\sharp}$ over-approximates the effect of $F: \mathcal{D} \rightarrow \mathcal{D}$ in \mathcal{D}^{\sharp} (with effective algorithms)

Numeric abstract domain examples

concrete sets $\mathcal{D}: \quad\{(0,3),(5.5,0),(12,7), \ldots\}$

Numeric abstract domain examples

concrete sets \mathcal{D} :
abstract polyhedra $\mathcal{D}_{p}^{\#}$:
$\{(0,3),(5.5,0),(12,7), \ldots\}$
$6 X+11 Y \geq 33 \wedge \ldots$

Numeric abstract domain examples

concrete sets \mathcal{D} :
abstract polyhedra $\mathcal{D}_{p}^{\#}$: abstract octagons $\mathcal{D}_{0}^{\sharp}: \quad X+Y \geq 3 \wedge Y \geq 0 \wedge \cdots$

Numeric abstract domain examples

concrete sets \mathcal{D} :
abstract polyhedra $\mathcal{D}_{p}^{\#}$: abstract octagons \mathcal{D}_{0}^{\sharp} : abstract intervals $\mathcal{D}_{i}^{\sharp}: \quad X \in[0,12] \wedge Y \in[0,8]$

Numeric abstract domain examples

concrete sets \mathcal{D} :
abstract polyhedra $\mathcal{D}_{p}^{\#}$:
abstract octagons \mathcal{D}_{0}^{\sharp} :
abstract intervals \mathcal{D}_{i}^{\sharp} :
$\{(0,3),(5.5,0),(12,7), \ldots\}$
$6 X+11 Y \geq 33 \wedge \cdots$
$X+Y \geq 3 \wedge Y \geq 0 \wedge \cdots$
$X \in[0,12] \wedge Y \in[0,8]$
not computable exponential cost cubic cost
linear cost

Trade-off between cost and expressiveness / precision

Correctness proof and false alarms

The program is correct (blue \cap red $=\emptyset$).

Correctness proof and false alarms

The program is correct (blue \cap red $=\emptyset$).
The polyhedra domain can prove the correctness (cyan \cap red $=\emptyset$).

Correctness proof and false alarms

The program is correct (blue \cap red $=\emptyset$).
The polyhedra domain can prove the correctness (cyan \cap red $=\emptyset$).
The interval domain cannot (green \cap red $\neq \emptyset$, false alarm).

Numeric abstract domain examples (cont.)

abstract semantics F^{\sharp} in the interval domain \mathcal{D}_{i}^{\sharp}

- I: $=I+2:(I \in[\ell, h]) \mapsto(I \in[\ell+2, h+2])$
- $\cup^{\sharp}:\left(I \in\left[\ell_{1}, h_{1}\right]\right) \cup^{\sharp}\left(I \in\left[\ell_{2}, h_{2}\right]\right)$
$=\left(I \in\left[\min \left(\ell_{1}, \ell_{2}\right), \max \left(h_{1}, h_{2}\right)\right]\right)$

Galois connection

$$
\begin{gathered}
(\mathcal{D}, \subseteq) \underset{\alpha}{\gamma}\left(\mathcal{D}^{\sharp}, \subseteq^{\sharp}\right) \\
\alpha(X) \subseteq^{\sharp} Y^{\sharp} \Longleftrightarrow X \subseteq \gamma\left(Y^{\sharp}\right)
\end{gathered}
$$

Évariste Galois

Use:

- $\alpha(X)$ is the best abstraction of X in \mathcal{D}^{\sharp}
- $F^{\sharp}=\alpha \circ F \circ \gamma$ is the best abstraction of F in $\mathcal{D}^{\sharp} \rightarrow \mathcal{D}^{\sharp}$

Galois connection

$$
\begin{gathered}
(\mathcal{D}, \subseteq) \underset{\alpha}{\gamma}\left(\mathcal{D}^{\sharp}, \subseteq^{\sharp}\right) \\
\alpha(X) \subseteq \subseteq^{\sharp} Y^{\sharp} \Longleftrightarrow X \subseteq \gamma\left(Y^{\sharp}\right)
\end{gathered}
$$

Évariste Galois
Use:

- $\alpha(X)$ is the best abstraction of X in \mathcal{D}^{\sharp}
- $F^{\sharp}=\alpha \circ F \circ \gamma$ is the best abstraction of F in $\mathcal{D}^{\sharp} \rightarrow \mathcal{D}^{\sharp}$

Example: in the interval domain \mathcal{D}_{i}^{\sharp}

- $\left[\ell_{1}, h_{1}\right] \subseteq_{i}^{\sharp}\left[\ell_{2}, h_{2}\right] \Longleftrightarrow \ell_{1} \geq \ell_{2} \wedge h_{1} \leq h_{2}$
- $\gamma_{i}([\ell, h])=\{x \in \mathbb{Z} \mid \ell \leq x \leq h\}$
- $\alpha_{i}(X)=[\min X, \max X]$

Resolution by iteration and extrapolation

Challenge: the equation system is recursive: $\overrightarrow{\mathcal{S}}^{\sharp}=\vec{F}^{\sharp}\left(\overrightarrow{\mathcal{S}}^{\sharp}\right)$.
Solution: resolution by iteration: $\overrightarrow{\mathcal{S}}^{\sharp 0}=\emptyset^{\sharp}, \mathcal{S}^{\sharp i+1}=\vec{F}^{\sharp}\left(\overrightarrow{\mathcal{S}}^{\sharp i}\right)$.
e.g., $\mathcal{S}_{3}^{\sharp}: I \in \emptyset, I=0, I \in[0,2], I \in[0,4], \ldots, I \in[0,1000]$

Resolution by iteration and extrapolation

Challenge: the equation system is recursive: $\overrightarrow{\mathcal{S}}^{\sharp}=\vec{F}^{\sharp}\left(\overrightarrow{\mathcal{S}}^{\sharp}\right)$.
Solution: resolution by iteration: $\overrightarrow{\mathcal{S}}^{\sharp 0}=\emptyset^{\sharp}, \overrightarrow{\mathcal{S}}^{\sharp i+1}=\vec{F}^{\sharp}\left(\overrightarrow{\mathcal{S}}^{\sharp i}\right)$.
e.g., $\mathcal{S}_{3}^{\sharp}: I \in \emptyset, I=0, I \in[0,2], I \in[0,4], \ldots, I \in[0,1000]$

Challenge: infinite or very long sequence of iterates in \mathcal{D}^{\sharp}
Solution: extrapolation operator ∇
e.g., $[0,2] \nabla[0,4]=[0,+\infty[$

- remove unstable bounds and constraints
- ensures the convergence in finite time
- inductive reasoning (through generalisation)

Resolution by iteration and extrapolation

Challenge: the equation system is recursive: $\overrightarrow{\mathcal{S}}^{\sharp}=\vec{F}^{\sharp}\left(\overrightarrow{\mathcal{S}}^{\sharp}\right)$.
Solution: resolution by iteration: $\overrightarrow{\mathcal{S}}^{\sharp 0}=\emptyset^{\sharp}, \overrightarrow{\mathcal{S}}^{\sharp i+1}=\vec{F}^{\sharp}\left(\overrightarrow{\mathcal{S}}^{\sharp i}\right)$.
e.g., $\mathcal{S}_{3}^{\sharp}: I \in \emptyset, I=0, I \in[0,2], I \in[0,4], \ldots, I \in[0,1000]$

Challenge: infinite or very long sequence of iterates in \mathcal{D}^{\sharp}
Solution: extrapolation operator ∇
e.g., $[0,2] \nabla[0,4]=[0,+\infty[$

- remove unstable bounds and constraints
- ensures the convergence in finite time
- inductive reasoning (through generalisation)
\Longrightarrow effective solving method \longrightarrow static analyzer!

The Astrée static analyzer

The Astrée static analyzer

Analyseur statique de programmes temps-réels embarqués (static analyzer for real-time embedded software)

- developed at ENS (since 2001)
B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, D. Monniaux, A. Miné, X. Rival
- industrialized and made commercially available by AbsInt (since 2009)

Astrée
www.astree.ens.fr
www.absint.com

The Astrée static analyzer

Specialized:

- for the analysis of run-time errors
(arithmetic overflows, array overflows, divisions by 0 , etc.)
- on embedded critical C software
(no dynamic memory allocation, no recursivity)
- in particular on control / command software
(reactive programs, intensive floating-point computations)
- intended for validation
(analysis does not miss any error and tries to minimise false alarms)

The Astrée static analyzer

Specialized:

- for the analysis of run-time errors
(arithmetic overflows, array overflows, divisions by 0 , etc.)
- on embedded critical C software
(no dynamic memory allocation, no recursivity)
- in particular on control / command software
(reactive programs, intensive floating-point computations)
- intended for validation
(analysis does not miss any error and tries to minimise false alarms)

Approximately 40 abstract domains are used at the same time:

- numeric domains (intervals, octagons, ellipsoids, etc.)
- boolean domains
- domains expressing properties on the history of computations

Astrée applications (at ENS)

Airbus A340-300 (2003)

Airbus A380 (2004)

(model of) ESA ATV (2008)

- size: from 70000 to 860000 lines of C
- analysis time: from 45 mn to $\simeq 40 \mathrm{~h}$
- alarm(s): 0 (proof of absence of run-time error)

Other applications of abstract interpretation

- Analysis of dynamic memory data-structures (shape analysis).
- Analysis of parallel, distributed, and multi-thread programs.
- Analysis of probabilistic programs.
- Analysis of biological systems.
- Security analysis (information flow).
- Termination analysis.
- Cost analysis.
- Analyses to enable compiler optimisations.
- . . .

[^0]: ${ }^{1}$ J.-L. Lions et al., Ariane 501 Inquiry Board report.
 ${ }^{2}$ J.-J. Levy. Un petit bogue, un grand boum. Séminaire du Département d'informatique de l'ENS, 2010.
 ${ }^{3}$ M. Dowson. "The Ariane 5 Software Failure". Software Engineering Notes 22 (2): 84, March 1997.

[^1]: ${ }^{4}$ R. W. Floyd. "Assigning meanings to programs". In Proc. Amer. Math. Soc. Symposia in Applied Mathematics, vol. 19, pp. 19-31, 1967.

[^2]: ${ }^{4}$ R. W. Floyd. "Assigning meanings to programs". In Proc. Amer. Math. Soc. Symposia in Applied Mathematics, vol. 19, pp. 19-31, 1967.

[^3]: ${ }^{4}$ R. W. Floyd. "Assigning meanings to programs". In Proc. Amer. Math. Soc. Symposia in Applied Mathematics, vol. 19, pp. 19-31, 1967.

[^4]: ${ }^{4}$ R. W. Floyd. "Assigning meanings to programs". In Proc. Amer. Math. Soc. Symposia in Applied Mathematics, vol. 19, pp. 19-31, 1967.

[^5]: ${ }^{5}$ C. A. R. Hoare. "An Axiomatic Basis for Computer Programming". Commun. ACM 12(10): 576-580 (1969).
 ${ }^{6}$ How Many Lines of Code in Windows?". Knowing.NET. December 6, 2005.

[^6]: ${ }^{5}$ C. A. R. Hoare. "An Axiomatic Basis for Computer Programming". Commun. ACM 12(10): 576-580 (1969).
 ${ }^{6}$ How Many Lines of Code in Windows?". Knowing.NET. December 6, 2005.

[^7]: ${ }^{7}$ A. M. Turing. "Computability and definability". The Journal of Symbolic Logic, vol. 2, pp. 153-163, (1937).
 ${ }^{8}$ H. G. Rice. "Classes of Recursively Enumerable Sets and Their Decision Problems." Trans. Amer. Math.

[^8]: ${ }^{9}$ P. Cousot. "Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes." Thèse És Sciences Mathématiques, 1978.

