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Partial orders

Partial orders

Given a set X , a relation v ∈ X × X is a partial order
if it is:

1 reflexive: ∀x ∈ X , x v x

2 antisymmetric: ∀x , y ∈ X , x v y ∧ y v x =⇒ x = y

3 transitive: ∀x , y , z ∈ X , x v y ∧ y v z =⇒ x v z .

(X ,v) is a poset (partially ordered set).

If we drop antisymmetry, we have a preorder instead.
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Partial orders

Examples of posets

(Z,≤) is a poset (in fact, completely ordered)

(P(X ),⊆) is a poset (not completely ordered)

(S ,=) is a poset for any S
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Partial orders

Examples of posets (cont.)

Given by a Hasse diagram, e.g.:

e

dc

a

b

g

f

g v g
f v f , g
e v e, g
d v d , f , g
c v c , e, f , g
b v b, c, d , e, f , g
a v a, b, c , d , e, f , g
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Partial orders

Examples of posets (cont.)

Infinite Hasse diagram for (N ∪ {∞},≤):

1

2

0

3

oo

∞ v∞
· · ·
1 v 1, 2, . . . ,∞
0 v 0, 1, 2, . . . ,∞
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Partial orders

Informal uses of posets

Posets are a very useful notion to discuss about:

logic: ordered by implication =⇒

approximations: v is an information order

program verification: program semantics v specification
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Partial orders

(Least) Upper bounds

c is an upper bound of a and b if: a v c and b v c

c is a least upper bound (lub or join) of a and b if

c is an upper bound of a and b
for every upper bound d of a and b, c v d

The lub is unique and noted at b.
(proof: assume that c and d are both lubs of a and b; by definition

of lubs, c v d and d v c ; by antisymmetry of v, c = d)

Generalized to upper bounds of arbitrary (even infinite) sets
tY , Y ⊆ X (well-defined, as t is commutative and associative).

Similarly, we define greatest lower bounds (glb, meet) au b, uY .
(a u b v a, b and ∀c , c v a, b =⇒ c v a u b)

Note: not all posets have lubs, glbs; e.g., ({ a, b },=).
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Partial orders

(Least) Upper bounds

b

a t b

upper bounds of a and b

a

upper bound of b
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Partial orders

Complete partial order (CPO)

C ⊆ X is a chain in (X ,v) if it is totally ordered
(∀x , y ∈ C , x v y ∨ y v x).

A poset (X ,v) is a complete partial order (CPO)
if every chain C (including ∅) has a least upper bound tC .

A CPO has a least element t∅, denoted ⊥.

Examples:

(N,≤) is not complete, but (N ∪ {∞},≤) is complete.

({ x ∈ Q | 0 ≤ x ≤ 1 },≤) is not complete, but
({ x ∈ R | 0 ≤ x ≤ 1 },≤) is complete.

(P(Y ),⊆) is complete for any Y .
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Lattices
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Lattices

Lattices

A lattice (X ,v,t,u) is a poset with

1 a lub a t b for every pair of elements a and b;

2 a glb a u b for every pair of elements a and b.

Examples:

integer intervals ({ [a, b] | a, b ∈ Z, a ≤ b } ∪ { ∅ },⊆,t,∩)

where [a, b] t [a′, b′]
def
= [min(a, a′),max(b, b′)].

divisibility (N∗, |, gcd, lcm)

where x |y def⇐⇒ ∃k ∈ N, kx = y .

If we drop one condition, we have a (join or meet) semilattice.

See Birkhoff [Birk76].
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Lattices

Example: the divisibility lattice

3

9

27

4

2

6

1

12 18

5

8

36
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Lattices

Complete lattices

A complete lattice (X ,v,t,u,⊥,>) is a poset with

1 a lub tS for every set S ⊆ X

2 a glb uS for every set S ⊆ X

3 a least element ⊥
4 a greatest element >

Notes:

1 implies 2 as uX = t{ y | ∀x ∈ X , y v x }
(and 2 implies 1 as well),

1 and 2 imply 3 and 4: ⊥ = t∅ = uX , > = u∅ = tX ,

a complete lattice is also a CPO.
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Lattices

Complete lattice examples

real segment [0, 1]: ({ x ∈ R | 0 ≤ x ≤ 1 },≤,max,min, 0, 1)

powersets (P(S),⊆,∪,∩, ∅,S)

any finite lattice
(tY and uY for finite Y ⊆ X are always defined).

integer intervals with finite and infinite bounds:

({ [a, b] | a ∈ Z ∪ {−∞}, b ∈ Z ∪ {+∞}, a ≤ b } ∪ { ∅ },
⊆, t, ∩, ∅, [−∞,+∞])

with ti∈I [ai , bi ]
def
= [mini∈I ai , maxi∈I bi ].
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Lattices

Example: the powerset complete lattice

Example: (P({ 0, 1, 2 }),⊆,∪,∩, ∅, { 0, 1, 2 })

{1, 2}

{0, 2}

{0, 1}

{2}{0}

{1}

{0, 1, 2}

∅
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Lattices

Derivation

Given (complete) posets or lattices (X ,vX , . . .), (Y ,vY , . . .)
we can derive new ones by:

duality (X ,wX , . . .)
∀x , x ′, x wX x ′ ⇐⇒ x ′ vX x

adding a least element ⊥ (lifting)
(X ∪ {⊥},v, . . .)
∀x , x ′, x v x ′

def⇐⇒ x = ⊥ ∨ x vX x ′

product
(X × Y ,v, . . .)
∀x , x ′, y , y ′, (x , y) v (x ′, y ′)

def⇐⇒ x vX x ′ ∧ y vY y ′

point-wise lifting by some set S
(S → X ,v, . . .)
∀x , x ′, x v x ′

def⇐⇒ ∀s ∈ S , x(s) vX x ′(s)

sublattice
(X ′,vX ,tX ,uX ) where X ′ ⊆ X is closed by tX and uX
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Fixpoints

Fixpoints
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Fixpoints

Functions

A function f : (X ,vX , . . .)→ (Y ,vY , . . .) is

monotonic if
∀x , x ′, x vX x ′ =⇒ f (x) vY f (x ′)

(aka: increasing, isotone, order-preserving, morphism)

strict if f (⊥X ) = ⊥Y

continuous between CPOs if
∀C chain ⊆ X , { f (c) | c ∈ C } is a chain in Y
and f (tX C ) = tY { f (c) | c ∈ C }

a (complete) t−morphism between (complete) lattices
if ∀S ⊆ X , f (tX S) = tY { f (s) | s ∈ S }

extensive if X = Y and ∀x , x vX f (x)
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Fixpoints

Fixpoints

Given f : (X ,v)→ (X ,v)

x is a fixpoint of f if f (x) = x

x is a prefixpoint of f if x v f (x)

x is a postfixpoint of f if f (x) v x

We may have several (or none) fixpoints

fp(f )
def
= { x ∈ X | f (x) = x }

lfpx f
def
= minv { y ∈ fp(f ) | x v y } if it exists

(least fixpoints)

lfp f
def
= lfp⊥ f

dually, gfpx f , gfp f (greatest fixpoints)
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Fixpoints

Tarski’s fixpoint theorem

Tarksi’s theorem

If f : X → X is monotonic in a complete lattice X
then fp(f ) is a complete lattice.

Proved by Knaster and Tarski [Tars55].
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Fixpoints

Tarski’s fixpoint theorem

Tarksi’s theorem

If f : X → X is monotonic in a complete lattice X
then fp(f ) is a complete lattice.

Proof:

We prove lfp f = u{ x | f (x) v x } (meet of postfixpoints).

Let f ∗ = { x | f (x) v x } and a = u f ∗.
∀x ∈ f ∗, a v x (by definition of u)

so f (a) v f (x) (as f is monotonic)

so f (a) v x (as x is a postfixpoint).

We deduce that f (a) v u f ∗, i.e. f (a) v a.
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Fixpoints

Tarski’s fixpoint theorem

Tarksi’s theorem

If f : X → X is monotonic in a complete lattice X
then fp(f ) is a complete lattice.

Proof:

We prove lfp f = u{ x | f (x) v x } (meet of postfixpoints).

f (a) v a
so f (f (a)) v f (a) (as f is monotonic)

so f (a) ∈ f ∗ (by definition of f ∗)

so a v f (a).

We deduce f (a) = a, so a ∈ fp(f ).

Note that y ∈ fp(f ) implies y ∈ f ∗.
As a = u f ∗, a v y , and we deduce a = lfp f .
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Fixpoints

Tarski’s fixpoint theorem

Tarksi’s theorem

If f : X → X is monotonic in a complete lattice X
then fp(f ) is a complete lattice.

Proof:

Given S ⊆ fp(f ), we prove that lfpt S f exists.

Consider X ′ = { x ∈ X | t S v x }.
X ′ is a complete lattice.
Moreover ∀x ′ ∈ X ′, f (x ′) ∈ X ′.
f can be restricted to a monotonic function f ′ on X ′.
We apply the preceding result, so that lfp f ′ = lfpt S f exists.

By definition, lfpt S f ∈ fp(f ) and is smaller than any fixpoint
larger than all s ∈ S .
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Fixpoints

Tarski’s fixpoint theorem

Tarksi’s theorem

If f : X → X is monotonic in a complete lattice X
then fp(f ) is a complete lattice.

Proof:

By duality, we construct gfp f and gfpu S f .

The complete lattice of fixpoints is:
(fp(f ), v, λS .lfpt S f , λS .gfpu S f , lfp f , gfp f ).
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Fixpoints

“Kleene” fixpoint theorem

“Kleene” fixpoint theorem

If f : X → X is continuous in a CPO X and a v f (a)
then lfpa f exists.

Inspired by Kleene [Klee52].
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Fixpoints

“Kleene” fixpoint theorem

“Kleene” fixpoint theorem

If f : X → X is continuous in a CPO X and a v f (a)
then lfpa f exists.

Proof:

We prove that { f n(a) | n ∈ N } is a chain
and lfpa f = t{ f n(a) | n ∈ N }.

a v f (a) by hypothesis.
f (a) v f (f (a)) by monotony of f .
By recurrence ∀n, f n(a) v f n+1(a).
Thus, { f n(a) | n ∈ N } is a chain and t{ f n(a) | n ∈ N } exists.

course 1, 2012–2013 Mathematical Tools Antoine Miné p. 23 / 44



Fixpoints

“Kleene” fixpoint theorem

“Kleene” fixpoint theorem

If f : X → X is continuous in a CPO X and a v f (a)
then lfpa f exists.

Proof:

f (t{ f n(a) | n ∈ N })
= t{ f n+1(a) | n ∈ N }) (by continuity)

= a t (t{ f n+1(a) | n ∈ N }) (as all f n+1(a) are greater than a)

= t{ f n(a) | n ∈ N }.
So, t{ f n(a) | n ∈ N } ∈ fp(f )

Moreover, any fixpoint greater than a must also be greater
than all f n(a), n ∈ N.
So, t{ f n(a) | n ∈ N } = lfpa f .
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Fixpoints

Well-ordered sets

(S ,v) is a well-ordered set if:

v is a total order on S

every X ⊆ S such that X 6= ∅ has a least element uX ∈ X

Consequences:

any element x ∈ S has a successor x + 1
def
= u { y | x @ y }

(except the greatest element, if it exists)

if 6 ∃y , x = y + 1, x is a limit and x = t{ y | y @ x }
(every bounded subset X ⊆ S has a lub

tX = u{ y | ∀x ∈ X , x v y })

Examples:

(N,≤) and (N ∪ {∞},≤) are well-ordered

(Z,≤), (R,≤), (R+,≤) are not well-ordered

ordinals 0, 1, 2, . . . , ω, ω + 1, . . . are well-ordered (ω is a limit)

well-ordered sets are ordinals up to order-isomorphism
(i.e., bijective functions f such that f and f −1 are monotonic)
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Fixpoints

Constructive Tarski theorem by transfinite iterations

Given a function f : X → X and a ∈ X ,
the transfinite iterates of f from a are:

x0
def
= a

xn
def
= f (xn−1) if n is a successor ordinal

xn
def
= t { xm |m < n } if n is a limit ordinal

Constructive Tarski theorem

If f : X → X is monotonic in a complete lattice X and
a v f (a), then lfpa f = xδ for some ordinal δ.

Generalisation of “Kleene” fixpoint theorem, from [Cous79].
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Fixpoints

Proof

f is monotonic in a complete lattice X ,
x0

def
= a v f (a)

xn
def
= f (xn−1) if n is a successor ordinal

xn
def
= t { xm |m < n } if n is a limit ordinal

Proof:

We prove that ∃δ, xδ = xδ+1.

We note that m ≤ n =⇒ xm v xn.
Assume by contradiction that 6 ∃δ, xδ = xδ+1.
If n is a successor ordinal, then xn−1 @ xn.
If n is a limit ordinal, then ∀m < n, xm @ xn.
Thus, all the xn are distinct.
By choosing n > |X |, we arrive at a contradiction.
Thus δ exists.
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Fixpoints

Proof

f is monotonic in a complete lattice X ,
x0

def
= a v f (a)

xn
def
= f (xn−1) if n is a successor ordinal

xn
def
= t { xm |m < n } if n is a limit ordinal

Proof:

Given δ such that xδ+1 = xδ, we prove that xδ = lfpa f .

f (xδ) = xδ+1 = xδ, so xδ ∈ fp(f ).

Given any y ∈ fp(f ), y w a, we prove by transfinite induction
that ∀n, xn v y .
By definition x0 = a v y .
If n is a successor ordinal, by monotony,
xn−1 v y =⇒ f (xn−1) v f (y), i.e., xn v y .
If n is a limit ordinal, ∀m < n, xm v y implies
xn = t{ xm |m < n } v y .
Hence, xδ v y and xδ = lfpa f .
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Fixpoints

Ascending chain condition

An ascending chain C in (X ,v) is a sequence ci ∈ X
such that i ≤ j =⇒ ci ≤ cj .

A poset (X ,v) satisfies the ascending chain condition (ACC)
iff for every ascending chain C , ∃i ∈ N, ∀j ≥ i , ci = cj .

Similarly, we can define the descending chain condition (DCC).

Examples:

the powerset poset (P(X ),⊆) is ACC (and DCC) iff X is finite

the pointed integer poset (Z ∪ {⊥},v) where
x v y ⇐⇒ x = ⊥ ∨ x = y is ACC and DCC

the divisibility poset (N∗, |) is DCC but not ACC.
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Fixpoints

Kleene fixpoints in ACC posets

“Kleene” finite fixpoint theorem

If f : X → X is monotonic in an AAC poset X and a v f (a)
then lfpa f exists.

Proof:

We prove ∃n ∈ N, lfpa f = f n(a).

By monotony of f , the sequence xn = f n(a) is an increasing chain.
By definition of AAC, ∃n ∈ N, xn = xn+1 = f (xn).
Thus, xn ∈ fp(f ).

Obviously, a = x0 v f (xn).
Moreover, if y ∈ fp(f ) and y w a, then ∀i , y w f i (a) = xi .
Hence, y w xn and xn = lfpa (f ).
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Galois connections

Galois connections
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Galois connections

Galois connections

Given two posets (C ,≤) and (A,v), the pair
(α : C → A, γ : A→ C ) is a Galois connection iff:

∀a ∈ A, c ∈ C , α(c) v a ⇐⇒ c ≤ γ(a)

which is noted (C ,≤) −−−→←−−−α
γ

(A,v).

C A

γ

α

≤ v

α(c)

aγ(a)

c

α is the upper adjoint or abstraction; A is the abstract domain.

γ is the lower adjoint or concretization; C is the concrete domain.
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Galois connections

Properties of Galois connections

Assuming ∀a, c , α(c) v a ⇐⇒ c ≤ γ(a), we have:

1 γ ◦ α is extensive: ∀c , c ≤ γ(α(c))
proof: α(c) v α(c) =⇒ c ≤ γ(α(c))

2 α ◦ γ is reductive: ∀a, α(γ(a)) v a

3 α is monotonic
proof: c ≤ c ′ =⇒ c ≤ γ(α(c ′)) =⇒ α(c) v α(c ′)

4 γ is monotonic

5 γ ◦ α ◦ γ = γ
proof: α(γ(a)) v α(γ(a)) =⇒ γ(a) ≤ γ(α(γ(a))) and

a w α(γ(a)) =⇒ γ(a) ≥ γ(α(γ(a)))

6 α ◦ γ ◦ α = α

7 α ◦ γ is idempotent: α ◦ γ ◦ α ◦ γ = α ◦ γ
8 γ ◦ α is idempotent
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Galois connections

Alternate characterization

If the pair (α : C → A, γ : A→ C ) satisfies:

1 γ is monotonic,

2 α is monotonic,

3 γ ◦ α is extensive

4 α ◦ γ is reductive

then (α, γ) is a Galois connection.

(proof left as exercise)
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Galois connections

Uniqueness of the adjoint

Given (C ,≤) −−−→←−−−α
γ

(A,v),
each adjoint can be uniquely defined in term of the other:

1 α(c) = u{ a | c ≤ γ(a) }
2 γ(a) = ∨{ c |α(c) v a }

Proof: of 1

∀a, c ≤ γ(a) =⇒ α(c) v a.
Hence, α(c) is a lower bound of { a | c ≤ γ(a) }.
Assume that a′ is another lower bound.
Then, ∀a, c ≤ γ(a) =⇒ a′ v a.
By Galois connection, we have then ∀a, α(c) v a =⇒ a′ v a.
This implies a′ v α(c).
Hence, the greatest lower bound of { a | c ≤ γ(a) } exists,
and equals α(c).

The proof of 2 is similar (by duality).
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Galois connections

Properties of Galois connections (cont.)

If (α : C → A, γ : A→ C ), then:

1 ∀X ⊆ C , if ∨X exists, then α(∨X ) = t{α(x) | x ∈ X } .

2 ∀X ⊆ A, if uX exists, then γ(uX ) = ∧{ γ(x) | x ∈ X }.

Proof: of 1

By definition of lubs, ∀x ∈ X , x ≤ ∨X .
By monotony, ∀x ∈ X , α(x) v α(∨X ).
Hence, α(∨X ) is an upper bound of {α(x) | x ∈ X }.
Assume that y is another upper bound of {α(x) | x ∈ X }.
Then, ∀x ∈ X , α(x) v y .
By Galois connection ∀x ∈ X , x ≤ γ(y).
By definition of lubs, ∨X ≤ γ(y).
By Galois connection, α(∨X ) v y .
Hence, {α(x) | x ∈ X } has a lub, which equals α(∨X ).

The proof of 2 is similar (by duality).
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Galois connections

Deriving Galois connections

Given (C ,≤) −−−→←−−−α
γ

(A,v) and (C ′,≤′) −−−→←−−−
α′

γ′

(A′,v′),

we can construct new Galois connections by:

1 duality: (A,w) −−−→←−−−γ
α

(C ,≥)

2 composition: (C ,≤) −−−−−→←−−−−−
α′◦α

γ◦γ′

(A′,v′) when (A,v) = (C ′,≤′)

3 point-wise lifting by some set S :

(S → C , ≤̇) −−−→←−−−
α̇

γ̇
(S → A, v̇) where

f ≤̇f ′ ⇐⇒ ∀s, f (s) ≤ f ′(s), (γ̇(f ))(s) = γ(f (s)),
f v̇f ′ ⇐⇒ ∀s, f (s) v f ′(s), (α̇(f ))(s) = α(f (s)).

4 functional lifting of monotonic operators

(C
≤−→ C ′, ≤̇′) −−−→←−−−

α̂

γ̂
(A

v−→ A′, v̇′)
where γ̂(f ) = γ′ ◦ f ◦ α and α̂(f ) = α′ ◦ f ◦ γ.
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Galois connections

Galois embeddings

If (C ,≤) −−−→←−−−α
γ

(A,v), the following properties are equivalent:

1 α is surjective (∀a ∈ A,∃c ∈ C , α(c) = a)

2 γ is injective (∀a, a′ ∈ A, γ(a) = γ(a′) =⇒ a = a′)

3 α ◦ γ = id (∀a ∈ A, id(a) = a)

Such (α, γ) is called a Galois embedding, which is noted

(C ,≤) −−−→−→←−−−−
α

γ
(A,v)

Proof:
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Galois connections

Galois embeddings

If (C ,≤) −−−→←−−−α
γ

(A,v), the following properties are equivalent:

1 α is surjective (∀a ∈ A,∃c ∈ C , α(c) = a)

2 γ is injective (∀a, a′ ∈ A, γ(a) = γ(a′) =⇒ a = a′)

3 α ◦ γ = id (∀a ∈ A, id(a) = a)

Such (α, γ) is called a Galois embedding, which is noted

(C ,≤) −−−→−→←−−−−
α

γ
(A,v)

Proof: 1 =⇒ 2

Assume that γ(a) = γ(a′).
By surjectivity, take c , c ′ such that a = α(c), a′ = α(c ′).
Then γ(α(c)) = γ(α(c ′)).
And α(γ(α(c))) = α(γ(α(c ′))).
As α ◦ γ ◦ α = α, α(c) = α(c ′).
Hence a = a′.
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Galois connections

Galois embeddings

If (C ,≤) −−−→←−−−α
γ

(A,v), the following properties are equivalent:

1 α is surjective (∀a ∈ A,∃c ∈ C , α(c) = a)

2 γ is injective (∀a, a′ ∈ A, γ(a) = γ(a′) =⇒ a = a′)

3 α ◦ γ = id (∀a ∈ A, id(a) = a)

Such (α, γ) is called a Galois embedding, which is noted

(C ,≤) −−−→−→←−−−−
α

γ
(A,v)

Proof: 2 =⇒ 3

Given a ∈ A, we know that γ(α(γ(a))) = γ(a).
By injectivity of γ, α(γ(a)) = a.
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Galois connections

Galois embeddings

If (C ,≤) −−−→←−−−α
γ

(A,v), the following properties are equivalent:

1 α is surjective (∀a ∈ A,∃c ∈ C , α(c) = a)

2 γ is injective (∀a, a′ ∈ A, γ(a) = γ(a′) =⇒ a = a′)

3 α ◦ γ = id (∀a ∈ A, id(a) = a)

Such (α, γ) is called a Galois embedding, which is noted

(C ,≤) −−−→−→←−−−−
α

γ
(A,v)

Proof: 3 =⇒ 1

Given a ∈ A, we have α(γ(a)) = a.
Hence, ∃c ∈ C , α(c) = a, using c = γ(a).
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Galois connections

Galois embeddings (cont.)

(C ,≤) −−−→−→←−−−−
α

γ
(A,v)

C A

γ

α

γ(α(C ))
γ

α

α

≤

A Galois connection can be made into an embedding by quotienting
A by the equivalence relation a ≡ a′ ⇐⇒ γ(a) = γ(a′).
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Galois connections

Upper closures

ρ : X → X is an upper closure in the poset (X ,v) if it is:

1 monotonic: x v x ′ =⇒ ρ(x) v ρ(x ′),
2 extensive: x v ρ(x), and
3 idempotent: ρ ◦ ρ = ρ.

ρ

ρ(X )

X

ρ

ρ

ρ

v
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Galois connections

Upper closures and Galois connections

Given (C ,≤) −−−→←−−−α
γ

(A,v),

γ ◦ α is an upper closure on (C ,≤).

Given an upper closure ρ on (X ,v), we have a Galois embedding:

(X ,v) −−−→−→←−−−−
ρ

id
(ρ(X ),v)

=⇒ we can rephrase abstract interpretation using upper closures
instead of Galois connections, but we lose:

the notion of abstract representation
(a data-structure A representing elements in ρ(X ))

the ability to have several distinct abstract representations
for a single concrete object
(non-necessarily injective γ versus id)
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Galois connections

Sound, best, and exact abstractions

Given (C ,≤) −−−→←−−−α
γ

(A,v)

a ∈ A is a sound abstraction of c ∈ C if c ≤ γ(a)
or, equivalently, α(c) v a.

Given c ∈ C , its best abstraction is α(c).
(proof: recall that α(c) = u{ a | c ≤ γ(a) })

g : A→ A is a sound abstraction of f : C → C
if ∀a ∈ A, (f ◦ γ)(a) ≤ (γ ◦ g)(a)
or equivalently ∀a ∈ A, (α ◦ f ◦ γ)(a) v g(a).

Given f : C
≤−→ C , its best abstraction is α ◦ f ◦ γ

(proof: g sound ⇐⇒ ∀a, (α ◦ f ◦ γ)(a) v g(a), so α ◦ f ◦ γ is the

smallest sound abstraction)

g : A→ A is an exact abstraction of f : C → C if
f ◦ γ = γ ◦ g .
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Galois connections

Composition of sound, best, and exact abstractions

If g and g ′ abstract respectively f and f ′ then:

if f and f ′ are sound abstractions and f is monotonic,
then g ◦ g ′ is a sound abstraction of f ◦ f ′,

(proof: ∀a, (f ◦ f ′ ◦ γ)(a) ≤ (f ◦ γ ◦ g ′)(a) ≤ (γ ◦ g ◦ g ′)(a))

if g , g ′ are exact abstractions,
then g ◦ g ′ is an exact abstraction,

(proof: f ◦ f ′ ◦ γ = f ◦ γ ◦ g ′ = γ ◦ g ◦ g ′)

if g and g ′ are best abstractions,
then g ◦ g ′ is not always a best abstraction!

(we will see examples later)

Note: without α and a Galois connection, we can still define sound
and exact abstractions.
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Galois connections

Fixpoint abstraction example theorem

If:

(C ,≤,∨,∧,⊥,>) is a complete lattice,

g : A→ A is a sound abstraction of a monotonic f : C
≤−→ C ,

and a is a postfixpoint of g (g(a) v a)

then a is a sound abstraction of lfp f .

Proof:

By definition, g(a) v a.
By monotony, γ(g(a)) ≤ γ(a).
By soundness, f (γ(a)) ≤ γ(a).
By Tarski’s theorem lfp f = ∧{ x | f (x) ≤ x }.
Hence, lfp f ≤ γ(a).

Notes:

no α is required here,

many other fixpoint abstraction theorems exist.
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