Mathematical Tools

MPRI 2–6: Abstract Interpretation, application to verification and static analysis

Antoine Miné

CNRS, École normale supérieure

course 1, 2012-2013

Order theory

Partial orders

Given a set X, a relation $\sqsubseteq \in X \times X$ is a partial order if it is:

1 reflexive: $\forall x \in X, x \sqsubseteq x$

2 antisymmetric: $\forall x, y \in X, x \sqsubseteq y \land y \sqsubseteq x \implies x = y$

 $\textbf{ stransitive: } \forall x, y, z \in X, x \sqsubseteq y \land y \sqsubseteq z \implies x \sqsubseteq z.$

 (X, \sqsubseteq) is a poset (partially ordered set).

If we drop antisymmetry, we have a preorder instead.

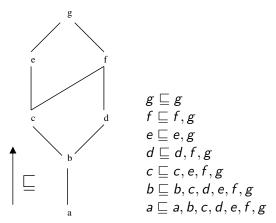
Examples of posets

- (\mathbb{Z}, \leq) is a poset (in fact, completely ordered)
- $(\mathcal{P}(X), \subseteq)$ is a poset (not completely ordered)
- (S, =) is a poset for any S

Partial orders

Examples of posets (cont.)

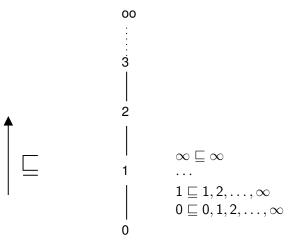
• Given by a Hasse diagram, e.g.:



Partial orders

Examples of posets (cont.)

• Infinite Hasse diagram for $(\mathbb{N} \cup \{\infty\}, \leq)$:



Informal uses of posets

Posets are a very useful notion to discuss about:

- logic: ordered by implication \implies
- approximations: \sqsubseteq is an information order
- program verification: program semantics \sqsubseteq specification

Partial orders

(Least) Upper bounds

- c is an upper bound of a and b if: $a \sqsubseteq c$ and $b \sqsubseteq c$
- c is a least upper bound (lub or join) of a and b if
 - c is an upper bound of a and b
 - for every upper bound d of a and b, $c \sqsubseteq d$

The lub is unique and noted $a \sqcup b$. (proof: assume that c and d are both lubs of a and b; by definition of lubs, $c \sqsubseteq d$ and $d \sqsubseteq c$; by antisymmetry of \sqsubseteq , c = d)

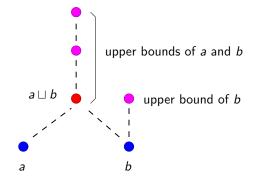
Generalized to upper bounds of arbitrary (even infinite) sets $\sqcup Y, Y \subseteq X$ (well-defined, as \sqcup is commutative and associative).

Similarly, we define greatest lower bounds (glb, meet) $a \sqcap b, \sqcap Y$. $(a \sqcap b \sqsubseteq a, b \text{ and } \forall c, c \sqsubseteq a, b \implies c \sqsubseteq a \sqcap b)$

<u>Note</u>: not all posets have lubs, glbs; e.g., $(\{a, b\}, =)$.

Partial orders

(Least) Upper bounds



Complete partial order (CPO)

 $C \subseteq X$ is a chain in (X, \sqsubseteq) if it is totally ordered $(\forall x, y \in C, x \sqsubseteq y \lor y \sqsubseteq x).$

A poset (X, \sqsubseteq) is a complete partial order (CPO) if every chain C (including \emptyset) has a least upper bound $\sqcup C$.

A CPO has a least element $\sqcup \emptyset$, denoted \bot .

Examples:

- (\mathbb{N}, \leq) is not complete, but $(\mathbb{N} \cup \{\infty\}, \leq)$ is complete.
- $(\{x \in \mathbb{Q} \mid 0 \le x \le 1\}, \le)$ is not complete, but $(\{x \in \mathbb{R} \mid 0 \le x \le 1\}, \le)$ is complete.
- $(\mathcal{P}(Y), \subseteq)$ is complete for any Y.

Lattices

A lattice $(X, \sqsubseteq, \sqcup, \sqcap)$ is a poset with

- **(**) a lub $a \sqcup b$ for every pair of elements a and b;
- **2** a glb $a \sqcap b$ for every pair of elements a and b.

Examples:

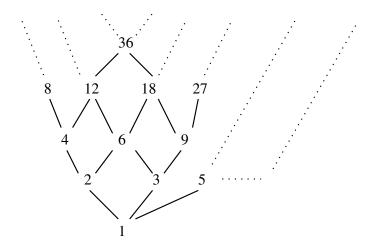
• integer intervals $(\{ [a, b] | a, b \in \mathbb{Z}, a \le b \} \cup \{ \emptyset \}, \subseteq, \sqcup, \cap)$ where $[a, b] \sqcup [a', b'] \stackrel{\text{def}}{=} [\min(a, a'), \max(b, b')].$

• divisibility (
$$\mathbb{N}^*$$
, |, gcd, lcm)
where $x|y \stackrel{\text{def}}{\Longrightarrow} \exists k \in \mathbb{N}, \ kx = y$.

If we drop one condition, we have a (join or meet) semilattice.

See Birkhoff [Birk76].

Example: the divisibility lattice



Complete lattices

A complete lattice $(X, \sqsubseteq, \sqcup, \sqcap, \bot, \top)$ is a poset with

- **1** a lub $\sqcup S$ for every set $S \subseteq X$
- **2** a glb $\sqcap S$ for every set $S \subseteq X$
- ${igsim}$ a least element ot
- (4) a greatest element \top

Notes:

- 1 implies 2 as ⊓ X = ⊔ { y | ∀x ∈ X, y ⊑ x } (and 2 implies 1 as well),
- 1 and 2 imply 3 and 4: $\bot = \sqcup \emptyset = \sqcap X$, $\top = \sqcap \emptyset = \sqcup X$,
- a complete lattice is also a CPO.

Complete lattice examples

- real segment [0,1]: $(\{x \in \mathbb{R} \mid 0 \le x \le 1\}, \le, \max, \min, 0, 1)$
- powersets $(\mathcal{P}(S), \subseteq, \cup, \cap, \emptyset, S)$
- any finite lattice
 (□ Y and □ Y for finite Y ⊆ X are always defined).
- integer intervals with finite and infinite bounds:

 $\begin{array}{l} (\{ [a,b] \mid a \in \mathbb{Z} \cup \{ -\infty \}, \ b \in \mathbb{Z} \cup \{ +\infty \}, \ a \leq b \} \cup \{ \emptyset \}, \\ \subseteq, \sqcup, \cap, \emptyset, \ [-\infty, +\infty]) \\ \text{with } \sqcup_{i \in I} [a_i, b_i] \stackrel{\text{def}}{=} [\min_{i \in I} a_i, \ \max_{i \in I} b_i]. \end{array}$

Example: the powerset complete lattice

Example: $(\mathcal{P}(\{0,1,2\}), \subseteq, \cup, \cap, \emptyset, \{0,1,2\})$ $\{0, 1, 2\}$. {0,2} $\{0, 1\}$ $\{1, 2\}$ {1} {0} {2} Ø

Derivation

Given (complete) posets or lattices $(X, \sqsubseteq_X, \ldots)$, $(Y, \sqsubseteq_Y, \ldots)$ we can derive new ones by:

- duality $(X, \sqsupseteq_X, \ldots)$ $\forall x, x', x \sqsupseteq_X x' \iff x' \sqsubseteq_X x$
- adding a least element \perp (lifting)

$$\begin{array}{l} (X \cup \{ \bot \}, \sqsubseteq, \ldots) \\ \forall x, x', x \sqsubseteq x' & \stackrel{\mathrm{def}}{\longleftrightarrow} & x = \bot \lor x \sqsubseteq_X x' \end{array}$$

product

$$\begin{array}{l} (X \times Y, \sqsubseteq, \ldots) \\ \forall x, x', y, y', \, (x, y) \sqsubseteq (x', y') & \stackrel{\mathrm{def}}{\iff} x \sqsubseteq_X x' \wedge y \sqsubseteq_Y y' \end{array}$$

• point-wise lifting by some set S

$$(S \to X, \sqsubseteq, \ldots)$$

 $\forall x, x', x \sqsubseteq x' \stackrel{\text{def}}{\iff} \forall s \in S, x(s) \sqsubseteq_X x'(s)$

• sublattice

$$(X',\sqsubseteq_X,\sqcup_X,\sqcap_X)$$
 where $X'\subseteq X$ is closed by \sqcup_X and \sqcap_X

Functions

A function
$$f:(X,\sqsubseteq_X,\ldots) \to (Y,\sqsubseteq_Y,\ldots)$$
 is

• monotonic if

 $\forall x, x', x \sqsubseteq_X x' \implies f(x) \sqsubseteq_Y f(x')$

(aka: increasing, isotone, order-preserving, morphism)

• strict if
$$f(\perp_X) = \perp_Y$$

• continuous between CPOs if $\forall C \text{ chain } \subseteq X, \{ f(c) | c \in C \} \text{ is a chain in } Y$ and $f(\sqcup_X C) = \sqcup_Y \{ f(c) | c \in C \}$

a (complete) □-morphism between (complete) lattices if ∀S ⊆ X, f(□_X S) = □_Y { f(s) | s ∈ S }

• extensive if X = Y and $\forall x, x \sqsubseteq_X f(x)$

Fixpoints

Given $f:(X,\sqsubseteq) \to (X,\sqsubseteq)$

- x is a fixpoint of f if f(x) = x
- x is a prefixpoint of f if $x \sqsubseteq f(x)$
- x is a postfixpoint of f if $f(x) \sqsubseteq x$

We may have several (or none) fixpoints

•
$$\operatorname{fp}(f) \stackrel{\text{def}}{=} \{ x \in X \mid f(x) = x \}$$

- Ifp_x f ^{def} = min_□ { y ∈ fp(f) | x □ y } if it exists (least fixpoints)
- If $f \stackrel{\text{def}}{=}$ If $p_{\perp} f$
- dually, gfp_x f, gfp f (greatest fixpoints)

Tarski's fixpoint theorem

Tarksi's theorem

If $f : X \to X$ is monotonic in a complete lattice X then fp(f) is a complete lattice.

Proved by Knaster and Tarski [Tars55].

Tarski's fixpoint theorem

Tarksi's theorem

If $f : X \to X$ is monotonic in a complete lattice X then fp(f) is a complete lattice.

Proof:

We prove Ifp $f = \Box \{ x | f(x) \sqsubseteq x \}$ (meet of postfixpoints).

Let
$$f^* = \{x \mid f(x) \sqsubseteq x\}$$
 and $a = \sqcap f^*$.
 $\forall x \in f^*, a \sqsubseteq x$ (by definition of \sqcap)
so $f(a) \sqsubseteq f(x)$ (as f is monotonic)
so $f(a) \sqsubseteq x$ (as x is a postfixpoint).
We deduce that $f(a) \sqsubseteq \sqcap f^*$, i.e. $f(a) \sqsubseteq a$.

Tarski's fixpoint theorem

Tarksi's theorem

If $f : X \to X$ is monotonic in a complete lattice X then fp(f) is a complete lattice.

Proof:

We prove Ifp $f = \Box \{ x | f(x) \sqsubseteq x \}$ (meet of postfixpoints).

$$\begin{array}{l} f(a) \sqsubseteq a \\ \text{so } f(f(a)) \sqsubseteq f(a) \quad (\text{as } f \text{ is monotonic}) \\ \text{so } f(a) \in f^* \quad (\text{by definition of } f^*) \\ \text{so } a \sqsubseteq f(a). \\ \text{We deduce } f(a) = a, \text{ so } a \in \text{fp}(f). \\ \text{Note that } y \in \text{fp}(f) \text{ implies } y \in f^*. \\ \text{As } a = \sqcap f^*, a \sqsubseteq y, \text{ and we deduce } a = \text{lfp } f \end{array}$$

Tarski's fixpoint theorem

Tarksi's theorem

If $f : X \to X$ is monotonic in a complete lattice X then fp(f) is a complete lattice.

Proof:

```
Given S \subseteq fp(f), we prove that |fp_{\sqcup S} f| exists.
```

```
Consider X' = \{x \in X \mid \sqcup S \sqsubseteq x\}.

X' is a complete lattice.

Moreover \forall x' \in X', f(x') \in X'.

f can be restricted to a monotonic function f' on X'.

We apply the preceding result, so that \operatorname{lfp} f' = \operatorname{lfp}_{\sqcup S} f exists.

By definition, \operatorname{lfp}_{\sqcup S} f \in \operatorname{fp}(f) and is smaller than any fixpoint

larger than all s \in S.
```

Tarski's fixpoint theorem

Tarksi's theorem

If $f : X \to X$ is monotonic in a complete lattice X then fp(f) is a complete lattice.

Proof:

By duality, we construct gfp f and gfp_{$\Box S$} f.

The complete lattice of fixpoints is: $(fp(f), \sqsubseteq, \lambda S.lfp_{\sqcup S} f, \lambda S.gfp_{\sqcap S} f, lfp f, gfp f).$

"Kleene" fixpoint theorem

"Kleene" fixpoint theorem

If $f : X \to X$ is continuous in a CPO X and $a \sqsubseteq f(a)$ then $lfp_a f$ exists.

Inspired by Kleene [Klee52].

"Kleene" fixpoint theorem

"Kleene" fixpoint theorem

If $f : X \to X$ is continuous in a CPO X and $a \sqsubseteq f(a)$ then $lfp_a f$ exists.

Proof:

We prove that $\{ f^n(a) \mid n \in \mathbb{N} \}$ is a chain and $\operatorname{lfp}_a f = \sqcup \{ f^n(a) \mid n \in \mathbb{N} \}$.

 $a \sqsubseteq f(a)$ by hypothesis. $f(a) \sqsubseteq f(f(a))$ by monotony of f. By recurrence $\forall n, f^n(a) \sqsubseteq f^{n+1}(a)$. Thus, $\{f^n(a) \mid n \in \mathbb{N}\}$ is a chain and $\sqcup \{f^n(a) \mid n \in \mathbb{N}\}$ exists.

"Kleene" fixpoint theorem

"Kleene" fixpoint theorem

If $f : X \to X$ is continuous in a CPO X and $a \sqsubseteq f(a)$ then $lfp_a f$ exists.

Proof:

$$f(\sqcup \{ f^{n}(a) \mid n \in \mathbb{N} \})$$

= $\sqcup \{ f^{n+1}(a) \mid n \in \mathbb{N} \}$ (by continuity)
= $a \sqcup (\sqcup \{ f^{n+1}(a) \mid n \in \mathbb{N} \})$ (as all $f^{n+1}(a)$ are greater than a)
= $\sqcup \{ f^{n}(a) \mid n \in \mathbb{N} \}$.
So, $\sqcup \{ f^{n}(a) \mid n \in \mathbb{N} \} \in \mathsf{fp}(f)$

Moreover, any fixpoint greater than *a* must also be greater than all $f^n(a)$, $n \in \mathbb{N}$. So, $\sqcup \{ f^n(a) \mid n \in \mathbb{N} \} = \mathsf{lfp}_a f$.

Well-ordered sets

- (S, \sqsubseteq) is a well-ordered set if:
 - \sqsubseteq is a total order on S
 - every $X \subseteq S$ such that $X \neq \emptyset$ has a least element $\sqcap X \in X$

Consequences:

- any element x ∈ S has a successor x + 1 ^{def} = ⊓ { y | x ⊏ y } (except the greatest element, if it exists)
- if $\exists y, x = y + 1$, x is a limit and $x = \sqcup \{ y | y \sqsubset x \}$ (every bounded subset $X \subseteq S$ has a lub $\sqcup X = \sqcap \{ y | \forall x \in X, x \sqsubseteq y \}$)

Examples:

- (\mathbb{N},\leq) and ($\mathbb{N}\cup\{\infty\},\leq$) are well-ordered
- (Z, \leq), (R, \leq), (R^+, \leq) are not well-ordered
- ordinals 0, 1, 2, ..., ω, ω + 1, ... are well-ordered (ω is a limit) well-ordered sets are ordinals up to order-isomorphism (i.e., bijective functions f such that f and f⁻¹ are monotonic)

Constructive Tarski theorem by transfinite iterations

Given a function $f : X \to X$ and $a \in X$, the transfinite iterates of f from a are:

$$\begin{cases} x_0 \stackrel{\text{def}}{=} a \\ x_n \stackrel{\text{def}}{=} f(x_{n-1}) & \text{if } n \text{ is a successor ordinal} \\ x_n \stackrel{\text{def}}{=} \sqcup \{ x_m \mid m < n \} & \text{if } n \text{ is a limit ordinal} \end{cases}$$

Constructive Tarski theorem

If $f : X \to X$ is monotonic in a complete lattice X and $a \sqsubseteq f(a)$, then $f = x_{\delta}$ for some ordinal δ .

Generalisation of "Kleene" fixpoint theorem, from [Cous79].

Proof

 $\begin{cases} f \text{ is monotonic in a complete lattice } X, \\ x_0 \stackrel{\text{def}}{=} a \sqsubseteq f(a) \\ x_n \stackrel{\text{def}}{=} f(x_{n-1}) & \text{if } n \text{ is a successor ordinal} \\ x_n \stackrel{\text{def}}{=} \sqcup \{ x_m \mid m < n \} & \text{if } n \text{ is a limit ordinal} \end{cases}$

Proof:

We prove that $\exists \delta, x_{\delta} = x_{\delta+1}$.

We note that $m \leq n \implies x_m \sqsubseteq x_n$. Assume by contradiction that $\exists \delta, x_{\delta} = x_{\delta+1}$. If *n* is a successor ordinal, then $x_{n-1} \sqsubset x_n$. If *n* is a limit ordinal, then $\forall m < n, x_m \sqsubset x_n$. Thus, all the x_n are distinct. By choosing n > |X|, we arrive at a contradiction. Thus δ exists.

Proof

 $\begin{cases} f \text{ is monotonic in a complete lattice } X, \\ \begin{cases} x_0 \stackrel{\text{def}}{=} a \sqsubseteq f(a) \\ x_n \stackrel{\text{def}}{=} f(x_{n-1}) & \text{if } n \text{ is a successor ordinal} \\ x_n \stackrel{\text{def}}{=} \sqcup \{ x_m \mid m < n \} & \text{if } n \text{ is a limit ordinal} \end{cases} \end{cases}$

Proof:

Given δ such that $x_{\delta+1} = x_{\delta}$, we prove that $x_{\delta} = \mathsf{lfp}_a f$.

 $f(x_{\delta}) = x_{\delta+1} = x_{\delta}$, so $x_{\delta} \in fp(f)$. Given any $y \in fp(f)$, $y \supseteq a$, we prove by transfinite induction that $\forall n, x_n \sqsubseteq y$. By definition $x_0 = a \sqsubseteq y$. If n is a successor ordinal, by monotony, $x_{n-1} \sqsubseteq y \implies f(x_{n-1}) \sqsubseteq f(y)$, i.e., $x_n \sqsubseteq y$. If n is a limit ordinal, $\forall m < n, x_m \sqsubseteq y$ implies $x_n = \sqcup \{x_m \mid m < n\} \sqsubseteq y$. Hence, $x_{\delta} \sqsubseteq y$ and $x_{\delta} = lfp_a f$.

Ascending chain condition

An ascending chain C in (X, \sqsubseteq) is a sequence $c_i \in X$ such that $i \leq j \implies c_i \leq c_j$.

A poset (X, \sqsubseteq) satisfies the ascending chain condition (ACC) iff for every ascending chain $C, \exists i \in \mathbb{N}, \forall j \ge i, c_i = c_j$.

Similarly, we can define the descending chain condition (DCC).

Examples:

- the powerset poset $(\mathcal{P}(X), \subseteq)$ is ACC (and DCC) iff X is finite
- the pointed integer poset $(\mathbb{Z} \cup \{\bot\}, \sqsubseteq)$ where $x \sqsubseteq y \iff x = \bot \lor x = y$ is ACC and DCC
- the divisibility poset $(\mathbb{N}^*, |)$ is DCC but not ACC.

Kleene fixpoints in ACC posets

"Kleene" finite fixpoint theorem

If $f : X \to X$ is monotonic in an AAC poset X and $a \sqsubseteq f(a)$ then $lfp_a f$ exists.

Proof:

We prove $\exists n \in \mathbb{N}$, $\mathsf{lfp}_a f = f^n(a)$.

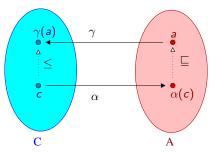
By monotony of f, the sequence $x_n = f^n(a)$ is an increasing chain. By definition of AAC, $\exists n \in \mathbb{N}, x_n = x_{n+1} = f(x_n)$. Thus, $x_n \in \text{fp}(f)$. Obviously, $a = x_0 \sqsubseteq f(x_n)$. Moreover, if $y \in \text{fp}(f)$ and $y \sqsupseteq a$, then $\forall i, y \sqsupseteq f^i(a) = x_i$. Hence, $y \sqsupseteq x_n$ and $x_n = \text{lfp}_a(f)$.

Galois connections

Given two posets (C, \leq) and (A, \sqsubseteq) , the pair $(\alpha : C \rightarrow A, \gamma : A \rightarrow C)$ is a Galois connection iff:

 $\forall a \in A, c \in C, \alpha(c) \sqsubseteq a \iff c \leq \gamma(a)$

which is noted $(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)$.



• α is the upper adjoint or abstraction; A is the abstract domain.

• γ is the lower adjoint or concretization; C is the concrete domain.

Antoine Miné

Properties of Galois connections

Assuming $\forall a, c, \alpha(c) \sqsubseteq a \iff c \le \gamma(a)$, we have:

- 2 $\alpha \circ \gamma$ is reductive: $\forall a, \alpha(\gamma(a)) \sqsubseteq a$

$\textcircled{O} \ \gamma \ \text{is monotonic}$

$$\begin{array}{l} \bullet \quad \gamma \circ \alpha \circ \gamma = \gamma \\ \underline{\text{proof:}} \quad \alpha(\gamma(a)) \sqsubseteq \alpha(\gamma(a)) \implies \gamma(a) \leq \gamma(\alpha(\gamma(a))) \text{ and} \\ a \sqsupseteq \alpha(\gamma(a)) \implies \gamma(a) \geq \gamma(\alpha(\gamma(a))) \end{array}$$

() $\alpha \circ \gamma$ is idempotent: $\alpha \circ \gamma \circ \alpha \circ \gamma = \alpha \circ \gamma$

 $\textcircled{O} \ \gamma \circ \alpha \text{ is idempotent}$

Alternate characterization

If the pair ($\alpha: \mathcal{C} \rightarrow \mathcal{A}, \gamma: \mathcal{A} \rightarrow \mathcal{C}$) satisfies:

- $\textcircled{0} \ \gamma \text{ is monotonic,}$
- **2** α is monotonic,
- $\textcircled{O} \gamma \circ \alpha \text{ is extensive}$
- $\textcircled{\textbf{0}} \ \alpha \circ \gamma \text{ is reductive}$

then (α, γ) is a Galois connection.

(proof left as exercise)

Uniqueness of the adjoint

Given $(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)$, each adjoint can be uniquely define

each adjoint can be uniquely defined in term of the other:

$$a(c) = \sqcap \{ a \mid c \leq \gamma(a) \}$$

$$\ 2 \ \ \gamma(a) = \lor \{ c \mid \alpha(c) \sqsubseteq a \}$$

Proof: of 1

 $\begin{array}{l} \forall a, \ c \leq \gamma(a) \implies \alpha(c) \sqsubseteq a. \\ \text{Hence, } \alpha(c) \ \text{is a lower bound of } \{ \ a \mid c \leq \gamma(a) \}. \\ \text{Assume that } a' \ \text{is another lower bound.} \\ \text{Then, } \forall a, \ c \leq \gamma(a) \implies a' \sqsubseteq a. \\ \text{By Galois connection, we have then } \forall a, \ \alpha(c) \sqsubseteq a \implies a' \sqsubseteq a. \\ \text{This implies } a' \sqsubseteq \alpha(c). \\ \text{Hence, the greatest lower bound of } \{ \ a \mid c \leq \gamma(a) \} \text{ exists,} \\ \text{and equals } \alpha(c). \end{array}$

The proof of 2 is similar (by duality).

Properties of Galois connections (cont.)

If
$$(\alpha : C \rightarrow A, \gamma : A \rightarrow C)$$
, then:

 $\forall X \subseteq C, \text{ if } \forall X \text{ exists, then } \alpha(\forall X) = \sqcup \{ \alpha(x) \mid x \in X \} .$

 $\forall X \subseteq A, \text{ if } \sqcap X \text{ exists, then } \gamma(\sqcap X) = \land \{\gamma(x) \mid x \in X\}.$

Proof: of 1

By definition of lubs, $\forall x \in X, x \leq \lor X$. By monotony, $\forall x \in X, \alpha(x) \sqsubseteq \alpha(\lor X)$. Hence, $\alpha(\lor X)$ is an upper bound of $\{\alpha(x) \mid x \in X\}$. Assume that y is another upper bound of $\{\alpha(x) \mid x \in X\}$. Then, $\forall x \in X, \alpha(x) \sqsubseteq y$. By Galois connection $\forall x \in X, x \leq \gamma(y)$. By definition of lubs, $\lor X \leq \gamma(y)$. By Galois connection, $\alpha(\lor X) \sqsubseteq y$. Hence, $\{\alpha(x) \mid x \in X\}$ has a lub, which equals $\alpha(\lor X)$.

The proof of 2 is similar (by duality).

Deriving Galois connections

Given
$$(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)$$
 and $(C', \leq') \xrightarrow{\gamma'} (A', \sqsubseteq')$,

we can construct new Galois connections by:

2 composition:
$$(C, \leq) \xrightarrow{\gamma \circ \gamma'} (A', \sqsubseteq')$$
 when $(A, \sqsubseteq) = (C', \leq')$

Point-wise lifting by some set S:
$$(S \to C, \leq) \stackrel{\dot{\gamma}}{\underset{\dot{\alpha}}{\overset{\dot{\gamma}}{\longrightarrow}}} (S \to A, \sqsubseteq) \text{ where}$$

$$f \leq f' \iff \forall s, f(s) \leq f'(s), \quad (\dot{\gamma}(f))(s) = \gamma(f(s)),$$

$$f \sqsubseteq f' \iff \forall s, f(s) \sqsubseteq f'(s), \quad (\dot{\alpha}(f))(s) = \alpha(f(s))$$

Inctional lifting of monotonic operators
(C ≤ C', ≤')
<sup>[↑]/_α
(A = A', ⊑')
where
$$\hat{\gamma}(f) = \gamma' \circ f \circ \alpha$$
 and $\hat{\alpha}(f) = \alpha' \circ f \circ \gamma$.</sup>

If $(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)$, the following properties are equivalent:

- a is surjective $(\forall a \in A, \exists c \in C, \alpha(c) = a)$ γ is injective $(\forall a, a' \in A, \gamma(a) = \gamma(a') \implies a = a')$ $\alpha \circ \gamma = id$ $(\forall a \in A, id(a) = a)$
- Such (α, γ) is called a Galois embedding, which is noted $(C, \leq) \xleftarrow{\gamma}{\alpha} (A, \sqsubseteq)$

Proof:

If $(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)$, the following properties are equivalent:

- α is surjective $(\forall a \in A, \exists c \in C, \alpha(c) = a)$ γ is injective $(\forall a, a' \in A, \gamma(a) = \gamma(a') \implies a = a')$

Such (α, γ) is called a Galois embedding, which is noted $(C, \leq) \xleftarrow{\gamma}{\alpha} (A, \sqsubseteq)$

Proof: 1
$$\implies$$
 2
Assume that $\gamma(a) = \gamma(a')$.
By surjectivity, take c, c' such that $a = \alpha(c), a' = \alpha(c')$
Then $\gamma(\alpha(c)) = \gamma(\alpha(c'))$.
And $\alpha(\gamma(\alpha(c))) = \alpha(\gamma(\alpha(c')))$.
As $\alpha \circ \gamma \circ \alpha = \alpha, \alpha(c) = \alpha(c')$.
Hence $a = a'$.

If $(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)$, the following properties are equivalent:

- α is surjective $(\forall a \in A, \exists c \in C, \alpha(c) = a)$ γ is injective $(\forall a, a' \in A, \gamma(a) = \gamma(a') \implies a = a')$

Such (α, γ) is called a Galois embedding, which is noted $(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)$

<u>Proof:</u> 2 \implies 3 Given $a \in A$, we know that $\gamma(\alpha(\gamma(a))) = \gamma(a)$. By injectivity of γ , $\alpha(\gamma(a)) = a$.

If $(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)$, the following properties are equivalent:

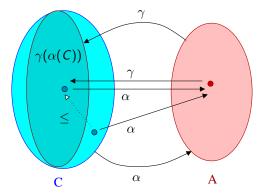
- **1** α is surjective $(\forall a \in A, \exists c \in C, \alpha(c) = a)$ **2** γ is injective $(\forall a, a' \in A, \gamma(a) = \gamma(a') \implies a = a')$

Such (α, γ) is called a Galois embedding, which is noted $(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)$

<u>Proof:</u> 3 \implies 1 Given $a \in A$, we have $\alpha(\gamma(a)) = a$. Hence, $\exists c \in C, \ \alpha(c) = a$, using $c = \gamma(a)$.

Galois embeddings (cont.)

$$(C, \leq) \xleftarrow{\gamma}{\alpha} (A, \sqsubseteq)$$



A Galois connection can be made into an embedding by quotienting A by the equivalence relation $a \equiv a' \iff \gamma(a) = \gamma(a')$.

course 1, 2012-2013

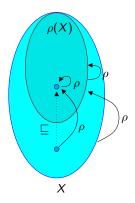
Mathematical Tools

Antoine Miné

Upper closures

 $\rho: X \to X$ is an upper closure in the poset (X, \sqsubseteq) if it is:

- **2** extensive: $x \sqsubseteq \rho(x)$, and
- **3** idempotent: $\rho \circ \rho = \rho$.



Upper closures and Galois connections

Given
$$(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)$$
,
 $\gamma \circ \alpha$ is an upper closure on (C, \leq) .

Given an upper closure ρ on (X, \sqsubseteq) , we have a Galois embedding: $(X, \sqsubseteq) \xleftarrow{id}{\rho} (\rho(X), \sqsubseteq)$

 \implies we can rephrase abstract interpretation using upper closures instead of Galois connections, but we lose:

• the notion of abstract representation

(a data-structure A representing elements in $\rho(X)$)

 the ability to have several distinct abstract representations for a single concrete object (non-necessarily injective γ versus id)

Sound, best, and exact abstractions

Given $(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)$

- a ∈ A is a sound abstraction of c ∈ C if c ≤ γ(a) or, equivalently, α(c) ⊑ a.
- Given $c \in C$, its best abstraction is $\alpha(c)$. (proof: recall that $\alpha(c) = \sqcap \{ a \mid c \le \gamma(a) \}$)
- $g: A \to A$ is a sound abstraction of $f: C \to C$ if $\forall a \in A$, $(f \circ \gamma)(a) \leq (\gamma \circ g)(a)$ or equivalently $\forall a \in A$, $(\alpha \circ f \circ \gamma)(a) \sqsubseteq g(a)$.
- Given f : C ≤ C, its best abstraction is α ∘ f ∘ γ
 (proof: g sound ⇔ ∀a, (α ∘ f ∘ γ)(a) ⊑ g(a), so α ∘ f ∘ γ is the smallest sound abstraction)
- $g : A \to A$ is an exact abstraction of $f : C \to C$ if $f \circ \gamma = \gamma \circ g$.

Composition of sound, best, and exact abstractions

If g and g' abstract respectively f and f' then:

- if f and f' are sound abstractions and f is monotonic, then g ∘ g' is a sound abstraction of f ∘ f',
 (proof: ∀a, (f ∘ f' ∘ γ)(a) ≤ (f ∘ γ ∘ g')(a) ≤ (γ ∘ g ∘ g')(a))
- if g, g' are exact abstractions, then g ∘ g' is an exact abstraction, (proof: f ∘ f' ∘ γ = f ∘ γ ∘ g' = γ ∘ g ∘ g')
- if g and g' are best abstractions, then g o g' is not always a best abstraction! (we will see examples later)

 $\underline{\rm Note:}$ without α and a Galois connection, we can still define sound and exact abstractions.

Fixpoint abstraction example theorem

lf:

- ($C, \leq, \lor, \land, \bot, \top$) is a complete lattice,
- $g: A \rightarrow A$ is a sound abstraction of a monotonic $f: C \stackrel{\leq}{\longrightarrow} C$,
- and a is a postfixpoint of g $(g(a) \sqsubseteq a)$

then a is a sound abstraction of lfp f.

Proof:

By definition,
$$g(a) \sqsubseteq a$$
.
By monotony, $\gamma(g(a)) \le \gamma(a)$.
By soundness, $f(\gamma(a)) \le \gamma(a)$.
By Tarski's theorem Ifp $f = \land \{ x | f(x) \le x \}$.
Hence, Ifp $f \le \gamma(a)$.

Notes:

- no α is required here,
- many other fixpoint abstraction theorems exist.

course 1, 2012-2013

Bibliography

Bibliography

[Birk76] G. Birkhoff. Lattice theory. In AMS Colloquium Pub. 25, 3rd ed., 1976.

[Cous78] **P. Cousot**. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes. In Thèse És Sc. Math., U. Joseph Fourier, Grenoble, 1978.

[Cous79] **P. Cousot & R. Cousot**. Constructive versions of Tarski's fixed point theorems. In Pacific J. of Math., 82(1):43–57, 1979.

[Cous92] **P. Cousot & R. Cousot**. Abstract interpretation frameworks. In J. of Logic and Comp., 2(4):511—547, 1992.

[Klee52] **S. C. Kleene**. Introduction to metamathematics. In North-Holland Pub. Co., 1952.

[Tars55] **A. Tarski**. A lattice theoretical fixpoint theorem and its applications. In Pacific J. of Math., 5:285–310, 1955.