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Shortcomings of non-relational domains

Accumulated loss of precision

Non-relation domains cannot represent variable relationships.

Rate limiter

Y:=0; while • 1=1 do

X:=[-128,128]; D:=[0,16];

S:=Y; Y:=X; R:=X-S;

if R<=-D then Y:=S-D fi;

if R>=D then Y:=S+D fi

done

X: input signal
Y: output signal
S: last output
R: delta Y-S

D: max. allowed for |R|

Iterations in the interval domain (without widening):
X ]0• X ]1• X ]2• . . . X ]n•
Y = 0 |Y| ≤ 144 |Y| ≤ 160 . . . |Y| ≤ 128 + 16n

In fact, Y ∈ [−128, 128] always holds.

To prove that, e.g. Y ≥ −128, we must be able to:

represent the properties R = X− S and R ≤ −D,
combine them to deduce S− X ≥ D, and then Y = S− D ≥ X.
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Shortcomings of non-relational domains

The need for relational loop invariants

To prove some invariant after the end of a loop,
we often need to find a loop invariant of a more complex form.

relational loop invariant

X:=0; I:=1;

while • I<5000 do

if [0,1]=1 then X:=X+1 else X:=X-1 fi;

I:=I+1

done �

A non-relational analysis finds at � that I = 5000 and X ∈ Z.

The best invariant is: (I = 5000) ∧ (X ∈ [−4999, 4999]) ∧ (X ≡ 0 [2]).

To find this non-relational invariant, we must find a relational loop
invariant at •: (−I < X < I) ∧ (X + I ≡ 1 [2]) ∧ (I ∈ [1, 5000]),

and apply the loop exit condition C]J I >= 5000 K .
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Shortcomings of non-relational domains

Modular analysis

store the maximum of X,Y,0 into Z

max(X,Y,Z)

Z :=X ;

if Y > Z then Z :=Y ;

if Z < 0 then Z :=0;

Modular analysis:

analyze a procedure once (procedure summary)

reuse the summary at each call site (instantiation)

=⇒ improved efficiency

infer a relation between input X,Y,Z and output X′,Y′,Z′ values
P((V→ R)× (V→ R)) ≡ P((V× V)→ R)

requires inferring relational information
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Shortcomings of non-relational domains

Modular analysis

store the maximum of X,Y,0 into Z’

max(X,Y,Z)

X’:=X; Y’:=Y; Z’:=Z;

Z’:=X’;

if Y’ > Z’ then Z’:=Y’;

if Z’ < 0 then Z’:=0;

(Z′ ≥ X ∧ Z′ ≥ Y ∧ Z′ ≥ 0 ∧ X′ = X ∧ Y′ = Y)

Modular analysis:

analyze a procedure once (procedure summary)

reuse the summary at each call site (instantiation)

=⇒ improved efficiency

infer a relation between input X,Y,Z and output X′,Y′,Z′ values
P((V→ R)× (V→ R)) ≡ P((V× V)→ R)
requires inferring relational information

[Anco10], [Jean09]
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Reminders

Reminders
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Reminders

Syntax

Fixed finite set of variables V,
with value in I, I ∈ {Z,Q,R,M,F}

arithmetic expressions:

exp ::= V variable V ∈ V
| −exp negation

| exp � exp binary operation: � ∈ {+,−,×, / }
| [c , c ′] constant range, c , c ′ ∈ I ∪ {±∞}

c is a shorthand for [c , c]

commands:

com ::= V := exp assignment into V ∈ V
| exp ./ 0 test, ./∈ {=, <,>,<=, >=, <>}
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Reminders

Concrete semantics

Semantics of expressions: EJ e K : (V→ I)→ P(I)

EJ [c , c ′] K ρ def
= { x ∈ I | c ≤ x ≤ c ′ }

EJ V K ρ def
= { ρ(V) }

EJ− e K ρ def
= { −v | v ∈ EJ e K ρ }

EJ e1 + e2 K ρ
def
= { v1 + v2 | v1 ∈ EJ e1 K ρ, v2 ∈ EJ e2 K ρ }

· · ·

Forward commands: CJ c K : P(V→ I)→ P(V→ I)

CJ V :=e KX def
= { ρ[ V 7→ v ] | ρ ∈ X , v ∈ EJ e K ρ }

CJ e ./ 0 KX def
= { ρ | ρ ∈ X , ∃v ∈ EJ e K ρ, v ./ 0 }

Backward commands: CJ←−c K : P(V→ I)→ P(V→ I)

CJ←−−−V :=e KX def
= { ρ | ∃v ∈ EJ e K ρ, ρ[ V 7→ v ] ∈ X }

CJ
←−−−
e ./ 0 KX def

= CJ e ./ 0 KX
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Reminders

Abstract domain

Abstract elements:

D], a set of computer-representable elements

γ : D] → D concretization

⊆], an approximation order: X ] ⊆] Y] =⇒ γ(X ]) ⊆ γ(Y])

Abstract operators:

C]J c K such that CJ c K γ(X ]) ⊆ γ(C]J c KX ])
∪] such that γ(X ]) ∪ γ(Y]) ⊆ γ(X ] ∪] Y])
∩] such that γ(X ]) ∩ γ(Y]) ⊆ γ(X ] ∩] Y])
C]J←−c K such that
γ(X ]) ∩ CJ←−c K γ(R]) ⊆ γ(C]J←−c K (X ],R]))

Fixpoint extrapolation:

O : (D] ×D])→ D] widening
M : (D] ×D])→ D] narrowing

course 3, 2012–2013 Relational Numerical Abstract Domains Antoine Miné p. 10 / 82



Linear equality domains

Linear equality domains
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Linear equality domains Affine equalities

The affine equality domain

Here I ∈ {Q,R}.

We look for invariants of the form:∧
j (
∑n

i=1 αijVi = βj) , αij , βj ∈ I
where all the αij and βj are inferred automatically.

We use a domain of affine spaces proposed by [Karr76]:

D] def
= { affine subspaces of V→ I }
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Linear equality domains Affine equalities

Affine equality representation

Machine representation: an affine subspace is represented as

either the constant ⊥],
or a pair 〈M, ~C 〉 where

M ∈ Im×n is a m × n matrix, n = |V| and m ≤ n,
~C ∈ Im is a row-vector with m rows.

〈M, ~C 〉 represents an equation system, with solutions:

γ(〈M, ~C 〉) def
= { ~V ∈ In |M× ~V = ~C }

M should be in row echelon form:

∀i ≤ m, ∃ki such that Miki = 1
and ∀c < ki ,Mic = 0, ∀l 6= i , Mlki = 0,

if i < i ′ then ki < ki ′ .

Remarks:

the representation is unique,

as m ≤ n = |V|, the memory cost is in O(n2) at worst,

>] is represented as the empty equation system: m = 0.
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Linear equality domains Affine equalities

Normalisation and emptiness testing

Let M× ~V = ~C be a system, not necessarily in normal form.

The Gaussian reduction tells in O(n3) time:

whether the system is satisfiable, and in that case

gives an equivalent system in normal form.

i.e. returns an element in D].

Example: 2X + Y + Z = 19
2X + Y − Z = 9

3Z = 15
⇓{

X + 0.5Y = 7
Z = 5
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Linear equality domains Affine equalities

Normalisation and emptiness testing (cont.)

Gaussian reduction algorithm: Gauss(〈M, ~C 〉)

r :=0 (rank r)
for c from 1 to n (column c)

if ∃` > r , M`c 6= 0 (pivot `)
r := r + 1

swap 〈 ~M`,C`〉 and 〈 ~Mr ,Cr 〉
divide 〈 ~Mr ,Cr 〉 by Mrc

for j from 1 to n, j 6= r

replace 〈 ~Mj ,Cj〉 with 〈 ~Mj ,Cj〉 −Mjc〈 ~Mr ,Cr 〉

if ∃`, 〈 ~M`,C`〉 = 〈0, . . . , 0, c〉, c 6= 0
then return unsatisfiable

remove all rows 〈 ~M`,C`〉 that equal 〈0, . . . , 0, 0〉
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Linear equality domains Affine equalities

Affine equality operators

Applications

If X ],Y] 6= ⊥], we define:

X ] ∩] Y] def
= Gauss

(〈[
MX ]

MY]

]
,

[
~CX ]

~CY]

]〉)
X ] = ]Y] def⇐⇒ MX ] = MY] and ~CX ] = ~CY]

X ] ⊆] Y] def⇐⇒ X ] ∩] Y] =] X ]

C]J
∑

j αjVj − β = 0 KX ] def
= Gauss

(〈[
MX ]

α1 · · ·αn

]
,

[
~CX ]

β

]〉)
C]J e ./ 0 KX ] def

= X ] for other tests

Remark:

⊆], =], ∩], =] and C]J
∑

j αjVj − β = 0 K are exact:
X ] ⊆] Y] ⇐⇒ γ(X ]) ⊆ γ(Y]), γ(X ] ∩] Y]) = γ(X ]) ∩ γ(Y]), . . .
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Linear equality domains Affine equalities

Generator representation

Generator representation

An affine subspace can also be represented as a set of vector
generators ~G1, . . . , ~Gm and an origin point ~O, denoted as [G, ~O].

γ([G, ~O])
def
= { G× ~λ+ ~O | ~λ ∈ Im } (G ∈ In×m, ~O ∈ In)

We can switch between a generator and a constraint
representation:

From generators to constraints: 〈M, ~C 〉 = Cons([G, ~O])

Write the system ~V = G× ~λ+ ~O with variables ~V , ~λ.
Solve it in ~λ (by row operations).

Keep the constraints involving only ~V .

e.g.

 X = λ+ 2
Y = 2λ+ µ+ 3
Z = µ

=⇒

 X− 2 = λ
−2X + Y + 1 = µ

2X− Y + Z− 1 = 0

The result is: 2X− Y + Z = 1.
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Linear equality domains Affine equalities

Generator representation (cont.)

From constraints to generators: [G, ~O]
def
= Gen(〈M, ~C 〉)

Assume 〈M, ~C 〉 is normalized.
For each non-leading variable V, assign a distinct λV,
solve leading variables in terms of non-leading ones.

e.g.

{
X + 0.5Y = 7

Z = 5
=⇒

 −0.5
1
0

λY +

 7
0
5
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Linear equality domains Affine equalities

Affine equality operators (cont.)

Applications

Given X ],Y] 6= ⊥], we define:

X ] ∪] Y] def
= Cons

(
Gauss

([[
GX ] GY] (~OY] − ~OX ])

]
, ~OX ]

]))
C]J Vj :=]−∞,+∞[ KX ] def

= Cons
(

Gauss
([[

GX ] ~xj
]
, ~OX ]

]))
C]J Vj :=

∑
i αiVi + β KX ] def

=

if αj = 0, (C]J
∑

i αiVi − Vj + β = 0 K ◦ C]J Vj :=]−∞,+∞[ K )X ]

if αj 6= 0,X ] where Vj is replaced with (Vj −
∑

i 6=j αiVi − β)/αj

C]J Vj := e KX ] def
= C]J Vj :=]−∞,+∞[ KX ] for other assignments

Remarks:

∪] is optimal, but not exact.

C]J Vj :=
∑

i αiVi + β K and C]J Vj :=]−∞,+∞[ K are exact.
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Linear equality domains Affine equalities

Affine equality operators (cont.)

Backward assignments:

C]J
←−−−−−−−−−−−−
Vj :=]−∞,+∞[ K (X ],R]) def

= X ] ∩] (C]J Vj :=]−∞,+∞[ KR])

C]J
←−−−−−−−−−−−−
Vj :=

∑
i αiVi + β K (X ],R]) def

=

X ] ∩] (R] where Vj is replaced with (
∑

i αiVi + β))

C]J←−−−−Vj := e K (X ],R]) def
= C]J

←−−−−−−−−−−−−
Vj :=]−∞,+∞[ K (X ],R])

for other assignments

Remarks:

C]J
←−−−−−−−−−−−−
Vj :=

∑
i αiVi + β K and C]J

←−−−−−−−−−−−−
Vj :=]−∞,+∞[ K are exact

a backward assignment can be seen as a substitution wrt.
constraints (similar to weakest preconditions [Dijk75])
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Linear equality domains Affine equalities

Analysis example

No infinite increasing chain: we can iterate without widening.

Forward analysis example:

1X:=10; Y:=100;

while 2X<>0 do3

X:=X-1;

Y:=Y+10

done4
X:=X−1

1

2

4

3

X<>0

X:=10

Y:=100

X=0

Y:=Y+10

` X ]0` X ]1` X ]2` X ]3` X ]4`
1 >] >] >] >] >]
2 ⊥] (10, 100) (10, 100) 10X + Y = 200 10X + Y = 200
3 ⊥] ⊥] (10, 100) (10, 100) 10X + Y = 200
4 ⊥] ⊥] ⊥] ⊥] (0, 200)

Note in particular:
X ]32 = {(10, 100)} ∪] {(9, 110)} = { (X, Y) | 10X + Y = 200 }
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Linear equality domains Affine equalities

Constraint-only equality domain

In fact [Karr76] does not use the generator representation.
(rationale: few constraints but many generators in practice)

We need to redefine two operators: forgetting and union.

C]J Vj :=]−∞,+∞[ K

Pick the row 〈 ~Mi ,Ci 〉 such that Mij 6= 0 and i maximal.
Use it to eliminate all non-0 occurrences of Vj in M.

Then remove the row 〈 ~Mi ,Ci 〉.

e.g. forgetting Z:

{
X + Z = 10
Y+ Z = 7

=⇒
{

X− Y = 3

The operator is exact.
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Linear equality domains Affine equalities

Constraint-only equality domain (cont.)

〈M, ~C 〉 ∪] 〈N, ~D〉

Idea: unify columns 1 to n in 〈M, ~C 〉 and 〈N, ~D〉
using row operations.

e.g. unify columns t(~0 1 ~0) and t(~β 0 ~0).
R ~0 M1

~0 1 ~M2

0 ~0 M3

 ,


R ~β N1

~0 0 ~N2

0 ~0 N3

 =⇒


R ~β M′1
~0 0 ~0

0 ~0 M3

 ,


R ~β N1

~0 0 ~N2

0 ~0 N3


Use the row (~0 1 ~M2) to create β in the left argument.

Then remove the row (~0 1 ~M2).
The right argument is unchanged.

Unifying t(~α 0 ~0) and t(~β 0 ~0) is a bit more complicated. . .
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Linear equality domains Affine equalities

A note on integers

Suppose now that I = Z.

Z is not closed under affine operations: (x/y)× y 6= x ,

Gaussian reduction implemented in Z is unsound.
(e.g. unsound normalization 2X + Y = 19 6=⇒ X = 9, by truncation)

One possible solution

keep a representation using matrices with coefficients in Q,

keep all abstract operators as in Q,

change the concretization into: γZ(X ]) def
= γ(X ]) ∩ Zn.

With respect to γZ, the operators are no longer best / exact.

Example: where X ] is the equation Y = 2X

γZ(X ]) = { (X, Y) | X ∈ Z, Y = 2X }
(CJ X :=0 K ◦ γZ)X ] = { (X, Y) | X = 0, Y is even }
(γZ ◦ C]J X :=0 K )X ] = { (X, Y) | X = 0, Y ∈ Z }

The analysis forgets the “intergerness” of variables.
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Linear equality domains Congruence equalities

The congruence equality domain

Now, I = Z.

We look for invariants of the form:
∧
j

(
n∑

i=1

mijVi ≡ cj [kj ]

)
.

Algorithms:

there exists minimal forms (but not unique),
computed using an extension of Euclide’s algorithm,

there is a dual representation: { G× ~λ+ ~O | ~λ ∈ Zm },
and passage algorithms,

see [Gran91].
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Linear equality domains Congruence equalities

Analysis example

Program example:

X:=0; Y:=0;

while •[0,1]=0 do

if [0,1]=0 then X:=X+4

else X:=X+12 fi;

Y:=Y+4

done

At •, we find: (X ≡ 0 [4]) ∧ (Y ≡ 0 [4]) ∧ (X ≡ Y [8]).
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Polyhedron domain

Polyhedron domain
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Polyhedron domain

The polyhedron domain

Here again, I ∈ {Q,R}.

We look for invariants of the form:
∧
j

(
n∑

i=1

αijVi ≥ βj

)
.

We use the polyhedron domain proposed by [Cous78]:

D] def
= {closed convex polyhedra of V→ I}

Note: polyhedra need not be bounded (6= polytopes).
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Polyhedron domain

Double description of polyhedra

Polyhedra have dual representations (Weyl–Minkowski Theorem).
(see [Schr86])

Constraint representation

〈M, ~C 〉 with M ∈ Im×n and ~C ∈ Im

represents: γ(〈M, ~C 〉) def
= {~V |M× ~V ≥ ~C}

We will also often use a constraint set notation {
∑

i αijVi ≥ βj }.

Generator representation

[P,R] where

P ∈ In×p is a set of p points: ~P1, . . . , ~Pp

R ∈ In×r is a set of r rays: ~R1, . . . , ~Rr

γ([P,R])
def
=
{ (∑p

j=1 αj
~Pj

)
+
(∑r

j=1 βj
~Rj

)
| ∀j , αj ≥ 0,

∑p
j=1 αj = 1, ∀j , βj ≥ 0

}
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Polyhedron domain

Origin of duality

Dual A∗
def
= { ~x ∈ In | ∀~a ∈ A, ~a · ~x ≤ 0 }

{~a}∗ and {λ~r |λ ≥ 0}∗ are half-spaces,

(A ∪ B)∗ = A∗ ∩ B∗,

if A is convex, closed, and ~0 ∈ A, then A∗∗ = A.

Duality on polyhedral cones:

Cone: C = {~V |M× ~V ≥ ~0} or C = {
∑r

j=1 βj
~Rj | ∀j , βj ≥ 0}

C ∗∗ = C ,

C ∗ is also a polyhedral cone,

a ray of C corresponds to a constraint of C ∗,

a constraint of C corresponds to a ray of C ∗.

extended to polyhedra by homogenisation to polyhedral codes:

C (P)
def
= { λ~V | λ ≥ 0, (V1, . . . ,Vn) ∈ γ(P), Vn+1 = 1 } ⊆ In+1
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Polyhedron domain

Polyhedra representation (cont.)

Minimal representations

A constraint system is minimal if no constraint can be omitted
without changing the concretization.

A generator system is minimal if no generator can be omitted
without changing the concretization.

Remarks:

most operators are easier on one representation;

minimal representations are not unique;

there is no memory bound on the representations
(even minimal ones);

equality constraints, as well as lines (pairs of opposed rays)
may be handled separately and more efficiently.
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Polyhedron domain

Chernikova’s algorithm

Switch from a constraint system to an equivalent generator system.

Algorithm introduced by [Cher68].

Notes:

By duality, we can use the same algorithm to switch from
generators to constraints.

The minimal generator system can be exponential in the
original constraint system.

(e.g. a n−dimensional hyper-cube has 2n constraints and 2n

vertices)

Algorithm: incrementally add constraints one by one

Start with:

{
P0 = { (0, . . . , 0) } (origin)
R0 = { ~xi , −~xi | 1 ≤ i ≤ n } (axes)
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Polyhedron domain

Chernikova’s algorithm (cont.)

Update [Pk−1,Rk−1] to [Pk ,Rk ]
by adding one constraint ~Mk · ~V ≥ Ck ∈ 〈M, ~C 〉:
start with Pk = Rk = ∅,

for any ~P ∈ Pk−1 s.t. ~Mk · ~P ≥ Ck , add ~P to Pk ;

for any ~R ∈ Rk−1 s.t. ~Mk · ~R ≥ 0, add ~R to Rk ;

for any ~P, ~Q ∈ Pk−1 s.t. ~Mk · ~P > Ck and ~Mk · ~Q < Ck , add
to Pk :

Ck− ~Mk ·~Q
~Mk ·~P− ~Mk ·~Q

~P − Ck− ~Mk ·~P
~Mk ·~P− ~Mk ·~Q

~Q

for any ~P ∈ Pk−1, ~R ∈ Rk−1 s.t. either ~Mk · ~P > Ck and
~Mk · ~R < 0, or ~Mk · ~P < Ck and ~Mk · ~R > 0, add to Pk :
~P + Ck− ~Mk ·~P

~Mk ·~R
~R

for any ~R, ~S ∈ Rk−1 s.t. ~Mk · ~R > 0 and ~Mk · ~S < 0, add to
Rk : ( ~Mk · ~S)~R − ( ~Mk · ~R)~S
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Polyhedron domain

Chernikova’s algorithm (example)

Example:

(0) (1) (2) (3)

P0 = {(0, 0)} R0 = {(1, 0); (−1, 0); (0, 1); (0,−1)}
Y ≥ 1 P1 = {(0, 1)} R1 = {(1, 0); (−1, 0); (0, 1)}
X + Y ≥ 3 P2 = {(2, 1)} R2 = {(1, 0); (−1, 1); (0, 1)}
X− Y ≤ 1 P3 = {(2, 1); (1, 2)} R3 = {(0, 1); (1, 1)}
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Polyhedron domain

Redudancy removal

Goal: only introduce non-redundant points and rays during
Chernikova’s algorithm.

Definitions (for rays in polyhedral cones)

Given C = {~V |M× ~V ≥ ~0} = { R× ~β | ~β ≥ ~0}.
~R saturates ~Mk · ~V ≥ 0

def⇐⇒ ~Mk · ~R = 0.

S(~R,C )
def
= {k | ~Mk · ~R = 0}.

Theorem:

assume C has no line (6 ∃~L 6= ~0 s.t. ∀α, α~L ∈ C )
~R is non-redundant wrt. R ⇐⇒ 6 ∃~Ri ∈ R, S(~R,C ) ⊆ S(~Ri ,C )

S(~Ri ,C ), ~Ri ∈ R is maintained during Chernikova’s algorithm
in a saturation matrix,

extension possible to polyhedra and lines,

various improvements exist [LeVe92].
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Polyhedron domain

Operators on polyhedra

Given X ],Y] 6= ⊥], we define:

X ] ⊆] Y] def⇐⇒

{
∀~P ∈ PX ] , MY] × ~P ≥ ~CY]

∀~R ∈ RX ] , MY] × ~R ≥ ~0

X ] =] Y] def⇐⇒ X ] ⊆] Y] and Y] ⊆] X ]

X ] ∩] Y] def
=

〈[
MX ]

MY]

]
,

[
~CX ]

~CY]

]〉
(join constraint sets)

X ] ∪] Y] def
= [ [PX ] PY] ], [RX ] RY] ] ] (join generator sets)

Remarks:

⊆], =] and ∩] are exact.

∪] is optimal: we get the topological closure of the convex
hull of γ(X ]) ∪ γ(Y]).
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Polyhedron domain

Operators on polyhedra (cont.)

C]J
∑

i αiVi + β ≥ 0 KX ] def
=

〈[
MX ]

α1 · · ·αn

]
,

[
~CX ]

−β

]〉
C]J
∑

i αiVi + β = 0 KX ] def
=

(C]J
∑

i αiVi + β ≥ 0 K ◦ C]J
∑

i (−αi )Vi − β ≥ 0 K )X ]

C]J Vj :=]−∞,+∞[ KX ] def
= [ PX ] , [ RX ] ~xj (−~xj) ] ]

C]J Vj :=
∑

i αiVi + β KX ] def
=

if αj = 0, (C]J
∑

i αiVi − Vj + β = 0 K ◦ C]J Vj :=]−∞,+∞[ K )X ]

if αj 6= 0, 〈M, ~C 〉 where Vj is replaced with 1
αj

(Vj −
∑

i 6=j αiVi − β)

Remarks:

C]J
∑

i αiVi + β ≥ 0 K , C]J Vj :=
∑

i αiVi + β KX and

C]J Vj :=]−∞,+∞[ K are exact.

We can also define C]J Vj :=
∑

i αiVi + β K on a generator system.
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Polyhedron domain

Operators on polyhedra (cont.)

Backward assignments:

C]J
←−−−−−−−−−−−−
Vj :=]−∞,+∞[ K (X ],R]) def

= X ] ∩] (C]J Vj :=]−∞,+∞[ KR])

C]J
←−−−−−−−−−−−−
Vj :=

∑
i αiVi + β K (X ],R]) def

=

X ] ∩] (R] where Vj is replaced with (
∑

i αiVi + β))

C]J←−−−−Vj := e K (X ],R]) def
= C]J

←−−−−−−−−−−−−
Vj :=]−∞,+∞[ K (X ],R])

for other assignments

Note: identical to the case of linear equalities.
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Polyhedron domain

Polyhedra widening

D] has strictly increasing infinite chains =⇒ we need a widening.

Definition:

Take X ] and Y] in minimal constraint-set form.

X ] O Y] def
= { c ∈ X ] | Y] ⊆] {c} }
∪ { c ∈ Y] | ∃c ′ ∈ X ], X ] =] (X ] \ c ′) ∪ {c} }.

We suppress any unstable constraint c ∈ X ], i.e., Y] 6⊆] {c}.
However, we keep constraints c ∈ Y] equivalent to those in X ],
i.e., when ∃c ′ ∈ X ], X ] =] (X ] \ c ′) ∪ {c}.
Example:
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Polyhedron domain

Example analysis

Example program

X:=2; I:=0;

while • I<10 do

if [0,1]=0 then X:=X+2 else X:=X-3 fi;

I:=I+1

done�

We use a finite number (one) of intersections ∩] as narrowing.
Iterations with widening and narrowing at • give:

X ]1• = {X = 2, I = 0}

X ]2• = {X = 2, I = 0} O ({X = 2, I = 0} ∪] {X ∈ [−1, 4], I = 1})
= {X = 2, I = 0} O {I ∈ [0, 1], 2− 3I ≤ X ≤ 2I + 2 }
= {I ≥ 0, 2− 3I ≤ X ≤ 2I + 2}

X ]3• = {I ≥ 0, 2− 3I ≤ X ≤ 2I + 2} ∩]
({X = 2, I = 0} ∪] {I ∈ [1, 10], 2− 3I ≤ X ≤ 2I + 2})

= {I ∈ [0, 10], 2− 3I ≤ X ≤ 2I + 2}
At � we find eventually: I = 10 ∧ X ∈ [−28, 22].
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Polyhedron domain

Other polyhedra widenings

Widening with thresholds:

Given a finite set T of constraints, we add to X ] O Y] all the
constraints from T satisfied by both X ] and Y].

Delayed widening:

We replace X ] O Y] with X ] ∪] Y] a finite number of times
(this works for any widening and abstract domain).

See also [Bagn03].

course 3, 2012–2013 Relational Numerical Abstract Domains Antoine Miné p. 41 / 82



Polyhedron domain

Strict inequalities

The polyhedron domain can be extended to allow strict
constraints: { ~V |M× ~V ≥ ~C and M′ × ~V > ~C ′ }

Idea:

A non-closed polyhedron on V is represented

as a closed polyhedron P on V′ def
= V ∪ {Vε}.

α1V1 + · · ·+ αnVn + 0Vε ≥ 0 represents α1V1 + · · ·+ αnVn≥0
α1V1 + · · ·+ αnVn − cVε ≥ 0, c > 0 represents α1V1 + · · ·+ αnVn>0

P represents the non necessarily closed polyhedron:

γε(P)
def
= {(V1, . . . , Vn) | ∃Vε > 0, (V1, . . . , Vn, Vε) ∈ γ(P)}.

Notes:

The minimal form needs some adaptation [Bagn02].

Chernikova’s algorithm, ∩], ∪], C]J c K , and C]J←−c K can be
easily reused.
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Polyhedron domain

Constraint-only polyhedron domain

It is possible to use only the constraint representation:

avoids the cost of Chernikova’s algorithm,

avoids exponential generator systems (hypercubes).

The core operations are: projection and redundancy removal.

Projection: using Fourier-Motzkin elimination

Fourier(X ], Vk) eliminates Vk from all the constraints in X ]:
Fourier(X ], Vk)

def
=

{ (
∑

i αiVi ≥ β) ∈ X ] | αk = 0 } ∪
{ (−α−k )c+ + α+

k c− | c+ = (
∑

i α
+
i Vi ≥ β+) ∈ X ], α+

k > 0,
c− = (

∑
i α
−
i Vi ≥ β−) ∈ X ], α−k < 0 }

we then have:

γ(Fourier(X ], Vk)) = { ~x [Vk 7→ v ] | v ∈ I, ~x ∈ γ(X ]) }.
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Polyhedron domain

Constraint-only polyhedron domain (cont.)

Fourier causes a quadratic growth in constraint number.
Most such constraints are redundant.

Redundancy removal: using linear programming [Schr86]

Let simplex(Y], ~v)
def
= min { ~v · ~y | ~y ∈ γ(Y]) }

If c = (~α · ~V ≥ β) ∈ X ] and β ≤ simplex(X ] \ {c}, ~α),
then c can be safely removed from X ].
(iterate over all constraints)

Note: running simplex many times can be become costly

use fast syntactic checks first,

check against the bounding-box first.
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Polyhedron domain

Constraint-only polyhedron domain (cont.)

Constraint-only abstract operators:

X ] ⊆] Y] def⇐⇒ ∀(~α · ~V ≥ β) ∈ Y], simplex(X ], ~α) ≥ β

X ] =] Y] def⇐⇒ X ] ⊆] Y] and Y] ⊆] X ]

X ] ∩] Y] def
= X ] ∪ Y] (join constraint sets)

C]J Vj :=]−∞,+∞[ KX ] def
= Fourier(X ], Vj)

For ∪], we introduce temporaries VXj , VYj , σX , σY :

X ] ∪] Y] def
=

Fourier( { (
∑

j αjV
X
j − βσX ≥ 0) | (

∑
j αjVj ≥ β) ∈ X ] } ∪

{ (
∑

j αjV
Y
j − βσY ≥ 0) | (

∑
j αjVj ≥ β) ∈ Y] } ∪

{ Vj = VXj + VYj | Vj ∈ V } ∪ { σX ≥ 0, σY ≥ 0, σX + σY = 1 },
{ VXj , V

Y
j | Vj ∈ V } ∪ { σX , σY } )

(see [Beno96])
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Polyhedron domain

Integer polyhedra

How can we deal with I = Z?

Issue: integer linear programming is difficult.

Example: satsfiability of conjunctions of linear constraints:

polynomial cost in Q,

NP-complete cost in Z.

Possible solutions:

Use some complete integer algorithms.
(e.g. Presburger arithmetics)
Costly, and we do not have any abstract domain structure.

Keep Q−polyhedra as representation, and change the

concretization into: γZ(X ]) def
= γ(X ]) ∩ Zn.

However, operators are no longer exact / optimal.
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Weakly relational domains

Weakly relational domains
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Weakly relational domains Zone domain

Zone domain
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Weakly relational domains Zone domain

The zone domain

Here, I ∈ {Z,Q,R}.

We look for invariants of the form:∧
Vi − Vj ≤ c or ± Vi ≤ c , c ∈ I

A subset of In bounded by such constraints is called a zone.

[Mine01a]
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Weakly relational domains Zone domain

Machine representation

A potential constraint has the form: Vj − Vi ≤ c .

Potential graph: directed, weighted graph G

nodes are labelled with variables in V,

we add an arc with weight c from Vi to Vj for each constraint
Vj − Vi ≤ c .

Difference Bound Matrix (DBM)

Adjacency matrix m of G:

m is square, with size n × n, and elements in I ∪ {+∞},
mij = c < +∞ denotes the constraint Vj − Vi ≤ c ,

mij = +∞ if there is no upper bound on Vj − Vi .

Concretization:

γ(m)
def
= { (v1, . . . , vn) ∈ In | ∀i , j , vj − vi ≤ mij }.
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Weakly relational domains Zone domain

Machine representation (cont.)

Unary constraints add a constant null variable V0.

m has size (n + 1)× (n + 1);

Vi ≤ c is denoted as Vi − V0 ≤ c , i.e., mi0 = c ;

Vi ≥ c is denoted as V0 − Vi ≤ −c , i.e., m0i = −c ;

γ is now: γ0(m)
def
= { (v1, . . . , vn) | (0, v1, . . . , vn) ∈ γ(m) }.

Example:

V0

V2

V1

V04

 3 ��
V1

−1

??

V2

−1ll

1
oo

V0 V1 V2

V0 +∞ 4 3
V1 −1 +∞ +∞
V2 −1 1 +∞
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Weakly relational domains Zone domain

The DBM lattice

D] contains all DBMs, plus ⊥].

≤ on I ∪ {+∞} is extended point-wisely.

If m,n 6= ⊥]:
m ⊆] n

def⇐⇒ ∀i , j , mij ≤ nij

m =] n
def⇐⇒ ∀i , j , mij = nij[

m ∩] n
]
ij

def
= min(mij , nij)[

m ∪] n
]
ij

def
= max(mij , nij)[

>]
]
ij

def
= +∞

(D],⊆],∪],∩],⊥],>]) is a lattice.

Remarks:

D] is complete if ≤ is (I = R or Z, but not Q),

m ⊆] n =⇒ γ0(m) ⊆ γ0(n), but not the converse,

m =] n =⇒ γ0(m) = γ0(n), but not the converse.
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Weakly relational domains Zone domain

Normal form, equality and inclusion testing

Issue: how can we compare γ0(m) and γ0(n)?

Idea: find a normal form by propagating/tightening constraints. V0 − V1 ≤ 3
V1 − V2 ≤ −1
V0 − V2 ≤ 4

 V0 − V1 ≤ 3
V1 − V2 ≤ −1
V0 − V2 ≤ 2

V1
3

��
V2

−1
??

4
// V0

=⇒

V1
3

��
V2

−1
??

2
// V0

(A) (B)

Definition: shortest-path closure m∗

m∗ij
def
= min

N
〈i = i1, . . . , iN = j〉

N−1∑
k=1

mik ik+1

Exists only when m has no cycle with strictly negative weight.
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Weakly relational domains Zone domain

Floyd–Warshall algorithm

Properties:

γ0(m) = ∅ ⇐⇒ G has a cycle with strictly negative weight.

if γ0(m) 6= ∅, the shortest-path graph m∗ is a normal form:
m∗ = min⊆] { n | γ0(m) = γ0(n) }

If γ0(m), γ0(n) 6= ∅, then
γ0(m) = γ0(n) ⇐⇒ m∗ =] n∗,
γ0(m) ⊆ γ0(n) ⇐⇒ m∗ ⊆] n.

Floyd–Warshall algorithm{
m0

ij
def
= mij

mk+1
ij

def
= min(mk

ij ,m
k
ik + mk

kj)

If γ0(m) 6= ∅, then m∗ = mn+1, (normal form)

γ0(m) = ∅ ⇐⇒ ∃i , mn+1
ii < 0, (emptiness testing)

mn+1 can be computed in O(n3) time.
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Weakly relational domains Zone domain

Abstract operators

Abstract union ∪]
γ0(m ∪] n) may not be the smallest zone containing
γ0(m) and γ0(n).

however, (m∗) ∪] (n∗) is optimal:
(m∗) ∪] (n∗) = min⊆] { o | γ0(o) ⊇ γ0(m) ∪ γ0(n) }

which implies
γ0((m∗) ∪] (n∗)) = min⊆ { γ0(o) | γ0(o) ⊇ γ0(m) ∪ γ0(n) }

(m∗) ∪] (n∗) is always closed.

Abstract intersection ∩]
∩] is always exact: γ0(m ∩] n) = γ0(m) ∩ γ0(n)

(m∗) ∩] (n∗) may not be closed.

Remark:
The set of closed matrices with ⊥], and the operations ⊆], ∪],
λm,n.(m ∩] n)∗ define a sub-lattice.
γ0 is injective in this sub-lattice.
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Weakly relational domains Zone domain

Abstract operators (cont.)

We can define:[
C]J Vj0 − Vi0 ≤ c Km

]
ij

def
=

{
min(mij , c) if (i , j) = (i0, j0),
mij otherwise.

C]J Vj0 − Vi0 = [a, b] Km
def
= (C]J Vj0 − Vi0 ≤ b K ◦ C]J Vi0 − Vj0 ≤ −a K )m[

C]J Vj0 :=]−∞,+∞[ Km
]
ij

def
=

{
+∞ if i = j0 or j = j0,
m∗ij otherwise.

(not optimal on non-closed arguments)

C]J Vj0 := Vi0 + [a, b] Km
def
=

(C]J Vj0 − Vi0 = [a, b] K ◦ C]J Vj0 :=]−∞,+∞[ K )m if i0 6= j0

[
C]J Vj0 := Vj0 + [a, b] Km

]
ij

def
=

 mij − a if i = j0 and j 6= j0
mij + b if i 6= j0 and j = j0
mij otherwise.

(i0 6= j0; Vi0 can be replaced with 0 by setting i0 = 0)

These transfer functions are exact.
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Weakly relational domains Zone domain

Abstract operators (cont.)

Backward assignment:

C]J
←−−−−−−−−−−−−
Vj0 :=]−∞,+∞[ K (m, r)

def
= m ∩] (C]J Vj0 :=]−∞,+∞[ K r)

C]J
←−−−−−−−−−−−
Vj0 := Vj0 + [a, b] K (m, r)

def
= m ∩] (C]J Vj0 := Vj0 + [−b,−a] K r)[

C]J
←−−−−−−−−−−−
Vj0 := Vi0 + [a, b] K (m, r)

]
ij

def
=

m ∩]


min(r∗ij , r

∗
j0j

+ b) if i = i0 and j 6= i0, j0
min(r∗ij , r

∗
ij0
− a) if j = i0 and i 6= i0, j0

+∞ if i = j0 or j = j0
r∗ij otherwise.
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Weakly relational domains Zone domain

Abstract operators (cont.)

Issue: given an arbitrary linear assignment Vj0 := a0 +
∑

k ak × Vk

there is no exact abstraction, in general;

the best abstraction α ◦ CJ c K ◦ γ is costly to compute.
(e.g. convert to a polyhedron and back, with exponential cost)

Possible solution:

Given a (more general) assignment e = [a0, b0] +
∑

k [ak , bk ]× Vk

we define an approximate operator as follows:

[
C]J Vj0 := e Km

]
ij

def
=


max(E]J e Km) if i = 0 and j = j0
−min(E]J e Km) if i = j0 and j = 0

max(E]J e − Vi Km) if i 6= 0, j0 and j = j0
−min(E]J e + Vj Km) if i = j0 and j 6= 0, j0

mij otherwise

where E]J e Km evaluates e using interval arithmetics with
Vk ∈ [−m∗k0,m

∗
0k ].

Quadratic total cost (plus the cost of closure).
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Weakly relational domains Zone domain

Abstract operators (cont.)

Example:
Argument 0 ≤ Y ≤ 10

0 ≤ Z ≤ 10
0 ≤ Y− Z ≤ 10

⇓ X := Y− Z −10 ≤ X ≤ 10
−20 ≤ X− Y ≤ 10
−20 ≤ X− Z ≤ 10

 −10 ≤ X ≤ 10
−10 ≤ X− Y ≤ 0
−10 ≤ X− Z ≤ 10

 0 ≤ X ≤ 10
−10 ≤ X− Y ≤ 0
−10 ≤ X− Z ≤ 10

Intervals Approximate Best
solution (polyhedra)

We have a good trade-off between cost and precision.

The same idea can be used for tests and backward assignments.
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Weakly relational domains Zone domain

Widening and narrowing

The zone domain has both strictly increasing and decreasing
infinite chains.

Widening O

[m O n]ij
def
=

{
mij if nij ≤ mij

+∞ otherwise
Unstable constraints are deleted.

Narrowing M

[m M n]ij
def
=

{
nij if mij = +∞
mij otherwise

Only +∞ bounds are refined.

Remarks:

We can construct widenings with thresholds.

O (resp. M) can be seen as a point-wise extension of an
interval widening (resp. narrowing).
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Weakly relational domains Zone domain

Interaction between closure and widening

Widening O and closure ∗ cannot always be mixed safely:

• mi+1
def
= mi O (n∗i ) OK

• mi+1
def
= (m∗i ) O ni wrong!

• mi+1
def
= (mi O ni )

∗ wrong
otherwise the sequence (mi ) may be infinite!

Example:

X:=0; Y:=[-1,1];

while • 1=1 do

R:=[-1,1];

if X=Y then Y:=X+R

else X:=Y+R fi

done

X ]2j• X ]2j+1
•

X ∈ [−2j , 2j ] X ∈ [−2j − 2, 2j + 2]
Y ∈ [−2j − 1, 2j + 1] Y ∈ [−2j − 1, 2j + 1]

X− Y ∈ [−1, 1] X− Y ∈ [−1, 1]

Applying the closure after the widening at • prevents convergence.
Without the closure, we would find in finite time X− Y ∈ [−1, 1].
Note: this situation also occurs in reduced products

(here, D] 'reduced product of n × n intervals, ∗ 'reduction)

course 3, 2012–2013 Relational Numerical Abstract Domains Antoine Miné p. 61 / 82



Weakly relational domains Octagon domain

Octagon domain
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Weakly relational domains Octagon domain

The octagon domain

Now, I ∈ {Q,R}.

We look for invariants of the form:
∧

±Vi ± Vj ≤ c , c ∈ I

A subset of In defined by such constraints is called an octagon.

It is a generalisation of zones (more symmetric).

[Mine01b]
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Weakly relational domains Octagon domain

Machine representation

Idea: use a variable change to get back to potential constraints.

Let V′ def
= {V′1, . . . , V′2n}.

the constraint: is encoded as:
Vi − Vj ≤ c (i 6= j) V′2i−1 − V′2j−1≤ c and V′2j − V′2i ≤ c
Vi + Vj ≤ c (i 6= j) V′2i−1 − V′2j ≤ c and V′2j−1 − V′2i ≤ c
−Vi − Vj ≤ c (i 6= j) V′2j − V′2i−1 ≤ c and V′2i − V′2j−1≤ c

Vi ≤ c V′2i−1 − V′2i ≤ 2c
Vi ≥ c V′2i − V′2i−1 ≤−2c

We use a matrix m of size (2n)× (2n) with elements in I ∪ {+∞}
and γ±(m)

def
= { (v1, . . . , vn) | (v1,−v1, . . . , vn,−vn) ∈ γ(m) }.

Note:
Two distinct m elements can represent the same constraint on V.

To avoid this, we impose that ∀i , j , mij = m̄ ı̄ where ı̄ = i ⊕ 1.
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Weakly relational domains Octagon domain

Machine representation (cont.)

Example:



V1 + V2 ≤ 3
V2 − V1 ≤ 3
V1 − V2 ≤ 3
−V1 − V2 ≤ −3
2V2 ≤ 2
−2V2 ≤ 8

V′1
3 //

3

��

V′2oo

3

��
8

uu
V′4

OO

3
//

2

55

V′2oo

OO

V2

V1

Lattice

Constructed by point-wise extension of ≤ on I ∪ {+∞}.
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Weakly relational domains Octagon domain

Algorithms

m∗ is not a normal form for γ±.

Idea use two local transformations instead of one:{
V′i − V′k ≤ c
V′k − V′j ≤ d

=⇒ V′i − V′j ≤ c + d

and {
V′i − V′ ı̄ ≤ c
V′ ̄ − V′j ≤ d

=⇒ V′i − V′j ≤ (c + d)/2

Modified Floyd–Warshall algorithm

m•
def
= S(m2n+1)

where:

(A)

{
m1 def

= m

[mk+1]ij
def
= min(nij , nik + nkj), 1 ≤ k ≤ 2n

(B) [S(n)]ij
def
= min(nij , (ni ı̄ + n̄j)/2)
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Weakly relational domains Octagon domain

Algorithms (cont.)

Applications

γ±(m) = ∅ ⇐⇒ ∃i , m•ii < 0,

if γ±(m) 6= ∅, m• is a normal form:
m• = min⊆] { n | γ±(n) = γ±(m) },

(m•) ∪] (n•) is the best abstraction for the set-union
γ±(m) ∪ γ±(n).

Widening and narrowing

The zone widening and narrowing can be used on octagons.

The widened iterates should not be closed.
(prevents convergence)

Abstract transfer functions are similar to the case
of the zone domain.
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Weakly relational domains Octagon domain

Analysis example

Rate limiter

Y:=0; while • 1=1 do

X:=[-128,128]; D:=[0,16];

S:=Y; Y:=X; R:=X-S;

if R<=-D then Y:=S-D fi;

if R>=D then Y:=S+D fi

done

X: input signal
Y: output signal
S: last output
R: delta Y-S

D: max. allowed for |R|

Analysis using:

the octagon domain,

an abstract operator for Vj0 := [a0, b0] +
∑

k [ak , bk ]× Vk
similar to the one we defined on zones,

a widening with thresholds T .

Result: we prove that |Y| is bounded by: min { t ∈ T | t ≥ 144 }.

Note: the polyhedron domain would find |Y| ≤ 128 and does not
require thresholds, but it is more costly.
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Weakly relational domains Octagon domain

Integer octagons

Recall that zones work equally well on Q, R and Z.

Issue:

The octagon domain we have presented is not complete on Z:

the algorithm for m• uses divisions by 2,

when replacing x 7→ x/2 with 7→ bx/2c, we get:
m• 6= min⊆] { o | γ±(o) = γ±(m) }.

Possible solutions:

Use m• with bx/2c instead of /2.
All computations remain sound on integers.
The best-precision results are no longer valid.

See [Bagn08] for a O(n3) time “tight closure” for integer
octagons.
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Summary
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Summary

Summary of numerical domains

domain non-relational linear polyhedra octagons
equalities

invariants V ∈ D]
b

∑
i αiVi = β

∑
i αiVi ≤ β ±Vi ± Vj ≤ c

memory O(n) O(n2) O(2n) O(n2)
cost

time O(n) O(n3) O(2n) O(n3)
cost
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Linearization

Linearization
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Linearization

Abstraction framework

Issue:

Most relational domains can only deal with linear expressions.
How can we abstract non-linear assignments such as X := Y× Z?

Idea: replace Y× Z with a sound linear approximation.

Framework:

We define an approximation preorder � on expressions:

R |= e1� e2
def⇐⇒ ∀ ρ ∈ R, EJ e1 K ρ⊆ EJ e2 K ρ.

Soundness properties if γ(X ]) |= e � e ′ then:

CJ V := e K γ(X ]) ⊆ γ(C]J V := e ′ KX ])
CJ e ./ 0 K γ(X ]) ⊆ γ(C]J e ′ ./ 0 KX ])

γ(X ]) ∩ (CJ←−−−V := e K γ(R])) ⊆ γ(C]J
←−−−−
V := e ′ K ](X ],R]))

=⇒ we can now use e ′ in the abstract instead of e.
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Linearization

Linearization

In practice, we put expressions into affine interval form:

exp` : [a0, b0] +
∑

k [ak , bk ]× Vk

Advantages:

affine expressions are easy to manipulate,

interval coefficients allow non-determinism in expressions,
hence, the opportunity for abstraction,

we can easily construct abstract transfer functions for affine
interval expressions.
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Linearization

Linearization (cont.)

Operations on affine interval forms

adding � and subtracting � two forms,

multiplying � and dividing � a form by an interval.

Noting ik the interval [ak , bk ] and using interval operations

+]
b, −]b, ×]b, /]b (e.g., [a, b] +]

b [c , d ] = [a + c , b + d ]):

(i0 +
∑

k ik ×Vk) � (i ′0 +
∑

k i ′k ×Vk)
def
= (i0+]

b i ′0) +
∑

k(ik+]
b i ′k)×Vk

i � (i0 +
∑

k ik × Vk)
def
= (i×]b i0) +

∑
k (i×]b ik)× Vk

. . .

Projection πk : D] → exp`

We suppose we are given an abstract interval projection operator
πk such that:

πk(X ]) = [a, b] such that [a, b] ⊇ { ρ(Vk) | ρ ∈ γ(X ]) }.
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Linearization (cont.)

Intervalization ι : (exp` ×D])→ exp`

Flattens the expression into a single interval:
ι(i0 +

∑
k(ik × Vk), X ]) def

= i0 +]
b

∑]
b, k (ik ×]b πk(X ])).

Linearization ` : (exp×D])→ exp`

Defined by induction on the syntax of expressions:

`(V,X ]) def
= [1, 1]× V,

`([a, b],X ]) def
= [a, b],

`(e1+e2,X ])
def
= `(e1,X ]) � `(e2,X ]),

`(e1−e2,X ])
def
= `(e1,X ]) � `(e2,X ]),

`(e1/e2,X ])
def
= `(e1,X ]) � ι(`(e2,X ]),X ]),

`(e1×e2,X ])
def
= can be

{
either ι(`(e1,X ]),X ]) � `(e2,X ]),
or ι(`(e2,X ]),X ]) � `(e1,X

]).
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Linearization

Linearization application

Property soundness of the linearization:

For any abstract domain D], any X ] ∈ D] and e ∈ exp, we have:
γ(X ]) |= e � `(e,X ])

Remarks:

` results in a loss of precision,

` is not monotonic for �.
(e.g., `(V/V, V 7→ [1,+∞]) = [0, 1]× V 6� 1)

Application to the octagon domain

Y:=[0,+∞];

T:=[-1,1];

X:=T×Y

T× Y is linearized as [−1, 1]× Y,

we can prove that |X| ≤ Y.
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Linearization

Linearization application (cont.)

Application to the interval domain

C]J V := `(e,X ]) KX ] is always more precise than C]J V := e KX ]

` simplifies symbolically variables occurring several times.

Example: X := 2× V− V, where V ∈ [a, b]:

using vanilla intervals:

E]J 2× V− V K (X ]) = 2×]b [a, b]−]b [a, b] = [2a− b, 2b − a],

after linearization `(2× V− V,X ]) = V, so
E]J `(2× V− V,X ]) KX ] = [a, b]

strictly more precise than [2a− b, 2b − a] when a 6= b.
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