Relational Numerical Abstract Domains

MPRI 2–6: Abstract Interpretation, application to verification and static analysis

Antoine Miné

CNRS, École normale supérieure

course 3, 2012-2013

- The need for relational domains
- Presentation of a few relational numerical abstract domains
 - linear equality domains
 - polyhedra domain
 - weakly relational domains: zones, octagons
- Handling non-linear expressions
- Bibliography

Shortcomings of non-relational domains

Shortcomings of non-relational domains

Accumulated loss of precision

Non-relation domains cannot represent variable relationships.

Rate limiter

- X: input signal
- Y: output signal
- S: last output
- R: delta Y-S
- D: max. allowed for |R|

Iterations in the interval domain (without widening):

$\mathcal{X}^{\sharp 0}_{ullet}$	$\mathcal{X}^{\sharp 1}_{ullet}$	$\mathcal{X}^{\sharp 2}_{ullet}$	 $\mathcal{X}^{\sharp n}_{ullet}$
$\mathbf{Y} = 0$	$ \mathtt{Y} \leq 144$	$ \mathtt{Y} \leq 160$	 $ Y \le 128 + 16n$

In fact, $Y \in [-128, 128]$ always holds.

To prove that, e.g. Y ≥ -128 , we must be able to:

- represent the properties R = X S and $R \leq -D$,
- combine them to deduce $S X \ge D$, and then $Y = S D \ge X$.

Shortcomings of non-relational domains

The need for relational loop invariants

To prove some invariant after the end of a loop, we often need to find a loop invariant of a more complex form.

```
relational loop invariant
X:=0; I:=1;
while ● I<5000 do
    if [0,1]=1 then X:=X+1 else X:=X-1 fi;
    I:=I+1
    done ◆</pre>
```

A non-relational analysis finds at \blacklozenge that I = 5000 and $X \in \mathbb{Z}$.

The best invariant is: (I = 5000) \land (X \in [-4999, 4999]) \land (X \equiv 0 [2]).

To find this non-relational invariant, we must find a relational loop invariant at •: $(-I < X < I) \land (X + I \equiv 1 \ [2]) \land (I \in [1, 5000])$, and apply the loop exit condition $C^{\sharp} \llbracket I \ge 5000 \rrbracket$.

Modular analysis

```
store the maximum of X,Y,O into Z
max(X,Y,Z)
Z :=X ;
if Y > Z then Z :=Y ;
if Z < O then Z :=O;</pre>
```

Modular analysis:

- analyze a procedure once (procedure summary)
- reuse the summary at each call site (instantiation) \implies improved efficiency

Modular analysis

```
store the maximum of X,Y,0 into Z'

\frac{max(X,Y,Z)}{X':=X; Y':=Y; Z':=Z;}
Z':=X';
if Y' > Z' then Z':=Y';
if Z' < 0 then Z':=0;
<math>(Z' \ge X \land Z' \ge Y \land Z' \ge 0 \land X' = X \land Y' = Y)
```

Modular analysis:

- analyze a procedure once (procedure summary)
- reuse the summary at each call site (instantiation)
 ⇒ improved efficiency
- infer a relation between input X,Y,Z and output X',Y',Z' values $\mathcal{P}((\mathbb{V} \to \mathbb{R}) \times (\mathbb{V} \to \mathbb{R})) \equiv \mathcal{P}((\mathbb{V} \times \mathbb{V}) \to \mathbb{R})$
- requires inferring relational information

[Anco10], [Jean09]

course 3, 2012-2013

Reminders

Syntax

.

Fixed finite set of variables V, with value in I, $I \in \{\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{M}, \mathbb{F}\}$

arithmetic expressions:

exp	::=	V	variable V $\in \mathbb{V}$
		-exp	negation
		$\texttt{exp} \diamond \texttt{exp}$	binary operation: $\diamond \in \{+, -, \times, /\}$
		[<i>c</i> , <i>c</i> ′]	constant range, $c,c'\in\mathbb{I}\cup\{\pm\infty\}$
			c is a shorthand for $[c, c]$

commands:

Reminders

Concrete semantics

Semantics of expressions: $\mathsf{E}[\![e]\!] : (\mathbb{V} \to \mathbb{I}) \to \mathcal{P}(\mathbb{I})$

$$\begin{split} & \mathbb{E}\llbracket \begin{bmatrix} [c,c'] \end{bmatrix} \rho & \stackrel{\text{def}}{=} & \{ x \in \mathbb{I} \mid c \leq x \leq c' \} \\ & \mathbb{E}\llbracket \mathbb{V} \rrbracket \rho & \stackrel{\text{def}}{=} & \{ \rho(\mathbb{V}) \} \\ & \mathbb{E}\llbracket -e \rrbracket \rho & \stackrel{\text{def}}{=} & \{ -v \mid v \in \mathbb{E}\llbracket e \rrbracket \rho \} \\ & \mathbb{E}\llbracket e_1 + e_2 \rrbracket \rho & \stackrel{\text{def}}{=} & \{ v_1 + v_2 \mid v_1 \in \mathbb{E}\llbracket e_1 \rrbracket \rho, v_2 \in \mathbb{E}\llbracket e_2 \rrbracket \rho \} \\ & \cdots \end{split}$$

 $\begin{array}{l} \hline \textbf{Forward commands:} & \mathbb{C}\llbracket c \rrbracket : \mathcal{P}(\mathbb{V} \to \mathbb{I}) \to \mathcal{P}(\mathbb{V} \to \mathbb{I}) \\ \mathbb{C}\llbracket \textbf{V} := e \rrbracket \mathcal{X} \quad \stackrel{\text{def}}{=} & \{ \rho \llbracket \textbf{V} \mapsto \textbf{v} \end{bmatrix} \mid \rho \in \mathcal{X}, \ \textbf{v} \in \mathbb{E}\llbracket e \rrbracket \rho \} \\ \mathbb{C}\llbracket e \bowtie \textbf{0} \rrbracket \mathcal{X} \quad \stackrel{\text{def}}{=} & \{ \rho \mid \rho \in \mathcal{X}, \ \exists \textbf{v} \in \mathbb{E}\llbracket e \rrbracket \rho, \ \textbf{v} \bowtie \textbf{0} \} \end{array}$

 $\begin{array}{l} \underline{\textbf{Backward commands:}} & \mathbb{C}\llbracket \overleftarrow{c} \rrbracket : \mathcal{P}(\mathbb{V} \to \mathbb{I}) \to \mathcal{P}(\mathbb{V} \to \mathbb{I}) \\ & \mathbb{C}\llbracket \overleftarrow{\forall :=e} \rrbracket \mathcal{X} \quad \stackrel{\text{def}}{=} \quad \{ \rho \mid \exists v \in \mathbb{E}\llbracket e \rrbracket \rho, \rho\llbracket v \mapsto v \end{bmatrix} \in \mathcal{X} \} \\ & \mathbb{C}\llbracket \overleftarrow{e} \boxtimes 0 \rrbracket \mathcal{X} \quad \stackrel{\text{def}}{=} \quad \mathbb{C}\llbracket e \boxtimes 0 \rrbracket \mathcal{X} \end{array}$

Reminders

Abstract domain

- Abstract elements:
 - \mathcal{D}^{\sharp} , a set of computer-representable elements
 - $\gamma: \mathcal{D}^{\sharp}
 ightarrow \mathcal{D}$ concretization
 - \subseteq^{\sharp} , an approximation order: $\mathcal{X}^{\sharp} \subseteq^{\sharp} \mathcal{Y}^{\sharp} \Longrightarrow \gamma(\mathcal{X}^{\sharp}) \subseteq \gamma(\mathcal{Y}^{\sharp})$
- Abstract operators:
 - $\mathsf{C}^{\sharp}\llbracket c \rrbracket$ such that $\mathsf{C}\llbracket c \rrbracket \gamma(\mathcal{X}^{\sharp}) \subseteq \gamma(\mathsf{C}^{\sharp}\llbracket c \rrbracket \mathcal{X}^{\sharp})$
 - \cup^{\sharp} such that $\gamma(\mathcal{X}^{\sharp}) \cup \gamma(\mathcal{Y}^{\sharp}) \subseteq \gamma(\mathcal{X}^{\sharp} \cup^{\sharp} \mathcal{Y}^{\sharp})$
 - \cap^{\sharp} such that $\gamma(\mathcal{X}^{\sharp}) \cap \gamma(\mathcal{Y}^{\sharp}) \subseteq \gamma(\mathcal{X}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp})$
 - \mathbf{C}^{\sharp} [[\overleftarrow{c}]] such that $\gamma(\mathcal{X}^{\sharp}) \cap \mathbf{C}$ [[\overleftarrow{c}]] $\gamma(\mathcal{R}^{\sharp}) \subseteq \gamma(\mathbf{C}^{\sharp}$ [[\overleftarrow{c}]] $(\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp}))$
- Fixpoint extrapolation:
 - $\nabla : (\mathcal{D}^{\sharp} \times \mathcal{D}^{\sharp}) \to \mathcal{D}^{\sharp}$ widening
 - $\Delta : (\mathcal{D}^{\sharp} \times \mathcal{D}^{\sharp}) \to \mathcal{D}^{\sharp}$ narrowing

Linear equality domains

The affine equality domain

Here $\mathbb{I} \in \{\mathbb{Q}, \mathbb{R}\}$.

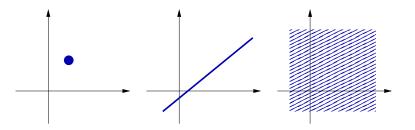
We look for invariants of the form:

 $\bigwedge_{j} \left(\sum_{i=1}^{n} \alpha_{ij} \mathbf{V}_{i} = \beta_{j} \right), \ \alpha_{ij}, \beta_{j} \in \mathbb{I}$

where all the α_{ij} and β_j are inferred automatically.

We use a domain of affine spaces proposed by [Karr76]:

 $\mathcal{D}^{\sharp} \stackrel{\text{\tiny def}}{=} \{ \text{ affine subspaces of } \mathbb{V} \to \mathbb{I} \}$



Affine equality representation

Machine representation: an affine subspace is represented as

- either the constant \perp^{\sharp} ,
- or a pair $\langle \mathbf{M}, \vec{C} \rangle$ where
 - $\mathbf{M} \in \mathbb{I}^{m imes n}$ is a m imes n matrix, $n = |\mathbb{V}|$ and $m \le n$,
 - $\vec{C} \in \mathbb{I}^m$ is a row-vector with *m* rows.
 - $\begin{array}{l} \langle \mathbf{M}, \vec{C} \rangle \text{ represents an equation system, with solutions:} \\ \gamma(\langle \mathbf{M}, \vec{C} \rangle) \stackrel{\text{def}}{=} \{ \ \vec{V} \in \mathbb{I}^n \mid \mathbf{M} \times \vec{V} = \vec{C} \ \} \end{array}$

M should be in row echelon form:

- $\forall i \leq m, \exists k_i \text{ such that } M_{ik_i} = 1$ and $\forall c < k_i, M_{ic} = 0, \forall l \neq i, M_{lk_i} = 0$,
- if i < i' then $k_i < k_{i'}$.

<u>Remarks:</u>

- the representation is unique,
- as $m \leq n = |\mathbb{V}|$, the memory cost is in $\mathcal{O}(n^2)$ at worst,
- \top^{\sharp} is represented as the empty equation system: m = 0.

Normalisation and emptiness testing

Let $\mathbf{M} \times \vec{V} = \vec{C}$ be a system, not necessarily in normal form. The Gaussian reduction tells in $\mathcal{O}(n^3)$ time:

- whether the system is satisfiable, and in that case
- gives an equivalent system in normal form.
- i.e. returns an element in $\mathcal{D}^{\sharp}.$

Example:

$$\begin{cases} 2X + Y + Z = 19 \\ 2X + Y - Z = 9 \\ & 3Z = 15 \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\$$

 Linear equality domains
 Affine equalities

 Normalisation and emptiness testing (cont.)

Gaussian reduction algorithm: $Gauss(\langle \mathbf{M}, \vec{C} \rangle)$

$$\begin{array}{ll} r{:=}0 & (rank \ r) \\ \text{for } c \ \text{from 1 to } n & (column \ c) \\ & \text{if } \exists \ell > r, \ M_{\ell c} \neq 0 & (pivot \ \ell) \\ & r := r + 1 \\ & \text{swap } \langle \vec{M}_{\ell}, C_{\ell} \rangle \ \text{and } \langle \vec{M}_r, C_r \rangle \\ & \text{divide } \langle \vec{M}_r, C_r \rangle \ \text{by } M_{rc} \\ & \text{for } j \ \text{from 1 to } n, \ j \neq r \\ & \text{replace } \langle \vec{M}_j, C_j \rangle \ \text{with } \langle \vec{M}_j, C_j \rangle - M_{jc} \langle \vec{M}_r, C_r \rangle \\ & \text{if } \exists \ell, \ \langle \vec{M}_{\ell}, C_{\ell} \rangle = \langle 0, \dots, 0, c \rangle, c \neq 0 \\ & \text{then return } unsatisfiable \\ & \text{remove all rows } \langle \vec{M}_{\ell}, C_{\ell} \rangle \ \text{that equal } \langle 0, \dots, 0, 0 \rangle \end{array}$$

Affine equality operators

Applications

If
$$\mathcal{X}^{\sharp}, \mathcal{Y}^{\sharp} \neq \bot^{\sharp}$$
, we define:
 $\mathcal{X}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text{def}}{=} Gauss \left(\left\langle \left[\begin{array}{c} \mathbf{M}_{\mathcal{X}^{\sharp}} \\ \mathbf{M}_{\mathcal{Y}^{\sharp}} \end{array} \right], \left[\begin{array}{c} \vec{c}_{\mathcal{X}^{\sharp}} \\ \vec{c}_{\mathcal{Y}^{\sharp}} \end{array} \right] \right\rangle \right)$
 $\mathcal{X}^{\sharp} = {}^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text{def}}{\Longrightarrow} \mathbf{M}_{\mathcal{X}^{\sharp}} = \mathbf{M}_{\mathcal{Y}^{\sharp}} \text{ and } \vec{c}_{\mathcal{X}^{\sharp}} = \vec{c}_{\mathcal{Y}^{\sharp}}$
 $\mathcal{X}^{\sharp} \subseteq^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text{def}}{\Longrightarrow} \mathcal{X}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp} = {}^{\sharp} \mathcal{X}^{\sharp}$
 $C^{\sharp} \left[\sum_{j} \alpha_{j} \mathbf{V}_{j} - \beta = 0 \right] \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} Gauss \left(\left\langle \left[\begin{array}{c} \mathbf{M}_{\mathcal{X}^{\sharp}} \\ \alpha_{1} \cdots \alpha_{n} \end{array} \right], \left[\begin{array}{c} \vec{c}_{\mathcal{X}^{\sharp}} \\ \beta \end{array} \right] \right\rangle \right)$
 $C^{\sharp} \left[e \bowtie 0 \right] \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} \mathcal{X}^{\sharp} \text{ for other tests}$

Remark:

$$\begin{array}{l} \subseteq^{\sharp}, =^{\sharp}, \cap^{\sharp}, =^{\sharp} \text{ and } \mathsf{C}^{\sharp} \llbracket \sum_{j} \alpha_{j} \mathsf{V}_{j} - \beta = \mathsf{0} \rrbracket \text{ are exact:} \\ \mathcal{X}^{\sharp} \subseteq^{\sharp} \mathcal{Y}^{\sharp} \iff \gamma(\mathcal{X}^{\sharp}) \subseteq \gamma(\mathcal{Y}^{\sharp}), \quad \gamma(\mathcal{X}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp}) = \gamma(\mathcal{X}^{\sharp}) \cap \gamma(\mathcal{Y}^{\sharp}), \ldots \end{array}$$

Generator representation

Generator representation

An affine subspace can also be represented as a set of vector generators $\vec{G}_1, \ldots, \vec{G}_m$ and an origin point \vec{O} , denoted as $[\mathbf{G}, \vec{O}]$. $\gamma([\mathbf{G}, \vec{O}]) \stackrel{\text{def}}{=} \{ \mathbf{G} \times \vec{\lambda} + \vec{O} \mid \vec{\lambda} \in \mathbb{I}^m \} \quad (\mathbf{G} \in \mathbb{I}^{n \times m}, \vec{O} \in \mathbb{I}^n)$

We can switch between a generator and a constraint representation:

From generators to constraints: (M, C) = Cons([G, O])
Write the system V = G × λ + O with variables V, λ.
Solve it in λ (by row operations).
Keep the constraints involving only V.

e.g.
$$\begin{cases} X = \lambda + 2 \\ Y = 2\lambda + \mu + 3 \\ Z = \mu \end{cases} \implies \begin{cases} X - 2 = \lambda \\ -2X + Y + 1 = \mu \\ 2X - Y + Z - 1 = 0 \end{cases}$$

The result is: 2X - Y + Z = 1.

Generator representation (cont.)

• From constraints to generators: $[\mathbf{G}, \vec{O}] \stackrel{\text{def}}{=} Gen(\langle \mathbf{M}, \vec{C} \rangle)$

Assume $\langle \mathbf{M}, \vec{C} \rangle$ is normalized. For each non-leading variable V, assign a distinct λ_{V} , solve leading variables in terms of non-leading ones.

e.g.
$$\begin{cases} X + 0.5Y = 7 \\ Z = 5 \end{cases} \implies \begin{bmatrix} -0.5 \\ 1 \\ 0 \end{bmatrix} \lambda_{Y} + \begin{bmatrix} 7 \\ 0 \\ 5 \end{bmatrix}$$

Affine equality operators (cont.)

Applications

Given
$$\mathcal{X}^{\sharp}, \mathcal{Y}^{\sharp} \neq \bot^{\sharp}$$
, we define:
 $\mathcal{X}^{\sharp} \cup^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text{def}}{=} Cons \left(Gauss \left(\left[\begin{bmatrix} \mathbf{G}_{\mathcal{X}^{\sharp}} & \mathbf{G}_{\mathcal{Y}^{\sharp}} & (\vec{O}_{\mathcal{Y}^{\sharp}} - \vec{O}_{\mathcal{X}^{\sharp}}) \end{bmatrix}, \vec{O}_{\mathcal{X}^{\sharp}} \end{bmatrix} \right) \right)$
 $C^{\sharp} \llbracket \mathbf{V}_{j} :=] - \infty, +\infty \llbracket \mathbb{I} \rrbracket \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} Cons \left(Gauss \left(\begin{bmatrix} \begin{bmatrix} \mathbf{G}_{\mathcal{X}^{\sharp}} & \vec{x}_{j} \end{bmatrix}, \vec{O}_{\mathcal{X}^{\sharp}} \end{bmatrix} \right) \right)$
 $C^{\sharp} \llbracket \mathbf{V}_{j} := \sum_{i} \alpha_{i} \mathbf{V}_{i} + \beta \rrbracket \mathcal{X}^{\sharp} \stackrel{\text{def}}{=}$
if $\alpha_{j} = 0, (C^{\sharp} \llbracket \sum_{i} \alpha_{i} \mathbf{V}_{i} - \mathbf{V}_{j} + \beta = 0 \rrbracket \circ C^{\sharp} \llbracket \mathbf{V}_{j} :=] - \infty, +\infty \llbracket \rrbracket) \mathcal{X}^{\sharp}$
if $\alpha_{j} \neq 0, \mathcal{X}^{\sharp}$ where \mathbf{V}_{j} is replaced with $(\mathbf{V}_{j} - \sum_{i \neq j} \alpha_{i} \mathbf{V}_{i} - \beta) / \alpha_{j}$
 $C^{\sharp} \llbracket \mathbf{V}_{j} := \mathbf{e} \rrbracket \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} C^{\sharp} \llbracket \mathbf{V}_{j} :=] - \infty, +\infty \llbracket \rrbracket \mathcal{X}^{\sharp}$ for other assignments

Remarks:

- \cup^{\sharp} is optimal, but not exact.
- $C^{\sharp}[\![V_j := \sum_i \alpha_i V_i + \beta]\!]$ and $C^{\sharp}[\![V_j :=] \infty, +\infty[\![]\!]$ are exact.

Affine equality operators (cont.)

Backward assignments:

$$C^{\sharp} \llbracket \overleftarrow{\mathsf{V}_{j}} :=] - \infty, +\infty \llbracket \rrbracket \left(\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp} \right) \stackrel{\text{def}}{=} \mathcal{X}^{\sharp} \cap^{\sharp} \left(C^{\sharp} \llbracket \mathsf{V}_{j} :=] - \infty, +\infty \llbracket \rrbracket \mathcal{R}^{\sharp} \right)$$

$$C^{\sharp} \llbracket \overleftarrow{\mathsf{V}_{j}} := \sum_{i} \alpha_{i} \mathsf{V}_{i} + \beta \rrbracket \left(\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp} \right) \stackrel{\text{def}}{=} \mathcal{X}^{\sharp} \cap^{\sharp} \left(\mathcal{R}^{\sharp} \text{ where } \mathsf{V}_{j} \text{ is replaced with } \left(\sum_{i} \alpha_{i} \mathsf{V}_{i} + \beta \right) \right)$$

$$\mathsf{C}^{\sharp}\llbracket\overleftarrow{\mathsf{V}_{j}:=e}\,\rrbracket\,(\mathcal{X}^{\sharp},\mathcal{R}^{\sharp})\stackrel{\mathrm{def}}{=}\mathsf{C}^{\sharp}\llbracket\overleftarrow{\mathsf{V}_{j}:=]-\infty,+\infty}[\,\rrbracket\,(\mathcal{X}^{\sharp},\mathcal{R}^{\sharp})$$

for other assignments

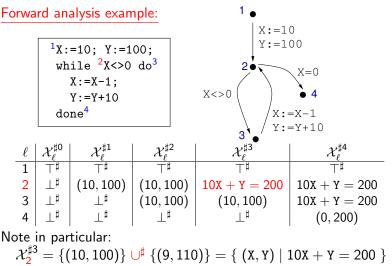
<u>Remarks:</u>

•
$$C^{\sharp} \llbracket \overleftarrow{\mathsf{V}_j} := \sum_i \alpha_i \mathsf{V}_i + \beta \rrbracket$$
 and $C^{\sharp} \llbracket \overleftarrow{\mathsf{V}_j} :=] - \infty, +\infty \llbracket \rrbracket$ are exact

• a backward assignment can be seen as a substitution wrt. constraints (similar to weakest preconditions [Dijk75])

Analysis example

No infinite increasing chain: we can iterate without widening.



Constraint-only equality domain

In fact [Karr76] does not use the generator representation. (rationale: few constraints but many generators in practice)

We need to redefine two operators: forgetting and union.

• $C^{\sharp}[V_j :=] - \infty, +\infty[]$

Pick the row $\langle \vec{M}_i, C_i \rangle$ such that $M_{ij} \neq 0$ and *i* maximal. Use it to eliminate all non-0 occurrences of V_j in **M**. Then remove the row $\langle \vec{M}_i, C_i \rangle$.

e.g. forgetting Z:
$$\begin{cases} X + Z = 10 \\ Y + Z = 7 \end{cases} \implies \begin{cases} X - Y = 3 \end{cases}$$

The operator is exact.

Linear equality domains

Constraint-only equality domain (cont.)

• $\langle \mathbf{M}, \vec{C} \rangle \cup^{\sharp} \langle \mathbf{N}, \vec{D} \rangle$

<u>Idea:</u> unify columns 1 to *n* in $\langle \mathbf{M}, \vec{C} \rangle$ and $\langle \mathbf{N}, \vec{D} \rangle$ using row operations.

e.g. unify columns ${}^{t}(\vec{0}\ 1\ \vec{0})$ and ${}^{t}(\vec{\beta}\ 0\ \vec{0})$. $\begin{pmatrix} \mathbf{R} \ \vec{0} \ \mathbf{M}_{1} \\ \vec{0} \ 1 \ \vec{M}_{2} \\ \mathbf{0} \ \vec{0} \ \mathbf{M}_{3} \end{pmatrix}, \begin{pmatrix} \mathbf{R} \ \vec{\beta} \ \mathbf{N}_{1} \\ \vec{0} \ 0 \ \vec{N}_{2} \\ \mathbf{0} \ \vec{0} \ \mathbf{N}_{3} \end{pmatrix} \Longrightarrow \begin{pmatrix} \mathbf{R} \ \vec{\beta} \ \mathbf{M}_{1}' \\ \vec{0} \ 0 \ \vec{0} \\ \mathbf{0} \ \vec{0} \ \mathbf{M}_{3} \end{pmatrix}, \begin{pmatrix} \mathbf{R} \ \vec{\beta} \ \mathbf{N}_{1} \\ \vec{0} \ 0 \ \vec{N}_{2} \\ \mathbf{0} \ \vec{0} \ \mathbf{N}_{3} \end{pmatrix}$

Use the row $(\vec{0} \ 1 \ \vec{M_2})$ to create β in the left argument. Then remove the row $(\vec{0} \ 1 \ \vec{M_2})$. The right argument is unchanged.

Unifying ${}^t(\vec{\alpha}\ 0\ \vec{0})$ and ${}^t(\vec{\beta}\ 0\ \vec{0})$ is a bit more complicated...

A note on integers

Suppose now that $\mathbb{I} = \mathbb{Z}$.

- \mathbb{Z} is not closed under affine operations: $(x/y) \times y \neq x$,
- $\bullet\,$ Gaussian reduction implemented in $\mathbb Z$ is unsound.

(e.g. unsound normalization $2X + Y = 19 \not\Longrightarrow X = 9$, by truncation)

One possible solution

- $\bullet\,$ keep a representation using matrices with coefficients in $\mathbb{Q},$
- keep all abstract operators as in \mathbb{Q} ,
- change the concretization into: γ_ℤ(𝑋[♯]) = γ(𝑋[♯]) ∩ ℤⁿ.

With respect to $\gamma_{\mathbb{Z}}$, the operators are no longer best / exact.

Example: where \mathcal{X}^{\sharp} is the equation Y = 2X• $\gamma_{\mathbb{Z}}(\mathcal{X}^{\sharp}) = \{ (X, Y) \mid X \in \mathbb{Z}, Y = 2X \}$ • $(C[[X :=0]] \circ \gamma_{\mathbb{Z}})\mathcal{X}^{\sharp} = \{ (X, Y) \mid X = 0, Y \text{ is even } \}$ • $(\gamma_{\mathbb{Z}} \circ C^{\sharp}[[X :=0]])\mathcal{X}^{\sharp} = \{ (X, Y) \mid X = 0, Y \in \mathbb{Z} \}$

The analysis forgets the "intergerness" of variables.

The congruence equality domain

Now, $\mathbb{I} = \mathbb{Z}$.

We look for invariants of the form:

$$\bigwedge_{j} \left(\sum_{i=1}^{n} m_{ij} \mathbb{V}_{i} \equiv c_{j} [k_{j}] \right).$$

Algorithms:

- there exists minimal forms (but not unique), computed using an extension of Euclide's algorithm,
- there is a dual representation: { $\mathbf{G} \times \vec{\lambda} + \vec{O} \mid \vec{\lambda} \in \mathbb{Z}^m$ }, and passage algorithms,
- see [Gran91].

Analysis example

Program example:

At •, we find:
$$(X \equiv 0 \ [4]) \land (Y \equiv 0 \ [4]) \land (X \equiv Y \ [8]).$$

Polyhedron domain

The polyhedron domain

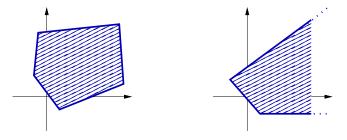
Here again, $\mathbb{I} \in \{\mathbb{Q}, \mathbb{R}\}$.

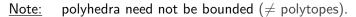
We look for invariants of the form:

$$\bigwedge_{j} \left(\sum_{i=1}^{n} \alpha_{ij} \mathbf{V}_{i} \geq \beta_{j} \right)$$

We use the polyhedron domain proposed by [Cous78]:

 $\mathcal{D}^{\sharp} \stackrel{\text{\tiny def}}{=} \{ \text{closed convex polyhedra of } \mathbb{V} \to \mathbb{I} \}$





Double description of polyhedra

Polyhedra have dual representations (Weyl–Minkowski Theorem). (see [Schr86])

Constraint representation

 $\begin{array}{l} \langle \mathbf{M}, \vec{C} \rangle \text{ with } \mathbf{M} \in \mathbb{I}^{m \times n} \text{ and } \vec{C} \in \mathbb{I}^m \\ \text{represents:} \quad \gamma(\langle \mathbf{M}, \vec{C} \rangle) \stackrel{\text{def}}{=} \{ \vec{V} \mid \mathbf{M} \times \vec{V} \geq \vec{C} \} \end{array}$

We will also often use a constraint set notation $\{\sum_{i} \alpha_{ij} \mathbf{V}_{i} \geq \beta_{j}\}.$

Generator representation

 $[\mathbf{P}, \mathbf{R}]$ where

- $\mathbf{P} \in \mathbb{I}^{n \times p}$ is a set of p points: $\vec{P}_1, \dots, \vec{P}_p$
- $\mathbf{R} \in \mathbb{I}^{n imes r}$ is a set of r rays: $ec{R}_1, \ldots, ec{R}_r$

 $\gamma([\mathbf{P},\mathbf{R}]) \stackrel{\text{def}}{=} \left\{ \left(\sum_{j=1}^{p} \alpha_j \vec{P}_j \right) + \left(\sum_{j=1}^{r} \beta_j \vec{R}_j \right) \mid \forall j, \alpha_j \ge 0, \ \sum_{j=1}^{p} \alpha_j = 1, \ \forall j, \beta_j \right\}$

Origin of duality

 $\underline{\text{Dual}} \quad A^* \stackrel{\text{def}}{=} \{ \vec{x} \in \mathbb{I}^n \mid \forall \vec{a} \in A, \ \vec{a} \cdot \vec{x} \le 0 \}$

• $\{ec{a}\}^*$ and $\{\lambdaec{r}\,|\,\lambda\geq 0\}^*$ are half-spaces,

•
$$(A \cup B)^* = A^* \cap B^*$$
,

• if A is convex, closed, and $\vec{0} \in A$, then $A^{**} = A$.

Duality on polyhedral cones:

Cone:
$$C = \{ \vec{V} \mid \mathbf{M} \times \vec{V} \ge \vec{0} \}$$
 or $C = \{ \sum_{j=1}^{r} \beta_j \vec{R}_j \mid \forall j, \beta_j \ge 0 \}$
• $C^{**} = C$,

- C^* is also a polyhedral cone,
- a ray of C corresponds to a constraint of C^* ,
- a constraint of C corresponds to a ray of C^* .

extended to polyhedra by homogenisation to polyhedral codes:

Polyhedra representation (cont.)

Minimal representations

- A constraint system is minimal if no constraint can be omitted without changing the concretization.
- A generator system is minimal if no generator can be omitted without changing the concretization.

<u>Remarks:</u>

- most operators are easier on one representation;
- minimal representations are not unique;
- there is no memory bound on the representations (even minimal ones);
- equality constraints, as well as lines (pairs of opposed rays) may be handled separately and more efficiently.

Chernikova's algorithm

Switch from a constraint system to an equivalent generator system. Algorithm introduced by [Cher68].

Notes:

- By duality, we can use the same algorithm to switch from generators to constraints.
- The minimal generator system can be exponential in the original constraint system.

(e.g. a n-dimensional hyper-cube has 2n constraints and 2^n vertices)

Algorithm:incrementally add constraints one by oneStart with: $\begin{cases} \mathbf{P}_0 = \{ (0, \dots, 0) \} & (\text{origin}) \\ \mathbf{R}_0 = \{ \vec{x}_i, \ -\vec{x}_i \mid 1 \le i \le n \} & (\text{axes}) \end{cases}$

Chernikova's algorithm (cont.)

Update $[\mathbf{P}_{k-1}, \mathbf{R}_{k-1}]$ to $[\mathbf{P}_k, \mathbf{R}_k]$ by adding one constraint $\vec{M}_k \cdot \vec{V} \ge C_k \in \langle \mathbf{M}, \vec{C} \rangle$: start with $\mathbf{P}_k = \mathbf{R}_k = \emptyset$.

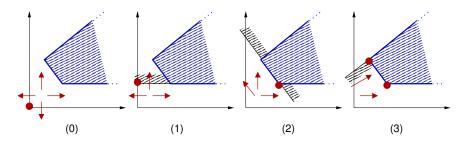
• for any $\vec{P} \in \mathbf{P}_{k-1}$ s.t. $\vec{M}_k \cdot \vec{P} \ge C_k$, add \vec{P} to \mathbf{P}_k ;

- for any $\vec{R} \in \mathbf{R}_{k-1}$ s.t. $\vec{M}_k \cdot \vec{R} \ge 0$, add \vec{R} to \mathbf{R}_k ;
- for any $\vec{P}, \vec{Q} \in \mathbf{P}_{k-1}$ s.t. $\vec{M}_k \cdot \vec{P} > C_k$ and $\vec{M}_k \cdot \vec{Q} < C_k$, add to \mathbf{P}_k : $\frac{C_k - \vec{M}_k \cdot \vec{Q}}{\vec{M}_k \cdot \vec{P} - \vec{M}_k \cdot \vec{Q}} \vec{P} - \frac{C_k - \vec{M}_k \cdot \vec{P}}{\vec{M}_k \cdot \vec{P} - \vec{M}_k \cdot \vec{Q}} \vec{Q}$
- for any $\vec{P} \in \mathbf{P}_{k-1}$, $\vec{R} \in \mathbf{R}_{k-1}$ s.t. either $\vec{M}_k \cdot \vec{P} > C_k$ and $\vec{M}_k \cdot \vec{R} < 0$, or $\vec{M}_k \cdot \vec{P} < C_k$ and $\vec{M}_k \cdot \vec{R} > 0$, add to \mathbf{P}_k : $\vec{P} + \frac{C_k - \vec{M}_k \cdot \vec{P}}{\vec{M}_k \cdot \vec{R}} \vec{R}$
- for any $\vec{R}, \vec{S} \in \mathbf{R}_{k-1}$ s.t. $\vec{M}_k \cdot \vec{R} > 0$ and $\vec{M}_k \cdot \vec{S} < 0$, add to \mathbf{R}_k : $(\vec{M}_k \cdot \vec{S})\vec{R} (\vec{M}_k \cdot \vec{R})\vec{S}$

Polyhedron domain

Chernikova's algorithm (example)

Example:



 $\begin{array}{ll} \textbf{P}_0 = \{(0,0)\} & \textbf{R}_0 = \{(1,0); \ (-1,0); \ (0,1); \ (0,-1)\} \\ \textbf{Y} \geq 1 & \textbf{P}_1 = \{(0,1)\} & \textbf{R}_1 = \{(1,0); \ (-1,0); \ (0,1)\} \\ \textbf{X} + \textbf{Y} \geq 3 & \textbf{P}_2 = \{(2,1)\} & \textbf{R}_2 = \{(1,0); \ (-1,1); \ (0,1)\} \\ \textbf{X} - \textbf{Y} \leq 1 & \textbf{P}_3 = \{(2,1); \ (1,2)\} & \textbf{R}_3 = \{(0,1); \ (1,1)\} \end{array}$

Redudancy removal

<u>Goal</u>: only introduce non-redundant points and rays during Chernikova's algorithm.

 $\begin{array}{ll} \underline{\text{Definitions}} & (\text{for rays in polyhedral cones}) \\ \hline \text{Given } \mathcal{C} = \{ \vec{V} \mid \mathbf{M} \times \vec{V} \geq \vec{0} \} = \{ \mathbf{R} \times \vec{\beta} \mid \vec{\beta} \geq \vec{0} \}. \\ \hline \vec{R} \text{ saturates } \vec{M}_k \cdot \vec{V} \geq 0 & \stackrel{\text{def}}{\longleftrightarrow} & \vec{M}_k \cdot \vec{R} = 0. \\ \hline \mathcal{S}(\vec{R}, \mathcal{C}) \stackrel{\text{def}}{=} \{ k \mid \vec{M}_k \cdot \vec{R} = 0 \}. \end{array}$

Theorem:

assume *C* has no line $(\not\exists \vec{L} \neq \vec{0} \text{ s.t. } \forall \alpha, \alpha \vec{L} \in C)$ \vec{R} is non-redundant wrt. $\mathbf{R} \iff \not\exists \vec{R}_i \in \mathbf{R}, S(\vec{R}, C) \subseteq S(\vec{R}_i, C)$

- S(R_i, C), R_i ∈ R is maintained during Chernikova's algorithm in a saturation matrix,
- extension possible to polyhedra and lines,
- various improvements exist [LeVe92].

Operators on polyhedra

Given $\mathcal{X}^{\sharp}, \mathcal{Y}^{\sharp} \neq \perp^{\sharp}$, we define: $\mathcal{X}^{\sharp} \subseteq^{\sharp} \mathcal{Y}^{\sharp} \iff \begin{cases} \forall \vec{P} \in \mathbf{P}_{\mathcal{X}^{\sharp}}, \ \mathbf{M}_{\mathcal{Y}^{\sharp}} \times \vec{P} \geq \vec{C}_{\mathcal{Y}^{\sharp}} \\ \forall \vec{R} \in \mathbf{R}_{\mathcal{X}^{\sharp}}, \ \mathbf{M}_{\mathcal{Y}^{\sharp}} \times \vec{R} \geq \vec{0} \end{cases}$ $\mathcal{X}^{\sharp} =^{\sharp} \mathcal{Y}^{\sharp} \iff \mathcal{X}^{\sharp} \subseteq^{\sharp} \mathcal{Y}^{\sharp} \text{ and } \mathcal{Y}^{\sharp} \subseteq^{\sharp} \mathcal{X}^{\sharp}$ $\mathcal{X}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text{def}}{=} \left\langle \left[\begin{array}{c} \mathbf{M}_{\mathcal{X}^{\sharp}} \\ \mathbf{M}_{\mathcal{Y}^{\sharp}} \end{array} \right], \left[\begin{array}{c} \vec{C}_{\mathcal{X}^{\sharp}} \\ \vec{C}_{\mathcal{Y}^{\sharp}} \end{array} \right] \right\rangle \quad \text{(join constraint sets)}$ $\mathcal{X}^{\sharp} \cup^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text{def}}{=} \left[\left[\mathbf{P}_{\mathcal{X}^{\sharp}} \mathbf{P}_{\mathcal{Y}^{\sharp}} \right], \left[\mathbf{R}_{\mathcal{X}^{\sharp}} \mathbf{R}_{\mathcal{Y}^{\sharp}} \right] \right] \quad \text{(join generator sets)}$

<u>Remarks:</u>

- \subseteq^{\sharp} , $=^{\sharp}$ and \cap^{\sharp} are exact.
- \cup^{\sharp} is optimal: we get the topological closure of the convex hull of $\gamma(\mathcal{X}^{\sharp}) \cup \gamma(\mathcal{Y}^{\sharp})$.

Operators on polyhedra (cont.)

$$\begin{split} \mathsf{C}^{\sharp} \llbracket \sum_{i} \alpha_{i} \mathsf{V}_{i} + \beta \geq 0 \rrbracket \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} \left\langle \begin{bmatrix} \mathsf{M}_{\mathcal{X}^{\sharp}} \\ \alpha_{1} \cdots \alpha_{n} \end{bmatrix}, \begin{bmatrix} \vec{\mathcal{C}}_{\mathcal{X}^{\sharp}} \\ -\beta \end{bmatrix} \right\rangle \\ \mathsf{C}^{\sharp} \llbracket \sum_{i} \alpha_{i} \mathsf{V}_{i} + \beta = 0 \rrbracket \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} \\ \left(\mathsf{C}^{\sharp} \llbracket \sum_{i} \alpha_{i} \mathsf{V}_{i} + \beta \geq 0 \rrbracket \circ \mathsf{C}^{\sharp} \llbracket \sum_{i} (-\alpha_{i}) \mathsf{V}_{i} - \beta \geq 0 \rrbracket \right) \mathcal{X}^{\sharp} \\ \mathsf{C}^{\sharp} \llbracket \mathsf{V}_{j} :=] - \infty, + \infty \llbracket \rrbracket \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} \llbracket \mathsf{P}_{\mathcal{X}^{\sharp}}, \llbracket \mathsf{R}_{\mathcal{X}^{\sharp}} \quad \vec{x}_{j} \ (-\vec{x}_{j}) \rrbracket \rrbracket \end{split}$$
$$\begin{aligned} \mathsf{C}^{\sharp} \llbracket \mathsf{V}_{j} := \sum_{i} \alpha_{i} \mathsf{V}_{i} + \beta \rrbracket \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} \llbracket \mathsf{P}_{\mathcal{X}^{\sharp}}, \llbracket \mathsf{R}_{\mathcal{X}^{\sharp}} \quad \vec{x}_{j} \ (-\vec{x}_{j}) \rrbracket \rrbracket \end{aligned}$$
$$\begin{aligned} \mathsf{C}^{\sharp} \llbracket \mathsf{V}_{j} := \sum_{i} \alpha_{i} \mathsf{V}_{i} + \beta \rrbracket \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} \\ \text{if } \alpha_{j} = 0, (\mathsf{C}^{\sharp} \llbracket \sum_{i} \alpha_{i} \mathsf{V}_{i} - \mathsf{V}_{j} + \beta = 0 \rrbracket \circ \mathsf{C}^{\sharp} \llbracket \mathsf{V}_{j} :=] - \infty, + \infty \llbracket \rrbracket) \mathcal{X}^{\sharp} \\ \text{if } \alpha_{j} \neq 0, \langle \mathsf{M}, \vec{\mathcal{C}} \rangle \text{ where } \mathsf{V}_{j} \text{ is replaced with } \frac{1}{\alpha_{i}} (\mathsf{V}_{j} - \sum_{i \neq j} \alpha_{i} \mathsf{V}_{i} - \beta) \end{aligned}$$

Remarks:

•
$$C^{\sharp}[\![\sum_{i} \alpha_{i} V_{i} + \beta \ge 0]\!]$$
, $C^{\sharp}[\![V_{j} := \sum_{i} \alpha_{i} V_{i} + \beta]\!] \mathcal{X}$ and $C^{\sharp}[\![V_{j} :=] - \infty, +\infty[\!]\!]$ are exact.

• We can also define $C^{\sharp}[\![V_j := \sum_i \alpha_i V_i + \beta]\!]$ on a generator system.

Polyhedron domain

Operators on polyhedra (cont.)

Backward assignments:

$$C^{\sharp}\llbracket\overleftarrow{\mathsf{V}_{j}}:=]-\infty,+\infty\llbracket\rrbracket\left(\mathcal{X}^{\sharp},\mathcal{R}^{\sharp}\right) \stackrel{\text{def}}{=} \mathcal{X}^{\sharp}\cap^{\sharp}\left(C^{\sharp}\llbracket\mathsf{V}_{j}:=]-\infty,+\infty\llbracket\rrbracket\mathcal{R}^{\sharp}\right)$$

$$C^{\sharp}\llbracket\overleftarrow{\mathsf{V}_{j}}:=\sum_{i}\alpha_{i}\mathsf{V}_{i}+\beta\rrbracket\left(\mathcal{X}^{\sharp},\mathcal{R}^{\sharp}\right) \stackrel{\text{def}}{=} \mathcal{X}^{\sharp}\cap^{\sharp}\left(\mathcal{R}^{\sharp} \text{ where } \mathsf{V}_{j} \text{ is replaced with } \left(\sum_{i}\alpha_{i}\mathsf{V}_{i}+\beta\right)\right)$$

$$C^{\sharp}\llbracket\overleftarrow{\mathsf{V}_{j}}:=e\rrbracket\left(\mathcal{X}^{\sharp},\mathcal{R}^{\sharp}\right) \stackrel{\text{def}}{=} C^{\sharp}\llbracket\overleftarrow{\mathsf{V}_{j}}:=]-\infty,+\infty\llbracket\rrbracket\left(\mathcal{X}^{\sharp},\mathcal{R}^{\sharp}\right)$$
for other assignments

Note: identical to the case of linear equalities.

Polyhedra widening

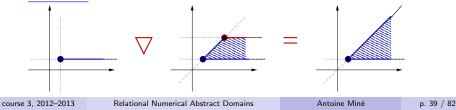
 \mathcal{D}^{\sharp} has strictly increasing infinite chains \Longrightarrow we need a widening. **Definition:**

Take \mathcal{X}^{\sharp} and \mathcal{Y}^{\sharp} in minimal constraint-set form.

$$\begin{array}{lll} \mathcal{X}^{\sharp} \triangledown \mathcal{Y}^{\sharp} & \stackrel{\mathrm{def}}{=} & \{ \ c \in \mathcal{X}^{\sharp} \mid \mathcal{Y}^{\sharp} \subseteq^{\sharp} \{c\} \ \} \\ & \cup & \{ \ c \in \mathcal{Y}^{\sharp} \mid \exists c' \in \mathcal{X}^{\sharp}, \ \mathcal{X}^{\sharp} =^{\sharp} (\mathcal{X}^{\sharp} \setminus c') \cup \{c\} \ \}. \end{array}$$

We suppress any unstable constraint $c \in \mathcal{X}^{\sharp}$, i.e., $\mathcal{Y}^{\sharp} \not\subseteq^{\sharp} \{c\}$. However, we keep constraints $c \in \mathcal{Y}^{\sharp}$ equivalent to those in \mathcal{X}^{\sharp} , i.e., when $\exists c' \in \mathcal{X}^{\sharp}, \ \mathcal{X}^{\sharp} =^{\sharp} (\mathcal{X}^{\sharp} \setminus c') \cup \{c\}$.

Example:



Example analysis

Example program

```
X:=2; I:=0;
while ● I<10 do
if [0,1]=0 then X:=X+2 else X:=X-3 fi;
I:=I+1
done◆
```

We use a finite number (one) of intersections \cap^{\sharp} as narrowing. Iterations with widening and narrowing at \bullet give:

Other polyhedra widenings

Widening with thresholds:

Given a finite set T of constraints, we add to $\mathcal{X}^{\sharp} \bigtriangledown \mathcal{Y}^{\sharp}$ all the constraints from T satisfied by both \mathcal{X}^{\sharp} and \mathcal{Y}^{\sharp} .

Delayed widening:

We replace $\mathcal{X}^{\sharp} \bigtriangledown \mathcal{Y}^{\sharp}$ with $\mathcal{X}^{\sharp} \cup^{\sharp} \mathcal{Y}^{\sharp}$ a finite number of times (this works for any widening and abstract domain).

See also [Bagn03].

Strict inequalities

The polyhedron domain can be extended to allow strict constraints: $\{ \vec{V} \mid \mathbf{M} \times \vec{V} \ge \vec{C} \text{ and } \mathbf{M}' \times \vec{V} > \vec{C'} \}$

Idea:

A non-closed polyhedron on \mathbb{V} is represented

as a closed polyhedron P on $\mathbb{V}' \stackrel{\text{def}}{=} \mathbb{V} \cup {\mathbb{V}_{\epsilon}}.$

 $\begin{array}{ll} \alpha_1 \mathbb{V}_1 + \cdots + \alpha_n \mathbb{V}_n + \mathbf{0} \mathbb{V}_{\epsilon} \geq 0 & \text{represents} & \alpha_1 \mathbb{V}_1 + \cdots + \alpha_n \mathbb{V}_n \geq 0 \\ \alpha_1 \mathbb{V}_1 + \cdots + \alpha_n \mathbb{V}_n - \mathbf{c} \mathbb{V}_{\epsilon} \geq 0, \ c > 0 & \text{represents} & \alpha_1 \mathbb{V}_1 + \cdots + \alpha_n \mathbb{V}_n > 0 \end{array}$

 $\begin{array}{l} P \text{ represents the non necessarily closed polyhedron:} \\ \gamma_{\epsilon}(P) \stackrel{\text{\tiny def}}{=} \{(\mathtt{V}_1,\ldots,\mathtt{V}_n) \mid \exists \mathtt{V}_{\epsilon} > \mathtt{0}, \ (\mathtt{V}_1,\ldots,\mathtt{V}_n,\mathtt{V}_{\epsilon}) \in \gamma(P)\}. \end{array}$

Notes:

- The minimal form needs some adaptation [Bagn02].
- Chernikova's algorithm, ∩[♯], ∪[♯], C[♯][[c]], and C[♯][[c]] can be easily reused.

Constraint-only polyhedron domain

It is possible to use only the constraint representation:

- avoids the cost of Chernikova's algorithm,
- avoids exponential generator systems (hypercubes).

The core operations are: projection and redundancy removal.

Projection: using Fourier-Motzkin elimination

Fourier($\mathcal{X}^{\sharp}, \mathbb{V}_k$) eliminates \mathbb{V}_k from all the constraints in \mathcal{X}^{\sharp} :

$$\begin{aligned} & \textit{Fourier}(\mathcal{X}^{\sharp}, \mathbb{V}_k) \stackrel{\text{def}}{=} \\ & \{ \left(\sum_i \alpha_i \mathbb{V}_i \geq \beta \right) \in \mathcal{X}^{\sharp} \mid \alpha_k = 0 \} \cup \\ & \{ \left(-\alpha_k^- \right) c^+ + \alpha_k^+ c^- \mid c^+ = \left(\sum_i \alpha_i^+ \mathbb{V}_i \geq \beta^+ \right) \in \mathcal{X}^{\sharp}, \ \alpha_k^+ > 0, \\ & c^- = \left(\sum_i \alpha_i^- \mathbb{V}_i \geq \beta^- \right) \in \mathcal{X}^{\sharp}, \ \alpha_k^- < 0 \} \end{aligned}$$

we then have:

$$\gamma(\textit{Fourier}(\mathcal{X}^{\sharp}, \mathbb{V}_k)) = \{ \ \vec{x}[\mathbb{V}_k \mapsto v] \mid v \in \mathbb{I}, \ \vec{x} \in \gamma(\mathcal{X}^{\sharp}) \}.$$

Constraint-only polyhedron domain (cont.)

Fourier causes a quadratic growth in constraint number. Most such constraints are redundant.

Redundancy removal: using linear programming [Schr86] Let $simplex(\mathcal{Y}^{\sharp}, \vec{v}) \stackrel{\text{def}}{=} \min \{ \vec{v} \cdot \vec{y} \mid \vec{y} \in \gamma(\mathcal{Y}^{\sharp}) \}$ If $c = (\vec{\alpha} \cdot \vec{v} \ge \beta) \in \mathcal{X}^{\sharp}$ and $\beta \le simplex(\mathcal{X}^{\sharp} \setminus \{c\}, \vec{\alpha})$, then c can be safely removed from \mathcal{X}^{\sharp} . (iterate over all constraints)

<u>Note:</u> running *simplex* many times can be become costly

- use fast syntactic checks first,
- check against the bounding-box first.

Polyhedron domain

Constraint-only polyhedron domain (cont.)

Constraint-only abstract operators:

$$\mathcal{X}^{\sharp} \subseteq^{\sharp} \mathcal{Y}^{\sharp} \iff \forall (\vec{\alpha} \cdot \vec{\mathsf{V}} \geq \beta) \in \mathcal{Y}^{\sharp}, \ \textit{simplex}(\mathcal{X}^{\sharp}, \vec{\alpha}) \geq \beta$$

$$\mathcal{X}^{\sharp} \stackrel{=}{=} \mathcal{Y}^{\sharp} \stackrel{\mathrm{def}}{\iff} \mathcal{X}^{\sharp} \stackrel{\subseteq}{=} \mathcal{Y}^{\sharp} \text{ and } \mathcal{Y}^{\sharp} \stackrel{\subseteq}{=} \mathcal{X}^{\sharp}$$

 $\mathcal{X}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text{def}}{=} \mathcal{X}^{\sharp} \cup \mathcal{Y}^{\sharp} \quad (\text{join constraint sets})$

$$\mathsf{C}^{\sharp}\llbracket \mathtt{V}_{j} :=] - \infty, + \infty \llbracket \mathbb{I} \hspace{0.1cm} \mathcal{X}^{\sharp} \hspace{0.1cm} \stackrel{\mathrm{def}}{=} \hspace{0.1cm} \textit{Fourier}(\mathcal{X}^{\sharp}, \mathtt{V}_{j})$$

$$\begin{split} & \text{For } \cup^{\sharp}, \, \text{we introduce temporaries } \mathbb{V}_{j}^{\mathcal{X}}, \, \mathbb{V}_{j}^{\mathcal{Y}}, \, \sigma^{\mathcal{X}}, \, \sigma^{\mathcal{Y}} \text{:} \\ & \mathcal{X}^{\sharp} \cup^{\sharp} \, \mathcal{Y}^{\sharp} \stackrel{\text{def}}{=} \\ & \textit{Fourier}(\ \left\{ \left(\sum_{j} \alpha_{j} \mathbb{V}_{j}^{\mathcal{X}} - \beta \sigma^{\mathcal{X}} \geq 0 \right) \mid \left(\sum_{j} \alpha_{j} \mathbb{V}_{j} \geq \beta \right) \in \mathcal{X}^{\sharp} \right\} \quad \cup \\ & \left\{ \left(\sum_{j} \alpha_{j} \mathbb{V}_{j}^{\mathcal{Y}} - \beta \sigma^{\mathcal{Y}} \geq 0 \right) \mid \left(\sum_{j} \alpha_{j} \mathbb{V}_{j} \geq \beta \right) \in \mathcal{Y}^{\sharp} \right\} \quad \cup \\ & \left\{ \mathbb{V}_{j} = \mathbb{V}_{j}^{\mathcal{X}} + \mathbb{V}_{j}^{\mathcal{Y}} \mid \mathbb{V}_{j} \in \mathbb{V} \right\} \cup \left\{ \sigma^{\mathcal{X}} \geq 0, \, \sigma^{\mathcal{Y}} \geq 0, \, \sigma^{\mathcal{X}} + \sigma^{\mathcal{Y}} = 1 \right\}, \\ & \left\{ \mathbb{V}_{j}^{\mathcal{X}}, \mathbb{V}_{j}^{\mathcal{Y}} \mid \mathbb{V}_{j} \in \mathbb{V} \right\} \cup \left\{ \sigma^{\mathcal{X}}, \sigma^{\mathcal{Y}} \right\}) \end{split}$$

(see [Beno96])

Integer polyhedra

How can we deal with $\mathbb{I} = \mathbb{Z}$?

<u>Issue:</u> integer linear programming is difficult.

Example: satsfiability of conjunctions of linear constraints:

- polynomial cost in Q,
- NP-complete cost in \mathbb{Z} .

Possible solutions:

- Use some complete integer algorithms. (e.g. Presburger arithmetics)
 Costly, and we do not have any abstract domain structure.
- Keep Q−polyhedra as representation, and change the concretization into: γ_Z(X[♯]) ^{def} = γ(X[♯]) ∩ Zⁿ. However, operators are no longer exact / optimal.

Weakly relational domains

Zone domain

Zone domain

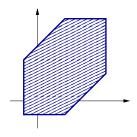
The zone domain

Here, $\mathbb{I} \in \{\mathbb{Z}, \mathbb{Q}, \mathbb{R}\}.$

We look for invariants of the form:

 $\bigwedge V_i - V_j \leq c \text{ or } \pm V_i \leq c, \quad c \in \mathbb{I}$

A subset of \mathbb{I}^n bounded by such constraints is called a **zone**.



[Mine01a]

course 3, 2012–2013 Relational

Machine representation

A potential constraint has the form: $V_j - V_i \leq c$.

Potential graph: directed, weighted graph \mathcal{G}

- $\bullet\,$ nodes are labelled with variables in $\mathbb V,$
- we add an arc with weight c from V_i to V_j for each constraint $V_j V_i \leq c$.

Difference Bound Matrix (DBM)

Adjacency matrix **m** of \mathcal{G} :

- **m** is square, with size $n \times n$, and elements in $\mathbb{I} \cup \{+\infty\}$,
- $m_{ij} = c < +\infty$ denotes the constraint $V_j V_i \leq c$,
- $m_{ij} = +\infty$ if there is no upper bound on $V_j V_i$.

Concretization:

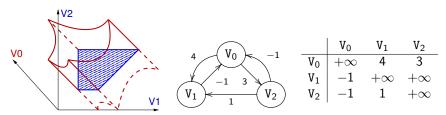
$$\gamma(\mathbf{m}) \stackrel{\text{def}}{=} \{ (\mathbf{v}_1, \ldots, \mathbf{v}_n) \in \mathbb{I}^n \mid \forall i, j, \ \mathbf{v}_j - \mathbf{v}_i \leq m_{ij} \}.$$

Machine representation (cont.)

• **m** has size
$$(n + 1) \times (n + 1)$$
;

- $V_i \leq c$ is denoted as $V_i V_0 \leq c$, i.e., $m_{i0} = c$;
- $V_i \ge c$ is denoted as $V_0 V_i \le -c$, i.e., $m_{0i} = -c$;
- γ is now: $\gamma_0(\mathbf{m}) \stackrel{\text{def}}{=} \{ (v_1, \ldots, v_n) \mid (0, v_1, \ldots, v_n) \in \gamma(\mathbf{m}) \}.$

Example:



The DBM lattice

 \mathcal{D}^{\sharp} contains all DBMs, plus \perp^{\sharp} .

 $\leq \text{ on } \mathbb{I} \cup \{+\infty\} \text{ is extended point-wisely}.$ If $m,n \neq \bot^{\sharp}$:

$$\mathbf{m} \subseteq^{\sharp} \mathbf{n} \qquad \stackrel{\text{def}}{\longleftrightarrow} \qquad \forall i, j, \ m_{ij} \leq n_{ij}$$
$$\mathbf{m} =^{\sharp} \mathbf{n} \qquad \stackrel{\text{def}}{\longleftrightarrow} \qquad \forall i, j, \ m_{ij} = n_{ij}$$
$$\begin{bmatrix} \mathbf{m} \cap^{\sharp} \mathbf{n} \end{bmatrix}_{ij} \qquad \stackrel{\text{def}}{=} \qquad \min(m_{ij}, n_{ij})$$
$$\begin{bmatrix} \mathbf{m} \cup^{\sharp} \mathbf{n} \end{bmatrix}_{ij} \qquad \stackrel{\text{def}}{=} \qquad \max(m_{ij}, n_{ij})$$
$$\begin{bmatrix} \top^{\sharp} \end{bmatrix}_{ij} \qquad \stackrel{\text{def}}{=} \qquad +\infty$$

 $(\mathcal{D}^{\sharp}, \subseteq^{\sharp}, \cup^{\sharp}, \cap^{\sharp}, \perp^{\sharp}, \top^{\sharp})$ is a lattice.

Remarks:

•
$$\mathcal{D}^{\sharp}$$
 is complete if \leq is ($\mathbb{I} = \mathbb{R}$ or \mathbb{Z} , but not \mathbb{Q}),

•
$$\mathbf{m} \subseteq^{\sharp} \mathbf{n} \Longrightarrow \gamma_0(\mathbf{m}) \subseteq \gamma_0(\mathbf{n})$$
, but not the converse,

•
$$\mathbf{m} = {}^{\sharp} \mathbf{n} \Longrightarrow \gamma_0(\mathbf{m}) = \gamma_0(\mathbf{n})$$
, but not the converse.

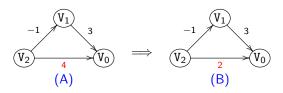
Weakly relational domains

Zone domain

Normal form, equality and inclusion testing

- **Issue:** how can we compare $\gamma_0(\mathbf{m})$ and $\gamma_0(\mathbf{n})$?
- Idea: find a normal form by propagating/tightening constraints.

$V_0 - V_1 \leq 3$	$V_0 - V_1 \leq 3$
$\left\{ V_1 - V_2 \leq -1 \right\}$	$\left\{ \begin{array}{c} \mathtt{V}_1 - \mathtt{V}_2 \leq -1 \end{array} \right.$
$V_0 - V_2 \leq 4$	$V_0 - V_2 \leq 2$



Definition: shortest-path closure \mathbf{m}^* $m_{ij}^* \stackrel{\text{def}}{=} \min_{\substack{N \\ \langle i = i_1, \dots, i_N = j \rangle}} \sum_{k=1}^{N-1} m_{i_k i_{k+1}}$

Exists only when **m** has no cycle with strictly negative weight.

Floyd–Warshall algorithm

Properties:

- $\gamma_0(\mathbf{m}) = \emptyset \iff \mathcal{G}$ has a cycle with strictly negative weight.
- if $\gamma_0(\mathbf{m}) \neq \emptyset$, the shortest-path graph \mathbf{m}^* is a normal form: $\mathbf{m}^* = \min_{\subseteq \sharp} \{ \mathbf{n} \mid \gamma_0(\mathbf{m}) = \gamma_0(\mathbf{n}) \}$

• If
$$\gamma_0(\mathbf{m}), \gamma_0(\mathbf{n}) \neq \emptyset$$
, then
• $\gamma_0(\mathbf{m}) = \gamma_0(\mathbf{n}) \iff \mathbf{m}^* = \overset{\sharp}{=} \mathbf{n}^*,$

•
$$\gamma_0(\mathbf{m}) \subseteq \gamma_0(\mathbf{n}) \iff \mathbf{m}^* \subseteq^{\sharp} \mathbf{n}.$$

Floyd–Warshall algorithm

$$\begin{cases} m_{ij}^{0} \stackrel{\text{def}}{=} m_{ij} \\ m_{ij}^{k+1} \stackrel{\text{def}}{=} \min(m_{ij}^{k}, m_{ik}^{k} + m_{kj}^{k}) \end{cases}$$

• If
$$\gamma_0(\mathbf{m}) \neq \emptyset$$
, then $\mathbf{m}^* = \mathbf{m}^{n+1}$, (normal f

• $\gamma_0(\mathbf{m}) = \emptyset \iff \exists i, \ \mathbf{m}_{ii}^{n+1} < \mathbf{0},$

(normal form) (emptiness testing)

• \mathbf{m}^{n+1} can be computed in $\mathcal{O}(n^3)$ time.

Abstract operators

Abstract union ∪[♯]

- $\gamma_0(\mathbf{m} \cup^{\sharp} \mathbf{n})$ may not be the smallest zone containing $\gamma_0(\mathbf{m})$ and $\gamma_0(\mathbf{n})$.
- however, $(\mathbf{m}^*) \cup^{\sharp} (\mathbf{n}^*)$ is optimal:

 $(\mathbf{m}^*) \cup^{\sharp} (\mathbf{n}^*) = \min_{\subseteq^{\sharp}} \{ \mathbf{o} \mid \gamma_0(\mathbf{o}) \supseteq \gamma_0(\mathbf{m}) \cup \gamma_0(\mathbf{n}) \}$ which implies

 $\gamma_{0}((\mathbf{m}^{*})\cup^{\sharp}(\mathbf{n}^{*})) = \min_{\subseteq} \{ \gamma_{0}(\mathbf{o}) \mid \gamma_{0}(\mathbf{o}) \supseteq \gamma_{0}(\mathbf{m}) \cup \gamma_{0}(\mathbf{n}) \}$

• $(\mathbf{m}^*) \cup^{\sharp} (\mathbf{n}^*)$ is always closed.

Abstract intersection \cap^{\sharp}

- \cap^{\sharp} is always exact: $\gamma_0(\mathbf{m} \cap^{\sharp} \mathbf{n}) = \gamma_0(\mathbf{m}) \cap \gamma_0(\mathbf{n})$
- $(\mathbf{m}^*) \cap^{\sharp} (\mathbf{n}^*)$ may not be closed.

Remark:

The set of closed matrices with \perp^{\sharp} , and the operations \subseteq^{\sharp} , \cup^{\sharp} , $\lambda \mathbf{m}, \mathbf{n}.(\mathbf{m} \cap^{\sharp} \mathbf{n})^*$ define a sub-lattice.

 γ_0 is injective in this sub-lattice.

course 3, 2012-2013

Relational Numerical Abstract Domains

Abstract operators (cont.)

We can define:

 $\begin{bmatrix} \mathsf{C}^{\sharp} \llbracket \mathsf{V}_{j_{0}} - \mathsf{V}_{i_{0}} \leq c \rrbracket \mathbf{m} \end{bmatrix}_{ij} \stackrel{\text{def}}{=} \begin{cases} \min(m_{ij}, c) & \text{if } (i, j) = (i_{0}, j_{0}), \\ m_{ij} & \text{otherwise.} \end{cases}$ $\mathsf{C}^{\sharp} \llbracket \mathsf{V}_{j_{0}} - \mathsf{V}_{i_{0}} = \llbracket a, b \rrbracket \rrbracket \mathbf{m} \stackrel{\text{def}}{=} (\mathsf{C}^{\sharp} \llbracket \mathsf{V}_{j_{0}} - \mathsf{V}_{i_{0}} \leq b \rrbracket \circ \mathsf{C}^{\sharp} \llbracket \mathsf{V}_{i_{0}} - \mathsf{V}_{j_{0}} \leq -a \rrbracket) \mathbf{m}$ $\begin{bmatrix} \mathsf{C}^{\sharp} \llbracket \mathsf{V}_{j_{0}} :=] - \infty, +\infty \llbracket \mathfrak{m} \rrbracket_{ij} \stackrel{\text{def}}{=} \begin{cases} +\infty & \text{if } i = j_{0} \text{ or } j = j_{0}, \\ m_{ij}^{*} & \text{otherwise.} \end{cases}$ $(\text{not optimal on non-closed arguments}) \end{cases}$

$$C^{\sharp} \llbracket \mathbf{V}_{j_{0}} := \mathbf{V}_{i_{0}} + \llbracket a, b \rrbracket \rrbracket \mathbf{m} \stackrel{\text{def}}{=} \\ (C^{\sharp} \llbracket \mathbf{V}_{j_{0}} - \mathbf{V}_{i_{0}} = \llbracket a, b \rrbracket \rrbracket \circ C^{\sharp} \llbracket \mathbf{V}_{j_{0}} := \rrbracket - \infty, +\infty[\rrbracket) \mathbf{m} \quad \text{if } i_{0} \neq j_{0} \\ \llbracket C^{\sharp} \llbracket \mathbf{V}_{j_{0}} := \mathbf{V}_{j_{0}} + \llbracket a, b \rrbracket \rrbracket \mathbf{m} \rrbracket_{ij} \stackrel{\text{def}}{=} \begin{cases} m_{ij} - a & \text{if } i = j_{0} \text{ and } j \neq j_{0} \\ m_{ij} + b & \text{if } i \neq j_{0} \text{ and } j = j_{0} \\ m_{ij} & \text{otherwise.} \end{cases}$$

 $(i_0 \neq j_0; V_{i_0} \text{ can be replaced with 0 by setting } i_0 = 0)$

These transfer functions are exact.

course 3, 2012-2013

Relational Numerical Abstract Domains

Weakly relational domains

Zone domain

Abstract operators (cont.)

Backward assignment:

$$C^{\sharp} \llbracket \overleftarrow{\mathsf{V}_{j_{0}}} :=] - \infty, +\infty \llbracket \rrbracket (\mathbf{m}, \mathbf{r}) \stackrel{\text{def}}{=} \mathbf{m} \cap^{\sharp} (C^{\sharp} \llbracket \mathsf{V}_{j_{0}} :=] - \infty, +\infty \llbracket \rrbracket \mathbf{r})$$

$$C^{\sharp} \llbracket \overleftarrow{\mathsf{V}_{j_{0}}} := \mathsf{V}_{j_{0}} + \llbracket a, b \rrbracket \rrbracket (\mathbf{m}, \mathbf{r}) \stackrel{\text{def}}{=} \mathbf{m} \cap^{\sharp} (C^{\sharp} \llbracket \mathsf{V}_{j_{0}} := \mathsf{V}_{j_{0}} + \llbracket -b, -a \rrbracket \rrbracket \mathbf{r})$$

$$\begin{bmatrix} C^{\sharp} \llbracket \overleftarrow{\mathsf{V}_{j_{0}}} := \mathsf{V}_{i_{0}} + \llbracket a, b \rrbracket \rrbracket (\mathbf{m}, \mathbf{r}) \end{bmatrix}_{ij} \stackrel{\text{def}}{=}$$

$$\mathbf{m} \cap^{\sharp} \begin{cases} \min(\mathbf{r}_{ij}^{*}, \mathbf{r}_{j_{0}}^{*} + b) & \text{if } i = i_{0} \text{ and } j \neq i_{0}, j_{0} \\ \min(\mathbf{r}_{ij}^{*}, \mathbf{r}_{ij_{0}}^{*} - a) & \text{if } j = i_{0} \text{ and } i \neq i_{0}, j_{0} \\ +\infty & \text{if } i = j_{0} \text{ or } j = j_{0} \\ \mathbf{r}_{ij}^{*} & \text{otherwise.} \end{cases}$$

Abstract operators (cont.)

<u>Issue</u>: given an arbitrary linear assignment $V_{j_0} := a_0 + \sum_k a_k \times V_k$

- there is no exact abstraction, in general;
- the best abstraction α ∘ C[[c]] ∘ γ is costly to compute.
 (e.g. convert to a polyhedron and back, with exponential cost)

Possible solution:

Given a (more general) assignment $e = [a_0, b_0] + \sum_k [a_k, b_k] \times V_k$ we define an approximate operator as follows:

$$\begin{bmatrix} \mathsf{C}^{\sharp} \llbracket \, \mathsf{V}_{j_0} := e \, \rrbracket \, \mathbf{m} \end{bmatrix}_{ij} \stackrel{\text{def}}{=} \begin{cases} \max(\mathsf{E}^{\sharp} \llbracket \, e \, \rrbracket \, \mathbf{m}) & \text{if } i = 0 \text{ and } j = j_0 \\ -\min(\mathsf{E}^{\sharp} \llbracket \, e \, \rrbracket \, \mathbf{m}) & \text{if } i = j_0 \text{ and } j = 0 \\ \max(\mathsf{E}^{\sharp} \llbracket \, e - \mathsf{V}_i \, \rrbracket \, \mathbf{m}) & \text{if } i \neq 0, j_0 \text{ and } j = j_0 \\ -\min(\mathsf{E}^{\sharp} \llbracket \, e - \mathsf{V}_i \, \rrbracket \, \mathbf{m}) & \text{if } i = j_0 \text{ and } j \neq 0, j_0 \\ m_{ij} & \text{otherwise} \end{cases}$$

where $\mathsf{E}^{\sharp}[\![e]\!]\mathbf{m}$ evaluates e using interval arithmetics with $V_k \in [-m_{k0}^*, m_{0k}^*]$.

Quadratic total cost (plus the cost of closure).

Weakly relational domains

Zone domain

Abstract operators (cont.)

Example:

Argument

$$\begin{cases} 0 \le Y \le 10 \\ 0 \le Z \le 10 \\ 0 \le Y - Z \le 10 \\ 0 \le Y - Z \le 10 \\ \end{bmatrix}$$

$$\Downarrow X := Y - Z$$

$$\begin{cases} -10 \le X \le 10 \\ -20 \le X - Y \le 10 \\ -20 \le X - Z \le 10 \\ \text{Intervals} \end{cases} \begin{cases} -10 \le X \le 10 \\ -10 \le X - Y \le 0 \\ -10 \le X - Z \le 10 \\ \text{Approximate} \\ \text{solution} \end{cases} \begin{cases} 0 \le X \le 10 \\ -10 \le X - Y \le 0 \\ -10 \le X - Z \le 10 \\ \text{Best} \\ \text{(polyhedra)} \end{cases}$$

We have a good trade-off between cost and precision.

The same idea can be used for tests and backward assignments.

course 3, 2012-2013

Widening and narrowing

The zone domain has both strictly increasing and decreasing infinite chains.

Widening ∇

$$\begin{bmatrix} \mathbf{m} \nabla \mathbf{n} \end{bmatrix}_{ij} \stackrel{\text{def}}{=} \begin{cases} m_{ij} & \text{if } n_{ij} \leq m_{ij} \\ +\infty & \text{otherwise} \end{cases}$$
nstable constraints are deleted.

Narrowing \triangle

U

 $[\mathbf{m} \bigtriangleup \mathbf{n}]_{ij} \stackrel{\text{def}}{=} \begin{cases} n_{ij} & \text{if } m_{ij} = +\infty \\ m_{ij} & \text{otherwise} \end{cases}$ Only $+\infty$ bounds are refined.

<u>Remarks:</u>

- We can construct widenings with thresholds.
- ∇ (resp. △) can be seen as a point-wise extension of an interval widening (resp. narrowing).

Weakly relational domains

Zone domain

Interaction between closure and widening

Widening \triangledown and closure * cannot always be mixed safely:

- $\mathbf{m}_{i+1} \stackrel{\text{def}}{=} \mathbf{m}_i \bigtriangledown (\mathbf{n}_i^*)$ OK
- $\mathbf{m}_{i+1} \stackrel{\text{def}}{=} (\mathbf{m}_i^*) \bigtriangledown \mathbf{n}_i \quad \text{wrong!}$
- $\mathbf{m}_{i+1} \stackrel{\text{def}}{=} (\mathbf{m}_i \bigtriangledown \mathbf{n}_i)^*$ wrong

otherwise the sequence (\mathbf{m}_i) may be infinite!

Example:

X:=0; Y:=[-1,1];		
while • 1=1 do	$\mathcal{X}^{\sharp 2j}_{ullet}$	$\mathcal{X}^{\sharp 2j+1}_{ullet}$
R:=[-1,1];	$X \in [-2j, 2j]$	$\mathtt{X} \in [-2j-2,2j+2]$
if X=Y then Y:=X+R	$\mathtt{Y} \in [-2j-1,2j+1]$	$\mathtt{Y} \in [-2j-1,2j+1]$
else X:=Y+R fi	$\mathtt{X}-\mathtt{Y}\in [-1,1]$	$\mathtt{X}-\mathtt{Y}\in [-1,1]$
done		

Applying the closure after the widening at • prevents convergence. Without the closure, we would find in finite time $X - Y \in [-1, 1]$. <u>Note:</u> this situation also occurs in reduced products (here, $\mathcal{D}^{\sharp} \simeq$ reduced product of $n \times n$ intervals, $* \simeq$ reduction)

course 3, 2012-2013

Relational Numerical Abstract Domains

Antoine Miné

Octagon domain

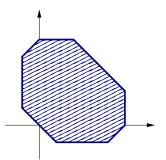
The octagon domain

Now, $\mathbb{I} \in \{\mathbb{Q}, \mathbb{R}\}.$

We look for invariants of the form: $\bigwedge \pm V_i \pm V_j \leq c, \quad c \in \mathbb{I}$

A subset of \mathbb{I}^n defined by such constraints is called an octagon.

It is a generalisation of zones (more symmetric).



Machine representation

Idea: use a variable change to get back to potential constraints.

Let
$$\mathbb{V}' \stackrel{\text{def}}{=} \{\mathbb{V}'_1, \dots, \mathbb{V}'_{2n}\}.$$

the constraint:		is encoded as:		
$V_i - V_j \leq c$	$(i \neq j)$	$V'_{2i-1} - V'_{2j-1} \leq c$ and $V'_{2j} - V'_{2i} \leq c$	-	
$V_i + V_j \leq c$	$(i \neq j)$	$V'_{2i-1} - V'_{2j} \leq c$ and $V'_{2j-1} - V'_{2i} \leq c$		
$-\mathtt{V}_i-\mathtt{V}_j\leq c$	$(i \neq j)$	$V'_{2j} - V'_{2i-1} \leq c$ and $V'_{2i} - V'_{2j-1} \leq c$		
$V_i \leq c$		$\mathbf{V'}_{2i-1} - \mathbf{V'}_{2i} \leq 2c$		
$V_i \ge c$		$V'_{2i} - V'_{2i-1} \leq -2c$		

We use a matrix **m** of size $(2n) \times (2n)$ with elements in $\mathbb{I} \cup \{+\infty\}$ and $\gamma_{\pm}(\mathbf{m}) \stackrel{\text{def}}{=} \{ (v_1, \ldots, v_n) \mid (v_1, -v_1, \ldots, v_n, -v_n) \in \gamma(\mathbf{m}) \}.$

Note:

Two distinct **m** elements can represent the same constraint on \mathbb{V} . To avoid this, we impose that $\forall i, j, m_{ij} = m_{\overline{j}\overline{i}}$ where $\overline{i} = i \oplus 1$.

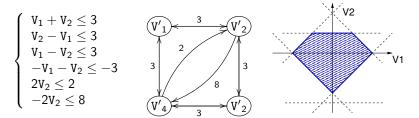
course 3, 2012-2013

Weakly relational domains

Octagon domain

Machine representation (cont.)

Example:



Lattice

Constructed by point-wise extension of \leq on $\mathbb{I} \cup \{+\infty\}$.

Algorithms

\mathbf{m}^* is not a normal form for γ_{\pm} .

use two local transformations instead of one: Idea

and
$$\begin{cases} \mathbb{V}'_i - \mathbb{V}'_k \leq c \\ \mathbb{V}'_k - \mathbb{V}'_j \leq d \end{cases} \implies \mathbb{V}'_i - \mathbb{V}'_j \leq c + d \\ \begin{cases} \mathbb{V}'_i - \mathbb{V}'_{\bar{\imath}} \leq c \\ \mathbb{V}'_{\bar{\jmath}} - \mathbb{V}'_j \leq d \end{cases} \implies \mathbb{V}'_i - \mathbb{V}'_j \leq (c+d)/2 \end{cases}$$

Modified Floyd–Warshall algorithm

$$\mathbf{m}^{\bullet} \stackrel{\text{def}}{=} S(\mathbf{m}^{2n+1})$$
(A)
$$\begin{cases} \mathbf{m}^{1} \stackrel{\text{def}}{=} \mathbf{m} \\ [\mathbf{m}^{k+1}]_{ij} \stackrel{\text{def}}{=} \min(n_{ij}, n_{ik} + n_{kj}), \ 1 \le k \le 2n \end{cases}$$
where:

(B)
$$[S(\mathbf{n})]_{ij} \stackrel{\text{def}}{=} \min(n_{ij}, (n_{i\bar{\imath}} + n_{\bar{\jmath}j})/2)$$

Algorithms (cont.)

Applications

•
$$\gamma_{\pm}(\mathbf{m}) = \emptyset \iff \exists i, \ \mathbf{m}_{ii}^{\bullet} < 0,$$

• if
$$\gamma_{\pm}(\mathbf{m}) \neq \emptyset$$
, \mathbf{m}^{\bullet} is a normal form:
 $\mathbf{m}^{\bullet} = \min_{\subseteq^{\sharp}} \{ \mathbf{n} \mid \gamma_{\pm}(\mathbf{n}) = \gamma_{\pm}(\mathbf{m}) \},$

• $(\mathbf{m}^{\bullet}) \cup^{\sharp} (\mathbf{n}^{\bullet})$ is the best abstraction for the set-union $\gamma_{\pm}(\mathbf{m}) \cup \gamma_{\pm}(\mathbf{n})$.

Widening and narrowing

- The zone widening and narrowing can be used on octagons.
- The widened iterates should not be closed. (prevents convergence)

Abstract transfer functions are similar to the case of the zone domain.

course 3, 2012-2013

Analysis example

Rate limiter

```
Y:=0; while • 1=1 do
X:=[-128,128]; D:=[0,16];
S:=Y; Y:=X; R:=X-S;
if R<=-D then Y:=S-D fi;
if R>=D then Y:=S+D fi
done
```

- X: input signal
- Y: output signal
- S: last output
- R: delta Y-S
- D: max. allowed for |R|

Analysis using:

- the octagon domain,
- an abstract operator for $V_{j_0} := [a_0, b_0] + \sum_k [a_k, b_k] \times V_k$ similar to the one we defined on zones,
- a widening with thresholds T.

<u>Result</u>: we prove that |Y| is bounded by: min { $t \in T | t \ge 144$ }.

<u>Note:</u> the polyhedron domain would find $|Y| \le 128$ and does not require thresholds, but it is more costly.

course 3, 2012-2013

Relational Numerical Abstract Domains

Integer octagons

Recall that zones work equally well on \mathbb{Q} , \mathbb{R} and \mathbb{Z} .

Issue:

The octagon domain we have presented is not complete on \mathbb{Z} :

- the algorithm for **m**[•] uses divisions by 2,
- when replacing $x \mapsto x/2$ with $\mapsto \lfloor x/2 \rfloor$, we get: $\mathbf{m}^{\bullet} \neq \min_{\subseteq \sharp} \{ \mathbf{o} \mid \gamma_{\pm}(\mathbf{o}) = \gamma_{\pm}(\mathbf{m}) \}.$

Possible solutions:

- Use m[•] with [x/2] instead of /2.
 All computations remain sound on integers.
 The best-precision results are no longer valid.
- See [Bagn08] for a $\mathcal{O}(n^3)$ time "tight closure" for integer octagons.

Summary

Summary

Summary of numerical domains

domain	non-relational	linear	polyhedra	octagons
		equalities		
invariants	$\mathtt{V}\in D_b^\sharp$	$\sum_{i} \alpha_{i} \mathbf{V}_{i} = \beta$	$\sum_{i} \alpha_{i} \mathbf{V}_{i} \leq \beta$	$\pm \mathtt{V}_{\mathtt{i}} \pm \mathtt{V}_{\mathtt{j}} \leq c$
memory	$\mathcal{O}(n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(2^n)$	$\mathcal{O}(n^2)$
cost				
time	$\mathcal{O}(n)$	$\mathcal{O}(n^3)$	$\mathcal{O}(2^n)$	$\mathcal{O}(n^3)$
cost				

Abstraction framework

Issue:

Most relational domains can only deal with linear expressions. How can we abstract non-linear assignments such as $X := Y \times Z$?

<u>Idea:</u> replace $Y \times Z$ with a sound linear approximation.

Framework:

We define an approximation preorder \leq on expressions:

$$\boldsymbol{R} \models \boldsymbol{e}_1 \preceq \boldsymbol{e}_2 \iff \forall \rho \in \boldsymbol{R}, \ \mathsf{E}[\![\boldsymbol{e}_1]\!] \rho \subseteq \mathsf{E}[\![\boldsymbol{e}_2]\!] \rho.$$

Soundness properties if $\gamma(\mathcal{X}^{\sharp}) \models e \preceq e'$ then:

•
$$C[[V := e]] \gamma(\mathcal{X}^{\sharp}) \subseteq \gamma(C^{\sharp}[[V := e']] \mathcal{X}^{\sharp})$$

•
$$C[[e \bowtie 0]] \gamma(\mathcal{X}^{\sharp}) \subseteq \gamma(C^{\sharp}[[e' \bowtie 0]] \mathcal{X}^{\sharp})$$

•
$$\gamma(\mathcal{X}^{\sharp}) \cap (\mathbb{C}[\![\overleftarrow{\mathbb{V}}:=e]\!] \gamma(\mathcal{R}^{\sharp})) \subseteq \gamma(\mathbb{C}^{\sharp}[\![\overleftarrow{\mathbb{V}}:=e']\!]^{\sharp}(\mathcal{X}^{\sharp},\mathcal{R}^{\sharp}))$$

 \implies we can now use e' in the abstract instead of e.

In practice, we put expressions into affine interval form:

```
\exp_{\ell}: [a_0, b_0] + \sum_k [a_k, b_k] \times V_k
```

Advantages:

- affine expressions are easy to manipulate,
- interval coefficients allow non-determinism in expressions, hence, the opportunity for abstraction,
- we can easily construct abstract transfer functions for affine interval expressions.

Linearization (cont.)

Operations on affine interval forms

- adding \boxplus and subtracting \boxminus two forms,
- multiplying ☐ and dividing ☐ a form by an interval.

Noting i_k the interval $[a_k, b_k]$ and using interval operations $+_b^{\sharp}, -_b^{\sharp}, \times_b^{\sharp}, /_b^{\sharp}$ $(\underline{e.g.}, [a, b] +_b^{\sharp} [c, d] = [a + c, b + d])$:

• $(i_0 + \sum_k i_k \times \mathbf{V}_k) \boxplus (i'_0 + \sum_k i'_k \times \mathbf{V}_k) \stackrel{\text{def}}{=} (i_0 + \overset{\sharp}{}_b i'_0) + \sum_k (i_k + \overset{\sharp}{}_b i'_k) \times \mathbf{V}_k$

•
$$i \boxtimes (i_0 + \sum_k i_k \times \mathbb{V}_k) \stackrel{\text{def}}{=} (i \times \overset{\sharp}{}_{b} i_0) + \sum_k (i \times \overset{\sharp}{}_{b} i_k) \times \mathbb{V}_k$$

• ...

Projection $\pi_k : \mathcal{D}^{\sharp} \to \exp_{\ell}$

We suppose we are given an abstract interval projection operator π_k such that:

$$\pi_k(\mathcal{X}^{\sharp}) = [a, b] \text{ such that } [a, b] \supseteq \{ \rho(\mathtt{V}_{\mathtt{k}}) \mid \rho \in \gamma(\mathcal{X}^{\sharp}) \}.$$

Linearization (cont.)

 $\underline{\mathsf{Intervalization}} \quad \iota: (\exp_\ell \times \mathcal{D}^\sharp) \to \exp_\ell$

Flattens the expression into a single interval:

 ${}^{\boldsymbol{\iota}}(i_0+\sum_k(i_k\times \mathtt{V}_k),\,\mathcal{X}^{\sharp})\stackrel{\mathrm{def}}{=}i_0\;+{}^{\sharp}_{b}\;\sum_{b,\,k}^{\sharp}\;(i_k\times {}^{\sharp}_{b}\;\pi_k(\mathcal{X}^{\sharp})).$

 $\underline{\textbf{Linearization}} \quad \ell: (\texttt{exp} \times \mathcal{D}^{\sharp}) \to \texttt{exp}_{\ell}$

Defined by induction on the syntax of expressions:

•
$$\ell(\mathbb{V}, \mathcal{X}^{\sharp}) \stackrel{\text{def}}{=} [1, 1] \times \mathbb{V},$$

• $\ell([a, b], \mathcal{X}^{\sharp}) \stackrel{\text{def}}{=} [a, b],$
• $\ell(e_1 + e_2, \mathcal{X}^{\sharp}) \stackrel{\text{def}}{=} \ell(e_1, \mathcal{X}^{\sharp}) \boxplus \ell(e_2, \mathcal{X}^{\sharp}),$
• $\ell(e_1 - e_2, \mathcal{X}^{\sharp}) \stackrel{\text{def}}{=} \ell(e_1, \mathcal{X}^{\sharp}) \boxminus \ell(e_2, \mathcal{X}^{\sharp}),$
• $\ell(e_1 / e_2, \mathcal{X}^{\sharp}) \stackrel{\text{def}}{=} \ell(e_1, \mathcal{X}^{\sharp}) \boxtimes \ell(\ell(e_2, \mathcal{X}^{\sharp}), \mathcal{X}^{\sharp}),$
• $\ell(e_1 \times e_2, \mathcal{X}^{\sharp}) \stackrel{\text{def}}{=} \operatorname{can} \operatorname{be} \begin{cases} \operatorname{either} & \ell(\ell(e_1, \mathcal{X}^{\sharp}), \mathcal{X}^{\sharp}) \boxtimes \ell(e_2, \mathcal{X}^{\sharp}), \\ \operatorname{or} & \ell(\ell(e_2, \mathcal{X}^{\sharp}), \mathcal{X}^{\sharp}) \boxtimes \ell(e_1, \mathcal{X}^{\sharp}). \end{cases}$

Linearization application

Property soundness of the linearization:

For any abstract domain \mathcal{D}^{\sharp} , any $\mathcal{X}^{\sharp} \in \mathcal{D}^{\sharp}$ and $e \in \exp$, we have: $\gamma(\mathcal{X}^{\sharp}) \models e \preceq \ell(e, \mathcal{X}^{\sharp})$

<u>Remarks:</u>

- ℓ results in a loss of precision,
- ℓ is not monotonic for \leq . (e.g., $\ell(\mathbb{V}/\mathbb{V}, \mathbb{V} \mapsto [1, +\infty]) = [0, 1] \times \mathbb{V} \not\preceq 1)$

Application to the octagon domain

- $T \times Y$ is linearized as $[-1, 1] \times Y$,
- we can prove that $|X| \leq Y$.

Linearization application (cont.)

Application to the interval domain

 $C^{\sharp} \llbracket V := \ell(e, \mathcal{X}^{\sharp}) \rrbracket \mathcal{X}^{\sharp}$ is always more precise than $C^{\sharp} \llbracket V := e \rrbracket \mathcal{X}^{\sharp}$ ℓ simplifies symbolically variables occurring several times.

Example: $X := 2 \times V - V$, where $V \in [a, b]$:

• using vanilla intervals:

$$E^{\sharp} \llbracket 2 \times \mathbb{V} - \mathbb{V} \rrbracket (\mathcal{X}^{\sharp}) = 2 \times_{b}^{\sharp} [a, b] -_{b}^{\sharp} [a, b] = [2a - b, 2b - a],$$

 after linearization ℓ(2 × V - V, X[‡]) = V, so E[#] [[ℓ(2 × V - V, X[‡])]] X[‡] = [a, b] strictly more precise than [2a - b, 2b - a] when a ≠ b.

Bibliography

Bibliography

[Anco10] **C. Ancourt, F. Coelho & F. Irigoin**. A modular static analysis approach to affine loop invariants detection. In Proc. NSAD'10, ENTCS, Elsevier, 2010.

[Bagn02] **R. Bagnara, E. Ricci, E. Zaffanella & P. M. Hill**. *Possibly not closed convex polyhedra and the Parma Polyhedra Library*. In Proc. SAS'02, LNCS 2477, 213–229, Springer, 2002.

[Bagn03] **R. Bagnara, P. Hill, E. Ricci, E. Zaffanella**. *Precise widening operators for convex polyhedra*. In Proc. SAS'03, LNCS 2694, 337-354, Springer, 2003.

[Bagn08] **R. Bagnara, P. M. Hill & E. Zaffanella**. An improved tight closure algorithm for integer octagonal constraints. In Proc. VMCAI'08, LNCS 4905, 8–21, Springer, 2008.

[Beno96] **F. Benoy & A. King**. Inferring argument size relationships with CLP(R). In In Proc. of LOPSTR'96, LNCS 1207, 204–223. Springer, 1996.

Bibliography (cont.)

[Chen08] L. Chen, A. Miné & P. Cousot. A sound floating-point polyhedra abstract domain. In Proc. APLAS'08, LNCS 5356, 3–18, Springer, 2008.

[Cher68] N. V. Chernikova. Algorithm for discovering the set of all the solutions of a linear programming problem. In U.S.S.R. Comput. Math. and Math. Phys., 8(6):282–293, 1968.

[Cous78] **P. Cousot & N. Halbwachs**. Automatic discovery of linear restraints among variables of a program. In Proc. POPL'78, 84–96, ACM, 1978.

[Gran91] **P. Granger**. Static analysis of linear congruence equalities among variables of a program. In Proc. TAPSOFT'91, LNCS 49, 169–192. Springer, 1991.

[Jean09] B. Jeannet & A. Miné. Apron: A library of numerical abstract domains for static analysis. In Proc. CAV'09, LNCS 5643, 661-667, Springer, 2009, http://apron.cri.ensmp.fr/library.

Bibliography (cont.)

[Karr76] **M. Karr**. Affine relationships among variables of a program. In Acta Informatica, 6:133–151, 1976.

[LeVe92] **H. Le Verge**. *A note on Chernikova's algorithm*. In Research Report 1662, INRIA Rocquencourt, 1992.

[Mine01a] **A. Miné**. A new numerical abstract domain based on difference-bound matrices. In Proc. PADO II, LNCS 2053, 155–172, Springer, 2001.

[Mine01b] **A.** Miné. *The octagon abstract domain*. In Proc. AST'01, 310–319, IEEE, 2001.

[Schr86] **A. Schrijver**. *Theory of linear and integer programming*. In John Wiley & Sons, Inc., 1986.