
Semantics of Programs
and Semantic Properties

MPRI — Cours 2.6 “Interprétation abstraite :
application à la vérification et à l’analyse statique”

Xavier Rival

INRIA, ENS, CNRS

Jan, 6th. 2012

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 1 / 76

Overview of the lecture

Choosing the right semantics is the first step in the design of a
static analysis

◮ it should capture the relevant properties
◮ non relevant properties may be abstracted

typically, one by one, by composing several abstractions

Abstract interpretation is a good framework to compare various
semantics (independently from the application)
Application: designing lattices of semantics

Semantic properties should also be classified, to better guide the
choice of a base semantics to reason about them

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 2 / 76

Transition systems

Outline

1 Transition systems

2 Trace semantics

3 Denotational semantics

4 Semantic properties

5 Concluding remarks

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 3 / 76

Transition systems

Definition

Programs/systems and their executions need be formalized:

state: status of the machine at a given time

execution: defined by transitions from a state to the next one

Transition system (TS)

A transition system is a tuple (S,→) where:

S is the set of states of the system

→⊆ P(S × S) is the transition relation of the system

Furthermore, transition systems may be enriched with

a set of initial states SI ⊆ S

a set of final states SF ⊆ S

Notes:

the set of states may be infinite

steps are discrete (not continuous)

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 4 / 76

Transition systems

Example TS: functional language

λ-terms

The set of λ-terms is defined by:

t, u, . . . ::= x variable
| λx · t abstraction
| t u application

β reduction

(λx · t) u →β t[x ← u]

if u →β v then λx · u →β λx · v

if u →β v then u t →β v t

if u →β v then t u →β t v

A program is a transition system:

S is the set of λ-terms

for λ-calculs (→) is (→β)
in ML, execution order specified: (→) ⊂ (→β) (no equality)

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 5 / 76

Transition systems

Example TS: stack machine

The Krivine machine, used to compile functional languages:

Programs: sequences of instructions

c ::= i · c | ǫ
i ::= Access(n) | Push(c) | Grab; n ∈ N

States are of the form (c , e, s), where
◮ c is a program
◮ e is the environment and s is the stack:

lists of pairs (c , e) (denoting sub-expressions and the environment they
should be evaluated in)

Transitions:

(Access(0) · c , (c0, e0) · e, s) → (c0, e0, s)
(Access(n + 1) · c , (c0, e0) · e, s) → (Access(n), e, s)

(Push(c ′) · c , e, s) → (c , e, (c ′, e) · s)
(Grab · c , e, (c0, e0) · s) → (c , (c0, e0) · e, s)

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 6 / 76

Transition systems

Labelled transition system

Definition of states:

depends on the kinds of programs to abstract

typically, we can separate control and memory

Labelled transition system (LTS)

A labelled transition system is a transition system (S,→) the states of
which can be described as pairs of a control state and a memory state, i.e.,
where:

S = L× M

L is the set of labels or control states

M is the set of memory states

labels may denote a point in the code and may include a call stack
(languages with procedures)

error state: usually added, separate Ω value, so that S = L×M⊎{Ω}

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 7 / 76

Transition systems

Example LTS: imperative language

i ::= x := e;
| if(c) b else b

| while(c) b

b ::= {i; . . . ; i; }

X: finite, predefined set of
variables

L: before and after each
statement

Definition of →:
transitions for all instructions

l0 : x = e; l1:
◮ if JeK(m) 6= Ω, then

(l0,m)→ (l1,m[x ← JeK(ρ)])
◮ if JeK(m) = Ω, then

(l0,m)→ Ω

l0 : while(c){l1 : bt l2} l3:
◮ if JeK(m) = true, then

(l0,m)→ (l1,m)
(l2,m)→ (l1,m)

◮ if JeK(m) = false, then
(l0,m)→ (l3,m)
(l2,m)→ (l3,m)

◮ if JeK(m) = Ω, then
(l0,m)→ Ω
(l2,m)→ Ω

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 8 / 76

Trace semantics

Outline

1 Transition systems

2 Trace semantics
Finite traces
Infinite traces
Finite and infinite traces
Abstraction relations

3 Denotational semantics

4 Semantic properties

5 Concluding remarks

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 9 / 76

Trace semantics

Traces: definitions

a trace is a finite or infinite sequence of states

Notations

we write 〈s0, . . . , sn〉 for a finite trace
and 〈s0, . . .〉 for an infinite trace

S⋆ is the set of finite traces

Sω is the set of infinite traces

S∝ = S⋆ ∪ Sω is the set of finite or infinite traces

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 10 / 76

Trace semantics

Operations on traces

length | σ |:
{

〈s0, . . . , sn〉 = n + 1
〈s0, . . .〉 = ω

prefix order relation:

〈s0, . . . , sn〉 ≺ 〈s
′
0, . . . , s

′
n′〉 ⇐⇒

{

n ≤ n′

∀i ∈ J0, nK, si = s ′i

(also defined for infinite traces)

concatenation operator “ ·”:

〈s0, . . . , sn〉 · 〈s
′
0, . . . , s

′
n′〉 = 〈s0, . . . , sn, s

′
0, . . . , s

′
n′〉

〈s0, . . . , sn〉 · 〈s
′
0, . . .〉 = 〈s0, . . . , sn, s

′
0, . . .〉

〈s0, . . . , sn, . . .〉 · σ
′ = 〈s0, . . . , sn, . . .〉

empty trace ǫ, neutral element for ·

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 11 / 76

Trace semantics Finite traces

Semantics of finite traces

Goal: capture all finite executions of the program

We consider a transition system S = (S,→)

Definition

The finite traces semantics JSK⋆ is defined by:

JSK⋆ = {〈s0, . . . , sn〉 ∈ S
⋆ | ∀i , si → si+1}

Example:

contrived transition system S = ({a, b, c , d}, {(a, b), (b, a), (b, c)})

finite traces semantics:

JSK⋆ = { 〈a, b, . . . , a, b, a〉, 〈b, a, . . . , a, b, a〉,
〈a, b, . . . , a, b, a, b〉, 〈b, a, . . . , a, b, a, b〉,
〈a, b, . . . , a, b, a, b, c〉, 〈b, a, . . . , a, b, a, b, c〉
〈c〉 }

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 12 / 76

Trace semantics Finite traces

Interesting subsets of the finite trace semantics

We consider a transition system S = (S,→,SI ,SF)

the traces from an initial state:

{〈s0, . . . , sn〉 ∈ JSK⋆ | s0 ∈ SI}

the traces reaching a blocking state:

{σ ∈ JSK⋆ | ∀σ′ ∈ JSK⋆, σ ≺ σ′ =⇒ σ = σ′}

the traces ending in a final state:

{〈s0, . . . , sn〉 ∈ JSK⋆ | sn ∈ SF}

Example (same transition system, with SI = {a} and SF = {c}):

traces from an initial state ending in a final state:

{〈a, b, . . . , a, b, a, b, c〉}

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 13 / 76

Trace semantics Finite traces

Fixpoint definition for of the semantics of finite traces

We consider a transition system S = (S,→).
The semantics of finite traces can be defined as a least-fixpoint:

Finite traces semantics as a fixpoint

Let I = {〈s〉 | s ∈ S}. Let F⋆ by the function defined by:

F⋆ : P(S
⋆) −→ P(S⋆)

X 7−→ {〈s0, . . . , sn, sn+1〉 | 〈s0, . . . , sn〉 ∈ X ∧ sn → sn+1}

Then, F⋆ is continuous and thus has a least-fixpoint greater than I ;
moreover:

lfpIF⋆ = JSK⋆ =
⋃

n∈N

F n
⋆ (I)

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 14 / 76

Trace semantics Finite traces

Fixpoint definition: proof (1), fixpoint existence

First, we prove that F⋆ is continuous. Let X ⊆ P(S⋆). Then:

F⋆(
⋃

X∈X X)
= {〈s0, . . . , sn, sn+1〉 | (〈s0, . . . , sn〉 ∈

⋃

X∈X X) ∧ sn → sn+1}
= {〈s0, . . . , sn, sn+1〉 | (∃X ∈ X , 〈s0, . . . , sn〉 ∈ X) ∧ sn → sn+1}
= {〈s0, . . . , sn, sn+1〉 | ∃X ∈ X , 〈s0, . . . , sn〉 ∈ X ∧ sn → sn+1}
=

⋃

X∈X {〈s0, . . . , sn, sn+1〉 | 〈s0, . . . , sn〉 ∈ X ∧ sn → sn+1}
=

⋃

X∈X F⋆(X)

As (P(S⋆),⊆) is a CPO, the continuity of F⋆ entails the existence of a
least-fixpoint (Kleene theorem); moreover, it implies that:

lfpIF⋆ =
⋃

n∈N

F n
⋆ (I)

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 15 / 76

Trace semantics Finite traces

Fixpoint definition: proof (2), fixpoint equality

We now show that JSK⋆ is equal to lfpIF⋆, by showing the property below,
by induction over n:

〈s0, . . . , sn〉 ∈ F n
⋆ (I) ⇐⇒ 〈s0, . . . , sn〉 ∈ JSK⋆

at rank 0:
〈s〉 ∈ JSK⋆ ⇐⇒ s ∈ S

⇐⇒ 〈s〉 ∈ F 0
⋆ (I)

at rank n + 1, and assuming the property holds at rank n:

〈s0, . . . , sn, sn+1〉 ∈ JSK⋆

⇐⇒ 〈s0, . . . , sn〉 ∈ JSK⋆ ∧ sn → sn+1

⇐⇒ 〈s0, . . . , sn〉 ∈ F n
⋆ (I) ∧ sn → sn+1

⇐⇒ 〈s0, . . . , sn, sn+1〉 ∈ F n+1
⋆ (I)

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 16 / 76

Trace semantics Finite traces

Example

Example, with the same simple transition system S = (S,→):

S = {a, b, c , d}

→ is defined by a→ b, b → a and b → c

Then, the first iterates are:

F 0
⋆ = {〈a〉, 〈b〉, 〈c〉}

F 1
⋆ = {〈b, a〉, 〈a, b〉, 〈b, c〉}

F 2
⋆ = {〈a, b, a〉, 〈b, a, b〉, 〈a, b, c〉}

F 3
⋆ = {〈b, a, b, a〉, 〈a, b, a, b〉, 〈b, a, b, c〉}

F 4
⋆ = {〈a, b, a, b, a〉, 〈b, a, b, a, b〉, 〈a, b, a, b, c〉}

F 5
⋆ = . . .

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 17 / 76

Trace semantics Infinite traces

Semantics of infinite traces

So far, we do not really isolate non-terminating behaviors

We consider a transition system S = (S,→)

Definition

The infinite traces semantics JSKω is defined by:

JSKω = {〈s0, . . .〉 ∈ S
ω | ∀i , si → si+1}

Example:

contrived transition system defined by

S = {a, b, c , d} (→) = {(a, b), (b, a), (b, c)}

the infinite traces semantics contains only two traces

JSKω = {〈a, b, . . . , a, b, a, b, . . .〉, 〈b, a, . . . , b, a, b, a, . . .〉}

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 18 / 76

Trace semantics Infinite traces

Semantics of infinite traces: towards a fixpoint form

Can we also provide a fixpoint form for JSKω ?

Intuitively, 〈s0, s1, . . .〉 ∈ JSKω if and only if ∀i , si → si+1.
Let Fω be defined by:

Fω : P(Sω) −→ P(Sω)
X 7−→ {〈s0, s1, . . . , sn, . . .〉 | 〈s1, . . . , sn, . . .〉 ∈ X ∧ s0 → s1}

Then, we can show by induction that:

σ ∈ JSK⋆ ⇐⇒ ∀n ∈ N, σ ∈ F n
ω(S

ω)
⇐⇒

⋂

n∈N F n
ω(S

ω)

Note: backward expression of the finite traces semantics

With a similar definition of F⋆, JSK⋆ = lfpIF⋆:
F⋆(X) ::= {〈s0, s1, . . . , sn〉 ∈ S⋆ | 〈s1, . . . , sn〉 ∈ X ∧ s0 → s1}

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 19 / 76

Trace semantics Infinite traces

Duality principle

if ⊆ is an order relation, so is ⊇

all properties of ⊆ are inherited by ⊇, modulo some correspondance

basic order dual order

⊆ ⊇
∪ ∩
∩ ∪
⊥ ⊤

∪-continuous function ∩-continuous function
∩-continuous function ∪-continuous function

least-fixpoint (lfp) greatest-fixpoint (gfp)
greatest-fixpoint (gfp) least-fixpoint (lfp)

Thus, we can derive dual versions of Tarski’s theorem and Kleene’s theorem

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 20 / 76

Trace semantics Infinite traces

Fixpoint form of the semantics of infinite traces

Infinite traces semantics as a fixpoint

Let Fω by the function defined by:

Fω : P(Sω) −→ P(Sω)
X 7−→ {〈s0, s1, . . . , sn, . . .〉 | 〈s1, . . . , sn, . . .〉 ∈ X ∧ s0 → s1}

Then, Fω is ∩-continuous and thus has a greatest-fixpoint; moreover:

gfp
SωFω = JSKω

Proof sketch:

the ∩-contiunity proof is similar as for the ∪-continuity of F⋆

by the dual version of Kleene’s theorem, gfp
SωFω exists and is equal

to
⋂

n∈N F n
ω(S

ω), i.e. to JSKω (induction proof)

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 21 / 76

Trace semantics Infinite traces

Example

Example, with the same simple transition system:

S = {a, b, c , d}

→ is defined by a→ b, b → a and b → c

Then, the first iterates are:

F 0
ω = {〈a, s1, s2, . . .〉, 〈b, s1, s2, . . .〉, 〈c , s1, s2, . . .〉}

F 1
ω = {〈a, b, s2, s3, . . .〉, 〈b, a, s2, s3, . . .〉, 〈b, c , s2, s3, . . .〉}

F 2
ω = {〈b, a, b, s2, s3, . . .〉, 〈a, b, a, s2 , s3, . . .〉, 〈a, b, c , s2, s3, . . .〉}

F 3
ω = . . .

Intuition

at iterate n, prefixes of length n + 1 match the traces in the infinite
semantics

only 〈a, b, . . . , a, b, a, b, . . .〉 and 〈b, a, . . . , b, a, b, a, . . .〉 belong to all

iterates

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 22 / 76

Trace semantics Finite and infinite traces

Maximal traces semantics

The maximal traces semantics simply puts together the finite traces
semantics and the infinite traces semantics:

We consider a transition system S = (S,→)

Definition

The maximal traces semantics JSK∝ is the element of S∝ defined by:

JSK∝ = JSK⋆ ∪ JSKω

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 23 / 76

Trace semantics Finite and infinite traces

Example

Still same simple transition system:

S = {a, b, c , d}

→ is defined by a→ b, b → a and b → c

Then:

JSK∝ = { 〈a, b, . . . , a, b, a〉, 〈b, a, . . . , a, b, a〉,
〈a, b, . . . , a, b, a, b〉, 〈b, a, . . . , a, b, a, b〉,
〈a, b, . . . , a, b, a, b, c〉, 〈b, a, . . . , a, b, a, b, c〉
〈c〉
〈a, b, . . . , a, b, a, b, . . .〉, 〈b, a, . . . , b, a, b, a, . . .〉 }

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 24 / 76

Trace semantics Finite and infinite traces

Co-induction technique

Goal of the co-induction technique

how to set up a new fixpoint definition ?

we need to combine a least-fixpoint and a greatest-fixpoint

lattice: S∝, with the order relation ⊑∝ defined by

X ⊑∝ Y ⇐⇒

{

X ∩ S⋆ ⊆ Y ∩ S⋆

∧ X ∩ Sω ⊇ Y ∩ Sω

Join: X ⊔ Y = ((X ∩ S⋆) ∪ (Y ∩ S⋆)) ∪ ((X ∩ Sω) ∩ (Y ∩ Sω))
assumptions: we assume F⋆ and Fω defined as before
semantic function F∝ defined by:

F∝ : P(S∝) −→ P(S∝)
X 7−→ F⋆(X ∩ S⋆) ∪ Fω(X ∩ Sω)

We could also let
F∝(X) = {〈s0, s1, . . . , sn, . . .〉 | 〈s1, . . . , sn, . . .〉 ∈ X ∧ s0 → s1}

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 25 / 76

Trace semantics Finite and infinite traces

Fixpoint form of the maximal trace semantics

We have the following properties:

(S∝,⊑∝,⊔∝) is a complete lattice

F∝ is ⊔∝-continuous

thus, it has a least-fixpoint greater than I = {〈s〉 | s ∈ S};
furthermore:

lfpIF∝ ∩ S⋆ = lfpIF⋆

lfpIF∝ ∩ Sω = gfpFω

lfpIF∝ = lfpIF⋆ ∪ gfpFω

Therefore:

Fixpoint definition of JSK∝

JSK∝ = lfpIF∝

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 26 / 76

Trace semantics Abstraction relations

Finite traces as an abstraction

we have defined three semantics; how to relate them ? can this be
done in a constructive manner ?

abstract interpretation allows to define relation between semantics !

The finite semantics discards the infinite executions

Finite traces abstraction

We define α⋆, γ⋆ by:
α⋆ : P(S

∝) −→ P(S⋆)
X 7−→ X ∩ S⋆

γ⋆ : P(S
⋆) −→ P(S∝)

Y 7−→ Y ∪ Sω

Then:

these define a Galois connection (P(S∝),⊆) −−−→←−−−
α⋆

γ⋆
(P(S⋆),⊆)

moreover, α⋆(JSK∝) = JSK⋆

Proof: ∀X ∈ P(S∝),Y ∈ P(S⋆), α⋆(X) ⊆ Y ⇐⇒ X ⊆ γ⋆(Y)

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 27 / 76

Trace semantics Abstraction relations

Fixpoint transfer

We can actually make this statement more constructive

Exact fixpoint transfer

Let (D0,⊑0) and (D1,⊑1) be two domains, let α, γ be a pair of adjoint

functions defining a Galois connection (D0,⊑0) −−−→←−−−α

γ
(D1,⊑1).

Let F0 : D0 → D0, F1 : D1 → D1 and x0 ∈ D0, x1 ∈ D1, such that:

F0 is continuous

F1 is monotone

α ◦ F0 = F1 ◦ α

α(x0) = x1

Then:

both F0 and F1 have a least-fixpoint (Tarski’s fixpoint theorem)

α(lfpx0
F0) = lfpx1

F1

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 28 / 76

Trace semantics Abstraction relations

Fixpoint transfer: proof

α(lfpF0) is a least-fixpoint of F1 since:

F1(α(lfpF0)) = α(F0(lfpF0)) since α ◦ F0 = F1 ◦ α
= α(lfpF0) by definition of the fixpoints

to show that α(lfpF0), we assume that X is another fixpoint of F1 and
we show that α(lfpF0) ⊑1 X , i.e., that lfpF0 ⊑0 γ(X);
as lfpF0 =

⋃

n∈N F n
0 (x0), it amounts to proving that

∀n ∈ N, F n
0 (x0) ⊑0 γ(X);

by induction over n:
◮ F 0

0
(x0) = x0, thus α(F 0

0
(x0)) = x1 ⊑0 γ(X);

◮ let us assume that F
n

0
(x0) ⊑0 γ(X), and let us show that

F
n+1

0
(x0) ⊑0 γ(X), i.e. that α(F n+1

0
(x0)) ⊑1 X :

α(F n+1

0
(x0)) = α ◦ F0(F

n

0 (x0)) = F1 ◦ α(F
n

0 (x0)) ⊑1 F1(X) = X

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 29 / 76

Trace semantics Abstraction relations

Application of the fixpoint transfer

All assumptions are satisfied:

α⋆, γ⋆ define a Galois connection between (P(S∝),⊆) and (P(S⋆),⊆)

α⋆(I) = I

F∝ is continuous

F⋆ is continuous, hence montone

F⋆ ◦ α⋆ = α⋆ ◦ F∝

This gives another proof of the abstraction relation:

Abstraction relation

α⋆(JSK∝) = α⋆(lfpIF∝) = lfpIFω = JSKω

The constructive proof ties very closely the iterates
i.e., the way the semantics are computed

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 30 / 76

Trace semantics Abstraction relations

Infinite traces as an abstraction

The same reasoning can be applied to the infinite traces semantics:

Infinite traces abstraction

We define αω, γω by:
αω : P(S∝) −→ P(Sω)

X 7−→ X ∩ Sω

γω : P(Sω) −→ P(S∝)
Y 7−→ Y ∪ S⋆

Then:

these define a Galois connection (P(S∝),⊆) −−−→←−−−
αω

γω
(P(Sω),⊆)

moreover, αω(JSK∝) = JSKω

the fixpoint transfer also holds: αω ◦ F∝ = Fω ◦ αω, F∝ is continuous
and Fω is continuous, hence monotone

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 31 / 76

Trace semantics Abstraction relations

Towards a hierarchy of semantics

So far, we have:

three forms of operational semantics

two abstraction relations

JSK⋆ JSKω

JSK∝
α⋆ αω

We can actually build lattices of semantics:
“greater” means “more abstract than”
See [C’97]

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 32 / 76

Denotational semantics

Outline

1 Transition systems

2 Trace semantics

3 Denotational semantics
Denotational semantics and finite behaviors
Reachable states
Denotational semantics and infinite behaviors

4 Semantic properties

5 Concluding remarks

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 33 / 76

Denotational semantics Denotational semantics and finite behaviors

Denotational semantics: definition

operational (trace) semantics is very precise:
it records all the history of all executions of the system

this may be too precise in many cases, e.g., when the history is not
relevant

we first focus on the finite behaviors

we consider transition system S = (S,→)

Finite denotational semantics [ST’71]

The denotational semantics JSK∂ is the function

JSK∂ : S −→ P(S)
s 7−→ {s ′ ∈ S | s →⋆ s ′}

Semantic domain: D∂ = S→ P(S), with the pointwise extension of ⊆

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 34 / 76

Denotational semantics Denotational semantics and finite behaviors

Example

Another contrived transition system S = (S,→) defined by:

S = {a, b, c , d}

a→ b, c → c , c → d

Then:
JSK∂ : a 7−→ {a, b}

b 7−→ {b}
c 7−→ {c , d}
d 7−→ {d}

Observations

much more compact than the operational semantics

the execution history is effectively left behind

the semantics makes no difference between one step and a sequence of
any number of steps (as observed from state c)

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 35 / 76

Denotational semantics Denotational semantics and finite behaviors

Denotational abstraction

We can obviously derive JSK∂ from JSK⋆

Definition of the denotational abstraction

Let α∂ , γ∂ be the functions defined by

α∂ : P(S⋆) −→ D∂

X 7−→ λs0 · {sn ∈ S | ∃σ = 〈s0, . . . , sn〉 ∈ X}
γ∂ : D∂ −→ P(S⋆)

Ψ 7−→ {〈s0, . . . , sn〉 | sn ∈ Ψ(s0)}

These functions form a Galois connection

(P(S⋆),⊆) −−−→←−−−
α∂

γ∂
(D∂ ,

.
⊆)

Proof: straightforward computation

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 36 / 76

Denotational semantics Denotational semantics and finite behaviors

Denotational semantics as an abstraction

Abstraction relation

Following the definitions of J.K∂ , J.K
⋆ and α∂ :

JSK∂ = α∂(JSK⋆)

Other similar kinds of abstractions:

Relational semantics

Pre-conditions (e.g., weakest pre-conditions semantics)

See [C’97]

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 37 / 76

Denotational semantics Denotational semantics and finite behaviors

Fixpoint definition

Can JSK∂ be constructively defined ? Yes, fixpoint transfer!

With the notations used so far for S, its semantics and semantic functions,
and with X ∈ P(S⋆),

α∂ ◦ F⋆(X) = λ(s ∈ S) · {s ′ ∈ S | ∃〈s, . . . , s ′〉 ∈ F⋆(X)}
= λ(s0 ∈ S) · {sn+1 ∈ S | ∃〈s0, . . . , sn〉 ∈ X ∧ sn → sn+1}
= λ(s0 ∈ S) · {sn+1 ∈ S | ∃sn ∈ α∂(X), sn → sn+1}
= F∂ ◦ α∂(X)

where:
F∂ : D∂ −→ D∂

Ψ 7−→ λ(s ∈ S) · {s ′ ∈ S | s → s ′}

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 38 / 76

Denotational semantics Denotational semantics and finite behaviors

Fixpoint form of the denotational semantics

We remark that:

(P(S⋆),⊆) and (D∂ ,
.
⊆) are complete lattices

α∂ , γ∂ define a Galois connection betwee these lattices

F⋆ is continuous

F∂ is continuous, hence monotone

α∂ ◦ F⋆ = F∂ ◦ α∂

α∂(I) = α∂({〈s〉 | s ∈ S}) = λ(s ∈ S) · {s}
(we write I for the identity function)

Therefore, by fixpoint transfer:

Denotational semantics as a fixpoint

JSK∂ = α∂(JSK⋆) = α∂(lfpIF⋆S) = lfp
I
F∂

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 39 / 76

Denotational semantics Denotational semantics and finite behaviors

Applications

The choice of the concrete semantics is tied to the properties to analyze

Denotational semantics is a good basis for:

modular analyses, based on the abstraction of input-output relations

typing analyses: types are an abstraction of the denotational semantics

whenever intermediate states are not relevant, it is helpful to abstract
them

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 40 / 76

Denotational semantics Reachable states

Reachable states abstraction

We consider a transition system S = (S,→,SI)

Definition

We let αR be defined by:

αR : D∂ −→ P(S)
Φ 7−→ Φ(SI)

γR : P(S) −→ D∂

X 7−→ λ(s ∈ S) ·

{

X if s ∈ SI

S otherwise

Then, we have a Galois connection (D∂ ,
.
⊆) −−−−→←−−−−

αR

γR
(P(S),⊆).

We let:

JSKR = αR(JSK∂) = {sn ∈ S | ∃s0 ∈ SI , 〈s0, . . . , sn〉}

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 41 / 76

Denotational semantics Reachable states

Example

Example, with the simple transition system S defined by:

S = {a, b, c , d}

→ is defined by a→ b, b → a and b → c

SI = {a}

Then, the reachable states are:

JSKR = {a, b, c}

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 42 / 76

Denotational semantics Reachable states

Composition of Galois connections

Composition property

Let (D0,⊑0), (D1,⊑1) and (D2,⊑2) be three abstract domains, and let us
assume the Galois connections below are defined:

(D0,⊑0) −−−−→←−−−−
α01

γ10
(D1,⊑1) (D1,⊑1) −−−−→←−−−−

α12

γ21
(D2,⊑2)

Then, we have a third Galois connection

(D0,⊑0) −−−−−−−→←−−−−−−−
α12◦α01

γ10◦γ21
(D2,⊑2)

Proof: if x0 ∈ D0, x2 ∈ D2, then
α12 ◦ α01(x0) ⊑2 x2 ⇐⇒ α01(x0) ⊑1 γ21(x2) ⇐⇒ x0 ⊑0 γ10 ◦ γ21(x2)

Application

JSKR is also an abstraction of JSK⋆

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 43 / 76

Denotational semantics Reachable states

Fixpoint form of the reachable states abstraction

Fixpoint definition

We let FR be defined by:

FR : P(S) −→ P(S)
X 7−→ {s ∈ S | ∃s ′ ∈ X , s ′ → s}

Then, FR is continuous, has a least fixpoint and

JSKR = lfp
SI

FR

Proof: exercise

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 44 / 76

Denotational semantics Denotational semantics and infinite behaviors

Infinite denotational semantics

(finite) denotational semantics maps inputs to outputs
infinite operational semantics collects infinite executions

◮ infinite traces have no output state...
◮ ... so, at the “denotational level”: begins of infinite traces

Can we propose an infinite counterpart to the denotational semantics ?

Definition

We define α∂ω, γ∂ω by:

α∂ω : P(Sω) −→ P(S)
X 7−→ {s ∈ S | ∃〈s, s1, s2, . . .〉 ∈ X}

γ∂ω : P(S) −→ P(Sω)
X 7−→ Xω

These form a Galois connection (P(Sω),⊆) −−−−→←−−−−
α∂ω

γ∂ω
(P(S),⊆)

Then JSK∂ω = α∂ω(JSKω)

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 45 / 76

Denotational semantics Denotational semantics and infinite behaviors

Denotational semantics for both finite and infinite behaviors

Many other kinds of semantics can be defined:

denotational semantics for both finite and infinite behaviors

same for other forms of semantics

Lattice of abstractions

abstraction is a pre-order relation among semantics

these semantics can be compared by abstraction

they form a lattice of semantics [C’97]

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 46 / 76

Semantic properties

Outline

1 Transition systems

2 Trace semantics

3 Denotational semantics

4 Semantic properties
State properties
Safety properties
Liveness properties
Decomposition of properties
Beyond safety and liveness

5 Concluding remarks

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 47 / 76

Semantic properties

Semantic properties of programs

Second part of the lecture:

how to formalize properties that we want to verify about programs ?

how does this choice impact the choice of a base semantics, of
abstractions, and of analysis ?

Examples of semantics properties

is the program exempt of runtime errors ?

does the program compute the expected result ?

does the program terminate ?

does the program terminate in less than t seconds ?

do program execution leak any secrete information ?

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 48 / 76

Semantic properties State properties

State properties

As usual, we consider S = (S,→,SI)

First approach: properties as sets of states

a property P is a set of states P ⊆ S

P is satisfied if and only if all reachable states belong to P, i.e.,
JSKR ⊆ P

Examples:

absence of runtime errors:

P = S \ {Ω} where Ω is the error state

non termination (e.g., operating system):

P = {s ∈ S | ∃s ′ ∈ S, s → s ′}

(set of non blocking states)

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 49 / 76

Semantic properties State properties

Verification of state properties

Invariance proof method, soundness and completeness

Considering state property P, S satisfies P if and only if there exists a set
of states I called invariant such that

SI ⊆ I

∀s ∈ I, ∀s ′ ∈ S, (s → s ′) =⇒ s ′ ∈ I

I ⊆ P

Proof:

soundness: if there exists such a I, we can show by induction that
JSKR ⊆ I, hence JSKR ⊆ P

completness: if P holds, I = S \ P works

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 50 / 76

Semantic properties Safety properties

Trace properties

Second approach: properties as sets of traces

a property T is a set of traces: T ⊆ S∝

T is satisfied if and only if all traces belong to T , i.e., JSK∝ ⊆ T

Examples:

obviously, state properties are trace properties

functional properties
e.g., “program P takes one integer input x and returns its absolute
value”

termination: T = S⋆ (i.e., the system should have no infinite
execution)

There is a wide range of trace properties, how to classify them ?
⇒ we are going to see two important families of properties

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 51 / 76

Semantic properties Safety properties

A monotony property

Remark

If:

T is a trace property

system S0 satisfies T

system S1 has fewer behaviors than S0

(i.e., JS1K
∝ ⊆ JS0K

∝)

Then S1 also satisfies T

Proof: trivial composition of inclusions

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 52 / 76

Semantic properties Safety properties

Safety properties

Intuition:

a safety property is a property which specifies that some (bad) thing
will never occur

it is possible to disprove a safety property with a single, finite trace

absence of runtime errors is a safety property (“bad thing”: error)

state properties is a safety property (“bad thing”: reaching S \ P)

non termination is a safety property (“bad thing”: reaching a
blocking state)

“not reaching state b after visiting state a” is a safety property
(and not a trace property)

termination is not a safety property

We intend to provide a formal definition of safety

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 53 / 76

Semantic properties Safety properties

Some operators on sets of traces: prefix closure

Prefix closure

We write σ⌈i for the prefix of length i of trace σ:

〈s0, . . . , sn〉⌈i+1 =

{

〈s0, . . . , si 〉 if i ≤ n

〈s0, . . . , sn〉 otherwise

The prefix closure operator is defined by:

PCl : P(S∝) −→ P(S⋆)
X 7−→ {σ⌈i | σ ∈ X , i ∈ N}

Properties:

PCl is monotone

PCl is idempotent, i.e., PCl ◦ PCl(X) = PCl(X)

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 54 / 76

Semantic properties Safety properties

Some operators on sets of traces: limit

Limit

The limit operator is defined by:

Lim : P(S∝) −→ P(S∝)
X 7−→ X ∪ {σ ∈ S∝ | ∀i ∈ N, σ⌈i ∈ X}

Properties:

Lim is extensive, monotone and idempotent
(i.e., it defines an upper closure operator over P(S∝))

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 55 / 76

Semantic properties Safety properties

Safety: formal definition

An upper closure operator

Operator Safe is defined by Safe = Lim ◦ PCl.
It is an upper closure operator over P(S∝)

Proof:

it is monotone and idempotent as Lim and PCl are

it is extensive; indeed if X ⊆ S∝ and σ ∈ X , we can show that
σ ∈ Safe(X):

◮ if σ is a finite trace, it is one of its prefixes, so
σ ∈ PCl(X) ⊆ Lim(PCl(X))

◮ if σ is an infinite trace, all its prefixes belong to PCl(X), so
σ ∈ Lim(PCl(X))

Safety: definition [AS’87]

A trace property T is a safety property if and only if Safe(T) = T

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 56 / 76

Semantic properties Safety properties

Example

Let us consider state property P.
It is equivalent to trace property T = P∝:

Safe(T) = Lim(PCl(P∝))
= Lim(P⋆)
= P⋆ ∪ Pω

= P∝

= T

Therefore T is indeed a safety property

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 57 / 76

Semantic properties Safety properties

Example

We assume that:

S = {a, b}

T states that a should not be visited after state b is visited; elements
of T are of the general form

〈a, a, a, . . . , a, b, b, b, b, . . .〉 or 〈a, a, a, . . . , a, a, . . .〉

Then:

PCl(T) elements are all finite traces which are of the above form (i.e.,
made of n occurrences of a followed by m occurrences of b, where
n,m are positive integers)

Lim(PCl(T)) adds to this set the trace made made of infinitely many
occurrences of a and the infinite traces made of n occurrences of a

followed by infinitely many occurrneces of b

thus, Safe(T) = Lim(PCl(T)) = T

Therefore T is a safety property
Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 58 / 76

Semantic properties Safety properties

A characterization

Property

A safety properties T can be disproved by looking only at finite
behaviors:

∀σ ∈ S
∝, (σ 6∈ T)⇐⇒ (∃i , σ⌈i 6∈ T)

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 59 / 76

Semantic properties Safety properties

Proof by invariance

We consider transition system S = (S,→,SI ,SF), and safety property T

Principle of invariance proofs

Let I be a set of finite traces; it is said to be an invariant if and only if:

∀s ∈ SI , 〈s〉 ∈ I

F⋆(I) ⊆ I

It is stronger than T if and only if I ⊆ T

Other lectures of this course:
how to calculate the invariant by abstract interpretation ?

Soundness and completeness

The invariance proof method is sound and complete for safety properties:
JSK∝ satisfies T if and only if we can find an invariant for S, which is
stronger than T

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 60 / 76

Semantic properties Safety properties

Proof

Soundness:
we assume that I is an invariant of S and that it is stronger than T ,
and we show that S satisfies T ;

◮ by induction over n, we can prove that F n

⋆
(I) ⊆ F n

⋆
(I) ⊆ I

◮ therefore JSK⋆ ⊆ I

◮ we remark that JSK∝ = Safe(JSK⋆)
◮ thus, JSK∝ = Safe(I) ⊆ Safe(T) since Safe is monotone
◮ T is a safety property so Safe(T) = T
◮ we conclude JSK∝ ⊆ T , i.e., S satisfies property T

Completeness: we assume that JSK∝ satisfies T
then, I = JSK∝ is an invariant of S by definition of J.K∝, and it is
stronger than T

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 61 / 76

Semantic properties Liveness properties

Liveness properties

Intuition:

a liveness property is a property which specifies that some (good)
thing will eventually occur

it is not possible to disprove a liveness property by looking at finite
traces only
i.e., it requires reasoning about infinite behaviors

termination is a liveness property (“good thing”: reaching a blocking
state)

“state a will eventually be reached by all execution” is a liveness
property

absence of runtime errors is not a liveness property

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 62 / 76

Semantic properties Liveness properties

Liveness: formal definition

Formal definition [AS’87]

Operator Live is defined by Live(T) = T ∪ (Sω \ Safe(T)). Given
property T , the following three statements are equivalent:

(i) Live(T) = T

(ii) PCl(T) = S⋆

(iii) Lim ◦ PCl(T) = Sω

When they are satisfied, T is said to be a liveness property

Example: termination

the property is T = S⋆

(i.e., there should be no infinite execution)

clearly, it satisfies (ii): PCl(T) = S⋆

thus termination indeed satisfies this definition

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 63 / 76

Semantic properties Liveness properties

Formal definition

Proof of equivalence:

(i) implies (iii):
we assume that Live(T) = T , i.e., T ∪ (Sω \ Safe(T)) = T
therefore, Sω \ Safe(T) ⊆ T ;
let σ ∈ S⋆, and let us show that σ ∈ PCl(T):
let σ′ ∈ Sω; then σ · σ′ ∈ Sω, thus:

◮ either σ · σ′ ∈ Safe(T) = Lim(PCl(T)), so all its prefixes are in
PCl(T) and σ ∈ PCl(T)

◮ or σ · σ′ ∈ T , which means that σ ∈ PCl(T)

(ii) implies (iii):
if PCl(T) = S⋆, then Lim ◦ PCl(T) = Sω

(iii) implies (i):
if Lim ◦ PCl(T) = Sω, then
Live(T) = T ∪ (Sω \ (T ∪ Lim ◦ PCl(T))) = T ∪ (Sω \ Sω) = T

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 64 / 76

Semantic properties Liveness properties

Proof by variance

We consider transition system S = (S,→,SI), and safety property T

Principle of variance proofs

Let (In)n∈N , Iω be elements of S∝; these are said to form a variance proof
of T if and only if:

S∝ ⊆ I0

for all k ∈ {1, 2, . . . , ω}, ∀s ∈ S, 〈s〉 ∈ Ik

for all k ∈ {1, 2, . . . , ω}, there exists l < k such that Fω(Il) ⊆ Ik

Iω ⊆ T

Soundness and completeness

The variance proof method is sound and complete for liveness properties:
JSK∝ satisfies T if and only if we can find (In)n∈N and Iω satisfying the
above conditions

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 65 / 76

Semantic properties Decomposition of properties

Decomposition theorem

Theorem

Let T ⊆ S∝; it can be decomposed into the conjunction of safety
property Safe(T) and liveness property Live(T):

T = Safe(T) ∩ Live(T)

Proof:

Safe(T) ∩ Live(T) = (S∝ \ Safe(T) ∪ T) ∩ Safe(T)
= (S∝ \ Safe(T) ∩ Safe(T)) ∪ (T ∩ Safe(T))
= T

Application: any trace property can be decomposed

Proofs can also be decomposed (Floyd)
prove Safe(T) by invariance and prove Live(T) by variance

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 66 / 76

Semantic properties Beyond safety and liveness

Interference, non interference

Assumptions:

states are of the form (l ,m) ∈ L×M

memory states are of the form X→ V

Let l , l ′ ∈ L and x , x ′ ∈ X

Definition

We say x ′ at l ′ depends on x at l if and only if observing the values of x ′ at
point l ′ allows to gain information about the value x took at point l , before
reaching point l ′

Applications:

security: can sensitive information x be leaked to a non trusted agent
who gets to see x ′

dependences: what part of the program should be considered to
understand the value of x ′ (this question arises in program
understanding techniques, slicing...)

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 67 / 76

Semantic properties Beyond safety and liveness

Interference, non interference

We seek for a more rigorous definition of property “x ′ at point l ′ depends
on x at point l ”:

Formal definition: interference

We derive function Φl ,l ′ from the denotational semantics of the system:

Φl ,l ′(ψ) : M −→ P(M)
m 7−→ {m ∈ M | (l ′,m ′) ∈ ψ(l ,m)}

We write (l ′, x ′) (l , x) if and only if there exist two memory states
m0,m1 such that:

for all variable y 6= x , m0(y) = m1(y)
(i.e., m0 and m1 may differ only on x)

Φl ,l ′(JSK∂)(m0)(x
′) 6= Φl ,l ′(JSK∂)(m1)(x

′)
(i.e., output values of x ′ are different)

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 68 / 76

Semantic properties Beyond safety and liveness

Interference, non interference

We seek for a more rigorous definition of property “x ′ at point l ′ does not
depend on x at point l ”:

Formal definition: non interference

We derive function Φl ,l ′ from the denotational semantics of the system:

Φl ,l ′(ψ) : M −→ P(M)
m 7−→ {m ∈ M | (l ′,m ′) ∈ ψ(l ,m)}

We write (l ′, x ′) 6 (l , x) if and only if, for all pair of memory states m0,m1

such that for all variable y 6= x , m0(y) = m1(y) (i.e., m0 and m1 may differ
only on x), then Φl ,l ′(JSK∂)(m0)(x

′) = Φl ,l ′(JSK∂)(m1)(x
′) (i.e., output

values observed for x ′ are similar).

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 69 / 76

Semantic properties Beyond safety and liveness

Non interference is not a trace property

we assume V = {0, 1} and X = {x , y}

we assume L = {l , l ′} and consider systems such that all transitions
are of the form (l ,m)→ (l ′,m ′)
(i.e., the systems are isomorphic to Φl ,l ′)

we write (vx , vy) for the m ∈ M such that m(x) = vx and m(y) = vy

Φ0
l ,l ′(S0) : (0, 0) 7−→ M

(0, 1) 7−→ M

(1, 0) 7−→ M

(1, 1) 7−→ M

Φ0
l ,l ′(S1) : (0, 0) 7−→ M

(0, 1) 7−→ M

(1, 0) 7−→ {(1, 1)}
(1, 1) 7−→ {(1, 1)}

S0 has the non-interference property, but S0 does not

S1 has fewer behavior than S0

thus, the non interference property is not a trace property

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 70 / 76

Semantic properties Beyond safety and liveness

Interference is not a trace property

Φ0
l ,l ′(S0) : (0, 0) 7−→ M

(0, 1) 7−→ M

(1, 0) 7−→ {(1, 1)}
(1, 1) 7−→ {(1, 1)}

Φ0
l ,l ′(S1) : (0, 0) 7−→ {(1, 1)}

(0, 1) 7−→ {(1, 1)}
(1, 0) 7−→ {(1, 1)}
(1, 1) 7−→ {(1, 1)}

S0 has the interference property, but S0 does not

S1 has fewer behavior than S0

thus, the interference property is not a trace property

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 71 / 76

Semantic properties Beyond safety and liveness

Interference and non-interference not trace properties

interference and non interference cannot be observed on a single
trace

to exhibit interference or non-interference, we need to consider at least
two traces
it is not possible to say a trace satisfies the property independently
from the other executions of the program

interference and non interference are not trace properties

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 72 / 76

Semantic properties Beyond safety and liveness

Hyperproperties

Definition [CS’08]

A hyperproperty is a set of sets traces, i.e. an element of

P(P(S∝))

Transition system satisfies hyperproperty H if and only if JSK⋆ ∈ H

trace property T is a hyperproperty H = {T ′ ∈ P(S∝) | T ⊆ T ′}

non interference is a hyperproperty:

H = {X ∈ P(S∝) | ∀m ∈ M, v , v ′ ∈ V,

Φl ,l ′(α∂(JSK∝))(m[x ← v])(x ′)
= Φl ,l ′(α∂(JSK∝))(m[x ← v ′])(x ′)}

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 73 / 76

Concluding remarks

Outline

1 Transition systems

2 Trace semantics

3 Denotational semantics

4 Semantic properties

5 Concluding remarks

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 74 / 76

Concluding remarks

Main items to remember

Semantics can be compared by abstract interpretation
◮ precision: more abstract means less precise, less verbose
◮ computation: fixpoint transfers produce constructive definitions
◮ constructive definitions are a good basis for static analysis

Semantic properties can be classified in various groups
This classification can serve as a guidance:

◮ to discover what is hard to reason about
◮ to select the right concrete semantics

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 75 / 76

Concluding remarks

Bibliography: semantics and abstraction

[C’97]: Constructive Design of a Hierarchy of Semantics of a
Transition System by Abstract Interpretation.
Patrick Cousot.
In Electronic Notes in Theoretical Computer Science, 6 (1997)

[ST’71]: Towards a mathematical semantics of computer
languages.
Dana Scott and Christopher Strachey
In Symposium on Computers and Automata, 1971.

[AS’87]: Recognizing Safety and Liveness.
Bowen Alpern and Fred B. Schneider.
In Distributed Computing, Springer, 1987.

[CS’08]: Hyperproperties.
Michael R. Clarkson and Fred B. Schneider.
In IEEE Computer Security Symposium, 2008.

Xavier Rival (INRIA, ENS, CNRS) Semantics and properties Jan, 6th. 2012 76 / 76

	Transition systems
	Trace semantics
	Finite traces
	Infinite traces
	Finite and infinite traces
	Abstraction relations

	Denotational semantics
	Denotational semantics and finite behaviors
	Reachable states
	Denotational semantics and infinite behaviors

	Semantic properties
	State properties
	Safety properties
	Liveness properties
	Decomposition of properties
	Beyond safety and liveness

	Concluding remarks

