Combination of Abstract Domains

MPRI - Cours 2.6 "Interprétation abstraite : application à la vérification et à l'analyse statique"

Xavier Rival
INRIA, ENS, CNRS

Nov, 2nd. 2012

Overview of the lecture

- Construction of abstract semantics a step-by-step process from basic abstractions
- numerical abstractions
- conjunctions of abstract properties: product
- disjunctions of abstract properties: disjunctive completion, partitioning
- Decomposing abstraction has many advantages:
- modular design of static analyzers: split into several different abstractions
- flexibility of the resulting tools: better scalability, extensibility to broader analysis setups
- Also, we will get a better understanding of abstract domain properties: reduction

An example

How to verify the following program?

```
int i = 0;
// integer variable
bool b; // boolean variable
while(i<10){
    i = i + 2;
    b}=\operatorname{brand}()
    if(b){
        break;
    }
}
assert(b \vee i == 10); // assertion to prove
```

- We want to do an abstract interpretation of the code
- First, we need to construct an abstract domain

Hoare proof and choice of an abstract domain

```
        int \(\mathrm{i}=0\);
\(\{i=0\}\)
    bool b;
\(\{i=0\}\)
    while \((i<10)\{\)
\(\{0 \leq \mathrm{i} \leq 8 \wedge \mathrm{i} \equiv 0(2)\}\)
        \(i=i+2\);
\(\{2 \leq \mathrm{i} \leq 10 \wedge \mathrm{i} \equiv 0(2)\}\)
    \(\mathrm{b}=\operatorname{brand}()\);
\(\{2 \leq \mathrm{i} \leq 10 \wedge \mathrm{i} \equiv 0(2)\}\)
    if(b) \(\{\)
\(\{2 \leq \mathrm{i} \leq 10 \wedge \mathrm{i} \equiv 0(2) \wedge \mathrm{b}=\) TRUE \(\}\)
        break;
\{\}
    \}
\(\{2 \leq \mathrm{i} \leq 10 \wedge \mathrm{i} \equiv 0(2) \wedge \mathrm{b}=\) FALSE \(\}\)
    \}
\(\{b=\operatorname{TRUE} \vee i=10\}\)
    assert( \(\mathrm{b} \vee \mathrm{i}==10\) );
```


Abstract interpretation

Which abstract domain ?
We need:

- interval constraints
- congruences constraints
- conjunctions
- disjunctions
- This lecture shows how to build such a domain using combinations of basic abstract domains

A first (de)composition: function composition

Flashback: composition of Galois connections

Let $\left(\mathbb{D}_{0}, \sqsubseteq_{0}\right),\left(\mathbb{D}_{1}, \sqsubseteq_{1}\right)$ and $\left(\mathbb{D}_{2}, \sqsubseteq_{2}\right)$ be three abstract domains, and let us assume the Galois connections below are defined:

$$
\left(\mathbb{D}_{0}, \sqsubseteq_{0}\right) \underset{\alpha_{01}}{\stackrel{\gamma_{10}}{\leftrightarrows}}\left(\mathbb{D}_{1}, \sqsubseteq_{1}\right) \quad\left(\mathbb{D}_{1}, \sqsubseteq_{1}\right) \underset{\alpha_{12}}{\stackrel{\gamma_{21}}{\leftrightarrows}}\left(\mathbb{D}_{2}, \sqsubseteq_{2}\right)
$$

Then, we have a third Galois connection

$$
\left(\mathbb{D}_{0}, \sqsubseteq_{0}\right) \underset{\alpha_{12} \alpha_{01}}{\stackrel{\gamma_{10} \gamma_{21}}{\leftrightarrows}}\left(\mathbb{D}_{2}, \sqsubseteq_{2}\right)
$$

We can generalize this principle:

Composition of concretization functions

If $\gamma_{21}: \mathbb{D}_{2} \rightarrow \mathbb{D}_{1}$ (resp., $\gamma_{10}: \mathbb{D}_{1} \rightarrow \mathbb{D}_{0}$) describe concretization functions from $\left(\mathbb{D}_{2}, \sqsubseteq_{2}\right)$ to $\left(\mathbb{D}_{1}, \sqsubseteq_{1}\right)$ (resp., from $\left(\mathbb{D}_{1}, \sqsubseteq_{1}\right)$ to $\left(\mathbb{D}_{0}, \sqsubseteq_{0}\right)$), then $\gamma_{20}=\gamma_{10} \circ \gamma_{21}$ describes a concretization from $\left(\mathbb{D}_{2}, \sqsubseteq_{2}\right)$ to $\left(\mathbb{D}_{0}, \sqsubseteq_{0}\right)$

Decomposition of abstract domains

We inspect the predicates needed in the Hoare proof:

- One invariant per control point:
- already seen informally in previous lectures
- different control states need be abstracted separately
- partitioning abstraction
- $\{0 \leq i \leq 8 \wedge i \equiv 0(2)\}$:
- conjunction of an interval constraint and of a congruence constraint
- expressible in a product of abstractions
- $\{\mathrm{b}=$ TRUE $\vee \mathrm{i}=10\}$:
- disjunction of constraints
- several ways to express this:
state partitioning, trace partitioning

Notations and definitions: concrete level

Concrete states

Concrete states are of the form $\mathbb{S}=\mathbb{L} \times \mathbb{M}$

- \mathbb{L} is the set of labels or control states
- M is the set of memory states

Moreover, $\mathbb{M}=\mathbb{X} \rightarrow \mathbb{V}$, where:

- \mathbb{X} is the set of variables
- V is the set of values

We will use several concrete semantics during this lecture:

- finite traces semantics $\llbracket \mathbb{S} \rrbracket^{\star} \in \mathcal{P}\left(\mathbb{S}^{\star}\right)$
- reachable states semantics $\llbracket \mathbb{S} \rrbracket_{\mathcal{R}} \in \mathcal{P}(\mathbb{S})$

Notations and definitions: abstract level

We shall use abstract-domains to over-approximate sets of concrete values, sets of states, sets of traces

Abstract domain definitions

An abstract domain will comprise a set of abstract values \mathbb{D}^{\sharp} and:

- a concretization function γ and optionnally an abstraction α
- an abstract order \sqsubseteq^{\sharp}, an abstract infimum \perp
- an abstract upper bound \sqcup^{\sharp}, and a widening operator ∇
- abstract transfer functions $\mathfrak{f}^{\sharp}, \mathfrak{g}^{\sharp}, \ldots$ associated to common concrete operations
- These allow defining static analyses computing abstract least-fixpoints or abstract post-fixpoints

When we build composite abstract domains from basic ones, we will assume / ensure such elements

Outline

(1) Introduction
(2) Abstraction of partitioned systems
(3) Product of abstractions

4 Reduction and application to reduced product
(5) Reduced cardinal power abstraction
(6) State partitioning, trace partitioning
(7) Concluding remarks

Partitioning of an abstraction

Partitioning abstraction

Given set E and partition \mathfrak{P} of E, we let the partitioning abstraction over E be defined by:

$$
\begin{array}{rll}
\alpha_{\text {part }}: & \mathcal{P}(E) & \longrightarrow(\mathfrak{P} \rightarrow \mathcal{P}(E)) \\
& X & \longmapsto \lambda(p \in \mathfrak{P}) \cdot(p \cap X) \\
\gamma_{\text {part }}: & (\mathfrak{P} \rightarrow \mathcal{P}(E)) & \longrightarrow \mathcal{P}(E) \\
& \longmapsto & \longmapsto \bigcup_{p \in \mathfrak{P}} \Phi(p)
\end{array}
$$

It indeed forms a Galois connection:

$$
(\mathcal{P}(E), \subseteq) \underset{\alpha_{\text {part }}}{\stackrel{\gamma_{\text {part }}}{\leftrightarrows}}(\mathfrak{P} \rightarrow \mathcal{P}(E), \dot{\subseteq})
$$

Proof: $\alpha_{\text {part }}(X) \subseteq \Phi \Longleftrightarrow X \subseteq \gamma_{\text {part }}(\Phi)$

Example: control state partitioning

How to abstract separately memory states associated to different control states?

Control state partitioning

We apply the partitioning abstraction with:

- $E=\mathbb{S}$
- $\mathfrak{P}=\{\{(I, m) \mid m \in \mathbb{M}\} \mid I \in \mathbb{L}\}$

We note that $\mathfrak{P} \equiv \mathbb{L}$ and that, for all $I \in \mathbb{L},\{(I, m) \mid m \in \mathbb{M}\} \equiv \mathbb{M}$, therefore, the partitioning abstraction is:

$$
\begin{array}{rll}
\alpha_{\text {part }}: & \mathcal{P}(E) & \longrightarrow(\mathbb{Q} \rightarrow \mathcal{P}(E)) \\
& X & \longmapsto \lambda(I \in \mathbb{L}) \cdot\{m \in \mathbb{M} \mid(I, m) \in X\} \\
\gamma_{\text {part }}: & (\mathbb{L} \rightarrow \mathcal{P}(E)) & \longrightarrow \mathcal{P}(E) \\
& \Phi & \longmapsto \bigcup_{I \in \mathbb{L}}\{(I, m) \mid m \in \Phi(I)\}
\end{array}
$$

Example: control state partitioning

We can compose this abstraction with any other abstraction over memory states:

Abstraction over a partitioned system
Let $\left(\mathbb{D}_{\text {num }}^{\sharp}, \sqsubseteq_{\text {num }}^{\sharp}\right)$ be an abstraction of $(\mathcal{P}(\mathbb{M}), \subseteq)$, with a Galois connection $(\mathcal{P}(M), \subseteq) \underset{\alpha_{\text {num }}}{\stackrel{\gamma_{\text {num }}}{\leftrightarrows}}\left(\mathbb{D}_{\text {num }}^{\sharp}, \sqsubseteq_{\text {num }}^{\sharp}\right)$.
Then, we define the abstract domain $\left(\mathbb{D}_{\text {part }}^{\sharp}, \sqsubseteq_{\text {part }}^{\sharp}\right)=\left(\mathbb{L} \rightarrow \mathbb{D}_{\text {num }}^{\sharp}, \sqsubseteq_{\text {num }}^{\sharp}\right)$, with the abstraction and concretization defined by:

$$
\begin{array}{rll}
\dot{\alpha}_{\text {num }} \circ \alpha_{\text {part }}: & \mathcal{P}(\mathbb{S}) & \longrightarrow\left(\mathbb{Q} \rightarrow \mathbb{D}_{\text {num }}^{\sharp}\right) \\
& \mathcal{S} & \longmapsto \lambda(I \in \mathbb{L}) \cdot \alpha_{\text {num }}(\{m \in \mathbb{M} \mid(I, m) \in \mathcal{S}\}) \\
\gamma_{\text {part }} \circ \dot{\gamma}_{\text {num }}:\left(\mathbb{L} \rightarrow \mathbb{D}_{\text {num }}^{\sharp}\right) & \longrightarrow \mathcal{P}(\mathbb{S}) \\
& \Phi & \longmapsto\left\{(I, m) \mid \exists l \in \mathbb{L}, m \in \gamma_{\text {num }}(\Phi(I))\right\}
\end{array}
$$

- Case with only a $\gamma_{\text {num }}$ (no $\alpha_{\text {num }}$): similar defintions

Example: context sensitive abstraction

We consider a language with procedures (set of procedures \mathbb{P})

Semantics with procedures

The set of states is of the form $\mathbb{S}=\mathbb{K} \times \mathbb{L} \times \mathbb{M}$, where \mathbb{K} is the set of contexts defined by:

$$
\begin{array}{rll}
k \in \mathbb{K}::=\epsilon & \text { empty call stack } \\
& f \cdot k & \text { call to } f \text { from stack } k
\end{array}
$$

Context sensitive abstraction

$$
\begin{aligned}
\mathfrak{P}= & \{\{(k, I, m) \mid m \in \mathbb{M}\} \mid \\
& k \in \mathbb{K}, I \in \mathbb{M}\}
\end{aligned}
$$

- one invariant per calling context
- infinite if recursion

Context insensitive abstraction

$$
\begin{aligned}
\mathfrak{P}= & \{\{(f \cdot k, I, m) \mid m \in \mathbb{M}, k \in \mathbb{K}\} \mid \\
& f \in \mathbb{P}, I \in \mathbb{M}\}
\end{aligned}
$$

- merges different calling contexts to a same procedure
- coarser abstraction

Fixpoint form of a partitioned semantics

- We consider a transition system $\mathcal{S}=\left(\mathbb{S}, \rightarrow, \mathbb{S}_{\mathcal{I}}\right)$
- The reachable states are computed as $\llbracket \mathcal{S} \rrbracket_{\mathcal{R}}=$ Ifp $_{\mathbb{S}_{I}} F$ where

$$
\begin{aligned}
F: \mathcal{P}(\mathbb{S}) & \longrightarrow \mathcal{P}(\mathbb{S}) \\
X & \longmapsto\left\{s \in \mathbb{S} \mid \exists s^{\prime} \in X, s^{\prime} \rightarrow s\right\}
\end{aligned}
$$

Semantic function over the partitioned system

We let $F_{\text {part }}$ be defined over $\mathbb{D}_{\text {part }}^{\sharp}=\mathfrak{P} \rightarrow \mathcal{P}(\mathbb{S})$ by:

$$
\begin{aligned}
F_{\text {part }}: & \mathbb{D}_{\text {part }}^{\sharp}
\end{aligned} \longrightarrow \mathbb{D}_{\text {part }}^{\sharp} \quad \longmapsto \lambda(p \in \mathfrak{P}) \cdot\left\{s \in p \mid \exists p^{\prime} \in \mathfrak{P}, \exists s^{\prime} \in \Phi\left(p^{\prime}\right), s^{\prime} \rightarrow s\right\}
$$

Then $F_{\text {part }} \circ \alpha_{\text {part }}=\alpha_{\text {part }} \circ F$, and

$$
\alpha_{\text {part }}\left(\llbracket \mathcal{S} \rrbracket_{\mathcal{R}}\right)=\operatorname{lfp}_{\alpha_{\text {part }}\left(\S_{\mathcal{I}}\right)} F_{\text {part }}
$$

Abstract equations form of a partitioned semantics

- We look for a set of equivalent abstract equations
- We consider the case of a system partitioned by control states $\mathbb{L}=\left\{I_{1}, \ldots, I_{s}\right\}$
- Let us consider the system of semantic equations over sets of states $\mathcal{E}_{1}, \ldots, \mathcal{E}_{s} \in \mathcal{P}(\mathrm{M}):$

$$
\left\{\begin{aligned}
\mathcal{E}_{1}= & \bigcup_{i}\left\{m \in \mathbb{M} \mid \exists m^{\prime} \in \mathcal{E}_{i},\left(l_{i}, m^{\prime}\right) \rightarrow\left(l_{1}, m\right)\right\} \\
& \vdots \\
\mathcal{E}_{s}= & \bigcup_{i}\left\{m \in \mathbb{M} \mid \exists m^{\prime} \in \mathcal{E}_{i},\left(l_{i}, m^{\prime}\right) \rightarrow\left(l_{s}, m\right)\right\}
\end{aligned}\right.
$$

So, if we let
$F_{i}:\left(\mathcal{E}_{1}, \ldots, \mathcal{E}_{s}\right) \mapsto \bigcup_{i}\left\{m \in \mathbb{M} \mid \exists m^{\prime} \in \mathcal{E}_{i},\left(I_{i}, m^{\prime}\right) \rightarrow\left(I_{i}, m\right)\right\}$, then:
$\alpha_{\text {part }}\left(\llbracket \mathcal{S} \rrbracket_{\mathcal{R}}\right)$ is the least solution of the system $\left\{\begin{array}{ccc}\mathcal{E}_{1} & = & F_{1}\left(\mathcal{E}_{1}, \ldots, \mathcal{E}_{s}\right) \\ & \vdots & \\ \mathcal{E}_{s} & = & F_{s}\left(\mathcal{E}_{1}, \ldots, \mathcal{E}_{s}\right)\end{array}\right.$

Partitioned systems and fixpoint computation

How to compute an abstract invariant for a partitioned systme described by a set of abstract equations ?
(for now, we assume no convergence issue, i.e., that the abstract lattice is of finite height)

- In practice F_{i} depends only on a few of its arguments
i.e., \mathcal{E}_{k} depends only on the predecessors of I_{k} in the control flow graph of the program being analyzed
- Example of a simple system of abstract equations:

$$
\left\{\begin{array}{l}
\mathcal{E}_{0}=\mathcal{I} \cup F_{0}\left(\mathcal{E}_{3}\right) \\
\mathcal{E}_{1}=F_{1}\left(\mathcal{E}_{0}\right) \\
\mathcal{E}_{2}=F_{2}\left(\mathcal{E}_{0}\right) \\
\mathcal{E}_{3}=F_{3}\left(\mathcal{E}_{1}, \mathcal{E}_{2}\right)
\end{array}\right.
$$

where $\alpha_{\text {part }}\left(\mathbb{S}_{\mathcal{I}}\right)=\left(\mathbb{S}_{\mathcal{I}}, \perp, \perp, \perp\right)$ (i.e., init states are at point $\left.l_{0}\right)$

Partitioned systems and fixpoint computation

Following the fixpoint transfer, we obtain the following abstract iterates $\left(\mathcal{E}_{n}^{\sharp}\right)_{n \in \mathbb{N}}$:

$$
\begin{array}{llll}
\mathcal{E}_{0}^{\sharp}=(\square, & \perp, & \perp, & \perp) \\
\mathcal{E}_{1}^{\sharp}=(\square, & F_{1}^{\sharp}(\square), & F_{2}^{\sharp}(\square), & \perp) \\
\mathcal{E}_{2}^{\sharp}=(\square, & F_{1}^{\sharp}(\square), & F_{2}^{\sharp}(\square), & \left.F_{3}^{\sharp}\left(F_{1}^{\sharp}(\square), F_{2}^{\sharp}(\square)\right)\right) \\
\mathcal{E}_{3}^{\sharp}=\left(\square \sqcup F_{0}^{\sharp}\left(F_{3}^{\sharp}\left(F_{1}^{\sharp}(\square), F_{2}^{\sharp}(\square)\right)\right),\right. & F_{1}^{\sharp}(\square), & F_{2}^{\sharp}(\square), & \left.F_{3}^{\sharp}\left(F_{1}^{\sharp}(\square), F_{2}^{\sharp}(\square)\right)\right)
\end{array}
$$

- Each iteration causes the recomputation of all components
- Though, each iterate differs from the previous one in only a few components

Chaotic iterations: principle

Fairness

Let K be a finite set. A sequence $\left(k_{n}\right)_{n \in \mathbb{N}}$ of elements of K is fair if and only if, for all $k \in K$, the set $\left\{n \in \mathbb{N} \mid k_{n}=k\right\}$ is infinite.

- Other alternate definition: $\forall k \in K, \forall n_{0} \in \mathbb{N}, \exists n \in \mathbb{N}, n>n_{0} \wedge k_{n}=k$
- i.e., all elements of K is encountered infintely often

Chaotic iterations

A chaotic sequence of iterates is a sequence of abstract iterates $\left(X_{n}^{\sharp}\right)_{n \in \mathbb{N}}$ in $\mathbb{D}_{\text {part }}^{\sharp}$ such that there exists a sequence $\left(k_{n}\right)_{n \in \mathbb{N}}$ of elements of $\{1, \ldots s\}$ such that:

$$
X_{n+1}^{\sharp}=\lambda\left(l_{i} \in \mathbb{L}\right) \cdot \begin{cases}X_{n}^{\sharp}\left(l_{i}\right) & \text { if } i \neq k_{n} \\ X_{n}^{\sharp}\left(l_{i}\right) \sqcup F^{\sharp}\left(X_{n}^{\sharp}\left(l_{1}\right), \ldots, X_{n}^{\sharp}\left(I_{s}\right)\right) & \text { if } i=k_{n}\end{cases}
$$

Chaotic iterations: soundness

Soundness

Assuming the abstract lattice satisfies the ascending chain condition, any sequence of chaotic iterates computes the abstract fixpoint:

$$
\lim \left(X_{n}^{\sharp}\right)_{n \in \mathbb{N}}=\alpha_{\text {part }}\left(\llbracket \mathcal{S} \rrbracket_{\mathcal{R}}\right)
$$

Proof: exercise

- Applications: we can recompute only what is necessary
- Back to the example, where only the recomputed components are colored:

$$
\begin{array}{llll}
\mathcal{E}_{0}^{\sharp}=(\square, & \perp, & \perp, & \perp) \\
\mathcal{E}_{1}^{\sharp}=(\square, & F_{1}^{\sharp}(\square), & \perp, & \perp) \\
\mathcal{E}_{2}^{\sharp}=(\square, & F_{1}^{\sharp}(\square), & F_{2}^{\sharp}(\square), & \perp) \\
\mathcal{E}_{3}^{\sharp}=(\square, & F_{1}^{\sharp}(\square), & F_{2}^{\sharp}(\square), & \left.F_{3}^{\sharp}\left(F_{1}^{\sharp}(\square), F_{2}^{\#}(\square)\right)\right) \\
\mathcal{E}_{4}^{\sharp}=\left(\square \sqcup F_{0}^{\sharp}\left(F_{3}^{\sharp}\left(F_{1}^{\sharp}(\square), F_{2}^{\sharp}(\square)\right)\right),\right. & F_{1}^{\sharp}(\square), & F_{2}^{\sharp}(\square), & \left.F_{3}^{\sharp}\left(F_{1}^{\sharp}(\square), F_{2}^{\sharp}(\square)\right)\right)
\end{array}
$$

Chaotic iterations: worklist algorithm

Worklist algorithms

Principle:

- maintain a queue of partitions to update
- initialize the queue with the entry label of the program and the local invariant at that point at $\alpha_{\text {num }}\left(\mathbb{S}_{\mathcal{I}}\right)$
- for each iterate, update the first partition in the queue (after removing it), and add to the queue all its successors unless the updated invariant is equal to the former one
- terminate when the queue is empty

This algorithm implements a chaotic iteration strategy, thus it is sound

- Application: only partitions that need be updated are recomputed
- Implemented in many static analyzers

Selection of a set of widening points for a partitioned system

- We do not assume anymore that $\mathbb{D}_{\text {num }}^{\sharp}$ satisfies the ascending chain condition
- We assume $\mathbb{D}_{\text {num }}^{\sharp}$ provides widening operator ∇

How to adapt the chaotic iteration strategy, i.e. guarantee termination and soundness?

Enforcing termination of chaotic iterates

Let $K \subseteq\{1, \ldots, s\}$ such that each cycle in the control flow graph of the program contains at least one point in K; we define the chaotic abstract iterates with widening as follows:
$X_{n+1}^{\sharp}=\lambda\left(I_{i} \in \mathbb{Q}\right) \cdot \begin{cases}X_{n}^{\sharp}\left(I_{i}\right) & \text { if } i \neq k_{n} \\ X_{n}^{\sharp}\left(I_{i}\right) \sqcup F^{\sharp}\left(X_{n}^{\sharp}\left(I_{1}\right), \ldots, X_{n}^{\sharp}\left(I_{s}\right)\right) & \text { if } i=k_{n} \wedge I_{i} \notin K \\ X_{n}^{\sharp}\left(I_{i}\right) \nabla F^{\sharp}\left(X_{n}^{\sharp}\left(I_{1}\right), \ldots, X_{n}^{\sharp}\left(I_{s}\right)\right) & \text { if } i=k_{n} \wedge I_{i} \in K\end{cases}$

Selection of a set of widening points for a partitioned system

Soundness and termination

Under the assumption of a fair iteration strategy, sequence $\left(X_{n}^{\sharp}\right)_{n \in \mathrm{~N}}$ terminates and computes a sound abstract post-fixpoint:

$$
\exists n_{0} \in \mathbb{N},\left\{\begin{array}{l}
\forall n \geq n_{0}, X_{n_{0}}^{\sharp}=X_{n}^{\sharp} \\
\llbracket \mathcal{S} \rrbracket_{\mathcal{R}} \subseteq \gamma_{\text {part }}\left(X_{n_{0}}\right)
\end{array}\right.
$$

Proof: exercise

Outline

(1) Introduction
(2) Abstraction of partitioned systems
(3) Product of abstractions

4 Reduction and application to reduced product
(5) Reduced cardinal power abstraction
(6) State partitioning, trace partitioning
(7) Concluding remarks

Product abstraction

Definition

Let $\left(\mathbb{D}_{0}^{\sharp}, \sqsubseteq_{0}^{\sharp}\right)$ and $\left(\mathbb{D}_{1}^{\sharp}, \sqsubseteq_{1}^{\sharp}\right)$ be two abstract domains:
$(\mathbb{D}, \subseteq) \underset{\alpha_{0}}{\stackrel{\gamma_{0}}{\leftrightarrows}}\left(\mathbb{D}_{0}^{\sharp}, \sqsubseteq_{0}^{\sharp}\right) \quad$ and
$(\mathbb{D}, \subseteq) \underset{\alpha_{1}}{\stackrel{\gamma_{1}}{\leftrightarrows}}\left(\mathbb{D}_{1}^{\sharp}, \sqsubseteq_{1}^{\sharp}\right)$

The product abstract domain $\left(\mathbb{D}_{x}^{\sharp}, \sqsubseteq_{x}^{\sharp}\right)$ is defined by:

- $\mathbb{D}_{x}^{\sharp}=\mathbb{D}_{0}^{\sharp} \times \mathbb{D}_{1}^{\sharp}$
- $\left(x_{0}, x_{1}\right) \sqsubseteq_{x}^{\sharp}\left(y_{0}, y_{1}\right) \Longleftrightarrow x_{0} \sqsubseteq_{0}^{\sharp} y_{0} \wedge x_{1} \sqsubseteq_{1}^{\sharp} y_{1}$

The product abstraction is defined by:

$$
\begin{aligned}
& (\mathbb{D}, \subseteq) \underset{\alpha_{x}}{\stackrel{\gamma_{x}}{\leftrightarrows}}\left(\mathbb{D}_{x}^{\sharp}, \sqsubseteq_{x}^{\sharp}\right) \quad \text { where } \\
& \begin{array}{rlrl}
\alpha_{\times}: ~ \\
\mathbb{D} & \longrightarrow \mathbb{D}_{\times}^{\sharp} & \gamma_{\times}: \begin{array}{l}
\mathbb{D}^{\sharp} \\
a
\end{array} l\left(\alpha_{0}(a), \alpha_{1}(a)\right) & \\
\left(x_{0}, x_{1}\right) & \longmapsto \mathbb{D} \\
\gamma_{0}\left(x_{0}\right) \cap \gamma_{1}\left(x_{1}\right)
\end{array}
\end{aligned}
$$

Product abstraction

Proof, following the usual principle:

$$
\begin{aligned}
\alpha(a) \sqsubseteq_{\times}^{\sharp}\left(x_{0}, x_{1}\right) & \Longleftrightarrow\left(\alpha_{0}(a), \alpha_{1}(a)\right) \sqsubseteq_{\times}^{\sharp}\left(x_{0}, x_{1}\right) \\
& \Longleftrightarrow \alpha_{0}(a) \sqsubseteq_{0}^{\sharp} x_{0} \wedge \alpha_{1}(a) \sqsubseteq_{1}^{\sharp} x_{1} \\
& \Longleftrightarrow a \subseteq \gamma_{0}\left(x_{0}\right) \wedge a \subseteq \gamma_{1}\left(x_{1}\right) \\
& \Longleftrightarrow a \subseteq \gamma_{0}\left(x_{0}\right) \cap \gamma_{1}\left(x_{1}\right) \\
& \Longleftrightarrow a \quad a \subseteq \gamma_{\times}\left(x_{0}, x_{1}\right)
\end{aligned}
$$

Conjunctions of abstract properties

Elements of the product abstract domain stand for conjunctions of abstract properties of \mathbb{D}_{0}^{\sharp} and of \mathbb{D}_{1}^{\sharp}.

Example: conjunctions of constraints

Assumptions:

- \mathbb{D} is $\mathcal{P}(\mathbb{Z})$ and \subseteq the set inclusion
- \mathbb{D}_{0}^{\sharp} is $\mathbb{Z} \cup\{-\infty,+\infty\}, \sqsubseteq_{0}^{\sharp}$ is \leq and $\alpha_{0}(E)=\inf E$
- \mathbb{D}_{1}^{\sharp} is $\mathbb{Z} \cup\{-\infty,+\infty\}, \sqsubseteq_{0}^{\sharp}$ is \leq and $\alpha_{1}(E)=\sup E$

Product abstraction:

- Then:

$$
\begin{array}{rrrrr}
\alpha_{\times}(\mathbb{Z})=(-\infty,+\infty) & \alpha_{\times}(\{0,2,4,6,8\}) & =(0,8) \\
\alpha_{\times}(\emptyset)=(+\infty,-\infty) & \alpha_{\times}(\{1,2,3\}) & =(1,3)
\end{array}
$$

- Moreover:

$$
\gamma_{\times}\left(x_{0}, x_{1}\right)=\left\{x \in \mathbb{Z} \mid x_{0} \leq x \wedge x \leq x_{1}\right\}
$$

Therefore \mathbb{D}_{x}^{\sharp} is the interval abstraction, where an interval is viewed as a conjunction of two constraints

Example: intervals and congruences

Assumptions:

- \mathbb{D} is $\mathcal{P}(\mathbb{Z})$ and \subseteq the set inclusion
- $\mathbb{D}_{0}^{\#}$ is the interval abstract domain (an abstract values is either \perp or a pair of elements of $\mathbb{Z} \cup\{-\infty,+\infty\}$)
- \mathbb{D}_{1}^{\sharp} is the congruences abstract domain:
- abstract values are either \perp, or of the form $\langle a, b\rangle$ with $0 \leq a<b$ or $b=0$
- $\gamma_{1}(\perp)=\emptyset$ and $\gamma_{1}(\langle a, b\rangle)=\{a+k \cdot b \mid k \in \mathbb{Z}\}$

Product abstraction:

- Then:

$$
\begin{aligned}
\alpha_{\times}(\emptyset) & =(\perp, \perp) & \alpha_{\times}(\{1,3, \ldots\}) & =([1,+\infty[,\langle 1,2\rangle \\
\alpha_{\times}(\mathbb{Z}) & =(]-\infty,+\infty[,\langle 0,1\rangle) & \alpha_{\times}(\{1,3,7\}) & =([1,7],\langle 1,2\rangle)
\end{aligned}
$$

- Moveover:

$$
\begin{aligned}
\gamma_{\times}([1,7],\langle 1,2\rangle) & =\{1,3,5,7\} & \gamma_{\times}([0,10],\langle 3,6\rangle) & =\{3,9\} \\
\gamma_{\times}([1,8],\langle 1,2\rangle) & =\{1,3,5,7\} & \gamma_{\times}([0,+\infty[,\langle 3,6\rangle) & =\{3,9, \ldots\}
\end{aligned}
$$

Operations in the product domain

- Least element: if \perp_{0} (resp., \perp_{1}) is the least element of \mathbb{D}_{0}^{\sharp} (resp. of $\left.\mathbb{D}_{1}^{\sharp}\right)$, then $\perp_{x}=\left(\perp_{0}, \perp_{1}\right)$ is the least element of $\mathbb{D}_{\times}^{\sharp}$
- Upper bound: if \sqcup_{0} (resp., \sqcup_{1}) is a sound upper bound operator on $\mathbb{D}_{0}^{\sharp}\left(\right.$ resp., $\left.\mathbb{D}_{1}^{\sharp}\right)$, then \sqcup_{\times}defined by $\left(x_{0}, x_{1}\right) \sqcup_{\times}\left(y_{0}, y_{1}\right)=\left(x_{0} \sqcup_{0} y_{0}, x_{1} \sqcup_{1} y_{1}\right)$ is a sound upper bound operator on $\mathbb{D}_{\times}^{\sharp}$
- Widening: if $\sqcup_{0}\left(\right.$ resp. $\left.\sqcup_{1}\right)$ is a widening on $\mathbb{D}_{0}^{\sharp}\left(\right.$ resp. $\left.\mathbb{D}_{1}^{\sharp}\right)$, then \sqcup_{\times} defined by $\left(x_{0}, x_{1}\right) \sqcup_{\times}\left(y_{0}, y_{1}\right)=\left(x_{0} \sqcup_{0} y_{0}, x_{1} \sqcup_{1} y_{1}\right)$ is a widening on $\mathbb{D}_{\times}^{\sharp}$

Proofs: exercise!

Operations in the product domain

- Transfer functions:

We assume that:

- $\mathfrak{f}: \mathbb{D} \rightarrow \mathbb{D}$ is a concrete transfer function (e.g., describing the effect of a test or of an assignment)
- $\mathfrak{f}_{0}^{\sharp}: \mathbb{D}_{0}^{\sharp} \rightarrow \mathbb{D}_{0}^{\sharp}$ is a sound transfer function with respect to \mathfrak{f}, that is such that $\mathfrak{f} \circ \gamma_{0} \subseteq \gamma_{0} \circ \mathcal{f}_{0}^{\sharp}$
- $\mathfrak{f}_{1}^{\sharp}: \mathbb{D}_{1}^{\sharp} \rightarrow \mathbb{D}_{1}^{\#}$ achieves the same condition in \mathbb{D}_{1}^{\sharp}

Then, we let $\mathfrak{f}_{x}^{\sharp}$ be defined by:

$$
\begin{array}{rlll}
\mathfrak{f}_{\times}^{\sharp}: & \mathbb{D}_{\times}^{\sharp} & \longrightarrow \mathbb{D}_{\times}^{\sharp} \\
& \left(x_{0}, x_{1}\right) & \longmapsto & \left(f_{0}^{\#}\left(x_{0}\right), f_{1}^{\sharp}\left(x_{1}\right)\right)
\end{array}
$$

Then f_{x}^{\sharp} is sound with respect to \mathfrak{f}

Transfer functions in the product abstraction

We consider the interval abstraction as a product of constraints

- \mathbb{D} is $\mathcal{P}(\mathbb{Z})$ and \subseteq the set inclusion
- \mathbb{D}_{0}^{\sharp} is $\mathbb{Z} \cup\{-\infty,+\infty\}$, \sqsubseteq_{0}^{\sharp} is \leq and $\alpha_{0}(E)=\inf E$
- \mathbb{D}_{1}^{\sharp} is $\mathbb{Z} \cup\{-\infty,+\infty\}, \sqsubseteq_{0}^{\sharp}$ is \leq and $\alpha_{1}(E)=\sup E$

We consider the concrete function $\mathfrak{f}: x \mapsto-x$

- The lower bound before gives no information on the lower bound after: $\mathfrak{f}_{0}^{\sharp}: x_{0} \mapsto-\infty$
- The same goes for the upper bounds: $\mathfrak{f}_{1}^{\sharp}: x_{1} \mapsto+\infty$
- Hence, $\left.\mathfrak{f}_{\times}^{\sharp}\left(x_{0}, x_{1}\right)=\right]-\infty,+\infty[=\top$
- Though, we would like the more precise: $\left(x_{0}, x_{1}\right) \longmapsto\left(-x_{1},-x_{0}\right)$
- Decomposed transfer function may lose precision
- Decomposing the interval abstract domain in a product abstraction does not make sense for the computation of transfer functions

Transfer functions in the product abstraction

We now consider the product of intervals and congruences, with transfer functions:

- \mathbb{D} is $\mathcal{P}(\mathbb{Z})$ and \subseteq the set inclusion
- Test: $\mathfrak{f}(t, \mathcal{E})=\{z \in \mathbb{Z} \mid \llbracket t \rrbracket(v \mapsto z)=$ TRUE $\}$ returns the values that satisfy condition t on variable v
- Random add: $\mathfrak{g}(\mathcal{E})=\{x+k \mid x \in \mathcal{E} \wedge-1 \leq k \leq 1\}$
- $x^{\sharp}::=([0,10],\langle 0,2\rangle)$
- $y^{\sharp}::=\mathfrak{p}_{\times}^{\sharp}\left(v=5, x^{\sharp}\right)=$ $([5,5], \perp)$
- $\gamma_{x}\left(y^{\sharp}\right)=\emptyset$
- why not $y^{\sharp}=(\perp, \perp)$ then ?
- $x^{\sharp}::=([0,10],\langle 0,2\rangle)$
- $y^{\sharp}::=\mathfrak{p}_{\times}^{\sharp}\left(v \leq 5, x^{\sharp}\right)=$ ([0, 5], $\langle 0,2\rangle)$
- $z^{\sharp}::=\mathfrak{p}_{\times}^{\sharp}\left(v \geq 5, y^{\sharp}\right)=$ ([5, 5], $\langle 0,2\rangle$)
- $\gamma_{\times}\left(z^{\sharp}\right)=\emptyset$
- why not $z^{\sharp}=(\perp, \perp)$ then ?

Improving transfer functions

We consider the program:

```
assume \((x \in[0,10]\), even \()\);
if \((x \leq 5)\{\)
    if \((x \geq 5)\{\)
        \(x+\operatorname{rand}([-1,1])\);
        assert(FALSE);
    \}
\}
```

- analysis, from state $x^{\sharp}::=([0,10],\langle 0,2\rangle)$
- $y^{\sharp}::=\mathfrak{p}_{x}^{\sharp}\left(v \leq 5, x^{\sharp}\right)=$ ([0, 5], $\langle 0,2\rangle$)
- $z^{\sharp}::=\mathfrak{p}_{\times}^{\sharp}\left(v \geq 5, y^{\sharp}\right)=$ ([5, 5], $\langle 0,2\rangle$)
- $v^{\sharp}::=\mathfrak{g}^{\sharp}\left(z^{\sharp}\right)=([4,6],\langle 0,1\rangle)$

Then, we notice that:

- In the concrete, the body of the second if is unreachable
- In the abstract, $\gamma_{\times}\left(v^{\sharp}\right)=\{4,5,6\} \neq \emptyset$
- The product abstraction misses the fact that:

$$
x=5 \wedge x \equiv 0 \quad \bmod (2) \Longrightarrow x \in \emptyset
$$

Limitations of product abstraction

- It does not allow information be sent from one domain to the other
- This is the source of a loss of precision in the analysis

How to overcome this ?

Outline

(1) Introduction
(2) Abstraction of partitioned systems
(3) Product of abstractions
(4) Reduction and application to reduced product
(5) Reduced cardinal power abstraction
(6) State partitioning, trace partitioning
(C) Concluding remarks

Injective concretization

We consider the loss of information in the interval + congruences example:

- $\gamma_{\times}([5,5],\langle 0,2\rangle)=\emptyset=\gamma_{\times}(\perp, \perp)$
- $\mathfrak{g}([5,5],\langle 0,2\rangle)=([4,6],\langle 0,1\rangle)$
- $\mathfrak{g}(\perp, \perp)=(\perp, \perp)$, which means that (\perp, \perp) is much more useful for the rest of the analysis than ($[5,5],\langle 0,2\rangle$)
- converting ([5,5], $\langle 0,2\rangle$) into (\perp, \perp) amounts to applying the mathematical result:

$$
x=5 \wedge x \equiv 0 \quad \bmod (2) \Longrightarrow x \in \emptyset
$$

- Some product elements are semantically "equivalent" for computing other transfer functions, proving semantic assertions...
- Some semantically equivalent product elements are "better" Computing those "better" elements is reduction

Galois surjection (or Galois insertion)

Definition

Let us consider an abstraction defined by a Galois connection

$$
(\mathbb{D}, \subseteq) \underset{\alpha}{\stackrel{\gamma}{\alpha}}\left(\mathbb{D}^{\sharp}, \sqsubseteq^{\sharp}\right)
$$

Then, the following properties are equivalent:

- α is surjective (onto)
- γ is injective (into)
- $\alpha \circ \gamma=\lambda\left(x \in \mathbb{D}^{\mathbb{Z}}\right) \cdot x$

When they hold, the Galois connection is said to be a Galois insertion

Intuition:

- there is no pair of distinct abstract elements with the same meaning
- less chance of losing precision by taking the "wrong" abstraction of concrete property x

Galois surjection (or Galois insertion)

Proof:

- Let us assume α surjective, i.e. $\forall y \in \mathbb{D}^{\sharp}, \exists x \in \mathbb{D}, \alpha(x)=y$. If $\gamma(x)=\gamma(y)$,
- as α is surjective, there exist $x^{\prime}, y^{\prime} \in \mathbb{D}$, such that $\alpha\left(x^{\prime}\right)=x$ and $\alpha\left(y^{\prime}\right)=y$
- thus, $\gamma\left(\alpha\left(x^{\prime}\right)\right)=\gamma\left(\alpha\left(y^{\prime}\right)\right)$, which implies $x^{\prime} \subseteq \gamma\left(\alpha\left(y^{\prime}\right)\right)$, and thus $\alpha\left(x^{\prime}\right) \sqsubseteq^{\sharp} \alpha\left(y^{\prime}\right)(\alpha \circ \gamma \circ \alpha=\alpha)$
- similarly $\alpha\left(y^{\prime}\right) \sqsubseteq^{\sharp} \alpha\left(x^{\prime}\right)$, thus $x=y$
- Let us assume γ is injective: Let $y \in \mathbb{D}^{\mathbb{Z}}$; as $\gamma \circ \alpha \circ \gamma=\gamma$, we get that $\gamma \circ \alpha \circ \gamma(y)=\gamma(y)$, thus $\alpha \circ \gamma(y)=y$
- Let us assume that $\alpha \circ \gamma$ is the identity, and let $y \in \mathbb{D}^{\sharp}$. Then, $\alpha \circ \gamma(y)=y$, which means there exists $x \in \mathbb{D}$ such that $\alpha(x)=y$. Thus α is surjective.

Reduction of an abstraction

Quotient abstract domain

Let us consider an abstraction defined by a Galois connection

$$
(\mathbb{D}, \subseteq) \underset{\alpha}{\stackrel{\gamma}{\Longrightarrow}}\left(\mathbb{D}^{\sharp}, \sqsubseteq^{\sharp}\right)
$$

We let \equiv be the equivalence relation over \mathbb{D}^{\sharp} defined by:

$$
\forall x, y \in \mathbb{D}^{\sharp}, x \equiv y \Longleftrightarrow \gamma(x)=\gamma(y)
$$

We define the quotient abstract domain $\left(\mathbb{D}_{\#}^{\sharp}, \sqsubseteq_{\#}^{\sharp}\right)$ by:

- $\mathbb{D}_{\underline{\#}}^{\sharp}$ is the set of equivalence classes of \mathbb{D}^{\sharp} for \equiv
- $\bar{x} \sqsubseteq^{\sharp} \bar{y} \Longleftrightarrow x \sqsubseteq^{\sharp} y$

Proof:

- \equiv is an equivalence relation, so the quotient is well-defined
- well-definedness of $\sqsubseteq \stackrel{\sharp}{\#}$: exercise

Reduction of an abstraction

Reduced abstraction (sing the same notations)

The reduced abstraction is defined by the Galois connection

$$
(\mathbb{D}, \subseteq) \underset{\alpha_{\equiv}}{\stackrel{\gamma_{\equiv}}{\leftrightarrows}}\left(\mathbb{D}_{\equiv}^{\sharp}, \sqsubseteq_{=}^{\sharp}\right)
$$

where

$$
\begin{array}{llllll}
\alpha_{\equiv}: & \mathbb{D} & \longrightarrow \mathbb{D}_{\overline{\bar{\prime}}}^{\sharp} & \gamma \equiv: & \mathbb{D}_{\overline{\overline{(}}}^{\sharp} & \longrightarrow \mathbb{D} \\
& x & \longmapsto \bar{x} & \longmapsto \gamma(x)
\end{array}
$$

The above Galois connection is a Galois insertion.

Proof:

- well-definedness of γ, Galois insertion property: exercises Notes:
- the construction works even with no α
- representation of abstract element: use representants of equivalence classes, i.e. elements of $\mathbb{D}_{\underline{\equiv}}^{\sharp}$ are selected elements of \mathbb{D}^{\sharp}

Reduction operator

Definition (using the same notations)

A reduction operator over \mathbb{D}^{\sharp} is an operator ρ_{\equiv} such that:

- $\forall x \in \mathbb{D}^{\sharp}, \gamma\left(\rho_{\equiv}(x)\right)=\gamma(x)$;
- $\forall x, y \in \mathbb{D}^{\sharp}, \gamma(x)=\gamma(y) \Longrightarrow \rho_{\equiv}(x)=\rho_{\equiv}(y)$

Such an operator allows to construct the quotient abstraction, using elements of \mathbb{D}^{\sharp} to represent equivalence classes, thanks to the following definitions:

- $\mathbb{D}_{\underline{\equiv}}^{\sharp}=\mathbb{D}^{\sharp}$;
- $\alpha_{\equiv}(x)=\rho_{\equiv}(\alpha(x))$
- $\gamma_{\equiv}(x)=\gamma(x)$

Note:

- the construction works even with no α

Example: reduction of intervals as a product

We still use:

- \mathbb{D} is $\mathcal{P}(\mathbb{Z})$ and \subseteq the set inclusion
- \mathbb{D}_{0}^{\sharp} is $\mathbb{Z} \cup\{-\infty,+\infty\}, \sqsubseteq_{0}^{\sharp}$ is \leq and $\alpha_{0}(E)=\sup E$
- \mathbb{D}_{1}^{\sharp} is $\mathbb{Z} \cup\{-\infty,+\infty\}, \sqsubseteq_{0}^{\sharp}$ is \leq and $\alpha_{1}(E)=\inf E$

We write $\perp=(+\infty,-\infty)$, and we let:

$$
\begin{aligned}
\rho_{\equiv}: & \mathbb{D}_{x}^{\sharp} \\
(x, y) & \longmapsto \begin{cases}\mathbb{D}_{x}^{\sharp} & \longmapsto x, y) \\
\text { if } x \leq y \\
\perp & \text { if } x>y\end{cases}
\end{aligned}
$$

- ρ_{\equiv} defines a reduction operator over $\mathbb{D}_{\times}^{\sharp}$
- this does not solve the issue of the transfer function for $x \mapsto-x$

Proof: exercise

Example: reduction of interval + congruences

We still use:

- \mathbb{D} is $\mathcal{P}(\mathbb{Z})$ and \subseteq the set inclusion
- \mathbb{D}_{0}^{\sharp} is the interval abstract domain (an abstract values is either \perp or a pair of elements of $\mathbb{Z} \cup\{-\infty,+\infty\}$)
- \mathbb{D}_{1}^{\sharp} is the congruences abstract domain:
- abstract values are \perp, or of the form $\langle a, b\rangle$ with $0 \leq a<b$ or $b=0$
- $\gamma_{1}(\perp)=\emptyset$ and $\gamma_{1}(\langle a, b\rangle)=\{a+k \cdot b \mid k \in \mathbb{Z}\}$

Exercise: define ρ_{\equiv}
(1) reduce to (\perp, \perp) when the concretization is empty:
$\rho_{\equiv}([1,4],\langle 0,5\rangle)=(\perp, \perp)$
(2) reduce interval bounds to match the congruence constraint

$$
\rho_{\equiv}([0,10],\langle 3,6\rangle)=([3,9],\langle 3,6\rangle)
$$

(3) build a congruence constraint when there is none and the interval contains only one value $\rho_{\equiv}([5,5],\langle 0,1\rangle)=([5,5],\langle 5,0\rangle)$

This solves the imprecision in the example

Example: reduction of non relational abstractions

Assumptions:

- $\mathbb{D}=\mathcal{P}(\mathbb{X} \rightarrow \mathbb{V})$, and \subseteq is the inclusion order
- $\mathbb{D}^{\sharp}=\mathbb{X} \rightarrow \mathcal{P}(\mathbb{V})$, and \sqsubseteq^{\sharp} is the pointwise inclusion
- α, γ define the non relational abstraction, by

$$
\begin{aligned}
\alpha(\mathcal{E}) & =\lambda(x \in \mathbb{X}) \cdot\{\phi(x) \mid \phi \in \mathcal{E}\} \\
\gamma\left(\phi^{\sharp}\right) & =\left\{\phi: \mathbb{X} \rightarrow \mathbb{V} \mid \forall x \in \mathbb{X}, \phi(x) \in \phi^{\sharp}(x)\right\}
\end{aligned}
$$

Then, for all $x \in \mathbb{X}$, if $\phi^{\sharp} \in \mathbb{D}^{\sharp}$ is such that $\phi^{\sharp}(x)=\emptyset$, then $\gamma\left(\phi^{\sharp}\right)=\emptyset$

- we let $\perp=\lambda(x \in \mathbb{X}) \cdot \emptyset$
- the reduction operator ρ_{\equiv} is defined by (Proof: exercise):

$$
\begin{array}{rll}
\rho_{\equiv}: & \mathbb{D}^{\sharp} & \longrightarrow \mathbb{D}^{\sharp} \\
& \phi^{\sharp} \longmapsto \begin{cases}\phi^{\sharp} & \text { if } \forall x \in \mathbb{K}, \phi^{\sharp}(x) \neq \emptyset \\
\perp & \text { if } \exists x \in \mathbb{X}, \phi^{\sharp}(x)=\emptyset\end{cases}
\end{array}
$$

Thus, we can view non relational abstraction as a reduced product over $|\mathbb{X}|$ instances of $(\mathcal{P}(\mathbb{V}), \subseteq)$
Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains

Operations in the reduced domain

We define abstract operations on $\mathbb{D}_{\overline{\underline{\#}}}^{\sharp}$ from operations on \mathbb{D}^{\sharp} :

- Least element: if \perp is the least element of \mathbb{D}^{\sharp}, then $\rho_{\equiv}(\perp)$ is the least element of $\mathbb{D}_{\equiv}^{\sharp}$;
- Upper bound: if \sqcup is a sound upper bound operator on \mathbb{D}^{\sharp} then \sqcup_{\equiv} defined by $x \sqcup_{\equiv} y=\rho_{\equiv}(x \sqcup y)$ is a sound upper bound operator on $\mathbb{D} \stackrel{\sharp}{\sharp}$
- Transfer functions:

We assume that:

- $\mathfrak{f}: \mathbb{D} \rightarrow \mathbb{D}$ is a concrete transfer function (e.g., describing the effect of a test or of an assignment)
- $\mathfrak{f}^{\sharp}: \mathbb{D}^{\sharp} \rightarrow \mathbb{D}^{\sharp}$ is a sound transfer function with respect to \mathfrak{f}, that is such that $\mathfrak{f} \circ \gamma \subseteq \gamma \circ \mathfrak{f}^{\sharp}$
Then, f_{\equiv}^{\sharp} defined below is sound with respect to \mathfrak{f} :

$$
\begin{array}{rlll}
f_{\equiv}^{\sharp}: & \mathbb{D}_{\overline{\#}}^{\#} & \longrightarrow \mathbb{D}^{\sharp} \\
& x & \longmapsto & \rho_{\equiv}\left(\mathfrak{f}^{\sharp}(x)\right)
\end{array}
$$

Caveat 1: widening

This construction does not work for widening

- Termination condition of ∇ on \mathbb{D}^{\sharp} : for all sequence $\left(x_{n}^{\sharp}\right)_{n \in \mathbb{N}}$, the sequence $\left(y_{n}^{\sharp}\right)_{n \in \mathbb{N}}$ defined below is ultimately stationary:

$$
y_{0}^{\sharp}=x_{0}^{\sharp} \quad \forall n \in \mathbb{N}, y_{n+1}^{\sharp}=y_{n}^{\sharp} \nabla x_{n+1}^{\sharp}
$$

- Applying ρ_{\equiv} to the widening output would boil down to:

$$
y_{0}^{\sharp}=\rho_{\equiv}\left(x_{0}^{\sharp}\right) \quad \forall n \in \mathbb{N}, y_{n+1}^{\sharp}=\rho_{\equiv}\left(y_{n}^{\sharp} \nabla x_{n+1}^{\sharp}\right)
$$

Thus the termination condition of ∇ does not apply here

Solution

- Simply use ∇ on \mathbb{D}^{\sharp}
- Apply reduction in the body of loops (whenever we like)

Caveat 2: reduction cost

The optimal reduction function may be computationally very costly

Approximate reduction function

An approximate reduction operator is an operator $\rho_{\equiv}: \mathbb{D}^{\sharp} \rightarrow \mathbb{D}^{\sharp}$ which preserves concretization:

$$
\forall x^{\sharp} \in \mathbb{D}^{\sharp}, \gamma\left(\rho_{\equiv}\left(x^{\sharp}\right)\right)=\gamma\left(x^{\sharp}\right)
$$

We can require additional conditions such as:

- idempotence: $\forall x^{\sharp} \in \mathbb{D}^{\sharp}, \rho_{\equiv} \circ \rho_{\equiv}\left(x^{\sharp}\right)=\rho_{\equiv}\left(x^{\sharp}\right)$
- contraction: $\forall x^{\sharp} \in \mathbb{D}^{\sharp}, \rho_{\equiv}\left(x^{\sharp}\right) \sqsubseteq x^{\sharp}$

In all cases, we may not obtain the reduced abstraction

Reduced product abstraction

Definition

The reduced product abstraction is obtained by applying the reduction to the product abstraction

- Examples: as seen previously
- intervals as products of constraints
- intervals and congruences
- non relational abstraction
- Abstract operators and transfer functions are defined by composition with reduction
- In many cases, only a partial reduction can be applied i.e., an approximation of reduced product is used

Reduced product: implementation

The modularity of the abstraction

- The whole point of reduced product is to keep the domain implementations separate
- The reduction operator should reflect that

To achieve this, we typically use a separate constraint language:

Reduced product interface

- \mathcal{C} is a set of constraints with a concretization function $\gamma_{\mathcal{C}}: \mathcal{C} \rightarrow \mathbb{D}$
- $\operatorname{read}_{i}: \mathbb{D}_{i}^{\sharp} \rightarrow \mathcal{C}$, such that $\gamma_{i}\left(x_{i}^{\sharp}\right) \subseteq \gamma\left(\operatorname{read}_{i}\left(x_{i}^{\sharp}\right)\right)$
- constr ${ }_{i}: \mathbb{D}_{i}^{\sharp} \times \mathcal{C} \rightarrow \mathbb{D}_{i}^{\sharp}$ such that $\gamma_{i}\left(x_{i}^{\sharp}\right) \cap \gamma_{\mathcal{C}}(c) \subseteq \gamma_{i}\left(\operatorname{constr}_{i}\left(x_{i}^{\sharp}, c\right)\right)$

Then, a simple reduction is: $\rho_{\equiv}\left(x_{0}^{\sharp}, x_{1}^{\sharp}\right)=\left(x_{0}^{\sharp}, \operatorname{constr}_{1}\left(x_{1}^{\sharp}, \operatorname{read}_{0}\left(x_{0}^{\sharp}\right)\right)\right)$

- Example, non relational abstraction: read = "is empty"
- Already demonstrated in the previous lecture

Outline

(1) Introduction
(2) Abstraction of partitioned systems
(3) Product of abstractions

4 Reduction and application to reduced product
(5) Reduced cardinal power abstraction
(6) State partitioning, trace partitioning
(7) Concluding remarks

Example

We consider the program and the basic abstractions below [CC'79]:
int $\mathrm{x}=100$;
bool $\mathrm{b}=$ TRUE;
while(b) $\{$

$$
\begin{aligned}
& \mathrm{x}=\mathrm{x}-1 \\
& \mathrm{~b}=\mathrm{x}>0
\end{aligned}
$$

\}

Property to establish:
$\mathrm{x}=0$ at the end

Basic abstractions:

- possible values for b : $\{\emptyset,\{\mathcal{T}\},\{\mathcal{F}\},\{\mathcal{T}, \mathcal{F}\}\}$
- sign abstraction of x :

$$
(\perp,=0,<0,>0, \neq 0, \geq 0, \leq 0)
$$

Properties:
loop head loop end

$$
\mathrm{b} \Longrightarrow \mathrm{x}>0 \quad\left\{\begin{array}{l}
\mathrm{b} \Rightarrow \mathrm{x}>0 \\
\neg \mathrm{~b} \Rightarrow \mathrm{x}=0
\end{array}\right.
$$

Cardinal power abstraction

Definition

We assume $\mathbb{D}=\mathcal{P}(\mathcal{E})$, and that two abstractions are given by their concretization functions:

$$
\gamma_{0}: \mathbb{D}_{0}^{\sharp} \longrightarrow \mathbb{D} \quad \gamma_{1}: \mathbb{D}_{1}^{\sharp} \longrightarrow \mathbb{D}
$$

We let:

- $\mathbb{D}^{\sharp}=\mathbb{D}_{0}^{\sharp} \xrightarrow{\mathcal{M}} \mathbb{D}_{1}^{\sharp}$, set of monotone functions from \mathbb{D}_{0}^{\sharp} into \mathbb{D}_{1}^{\sharp}
- $\sqsubseteq^{\sharp} \rightarrow$ be the pointwise extension of \sqsubseteq_{1}^{\sharp}
- γ_{\rightarrow} is defined by:

$$
\begin{aligned}
\gamma_{\rightarrow}: & \mathbb{D}^{\sharp} \\
\phi & \longrightarrow \mathbb{D} \\
\phi & \left.\longmapsto x \in \mathcal{E} \mid \forall y \in \mathbb{D}_{0}^{\sharp}, x \in \gamma_{0}(y) \Longrightarrow x \in \gamma_{1}(\phi(y))\right\}
\end{aligned}
$$

Then $\gamma \rightarrow$ defines a cardinal power abstraction

Example

Back to the example:

- $\mathbb{D}_{0}^{\#}$: abstraction of the values of b ;
- \mathbb{D}_{1}^{\sharp} : sign abstraction of the values of x ;
- the properties needed to establish the condition on the exit states are all expressible in the cardinal power abstraction

Intuition:

- cardinal power allows to express properties of the form $\bigwedge_{i \in I}\left(A_{i} \Rightarrow B_{i}\right)$
- exercise: prove that partitioning is a cardinal power abstraction

Reduction

- In general, the cardinal power is not a reduced abstraction $\left(\gamma_{\rightarrow}\right.$ not injective)
- Reduced cardinal power is obtained by composing the reduction construction

Application: control state partitioning abstraction

Assumptions:

- $\mathbb{D}=\mathcal{P}(\mathbb{S})$ where $\mathbb{S}=\mathbb{L} \times \mathbb{M}$
- $\mathbb{D}_{0}^{\sharp}=\mathbb{L} \uplus\{\perp, \top\}$
- $\mathbb{D}_{1}^{\sharp}=\mathcal{P}(\mathbb{M})$, ordered with the inclusion

Then, if Φ is an element of the reduced cardinal power,

- By reduction, $\Phi(\perp)=\emptyset$ and $\Phi(\top)=\bigcup\{\Phi(I) \mid I \in \mathbb{L}\}$
- Moreover:

$$
\begin{aligned}
\gamma_{\rightarrow}(\Phi) & =\left\{s \in \mathbb{S} \mid \forall x \in \mathbb{D}_{0}^{\sharp}, s \in \gamma_{0}(x) \Longrightarrow s \in \gamma_{1}(\Phi(x))\right\} \\
& =\left\{(I, m) \in \mathbb{S} \mid m \in \gamma_{1}(\Phi(I))\right\}
\end{aligned}
$$

- Thus is the control state partitioning abstraction
- This property also holds for partitioning abstraction in general

Outline

(1) Introduction
(2) Abstraction of partitioned systems
(3) Product of abstractions

4 Reduction and application to reduced product
(5) Reduced cardinal power abstraction
(6) State partitioning, trace partitioning
(7) Concluding remarks

Disjunctions in static analysis

Unusual computation of the absolute value:
int $x \in \mathbb{Z}$;
int s;
int y;
if($x \geq 0)\{$
$\mathrm{s}=1$;
\} else \{
$\mathrm{s}=-1 ;$
\}
$\mathrm{y}=\mathrm{x} / \mathrm{s}$;

- Interval abstraction:
- after the if, $s \in[-1,1]$
- possible division by 0
- Same with polyedra, octagons (convex abstractions)
- Interval + congruences would work

What if we want to use intervals only ?
Disjunctions are needed

Disjunctive completion

Definition

We consider an abstraction defined by a concretization function $\gamma:\left(\mathbb{D}^{\sharp}, \sqsubseteq^{\sharp}\right) \longrightarrow(\mathbb{D}, \subseteq)$.
The disjunctive completion abstraction is defined by:

- $\mathbb{D}_{V}^{\sharp}=\mathcal{P}\left(\mathbb{D}^{\sharp}\right)$
- \sqsubseteq_{V}^{\sharp} is defined by:

$$
\mathcal{E}^{\sharp} \sqsubseteq{ }_{V}^{\sharp} \mathcal{F}^{\sharp} \Longleftrightarrow \forall e^{\sharp} \in \mathcal{E}^{\sharp}, \exists f^{\sharp} \in \mathcal{F}^{\sharp}, e^{\sharp} \sqsubseteq^{\sharp} f^{\sharp}
$$

- $\forall \mathcal{E}^{\sharp} \in \mathbb{D}, \gamma_{\vee}\left(\mathcal{E}^{\sharp}\right)=\bigcup\left\{\gamma\left(e^{\sharp}\right) \mid e^{\sharp} \in \mathcal{E}^{\sharp}\right\}$
- $\forall x \in \mathbb{D}, \alpha_{\vee}(x)=\left\{e^{\sharp} \in \mathbb{D}^{\sharp} \mid x \subseteq \gamma\left(e^{\sharp}\right)\right\}$

These define a Galois connection $(\mathbb{D}, \subseteq) \underset{\alpha_{V}}{\stackrel{\gamma_{v}}{\leftrightarrows}}\left(\mathbb{D}_{V}^{\sharp}, \sqsubseteq_{\vee}^{\sharp}\right)$

- Proof: exercise

State partitioning

- Disjunctive completion has several severe limitations:
- analyses may manipulate huge abstract states
- no obvious widening: has to be defined on a per case basis it may be non trivial to define one
- this abstraction ignores properties of the system to analyze
- Partitioning allows to express disjunctions too

Flashback: partitioning abstraction

Given set E and a partition \mathfrak{P} of E, we let the partitioning abstraction over E be defined by:

$$
\begin{array}{rlll}
\gamma_{\text {part }}: & (\mathfrak{P} \rightarrow \mathcal{P}(E)) & \longrightarrow \mathcal{P}(E) \\
\Phi & \longmapsto \bigcup_{p \in \mathfrak{P}} \Phi(p)
\end{array}
$$

- Advantages:
- the size of disjunctions is bounded by \mathfrak{P}
- the choice of \mathfrak{P} can exploit problem properties

State partitioning based on values

Back to our example, we design a cardinal power abstraction:
int $x \in \mathbb{Z}$;
int s ;
int y ;
if($x \geq 0)\{$
$\mathrm{s}=1$;
\} else \{

$$
\mathrm{s}=-1
$$

\}

$$
y=x / s
$$

- \mathbb{D}_{0}^{\sharp} : interval of x
- $\mathbb{D}_{1}^{\#}$: intervals for all variables
- Property at the end of the if:

$$
\left\{\begin{aligned}
\mathrm{x} \in[0,+\infty[& \Rightarrow \mathrm{s}=1 \wedge \ldots \\
\mathrm{x} \in]-\infty,-1] & \Rightarrow \mathrm{s}=-1 \wedge \ldots
\end{aligned}\right.
$$

- Some of the issues of disjunctive completion remain: in particular, no obvious widening...
- Representing the full cardinal power is too costly: limit the number of partitions

Transfer functions

int $\mathrm{x} \in \mathbb{Z}$;
int s ;
int y ;
if $(x \geq 0)\{$
$\mathrm{s}=-1 ;$
\} else \{

$$
\mathrm{s}=1
$$

\}
(1) $\mathrm{x}=-\mathrm{x}$;
(2) $y=x / s$;

- At (1):

$$
\left\{\begin{aligned}
\mathrm{x} \in[0,+\infty[& \Rightarrow \mathrm{s}=-1 \wedge \ldots \\
\mathrm{x} \in]-\infty,-1] & \Rightarrow \mathrm{s}=1 \wedge \ldots
\end{aligned}\right.
$$

- At (2):

$$
\left\{\begin{array}{l}
\mathrm{x} \in[1,+\infty[\Rightarrow \mathrm{s}=1 \wedge \ldots \\
\mathrm{x} \in]-\infty, 0]
\end{array} \Rightarrow \mathrm{s}=-1 \wedge \ldots .\right.
$$

Most abstract transfer functions may modify both sides of the cardinal power:

- The assignment to x modifies the abstraction in the left hand side of the cardinal power
- Thus partitions need to be recomputed: costly operation

Trace partitioning abstraction: example

Alternate way to look at the example:

$$
\begin{aligned}
& \text { int } x \in \mathbb{Z} ; \\
& \text { int } s ; \\
& \text { int } y ; \\
& \text { if }(x \geq 0)\{ \\
& \quad s=1 ; \\
& \} \text { else }\{ \\
& \quad s=-1 \text {; } \\
& \}
\end{aligned}
$$

- if the execution went through the TRUE branch of the if:

$$
x \in[0,+\infty[\wedge s=1 \wedge
$$

- if the execution went through the FALSE branch of the if:

$$
\mathrm{x} \in]-\infty,-1] \wedge s=-1 \wedge
$$

- This abstraction should be formalized as an abstraction of traces, not states

Trace partitioning abstraction: formalization

$I_{0}: \quad$ int $x \in \mathbb{Z}$;
l_{1} : int s;
I_{2} : int y;
I_{3} : if($\left.x \geq 0\right)\{$
$I_{4}: \quad s=1 ;$
/5: \} else $\{$
$I_{6}: \quad s=-1 ;$
$\left.I_{7}:\right\}$
$I_{8}: ~ y=x / s ;$

- Trace domain $\mathbb{D}_{0}^{\#}$:

- Concretization γ_{0} :

$$
\left.\begin{array}{rl}
\gamma_{0}: & {\left[I_{4}\right]}
\end{array} \mapsto\left\{\left\langle\ldots,\left(I_{4}, m\right), \ldots\right\rangle \in \mathbb{S}^{\star}\right\},\right\}
$$

- Right hand side abstraction: $(\mathcal{P}(\mathbb{S}), \subseteq)$, with abstraction defined by $\left(\alpha_{\mathcal{R}}, \gamma_{\mathcal{R}}\right)$

Trace partitioning abstraction: definition

Definition: static trace partitioning

Let $\left(\mathbb{D}_{0}^{\sharp}, \models_{0}^{\sharp}\right)$ be a finite abstraction of sets of traces, defined by a Galois connection:

$$
\left(\mathcal{P}\left(\mathbb{S}^{\star}\right), \subseteq\right) \underset{\alpha_{0}}{\stackrel{\gamma_{0}}{\leftrightarrows}}\left(\mathbb{D}_{0}^{\sharp}, \sqsubseteq_{0}^{\sharp}\right)
$$

It defines a static trace partitioning abstraction by reduced cardinal power over the reachability abstraction.

There are many ways to instantiate \mathbb{D}_{0}^{\sharp} :

Trace partitioning criteria

- control flow based criteria:
branch taken in a if statement number of times a while body was executed
- value of some variable at a given point
- conjunctions of such criteria

Trace partitioning transfer functions

We assume \mathbb{D}_{0}^{\sharp} is finite (case \mathbb{D}_{0}^{\sharp} is infinite: dynamic partitioning, see later)

Static partitioning composed with state abstraction

By composing a state abstraction $(\mathcal{P}(\mathbb{S}), \subseteq) \underset{\alpha_{1}}{\stackrel{\gamma_{1}}{\leftrightarrows}}\left(\mathbb{D}_{1}^{\sharp}, \sqsubseteq_{1}^{\sharp}\right)$, and applying the same reduced cardinal power abstraction, we get a new instance of the static trace partitioning abstraction

- Least element: $\lambda\left(x^{\sharp} \in \mathbb{D}_{0}^{\sharp}\right) \cdot \perp_{1}$
- Upper bound: $\phi^{\sharp} \sqcup \psi^{\sharp}::=\lambda\left(x^{\sharp} \in \mathbb{D}_{0}^{\sharp}\right) \cdot\left(\phi^{\sharp}\left(x^{\sharp}\right) \sqcup_{1} \psi^{\sharp}\left(x^{\sharp}\right)\right.$
- Widening operator: similar definition
- Transfer functions with no partition change: We assume that:
- $\mathfrak{f}: \mathbb{D} \rightarrow \mathbb{D}$ is a concrete transfer function (e.g., describing the effect of a test or of an assignment)
- $\mathfrak{f}_{1}^{\sharp}: \mathbb{D}_{1}^{\sharp} \rightarrow \mathbb{D}_{1}^{\sharp}$ is a sound transfer function with respect to \mathfrak{f}, that is such that $\mathfrak{f} \circ \gamma \subseteq \gamma \circ \mathfrak{f}_{1}^{\#}$
Then, $\lambda\left(x^{\sharp} \in \mathbb{D}_{0}^{\sharp}\right) \cdot \mathfrak{f}_{1}^{\sharp}$ is sound with respect to \mathfrak{f}

Transfer functions in the trace partitioning domain

Control history based partitioning:
Abstract partition matching
A sound abstract partition matching is a family of relations $\left(\rightarrow_{I, l^{\prime}}^{\sharp}\right)_{l, I^{\prime} \in \mathbb{L}}$ where $\rightarrow_{l, \prime^{\prime}}^{\sharp} \subseteq\left(\mathbb{D}_{0}^{\sharp}\right)^{2}$, such that:

$$
\left.\begin{array}{l}
\left\langle\left(I_{0}, m_{0}\right), \ldots,\left(I_{n}, m_{n}\right)\right\rangle \in \gamma_{0}\left(x^{\sharp}\right) \\
\wedge x^{\sharp} \rightarrow I_{n}^{\sharp}, I_{n+1} y^{\sharp}
\end{array}\right\} \Rightarrow\left\langle\left(I_{0}, m_{0}\right), \ldots,\left(I_{n+1}, m_{n+1}\right)\right\rangle \in \gamma_{0}\left(y^{\sharp}\right)
$$

Analysis of a transition

Given a sound abstract partition matching $\rightarrow_{l, l}$, and sound transfer function $\mathfrak{f}_{l, \prime^{\prime}}: \mathbb{D}_{1}^{\sharp} \rightarrow \mathbb{D}_{1}^{\sharp}$ in the underlying domain, the transfer function below in the trace partitioning domain is sound:

$$
\phi^{\sharp} \longmapsto \lambda\left(x^{\sharp} \in \mathbb{D}_{0}^{\sharp}\right) \cdot \sqcup_{1}\left\{\mathfrak{f}_{I, I^{\prime}}\left(\phi^{\sharp}\left(y^{\sharp}\right)\right) \mid y^{\sharp} \rightarrow_{I, I^{\prime}} x^{\sharp}\right\}
$$

Creation and fusion of trace partitions

- Proof of soundness: exercise
- Typical choice for the abstract partition matching:
- at most points, the partitions are unchanged i.e., $\rightarrow_{I, l^{\prime}}$ is the identity relation
- at points where partitions should be merged, it reflects creation of partitions or fusion of partitions
- Other partitioning criteria: should provide similar operations on partitions

Dynamic partitioning

Principle:

- the domain of partitions depends on the context
- can be applied to state partitioning, trace partitioning...
- in trace partitioning, this corresponds to cases where \mathbb{D}_{0}^{\sharp} is infinite
- indeed, only a finite number of partitions can be represented at any point in the analysis; this set is dynamic (i.e., also determined as a result of the analysis)

Formalization: cofibered abstract domain [AV], [MR'05]

Outline

(1) Introduction
(2) Abstraction of partitioned systems
(3) Product of abstractions

44 Reduction and application to reduced product
(5) Reduced cardinal power abstraction
(C) State partitioning, trace partitioning
(7) Concluding remarks

Main points of the lecture

There exists many techniques to combine abstract domains into more interesting ones

- Product, reduced product: conjunctions of abstract properties
- Partitioning, disjunctive completion: disjunctions of abstrct properties
- The list is not exhaustive

Advantages

- Modular design of static analyzers
- A same construction may be used in many contexts

Bibliography: abstract domain combination

- [CC'79]: Systematic design of program analysis frameworks. Patrick Cousot and Radhia Cousot. In POPL, 1979.
- [B'90]: Interprocedural abstract interpretation of block structured languages with nested procedures, aliasing and recursivity.
Fran cois Bourdoncle. In PLILP, 1990.
- [CC'92]: Abstract interpretation and application to logic programs.
Patrick cousot and Radhia Cousot. In Journal of Logic Programming, 1992.
- [AV]: Abstract cofibered domains: application to the alias analysis of untyped programs.
Arnaud Venet. In SAS, 1996.
- [MR'05]: Trace partitioning in abstract interpretation static analyzers.
Laurent Mauborgne and Xavier Rival. In ESOP, 2005.

