
Combination of Abstract Domains
MPRI — Cours 2.6 “Interprétation abstraite :

application à la vérification et à l’analyse statique”

Xavier Rival

INRIA, ENS, CNRS

Nov, 2nd. 2012

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 1 / 69

Introduction

Overview of the lecture

Construction of abstract semantics
a step-by-step process from basic abstractions

◮ numerical abstractions
◮ conjunctions of abstract properties: product
◮ disjunctions of abstract properties: disjunctive completion, partitioning

Decomposing abstraction has many advantages:
◮ modular design of static analyzers:

split into several different abstractions
◮ flexibility of the resulting tools:

better scalability, extensibility to broader analysis setups

Also, we will get a better understanding of abstract domain
properties: reduction

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 2 / 69

Introduction

An example

How to verify the following program ?

int i = 0; // integer variable
bool b; // boolean variable
while(i < 10){
i = i+ 2;
b = brand();
if(b){

break;
}
}
assert(b ∨ i == 10); // assertion to prove

We want to do an abstract interpretation of the code

First, we need to construct an abstract domain

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 3 / 69

Introduction

Hoare proof and choice of an abstract domain

int i = 0;
{i = 0}

bool b;
{i = 0}

while(i < 10){
{0 ≤ i ≤ 8 ∧ i ≡ 0(2)}

i = i+ 2;
{2 ≤ i ≤ 10 ∧ i ≡ 0(2)}

b = brand();
{2 ≤ i ≤ 10 ∧ i ≡ 0(2)}

if(b){
{2 ≤ i ≤ 10 ∧ i ≡ 0(2) ∧ b = TRUE}

break;
{}
}

{2 ≤ i ≤ 10 ∧ i ≡ 0(2) ∧ b = FALSE}
}
{b = TRUE ∨ i = 10}

assert(b ∨ i == 10);

Abstract interpretation

Which abstract domain ?
We need:

interval constraints

congruences constraints

conjunctions

disjunctions

This lecture shows how to
build such a domain using
combinations of basic
abstract domains

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 4 / 69

Introduction

A first (de)composition: function composition

Flashback: composition of Galois connections

Let (D0,⊑0), (D1,⊑1) and (D2,⊑2) be three abstract domains, and let us
assume the Galois connections below are defined:

(D0,⊑0) −−−−→←−−−−
α01

γ10
(D1,⊑1) (D1,⊑1) −−−−→←−−−−

α12

γ21
(D2,⊑2)

Then, we have a third Galois connection

(D0,⊑0) −−−−−−−→←−−−−−−−
α12◦α01

γ10◦γ21
(D2,⊑2)

We can generalize this principle:

Composition of concretization functions

If γ21 : D2 → D1 (resp., γ10 : D1 → D0) describe concretization functions
from (D2,⊑2) to (D1,⊑1) (resp., from (D1,⊑1) to (D0,⊑0)), then
γ20 = γ10 ◦ γ21 describes a concretization from (D2,⊑2) to (D0,⊑0)

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 5 / 69

Introduction

Decomposition of abstract domains

We inspect the predicates needed in the Hoare proof:

One invariant per control point:
◮ already seen informally in previous lectures
◮ different control states need be abstracted separately
◮ partitioning abstraction

{0 ≤ i ≤ 8 ∧ i ≡ 0(2)}:
◮ conjunction of an interval constraint and of a congruence constraint
◮ expressible in a product of abstractions

{b = TRUE ∨ i = 10}:
◮ disjunction of constraints
◮ several ways to express this:

state partitioning, trace partitioning

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 6 / 69

Introduction

Notations and definitions: concrete level

Concrete states

Concrete states are of the form S = L× ML is the set of labels or control statesM is the set of memory states

Moreover, M = X→ V, where:X is the set of variablesV is the set of values

We will use several concrete semantics during this lecture:

finite traces semantics JSK⋆ ∈ P(S⋆)

reachable states semantics JSKR ∈ P(S)
Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 7 / 69

Introduction

Notations and definitions: abstract level

We shall use abstract-domains to over-approximate sets of concrete
values, sets of states, sets of traces

Abstract domain definitions

An abstract domain will comprise a set of abstract values D♯ and:

a concretization function γ and optionnally an abstraction α

an abstract order ⊑♯, an abstract infimum ⊥

an abstract upper bound ⊔♯, and a widening operator ▽

abstract transfer functions f♯, g♯, . . . associated to common concrete
operations

These allow defining static analyses computing abstract least-fixpoints
or abstract post-fixpoints

When we build composite abstract domains from basic ones, we will
assume / ensure such elements
Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 8 / 69

Abstraction of partitioned systems

Outline

1 Introduction

2 Abstraction of partitioned systems

3 Product of abstractions

4 Reduction and application to reduced product

5 Reduced cardinal power abstraction

6 State partitioning, trace partitioning

7 Concluding remarks

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 9 / 69

Abstraction of partitioned systems

Partitioning of an abstraction

Partitioning abstraction

Given set E and partition P of E , we let the partitioning abstraction
over E be defined by:

αpart : P(E) −→ (P→ P(E))
X 7−→ λ(p ∈ P) · (p ∩ X)

γpart : (P→ P(E)) −→ P(E)
Φ 7−→

⋃

p∈PΦ(p)

It indeed forms a Galois connection:

(P(E),⊆) −−−−−→←−−−−−
αpart

γpart

(P→ P(E),
.
⊆)

Proof: αpart(X)
.
⊆ Φ ⇐⇒ X ⊆ γpart(Φ)

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 10 / 69

Abstraction of partitioned systems

Example: control state partitioning

How to abstract separately memory states associated to different control
states ?

Control state partitioning

We apply the partitioning abstraction with:

E = S
P = {{(l ,m) | m ∈ M} | l ∈ L}

We note that P ≡ L and that, for all l ∈ L, {(l ,m) | m ∈ M} ≡ M,
therefore, the partitioning abstraction is:

αpart : P(E) −→ (L→ P(E))
X 7−→ λ(l ∈ L) · {m ∈ M | (l ,m) ∈ X}

γpart : (L→ P(E)) −→ P(E)
Φ 7−→

⋃

l∈L{(l ,m) | m ∈ Φ(l)}

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 11 / 69

Abstraction of partitioned systems

Example: control state partitioning

We can compose this abstraction with any other abstraction over memory
states:

Abstraction over a partitioned system

Let (D♯
num,⊑

♯
num) be an abstraction of (P(M),⊆), with a Galois

connection (P(M),⊆) −−−−−→←−−−−−
αnum

γnum

(D♯
num,⊑

♯
num).

Then, we define the abstract domain (D♯
part,⊑

♯
part) = (L→ D♯

num,
.

⊑♯
num),

with the abstraction and concretization defined by:

.
αnum ◦αpart : P(S) −→ (L→ D♯

num)
S 7−→ λ(l ∈ L) · αnum({m ∈ M | (l ,m) ∈ S})

γpart◦
.
γnum: (L→ D♯

num) −→ P(S)
Φ 7−→ {(l ,m) | ∃l ∈ L, m ∈ γnum(Φ(l))}

Case with only a γnum (no αnum): similar defintions

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 12 / 69

Abstraction of partitioned systems

Example: context sensitive abstraction

We consider a language with procedures (set of procedures P)

Semantics with procedures

The set of states is of the form S = K× L× M, where K is the set of
contexts defined by:

k ∈ K ::= ǫ empty call stack
| f · k call to f from stack k

Context sensitive abstraction

P = {{(k , l ,m) | m ∈ M} |
k ∈ K, l ∈ M}

one invariant per calling
context

infinite if recursion

Context insensitive abstraction

P = {{(f · k , l ,m) | m ∈ M, k ∈ K} |
f ∈ P, l ∈ M}

merges different calling contexts
to a same procedure

coarser abstraction
Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 13 / 69

Abstraction of partitioned systems

Fixpoint form of a partitioned semantics

We consider a transition system S = (S,→,SI)

The reachable states are computed as JSKR = lfpSI
F where

F : P(S) −→ P(S)
X 7−→ {s ∈ S | ∃s ′ ∈ X , s ′ → s}

Semantic function over the partitioned system

We let Fpart be defined over D♯
part = P→ P(S) by:

Fpart : D♯
part −→ D♯

part

Φ 7−→ λ(p ∈ P) · {s ∈ p | ∃p′ ∈ P, ∃s ′ ∈ Φ(p′), s ′ → s}

Then Fpart ◦ αpart = αpart ◦ F , and

αpart(JSKR) = lfpαpart(SI)Fpart

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 14 / 69

Abstraction of partitioned systems

Abstract equations form of a partitioned semantics

We look for a set of equivalent abstract equations
We consider the case of a system partitioned by control statesL = {l1, . . . , ls}
Let us consider the system of semantic equations over sets of states
E1, . . . , Es ∈ P(M):

E1 =
⋃

i{m ∈ M | ∃m ′ ∈ Ei , (li ,m
′)→ (l1,m)}

...
Es =

⋃

i{m ∈ M | ∃m ′ ∈ Ei , (li ,m
′)→ (ls ,m)}

So, if we let
Fi : (E1, . . . , Es) 7→

⋃

i{m ∈ M | ∃m ′ ∈ Ei , (li ,m
′)→ (li ,m)}, then:

αpart(JSKR) is the least solution of the system

E1 = F1(E1, . . . , Es)
...

Es = Fs(E1, . . . , Es)

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 15 / 69

Abstraction of partitioned systems

Partitioned systems and fixpoint computation

How to compute an abstract invariant for a partitioned systme described by
a set of abstract equations ?

(for now, we assume no convergence issue, i.e., that the abstract lattice is
of finite height)

In practice Fi depends only on a few of its arguments
i.e., Ek depends only on the predecessors of lk in the control flow
graph of the program being analyzed

Example of a simple system of abstract equations:

E0 = I ∪ F0(E3)
E1 = F1(E0)
E2 = F2(E0)
E3 = F3(E1, E2)

where αpart(SI) = (SI ,⊥,⊥,⊥) (i.e., init states are at point l0)

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 16 / 69

Abstraction of partitioned systems

Partitioned systems and fixpoint computation

Following the fixpoint transfer, we obtain the following abstract iterates
(E♯n)n∈N:

E♯0 = (I, ⊥, ⊥, ⊥)

E♯1 = (I, F
♯
1(I), F

♯
2(I), ⊥)

E♯2 = (I, F
♯
1(I), F

♯
2(I), F

♯
3(F

♯
1(I),F ♯

2 (I)))
E♯3 = (I ⊔ F

♯
0(F

♯
3(F

♯
1(I),F ♯

2 (I))), F
♯
1(I), F

♯
2(I), F

♯
3(F

♯
1(I),F ♯

2 (I)))
Each iteration causes the recomputation of all components

Though, each iterate differs from the previous one in only a few
components

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 17 / 69

Abstraction of partitioned systems

Chaotic iterations: principle

Fairness

Let K be a finite set. A sequence (kn)n∈N of elements of K is fair if and
only if, for all k ∈ K , the set {n ∈ N | kn = k} is infinite.

Other alternate definition: ∀k ∈ K , ∀n0 ∈ N, ∃n ∈ N, n > n0 ∧ kn = k

i.e., all elements of K is encountered infintely often

Chaotic iterations

A chaotic sequence of iterates is a sequence of abstract iterates (X ♯
n)n∈N inD♯

part such that there exists a sequence (kn)n∈N of elements of {1, . . . s}
such that:

X
♯
n+1 = λ(li ∈ L) ·{ X

♯
n(li) if i 6= kn

X
♯
n(li) ⊔ F ♯(X ♯

n(l1), . . . ,X
♯
n(ls)) if i = kn

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 18 / 69

Abstraction of partitioned systems

Chaotic iterations: soundness

Soundness

Assuming the abstract lattice satisfies the ascending chain condition, any
sequence of chaotic iterates computes the abstract fixpoint:

lim (X ♯
n)n∈N = αpart(JSKR)

Proof: exercise

Applications: we can recompute only what is necessary
Back to the example, where only the recomputed components are
colored:

E♯0 = (I, ⊥, ⊥, ⊥)

E♯1 = (I, F
♯
1(I), ⊥, ⊥)

E♯2 = (I, F
♯
1(I), F

♯
2(I), ⊥)

E♯3 = (I, F
♯
1(I), F

♯
2(I), F

♯
3(F

♯
1(I),F ♯

2 (I)))
E♯4 = (I⊔F

♯
0(F

♯
3(F

♯
1(I),F ♯

2 (I))), F
♯
1(I), F

♯
2(I), F

♯
3(F

♯
1(I),F ♯

2 (I)))
Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 19 / 69

Abstraction of partitioned systems

Chaotic iterations: worklist algorithm

Worklist algorithms

Principle:

maintain a queue of partitions to update

initialize the queue with the entry label of the program
and the local invariant at that point at αnum(SI)

for each iterate, update the first partition in the queue (after removing
it), and add to the queue all its successors unless the updated
invariant is equal to the former one

terminate when the queue is empty

This algorithm implements a chaotic iteration strategy, thus it is sound

Application: only partitions that need be updated are recomputed

Implemented in many static analyzers

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 20 / 69

Abstraction of partitioned systems

Selection of a set of widening points for a partitioned system

We do not assume anymore that D♯
num satisfies the ascending chain

condition

We assume D♯
num provides widening operator ▽

How to adapt the chaotic iteration strategy, i.e. guarantee termination and
soundness ?

Enforcing termination of chaotic iterates

Let K ⊆ {1, . . . , s} such that each cycle in the control flow graph of the
program contains at least one point in K ; we define the chaotic abstract
iterates with widening as follows:

X
♯
n+1 = λ(li ∈ L) ·

X
♯
n(li) if i 6= kn

X
♯
n(li) ⊔ F ♯(X ♯

n(l1), . . . ,X
♯
n(ls)) if i = kn ∧ li 6∈ K

X
♯
n(li)▽F ♯(X ♯

n(l1), . . . ,X
♯
n(ls)) if i = kn ∧ li ∈ K

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 21 / 69

Abstraction of partitioned systems

Selection of a set of widening points for a partitioned system

Soundness and termination

Under the assumption of a fair iteration strategy, sequence (X ♯
n)n∈N

terminates and computes a sound abstract post-fixpoint:

∃n0 ∈ N, { ∀n ≥ n0, X
♯
n0 = X

♯
n

JSKR ⊆ γpart(Xn0)

Proof: exercise

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 22 / 69

Product of abstractions

Outline

1 Introduction

2 Abstraction of partitioned systems

3 Product of abstractions

4 Reduction and application to reduced product

5 Reduced cardinal power abstraction

6 State partitioning, trace partitioning

7 Concluding remarks

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 23 / 69

Product of abstractions

Product abstraction

Definition

Let (D♯
0,⊑

♯
0) and (D♯

1,⊑
♯
1) be two abstract domains:

(D,⊆) −−−→←−−−
α0

γ0
(D♯

0,⊑
♯
0) and (D,⊆) −−−→←−−−

α1

γ1
(D♯

1,⊑
♯
1)

The product abstract domain (D♯
×,⊑

♯
×) is defined by:D♯

× = D♯
0 × D♯

1

(x0, x1)⊑
♯
×(y0, y1) ⇐⇒ x0⊑

♯
0y0 ∧ x1⊑

♯
1y1

The product abstraction is defined by:

(D,⊆) −−−−→←−−−−
α×

γ×
(D♯

×,⊑
♯
×) where

α× : D −→ D♯
× γ× : D♯ −→ D

a 7−→ (α0(a), α1(a)) (x0, x1) 7−→ γ0(x0) ∩ γ1(x1)

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 24 / 69

Product of abstractions

Product abstraction

Proof, following the usual principle:

α(a)⊑♯
×(x0, x1) ⇐⇒ (α0(a), α1(a))⊑

♯
×(x0, x1)

⇐⇒ α0(a)⊑
♯
0x0 ∧ α1(a)⊑

♯
1x1

⇐⇒ a ⊆ γ0(x0) ∧ a ⊆ γ1(x1)
⇐⇒ a ⊆ γ0(x0) ∩ γ1(x1)
⇐⇒ a ⊆ γ×(x0, x1)

Conjunctions of abstract properties

Elements of the product abstract domain stand for conjunctions of abstract
properties of D♯

0 and of D♯
1.

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 25 / 69

Product of abstractions

Example: conjunctions of constraints

Assumptions:D is P(Z) and ⊆ the set inclusionD♯
0 is Z ∪ {−∞,+∞}, ⊑♯

0 is ≤ and α0(E) = inf ED♯
1 is Z ∪ {−∞,+∞}, ⊑♯

0 is ≤ and α1(E) = sup E

Product abstraction:

Then:

α×(Z) = (−∞,+∞) α×({0, 2, 4, 6, 8}) = (0, 8)
α×(∅) = (+∞,−∞) α×({1, 2, 3}) = (1, 3)

Moreover:

γ×(x0, x1) = {x ∈ Z | x0 ≤ x ∧ x ≤ x1}

Therefore D♯
× is the interval abstraction, where an interval is viewed as a

conjunction of two constraints

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 26 / 69

Product of abstractions

Example: intervals and congruences

Assumptions:D is P(Z) and ⊆ the set inclusionD♯
0 is the interval abstract domain (an abstract values is either ⊥ or a

pair of elements of Z ∪ {−∞,+∞})D♯
1 is the congruences abstract domain:
◮ abstract values are either ⊥, or of the form 〈a, b〉 with 0 ≤ a < b or

b = 0
◮ γ1(⊥) = ∅ and γ1(〈a, b〉) = {a + k · b | k ∈ Z}

Product abstraction:

Then:

α×(∅) = (⊥,⊥) α×({1, 3, . . .}) = ([1,+∞[, 〈1, 2〉)
α×(Z) = (]−∞,+∞[, 〈0, 1〉) α×({1, 3, 7}) = ([1, 7], 〈1, 2〉)

Moveover:

γ×([1, 7], 〈1, 2〉) = {1, 3, 5, 7} γ×([0, 10], 〈3, 6〉) = {3, 9}
γ×([1, 8], 〈1, 2〉) = {1, 3, 5, 7} γ×([0,+∞[, 〈3, 6〉) = {3, 9, . . .}

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 27 / 69

Product of abstractions

Operations in the product domain

Least element: if ⊥0 (resp., ⊥1) is the least element of D♯
0 (resp. ofD♯

1), then ⊥× = (⊥0,⊥1) is the least element of D♯
×

Upper bound: if ⊔0 (resp., ⊔1) is a sound upper bound operator onD♯
0 (resp., D♯

1), then ⊔× defined by
(x0, x1) ⊔× (y0, y1) = (x0 ⊔0 y0, x1 ⊔1 y1) is a sound upper bound

operator on D♯
×

Widening: if ⊔0 (resp. ⊔1) is a widening on D♯
0 (resp. D♯

1), then ⊔×
defined by (x0, x1) ⊔× (y0, y1) = (x0 ⊔0 y0, x1 ⊔1 y1) is a widening onD♯
×

Proofs: exercise!

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 28 / 69

Product of abstractions

Operations in the product domain

Transfer functions:
We assume that:

◮ f : D→ D is a concrete transfer function (e.g., describing the effect of
a test or of an assignment)

◮ f
♯
0
: D♯

0
→ D♯

0
is a sound transfer function with respect to f, that is such

that f ◦ γ0 ⊆ γ0 ◦ f
♯
0

◮ f
♯
1
: D♯

1
→ D♯

1
achieves the same condition in D♯

1

Then, we let f♯× be defined by:

f
♯
× : D♯

× −→ D♯
×

(x0, x1) 7−→ (f♯0(x0), f
♯
1(x1))

Then f
♯
× is sound with respect to f

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 29 / 69

Product of abstractions

Transfer functions in the product abstraction

We consider the interval abstraction as a product of constraintsD is P(Z) and ⊆ the set inclusionD♯
0 is Z ∪ {−∞,+∞}, ⊑♯

0 is ≤ and α0(E) = inf ED♯
1 is Z ∪ {−∞,+∞}, ⊑♯

0 is ≤ and α1(E) = sup E

We consider the concrete function f : x 7→ −x

The lower bound before gives no information on the lower bound after:
f
♯
0 : x0 7→ −∞

The same goes for the upper bounds: f
♯
1 : x1 7→ +∞

Hence, f♯×(x0, x1) =]−∞,+∞[= ⊤

Though, we would like the more precise: (x0, x1) 7−→ (−x1,−x0)

Decomposed transfer function may lose precision

Decomposing the interval abstract domain in a product abstraction
does not make sense for the computation of transfer functions

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 30 / 69

Product of abstractions

Transfer functions in the product abstraction

We now consider the product of intervals and congruences, with transfer
functions:D is P(Z) and ⊆ the set inclusion

Test: f(t, E) = {z ∈ Z | JtK(v 7→ z) = TRUE} returns the values that
satisfy condition t on variable v

Random add: g(E) = {x + k | x ∈ E ∧ −1 ≤ k ≤ 1}

x♯ ::= ([0, 10], 〈0, 2〉)

y ♯ ::= p
♯
×(v = 5, x♯) =

([5, 5],⊥)

γ×(y
♯) = ∅

why not y ♯ = (⊥,⊥) then ?

x♯ ::= ([0, 10], 〈0, 2〉)

y ♯ ::= p
♯
×(v ≤ 5, x♯) =

([0, 5], 〈0, 2〉)

z♯ ::= p
♯
×(v ≥ 5, y ♯) =

([5, 5], 〈0, 2〉)

γ×(z
♯) = ∅

why not z♯ = (⊥,⊥) then ?

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 31 / 69

Product of abstractions

Improving transfer functions

We consider the program:

assume(x ∈ [0, 10], even);
if(x ≤ 5){

if(x ≥ 5){
x + rand([−1, 1]);
assert(FALSE);

}
}

analysis, from state
x♯ ::= ([0, 10], 〈0, 2〉)

y ♯ ::= p
♯
×(v ≤ 5, x♯) =

([0, 5], 〈0, 2〉)

z♯ ::= p
♯
×(v ≥ 5, y ♯) =

([5, 5], 〈0, 2〉)

v ♯ ::= g♯(z♯) = ([4, 6], 〈0, 1〉)

Then, we notice that:

In the concrete, the body of the second if is unreachable

In the abstract, γ×(v
♯) = {4, 5, 6}6= ∅

The product abstraction misses the fact that:

x = 5 ∧ x ≡ 0 mod (2) =⇒ x ∈ ∅

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 32 / 69

Product of abstractions

Limitations of product abstraction

It does not allow information be sent from one domain to the other

This is the source of a loss of precision in the analysis

How to overcome this ?

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 33 / 69

Reduction and application to reduced product

Outline

1 Introduction

2 Abstraction of partitioned systems

3 Product of abstractions

4 Reduction and application to reduced product

5 Reduced cardinal power abstraction

6 State partitioning, trace partitioning

7 Concluding remarks

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 34 / 69

Reduction and application to reduced product

Injective concretization

We consider the loss of information in the interval + congruences example:

γ×([5, 5], 〈0, 2〉) = ∅ = γ×(⊥,⊥)

g([5, 5], 〈0, 2〉) = ([4, 6], 〈0, 1〉)

g(⊥,⊥) = (⊥,⊥), which means that (⊥,⊥) is much more useful for
the rest of the analysis than ([5, 5], 〈0, 2〉)

converting ([5, 5], 〈0, 2〉) into (⊥,⊥) amounts to applying the
mathematical result:

x = 5 ∧ x ≡ 0 mod (2) =⇒ x ∈ ∅

Some product elements are semantically “equivalent”
for computing other transfer functions, proving semantic assertions...

Some semantically equivalent product elements are “better”
Computing those “better” elements is reduction

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 35 / 69

Reduction and application to reduced product

Galois surjection (or Galois insertion)

Definition

Let us consider an abstraction defined by a Galois connection

(D,⊆) −−−→←−−−αγ (D♯,⊑♯)

Then, the following properties are equivalent:

α is surjective (onto)

γ is injective (into)

α ◦ γ = λ(x ∈ D♯) · x

When they hold, the Galois connection is said to be a Galois insertion

Intuition:

there is no pair of distinct abstract elements with the same meaning

less chance of losing precision by taking the “wrong” abstraction of
concrete property x

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 36 / 69

Reduction and application to reduced product

Galois surjection (or Galois insertion)

Proof:

Let us assume α surjective, i.e. ∀y ∈ D♯, ∃x ∈ D, α(x) = y .
If γ(x) = γ(y),

◮ as α is surjective, there exist x ′, y ′ ∈ D, such that α(x ′) = x and
α(y ′) = y

◮ thus, γ(α(x ′)) = γ(α(y ′)), which implies x ′ ⊆ γ(α(y ′)), and thus
α(x ′)⊑♯α(y ′) (α ◦ γ ◦ α = α)

◮ similarly α(y ′)⊑♯α(x ′), thus x = y

Let us assume γ is injective:
Let y ∈ D♯; as γ ◦ α ◦ γ = γ, we get that γ ◦ α ◦ γ(y) = γ(y), thus
α ◦ γ(y) = y

Let us assume that α ◦ γ is the identity, and let y ∈ D♯. Then,
α ◦ γ(y) = y , which means there exists x ∈ D such that α(x) = y .
Thus α is surjective.

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 37 / 69

Reduction and application to reduced product

Reduction of an abstraction

Quotient abstract domain

Let us consider an abstraction defined by a Galois connection

(D,⊆) −−−→←−−−αγ (D♯,⊑♯)

We let ≡ be the equivalence relation over D♯ defined by:

∀x , y ∈ D♯, x ≡ y ⇐⇒ γ(x) = γ(y)

We define the quotient abstract domain (D♯
≡,⊑

♯
≡) by:D♯

≡ is the set of equivalence classes of D♯ for ≡

x̄⊑♯
≡ȳ ⇐⇒ x⊑♯y

Proof:

≡ is an equivalence relation, so the quotient is well-defined
well-definedness of ⊑♯

≡: exercise
Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 38 / 69

Reduction and application to reduced product

Reduction of an abstraction

Reduced abstraction (sing the same notations)

The reduced abstraction is defined by the Galois connection

(D,⊆) −−−−→←−−−−
α≡

γ≡
(D♯

≡,⊑
♯
≡)

where
α≡ : D −→ D♯

≡ γ≡ : D♯
≡ −→ D

x 7−→ ¯α(x) x̄ 7−→ γ(x)

The above Galois connection is a Galois insertion.

Proof:

well-definedness of γ, Galois insertion property: exercises

Notes:

the construction works even with no α
representation of abstract element: use representants of equivalence
classes, i.e. elements of D♯

≡ are selected elements of D♯

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 39 / 69

Reduction and application to reduced product

Reduction operator

Definition (using the same notations)

A reduction operator over D♯ is an operator ρ≡ such that:

∀x ∈ D♯, γ(ρ≡(x)) = γ(x);

∀x , y ∈ D♯, γ(x) = γ(y) =⇒ ρ≡(x) = ρ≡(y)

Such an operator allows to construct the quotient abstraction, using
elements of D♯ to represent equivalence classes, thanks to the following
definitions:D♯

≡ = D♯;

α≡(x) = ρ≡(α(x))

γ≡(x) = γ(x)

Note:

the construction works even with no α

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 40 / 69

Reduction and application to reduced product

Example: reduction of intervals as a product

We still use:D is P(Z) and ⊆ the set inclusionD♯
0 is Z ∪ {−∞,+∞}, ⊑♯

0 is ≤ and α0(E) = sup ED♯
1 is Z ∪ {−∞,+∞}, ⊑♯

0 is ≤ and α1(E) = inf E

We write ⊥ = (+∞,−∞), and we let:

ρ≡ : D♯
× −→ D♯

×

(x , y) 7−→

{

(x , y) if x ≤ y

⊥ if x > y

ρ≡ defines a reduction operator over D♯
×

this does not solve the issue of the transfer function for x 7→ −x

Proof: exercise

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 41 / 69

Reduction and application to reduced product

Example: reduction of interval + congruences

We still use:D is P(Z) and ⊆ the set inclusionD♯
0 is the interval abstract domain (an abstract values is either ⊥ or a

pair of elements of Z ∪ {−∞,+∞})D♯
1 is the congruences abstract domain:
◮ abstract values are ⊥, or of the form 〈a, b〉 with 0 ≤ a < b or b = 0
◮ γ1(⊥) = ∅ and γ1(〈a, b〉) = {a + k · b | k ∈ Z}

Exercise: define ρ≡
1 reduce to (⊥,⊥) when the concretization is empty:
ρ≡([1, 4], 〈0, 5〉) = (⊥,⊥)

2 reduce interval bounds to match the congruence constraint
ρ≡([0, 10], 〈3, 6〉) = ([3, 9], 〈3, 6〉)

3 build a congruence constraint when there is none and the interval
contains only one value ρ≡([5, 5], 〈0, 1〉) = ([5, 5], 〈5, 0〉)

This solves the imprecision in the example

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 42 / 69

Reduction and application to reduced product

Example: reduction of non relational abstractions

Assumptions:D = P(X→ V), and ⊆ is the inclusion orderD♯ = X→ P(V), and ⊑♯ is the pointwise inclusion
α, γ define the non relational abstraction, by

α(E) = λ(x ∈ X) · {φ(x) | φ ∈ E}
γ(φ♯) = {φ : X→ V | ∀x ∈ X, φ(x) ∈ φ♯(x)}

Then, for all x ∈ X, if φ♯ ∈ D♯ is such that φ♯(x) = ∅, then γ(φ♯) = ∅

we let ⊥ = λ(x ∈ X) · ∅
the reduction operator ρ≡ is defined by (Proof: exercise):

ρ≡ : D♯ −→ D♯

φ♯ 7−→

{

φ♯ if ∀x ∈ X, φ♯(x) 6= ∅
⊥ if ∃x ∈ X, φ♯(x) = ∅

Thus, we can view non relational abstraction as a reduced product over
| X | instances of (P(V),⊆)
Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 43 / 69

Reduction and application to reduced product

Operations in the reduced domain

We define abstract operations on D♯
≡ from operations on D♯:

Least element: if ⊥ is the least element of D♯, then ρ≡(⊥) is the

least element of D♯
≡;

Upper bound: if ⊔ is a sound upper bound operator on D♯ then ⊔≡
defined by x ⊔≡ y = ρ≡(x ⊔ y) is a sound upper bound operator on D♯

≡

Transfer functions:
We assume that:

◮ f : D→ D is a concrete transfer function (e.g., describing the effect of
a test or of an assignment)

◮ f♯ : D♯ → D♯ is a sound transfer function with respect to f, that is such
that f ◦ γ ⊆ γ ◦ f♯

Then, f♯≡ defined below is sound with respect to f:

f
♯
≡ : D♯

≡ −→ D♯
≡

x 7−→ ρ≡(f
♯(x))

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 44 / 69

Reduction and application to reduced product

Caveat 1: widening

This construction does not work for widening

Termination condition of ▽ on D♯:
for all sequence (x♯n)n∈N, the sequence (y ♯

n)n∈N defined below is
ultimately stationary:

y
♯
0 = x

♯
0 ∀n ∈ N, y

♯
n+1 = y

♯
n▽x

♯
n+1

Applying ρ≡ to the widening output would boil down to:

y
♯
0 = ρ≡(x

♯
0) ∀n ∈ N, y

♯
n+1 = ρ≡(y

♯
n▽x

♯
n+1)

Thus the termination condition of ▽ does not apply here

Solution

Simply use ▽ on D♯

Apply reduction in the body of loops (whenever we like)

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 45 / 69

Reduction and application to reduced product

Caveat 2: reduction cost

The optimal reduction function may be computationally very costly

Approximate reduction function

An approximate reduction operator is an operator ρ≡ : D♯ → D♯ which
preserves concretization:

∀x♯ ∈ D♯, γ(ρ≡(x
♯)) = γ(x♯)

We can require additional conditions such as:

idempotence: ∀x♯ ∈ D♯, ρ≡ ◦ ρ≡(x
♯) = ρ≡(x

♯)

contraction: ∀x♯ ∈ D♯, ρ≡(x
♯)⊑♯x♯

In all cases, we may not obtain the reduced abstraction

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 46 / 69

Reduction and application to reduced product

Reduced product abstraction

Definition

The reduced product abstraction is obtained by applying the reduction to
the product abstraction

Examples: as seen previously
◮ intervals as products of constraints
◮ intervals and congruences
◮ non relational abstraction

Abstract operators and transfer functions are defined by composition
with reduction

In many cases, only a partial reduction can be applied
i.e., an approximation of reduced product is used

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 47 / 69

Reduction and application to reduced product

Reduced product: implementation

The modularity of the abstraction

The whole point of reduced product is to keep the domain
implementations separate

The reduction operator should reflect that

To achieve this, we typically use a separate constraint language:

Reduced product interface

C is a set of constraints with a concretization function γC : C → D
readi : D♯

i → C, such that γi(x
♯
i) ⊆ γ(readi (x

♯
i))

constri : D♯
i × C → D♯

i such that γi (x
♯
i) ∩ γC(c) ⊆ γi (constri(x

♯
i , c))

Then, a simple reduction is: ρ≡(x
♯
0, x

♯
1) = (x♯0, constr1(x

♯
1, read0(x

♯
0)))

Example, non relational abstraction: read = “is empty”
Already demonstrated in the previous lecture

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 48 / 69

Reduced cardinal power abstraction

Outline

1 Introduction

2 Abstraction of partitioned systems

3 Product of abstractions

4 Reduction and application to reduced product

5 Reduced cardinal power abstraction

6 State partitioning, trace partitioning

7 Concluding remarks

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 49 / 69

Reduced cardinal power abstraction

Example

We consider the program and the basic abstractions below [CC’79]:

int x = 100;
bool b = TRUE;
while(b){

x = x− 1;
b = x > 0;

}

Property to establish:
x = 0 at the end

Basic abstractions:

possible values for b:
{∅, {T }, {F}, {T ,F}}

sign abstraction of x:
(⊥,= 0, < 0, > 0, 6= 0, ≥ 0, ≤ 0)

Properties:

loop head loop end

b =⇒ x > 0

{

b⇒ x > 0
¬b⇒ x = 0

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 50 / 69

Reduced cardinal power abstraction

Cardinal power abstraction

Definition

We assume D = P(E), and that two abstractions are given by their
concretization functions:

γ0 : D♯
0 −→ D γ1 : D♯

1 −→ D
We let:D♯

→ = D♯
0

M
→ D♯

1, set of monotone functions from D♯
0 into D♯

1

⊑♯
→ be the pointwise extension of ⊑♯

1

γ→ is defined by:

γ→ : D♯
→ −→ D

φ 7−→ {x ∈ E | ∀y ∈ D♯
0, x ∈ γ0(y) =⇒ x ∈ γ1(φ(y))}

Then γ→ defines a cardinal power abstraction

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 51 / 69

Reduced cardinal power abstraction

Example

Back to the example:D♯
0: abstraction of the values of b;D♯
1: sign abstraction of the values of x;

the properties needed to establish the condition on the exit states are
all expressible in the cardinal power abstraction

Intuition:

cardinal power allows to express properties of the form
∧

i∈I (Ai ⇒ Bi)

exercise: prove that partitioning is a cardinal power abstraction

Reduction

In general, the cardinal power is not a reduced abstraction (γ→ not
injective)

Reduced cardinal power is obtained by composing the reduction
construction

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 52 / 69

Reduced cardinal power abstraction

Application: control state partitioning abstraction

Assumptions:D = P(S) where S = L× MD♯
0 = L ⊎ {⊥,⊤}D♯
1 = P(M), ordered with the inclusion

Then, if Φ is an element of the reduced cardinal power,

By reduction, Φ(⊥) = ∅ and Φ(⊤) =
⋃

{Φ(l) | l ∈ L}
Moreover:

γ→(Φ) = {s ∈ S | ∀x ∈ D♯
0, s ∈ γ0(x) =⇒ s ∈ γ1(Φ(x))}

= {(l ,m) ∈ S | m ∈ γ1(Φ(l))}

Thus is the control state partitioning abstraction

This property also holds for partitioning abstraction in general

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 53 / 69

State partitioning, trace partitioning

Outline

1 Introduction

2 Abstraction of partitioned systems

3 Product of abstractions

4 Reduction and application to reduced product

5 Reduced cardinal power abstraction

6 State partitioning, trace partitioning

7 Concluding remarks

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 54 / 69

State partitioning, trace partitioning

Disjunctions in static analysis

Unusual computation of the absolute value:

int x ∈ Z;
int s;
int y;
if(x ≥ 0){

s = 1;
} else {

s = −1;
}
y = x/s;

Interval abstraction:

◮ after the if, s ∈ [−1, 1]
◮ possible division by 0

Same with polyedra, octagons
(convex abstractions)

Interval + congruences would work

What if we want to use intervals only ?
Disjunctions are needed

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 55 / 69

State partitioning, trace partitioning

Disjunctive completion

Definition

We consider an abstraction defined by a concretization function
γ : (D♯,⊑♯) −→ (D,⊆).
The disjunctive completion abstraction is defined by:D♯

∨ = P(D♯)

⊑♯
∨ is defined by:

E♯⊑♯
∨F

♯ ⇐⇒ ∀e♯ ∈ E♯, ∃f ♯ ∈ F ♯, e♯⊑♯f ♯

∀E♯ ∈ D, γ∨(E♯) = ⋃

{γ(e♯) | e♯ ∈ E♯}

∀x ∈ D, α∨(x) = {e
♯ ∈ D♯ | x ⊆ γ(e♯)}

These define a Galois connection (D,⊆) −−−→←−−−
α∨

γ∨
(D♯

∨,⊑
♯
∨)

Proof: exercise

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 56 / 69

State partitioning, trace partitioning

State partitioning

Disjunctive completion has several severe limitations:
◮ analyses may manipulate huge abstract states
◮ no obvious widening: has to be defined on a per case basis

it may be non trivial to define one
◮ this abstraction ignores properties of the system to analyze

Partitioning allows to express disjunctions too

Flashback: partitioning abstraction

Given set E and a partition P of E , we let the partitioning abstraction
over E be defined by:

γpart : (P→ P(E)) −→ P(E)
Φ 7−→

⋃

p∈PΦ(p)

Advantages:
◮ the size of disjunctions is bounded by P
◮ the choice of P can exploit problem properties

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 57 / 69

State partitioning, trace partitioning

State partitioning based on values

Back to our example, we design a cardinal power abstraction:
int x ∈ Z;
int s;
int y;
if(x ≥ 0){

s = 1;
} else {

s = −1;
}
y = x/s;

D♯
0: interval of xD♯
1: intervals for all variables

Property at the end of the if:

{

x ∈ [0,+∞[⇒ s = 1 ∧ . . .
x ∈]−∞,−1] ⇒ s = −1 ∧ . . .

Some of the issues of disjunctive completion remain:
in particular, no obvious widening...

Representing the full cardinal power is too costly:
limit the number of partitions

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 58 / 69

State partitioning, trace partitioning

Transfer functions

int x ∈ Z;
int s;
int y;
if(x ≥ 0){

s = −1;
} else {

s = 1;
}
①x = −x;
②y = x/s;

At ①:
{

x ∈ [0,+∞[⇒ s = −1 ∧ . . .
x ∈]−∞,−1] ⇒ s = 1 ∧ . . .

At ②:
{

x ∈ [1,+∞[⇒ s = 1 ∧ . . .
x ∈]−∞, 0] ⇒ s = −1 ∧ . . .

Most abstract transfer functions may modify both sides of the
cardinal power:

The assignment to x modifies the abstraction in the left hand side of
the cardinal power

Thus partitions need to be recomputed: costly operation

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 59 / 69

State partitioning, trace partitioning

Trace partitioning abstraction: example

Alternate way to look at the example:

int x ∈ Z;
int s;
int y;
if(x ≥ 0){

s = 1;
} else {

s = −1;
}
①y = x/s;

At ①:

if the execution went through the
TRUE branch of the if:

x ∈ [0,+∞[∧s = 1∧

if the execution went through the
FALSE branch of the if:

x ∈]−∞,−1] ∧ s = −1∧

This abstraction should be formalized as an abstraction of traces, not
states

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 60 / 69

State partitioning, trace partitioning

Trace partitioning abstraction: formalization

l0 : int x ∈ Z;
l1 : int s;
l2 : int y;
l3 : if(x ≥ 0){
l4 : s = 1;
l5 : } else {
l6 : s = −1;
l7 : }
l8 : y = x/s;

Trace domain D♯
0:
⊤

[l4] [l6]

⊥

Concretization γ0:

γ0 : [l4] 7→ {〈. . . , (l4,m), . . .〉 ∈ S⋆}
[l6] 7→ {〈. . . , (l6,m), . . .〉 ∈ S⋆}

Right hand side abstraction:
(P(S),⊆), with abstraction defined by
(αR, γR)

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 61 / 69

State partitioning, trace partitioning

Trace partitioning abstraction: definition

Definition: static trace partitioning

Let (D♯
0,⊑

♯
0) be a finite abstraction of sets of traces, defined by a Galois

connection:
(P(S⋆),⊆) −−−→←−−−

α0

γ0
(D♯

0,⊑
♯
0)

It defines a static trace partitioning abstraction by reduced cardinal
power over the reachability abstraction.

There are many ways to instantiate D♯
0:

Trace partitioning criteria

control flow based criteria:
◮ branch taken in a if statement
◮ number of times a while body was executed

value of some variable at a given point

conjunctions of such criteria
Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 62 / 69

State partitioning, trace partitioning

Trace partitioning transfer functions

We assume D♯
0 is finite (case D♯

0 is infinite: dynamic partitioning, see later)

Static partitioning composed with state abstraction

By composing a state abstraction (P(S),⊆) −−−→←−−−
α1

γ1
(D♯

1,⊑
♯
1), and applying

the same reduced cardinal power abstraction, we get a new instance of the
static trace partitioning abstraction

Least element: λ(x♯ ∈ D♯
0) · ⊥1

Upper bound: φ♯ ⊔ ψ♯ ::= λ(x♯ ∈ D♯
0) · (φ

♯(x♯) ⊔1 ψ
♯(x♯)

Widening operator: similar definition
Transfer functions with no partition change: We assume that:

◮ f : D→ D is a concrete transfer function (e.g., describing the effect of
a test or of an assignment)

◮ f
♯
1
: D♯

1
→ D♯

1
is a sound transfer function with respect to f, that is such

that f ◦ γ ⊆ γ ◦ f♯
1

Then, λ(x♯ ∈ D♯
0) · f

♯
1 is sound with respect to f

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 63 / 69

State partitioning, trace partitioning

Transfer functions in the trace partitioning domain

Control history based partitioning:

Abstract partition matching

A sound abstract partition matching is a family of relations (→♯
l ,l ′)l ,l ′∈L

where →♯
l ,l ′⊆ (D♯

0)
2, such that:

〈(l0,m0), . . . , (ln,mn)〉 ∈ γ0(x
♯)

∧ x♯ →♯
ln,ln+1

y ♯

}

⇒ 〈(l0,m0), . . . , (ln+1,mn+1)〉 ∈ γ0(y
♯)

Analysis of a transition

Given a sound abstract partition matching →l ,l ′ , and sound transfer

function fl ,l ′ : D♯
1 → D♯

1 in the underlying domain, the transfer function
below in the trace partitioning domain is sound:

φ♯ 7−→ λ(x♯ ∈ D♯
0) · ⊔1{fl ,l ′(φ

♯(y ♯)) | y ♯ →l ,l ′ x♯}

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 64 / 69

State partitioning, trace partitioning

Creation and fusion of trace partitions

Proof of soundness: exercise

Typical choice for the abstract partition matching:
◮ at most points, the partitions are unchanged

i.e., →l,l′ is the identity relation
◮ at points where partitions should be merged, it reflects creation of

partitions or fusion of partitions

Other partitioning criteria: should provide similar operations on
partitions

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 65 / 69

State partitioning, trace partitioning

Dynamic partitioning

Principle:

the domain of partitions depends on the context

can be applied to state partitioning, trace partitioning...

◮ in trace partitioning, this corresponds to cases where D♯
0

is infinite
◮ indeed, only a finite number of partitions can be represented at any

point in the analysis; this set is dynamic (i.e., also determined as a
result of the analysis)

Formalization: cofibered abstract domain [AV], [MR’05]

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 66 / 69

Concluding remarks

Outline

1 Introduction

2 Abstraction of partitioned systems

3 Product of abstractions

4 Reduction and application to reduced product

5 Reduced cardinal power abstraction

6 State partitioning, trace partitioning

7 Concluding remarks

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 67 / 69

Concluding remarks

Main points of the lecture

There exists many techniques to combine abstract domains into more
interesting ones

Product, reduced product:
conjunctions of abstract properties

Partitioning, disjunctive completion:
disjunctions of abstrct properties

The list is not exhaustive

Advantages

Modular design of static analyzers

A same construction may be used in many contexts

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 68 / 69

Concluding remarks

Bibliography: abstract domain combination

[CC’79]: Systematic design of program analysis frameworks.
Patrick Cousot and Radhia Cousot. In POPL, 1979.
[B’90]: Interprocedural abstract interpretation of block
structured languages with nested procedures, aliasing and
recursivity.
Fran cois Bourdoncle. In PLILP, 1990.
[CC’92]: Abstract interpretation and application to logic
programs.
Patrick cousot and Radhia Cousot. In Journal of Logic
Programming, 1992.
[AV]: Abstract cofibered domains: application to the alias
analysis of untyped programs.
Arnaud Venet. In SAS, 1996.
[MR’05]: Trace partitioning in abstract interpretation static
analyzers.
Laurent Mauborgne and Xavier Rival. In ESOP, 2005.

Xavier Rival (INRIA, ENS, CNRS) Combination of abstract domains Nov, 2nd. 2012 69 / 69

	Introduction
	Abstraction of partitioned systems
	Product of abstractions
	Reduction and application to reduced product
	Reduced cardinal power abstraction
	State partitioning, trace partitioning
	Concluding remarks

