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Overview of the lecture

How to reason about memory properties

⇒ a very broad topic...

This lecture:
◮ overview most common problems
◮ discuss arrays, strings
◮ introduction to shape analysis

Next lecture: deeper study of a family of shape analyses
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Introduction: memory properties

Programs

Previous lectures

Programs can be viewed as labelled transition systems

Transition relation:
→⊆ S × S

where S is the set of states

To design a static analysis, we need to abstract sets of states

γ : (D♯,⊑♯) −→ (P(S),⊆)

A state = a label + a memory state

Label (l ∈ L): control state

value of the program counter, current instruction...

Memory (m ∈ M): memory state

description of the computer’s memory contents
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Introduction: memory properties

Abstraction of program semantics

How to abstract P(S⋆) ?

For each control state, we collect a set of states

We need to abstract the corresponding set of memory states

Steps of the context sensitive abstraction

Partitioning guided by the control state
γctxt : (L → P(M)) −→ P(S⋆)

Φ 7−→ {〈(l0,m0), . . . , (ln,mn)〉 | ∀i , mi ∈ Φ(li )}

Pointwise composition with an abstraction for sets of memory states
γmem : D♯ −→ P(M)

Resulting abstraction
γ : (L → D♯) −→ P(S⋆)

Φ♯ 7−→ {〈(l0,m0), . . . , (ln,mn)〉 | ∀i , mi ∈ γmem(Φ♯(li ))}
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Introduction: memory properties

Abstraction of homogeneous memory states

How to describe memory states m ∈ M ?

A simple model

Finite set of variables X: e.g., X = {x , y , z . . .}

Set of values V

Memory states: functions from variables to values

M = X → V

Xavier Rival (INRIA) Abstraction of memory states November, 16th. 2012 5 / 81



Introduction: memory properties

Homegenous memory states and abstraction

Homogenous case

V is a set of values of the same kind

e.g., integers (Z), machine integers (Z ∩ [−263, 263 − 1])...

If the set of variables is fixed, we can use any abstraction for VN

Example: N = 2, X = {x , y}
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Introduction: memory properties

Heterogeneous memory states

In real life languages, there are many kinds of values
integers (of various sizes), boolean, floating-point values...

Heterogeneous memory states

Values are not all of the same kind
V = Vt0 ⊎ Vt1 ⊎ . . .

Finite set of variables; each variable has a fixed type
X = Xt0 ⊎ Xt1 ⊎ . . .

M = X → V

Example:

Values are either (machine) integers (Vint), floating point (Vfloat) or
booleans (Vbool)

V = Vint ⊎ Vfloat ⊎ Vbool

X = Xint ⊎ Xfloat ⊎ Xbool
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Introduction: memory properties

Heterogeneous memory states: non relational abstraction

Principle: compose abstractions for sets of memory states of each type

Non relational abstraction of heterogeneous memory states

M ≡ Mt0 × Mt1 × . . . where Mti = Xti → Vti

Concretization function (case with two types)
γnr : P(Mt0)× P(Mt1) −→ P(M)

(m♯
0
,m♯

1
) 7−→ {m ≡ (mt0 ,mt1) | ∀i , mti ∈ m

♯
i }

Then, can be pointwisely composed with other abstraction

Example: V = Vint ⊎ Vfloat ⊎ Vbool, thus, M = Mint × Mfloat × Mbool

Abstraction of P(Xint → Vint)
and P(Xfloat → Vfloat):

intervals

polyhedra...

Abstraction of P(Xbool → Vbool):

lattice of boolean constants

relational abstraction with BDDs
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Introduction: memory properties

Heterogeneous memory states: relational abstraction

The non relational solution abstracts away all relations between
data of distinct types

In many cases, such relations are necessary

Relational abstraction of heterogeneous memory states

Build on a per case basis an abstraction of P(VN0
t0

× V
N0
t0

× . . .)

Concrete states, with
Xbool = {b},Xint = {x, y}

Set of stores characterized by
{

b ⇒ (x ≥ y ∧ y ≥ 0)
∧ ¬b ⇒ (x ≤ y ∧ y ≤ 0)

Non relational abstraction with
boolean trees and intervals

b

x ≥ 0
∧y ≥ 0

x ≤ 0
∧y ≤ 0

T F
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Introduction: memory properties

Memory structures

The definition M = X → V is too restrictive

It ignores many ways of organizing data in the memory states

Common structures

Structures, records, tuples
sequences of cells accessed with fields

Arrays, similar as structures; indexes are integers in [0, n − 1]

Pointers
numeric values corresponding to the address of a memory cell

Strings and buffers
blocks with a sequence of elements and a terminating element (e.g.,
null character)

Many other structures can be found:
e.g., closures in functional languages (not studied in this lecture)
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Introduction: memory properties

Specific kinds of errors

Memory safety

Absence of memory errors

Pointer errors

Dereference of a null pointer

Dereference of an invalid pointer

Access errors

Access to an array out of its bounds

Buffer overrun
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Introduction: memory properties

Specific properties to verify

Many other classes of properties, beyond memory safety

Example:
program closing a list of file
descriptors

//l points to a list

c = l;
while(c 6= NULL){
close(c → FD);
c = c → next;

}

Program specific correctness
questions

l is supposed to store all file
descriptors at all times
Will its structure be
preserved ?
Yes, no breakage of a next

link

Structural preservation properties

Algorithms manipulating trees, lists...

Libraries of algorithms on balanced trees

Not guaranteed by the language !
e.g., balancing of Maps was wrong in the OCaml standard library...Xavier Rival (INRIA) Abstraction of memory states November, 16th. 2012 12 / 81



Introduction: memory properties

Issues to consider in this lecture

Propose a concrete model: expressive, intuitive...

Abstract the layout of memory states
i.e., what is the structure of the data

Abstract the contents of data structures

Express relations among various elements
e.g., structural properties and properties of the contents of the
structures

Desgin abstract interpretation algorithms
◮ transfer functions
◮ widening
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Memory models Formalizing concrete memory states

Outline

1 Introduction: memory properties

2 Memory models
Formalizing concrete memory states
Treatment of errors
Language semantics

3 Abstraction of arrays

4 Abstraction of strings and buffers

5 Abstraction of pointers

6 Three valued logic heap abstraction

7 Conclusion
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Memory models Formalizing concrete memory states

A better model

Not all memory cells correspond to a variable

Environment + Heap

Addresses are values: Vaddr ⊆ V

Environments e ∈ E map variables into their addresses

Heaps (h ∈ H) map addresses into values

E = X → Vaddr

H = Vaddr → V

h is actually only a partial function
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Memory models Formalizing concrete memory states

Example of a concrete memory state

x and z are two list elements containing values 64 and 88, and where
the former points to the latter

y stores a pointer to z

Memory layout
(pointer values underlined)

address

&x = 300

304

&y = 308

&z = 312

316 0x0

88

312

312

64

e : x 7→ 300
y 7→ 308
z 7→ 312

m : 300 7→ 64
304 7→ 312
308 7→ 312
312 7→ 88
316 7→ 0
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Memory models Formalizing concrete memory states

Extensions of the symbolic model

Our model is still not quite realistic

Memory cells do not all have the same size

Memory management algorithms usually do not treat cells one by
one
e.g., malloc returns a pointer to a block

applying free to that pointer will dispose the whole block

Other refined models

Division of the memory in blocks with a base address and a size

Division of blocks into cells with a size

Description of fields with an offset

Description of pointer values with a base address and an offset...

For a very formal description of concrete memory states:
see CompCert project source files (Coq formalization)
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Memory models Treatment of errors

Language semantics: program crash

In an abnormal situation, the program will crash

Advantage: very clear semantics

Disadvantage (for the compiler designer): dynamic checks are required

Error state

Ω denotes an error situation

Ω is a blocking: →⊆ S × ({Ω} ⊎ S)

OCaml
◮ out-of-bound array access: Exception: Invalid_argument "index

out of bounds".
◮ no notion of a null pointer

Java
◮ out-of-bound array access: exception

java.lang.ArrayIndexOutOfBoundsException
◮ null pointer exception...
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Memory models Treatment of errors

Language semantics: undefined behaviors

The behavior of the program is not specified when an abnormal
situation is encountered

Advantage: easy implementation (often architecture driven)

Disadvantage: unintuitive semantics, errors hard to reproduce

Modeling of undefined behavior

Very hard to capture what a program operation may modify

Abnormal situation at (l0,m0) m0 such that
∀m1 ∈ M, (l0,m0) → (l1,m1)

In C:
Array out-of-bound accesses and dangling pointer dereferences
whereas a null-pointer dereference always result into a crash
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Memory models Language semantics

Composite objects

How are contiguous blocks of information organized ?

Java objects, OCaml struct types

sets of fields

each field has its type

no assumption on physical storage

C composite structures and unions

physical mapping defined by the norm

each field has a specified size and a specified alignment

union types / casts:
implementations may allow several views
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Memory models Language semantics

Pointers and records / structures / objects

Our purpose is not to select a language for programming

It is to remark salient language features, and their impact on
abstractions

What kind of objects can be referred to by a pointer ?

Pointers only to records / structures / objects

Java: only pointers to objects

OCaml: only pointers to records, structures...

Pointers to fields

C: pointers to any valid cell...
struct {int a; int b} x;
int ⋆ y = &(x · b);
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Memory models Language semantics

Pointer arithmetics

What kind of operations can be performed on a pointer ?

Classical pointer operations

Pointer dereference:
⋆p returns the contents of the cell pointed to by p

“Address of” operator: &x returns the address of variable x

Can be analyzed with a rather coarse pointer model
e.g., symbolic base + symbolic field

Arithmetics on pointers, requiring a more precise model

Addition of a numeric constant:
p+ n: address contained in p + n times the size of the type of p
Interaction with pointer casts...

Pointer subtraction: returns a numeric offset
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Memory models Language semantics

String operations

Many data-structures can be handled in very different ways
depending on the languages

Strings are just one example

OCaml strings

Abstract type: representation
not part of the language
definition

Type safe implementation
◮ no buffer orverrun
◮ exception for out of bound

accesses
i.e., like arrays

Most operations generate
new string structures

C strings

A string is an array of
characters (char ⋆) with a
terminal zero character

Direct access to string
elements (array dereference)

String copy operation
strcpy(s, ”foo_bar”):

◮ copies ”foo_bar” into s
◮ undefined behavior if

length of s < 7
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Memory models Language semantics

Manual memory management

Allocation of unbounded memory space

How are new memory blocks made available to the program ?

How do old memory blocks get freed ?

OCaml memory management

Implicit allocation
when declaring a new object

Garbage collection: purely
automatic process, that frees
unreachable blocks

C memory management

Manual allocation: malloc
operation returns a pointer to
a new block

Manual de-allocation: free
operation (block base address)

Manual memory management is not safe:

Memory leaks: growing unreachable memory region; memory
exhaustion

Dangling pointers if freeing a block that is still referred to
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Memory models Language semantics

Summary on the memory model

Clear error cases or undefined behaviors
for analysis, a semantics with clear error cases is preferable

Composite objects: structure fully exposed or not

Pointers to objct fields: allowed or not

Pointer arithmetic: allowed or not
i.e., are pointer values symbolic values or numeric values

Memory management: automatic or manual
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Abstraction of arrays A micro language for manipulating arrays

Outline

1 Introduction: memory properties

2 Memory models

3 Abstraction of arrays
A micro language for manipulating arrays
Verifying safety of array operations
Abstraction of array contents
Abstraction of array properties

4 Abstraction of strings and buffers

5 Abstraction of pointers

6 Three valued logic heap abstraction
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Abstraction of arrays A micro language for manipulating arrays

Programs: syntax and semantics

We start with a basic language, to be extended with arrays, strings,
pointers...
Memory states comprise an environment and a heap: M = E × H

Basic language

L-values: l ::= x (x ∈ X)

Expressions: e ::= l | c (c ∈ V) | e ⊕ e

Statements: s ::= l := e | if(e) {s} else {s} | while(e) {s} | s; s

Semantics

L-values: JlK : M → Vaddr

Expressions: JeK : M → V

Programs and statements:
◮ we assume a label before each statement
◮ each statement defines a set of transition (→)
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Abstraction of arrays A micro language for manipulating arrays

Programs: extension with arrays

Syntax extension

A new kind of l-value: l ::= . . . | x[e]

Other constructions remain the same

This language is restrictive (no arrays of arrays)
It is sufficient to show the main analysis issues

Semantics extension

We add a special “error value” Ω (propagates)

L-values: JlK : M → Vaddr

Case of l-value x[e]:
◮ if x is a variable of type array, of length n and if

JeK(e, h) = v ∈ Vint ∩ [0, n − 1], then:
Jx[e]K(e, h) = e(x) + n

◮ otherwise Jx[e]K(e, h) = Ω

Similar extension for the assignment to an array cell
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Abstraction of arrays A micro language for manipulating arrays

Example

// a is an integer array of length n

bool s;
do{

s = false;
for(int i = 0; i < n − 1; i = i+ 1){

if(a[i ] < a[i + 1]){
swap(a[i ] < a[i + 1]);
s = true;

}
}

}while(s);

Properties to verify by static analysis

1 The program will not crash: no index out of bound

2 If the values in the array are in [0, 100] before, they are also in that
range after

3 At the end, the array is sorted
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Abstraction of arrays Verifying safety of array operations

Expressing correctness of array operations

Static analysis problem

Prove the absence of runtime error due to array operations
i.e., that no Ω will ever arise

Safety verification

At label l , analysis computes local abstraction of the set of reachable
memory states Φ♯(l)

Statement at label l performs array read or write operation x[e], where
x is an array of length n

The analysis simply needs to establish
∀m ∈ γmem(Φ♯(l)), JeK(m) ∈ [0, n − 1]

In many cases, this can be done with an interval abstraction
... but not always

For now, we do not treat the contents of the array
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Abstraction of arrays Verifying safety of array operations

Verifying correctness of array operations

Case where intervals are enough:
// x array of length 40
int i = 0;
while(i < 40){

printf(”%d ; ”, x[i]);
i = i+ 1;

}

interval analysis establishes that
i ∈ [0; 39] at the loop head

Case where intervals cannot represent precise enough invariants:

// x array of length 40
int i, j;
if(0 ≤ i && i < j)

if(j < 41)
printf(”%d ; ”, x[i]);

in the concrete, i ∈ [0, 39] at
the array access point

to establish this in the abstract,
after the first test, relation
i < j need be represented

e.g., octagon abstract domain
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Abstraction of arrays Abstraction of array contents

Elementwise abstraction

Static analysis problem

Inferring invariants about the contents of the array

e.g., that the values in the array are in a given range

e.g., in order to verify the safety of x[y[i + j ] + k ]

Assumption:

One array t, of known, fixed length n (element size s)

Scalar variables x0, x1, . . . , xm−1

Concrete memory cell addresses:
Vaddr = {&x0, . . . , &xm−1} ∪ {&t, &t+ 1 · s, . . . , &t+ (n − 1) · s}

Elementwise abstraction

Each concrete cell is mapped into one abstract cell

D♯ should simply be an abstraction of P(Vm+n)

Xavier Rival (INRIA) Abstraction of memory states November, 16th. 2012 32 / 81



Abstraction of arrays Abstraction of array contents

Array abstraction into one cell

The elementwise abstraction is too costly:
◮ high number of abstract cells if the arrays are big
◮ will not work if the size of arrays is not known statically

Alternative: use fewer abstract cells

Assumption: as previous slide, m scalar variables, t array of length n

Array smashing

All cells of the array are mapped into one abstract cell t̄

Abstract cells: C♯ = {&t̄} ∪ {&x0, . . . , &xm−1}

D♯ should simply be an abstraction of P(Vm+1)

This also works if the size of the array is not known statically:
int n = . . . ;
int t[n];

The contents of t is represented using
one abstract cell whathever the value of n
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Abstraction of arrays Abstraction of array contents

Weak updates: transfer function

What is the loss of precision induced by smashing ?

Smashing abstraction, with the interval abstract domain

Array t is supposed of known length n ≥ 2

We consider statement l0 : t[i] = e; l1

Given m
♯
0
: C♯ → I\⊔♯, describing a set of states at l , we wish to

compute an over-approximation m
♯
1

of

{m1 | ∃m0 ∈ γmem(m♯
0
), (l0,m0) → (l1,m1)}

Solution, assuming the analysis computes [a, b] as a range

over-approximating the value of e (∀m0 ∈ γmem(m♯
0
), JeKm0 ∈ [a, b]):

{

m
♯
1
(t̄) = m

♯
0
(t̄) ⊔ [a, b]

m
♯
1
(&xi ) = m

♯
0
(&xi)

no better solution: the array has

several cells, some of which are not affected

m
♯
1
(t̄) always less precise than m

♯
0
(t̄)
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Abstraction of arrays Abstraction of array contents

Weak updates

Notion of weak update

Udpate

where the modified cell cannot be computed precisely in the
abstract

that must be over-approximated in a coarse manner

In the case of t[i] := e, that may happen:

using a smashing abstraction:
t̄ denotes several concrete cells; only one gets modified, so we must
keep old values

using a pointwise abstraction, if m♯
0
(i) = [i , i ′] where i < i ′:

◮ one cell in {&t + i · s, . . . , &t+ i ′ · s} gets modified
◮ the other cells in that set remain the same
◮ so we must also keep old values
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Abstraction of arrays Abstraction of array contents

Weak updates: example

// x uninitialized array of length n

int i = 0;
while(i < n){

x[i] = 0;
i = i+ 1;

}

Pointwise abstraction:

initially ∀i , m♯(&t+ i · s) = ⊤

if loop unrolled completely, at the
end, ∀i , m♯(&t+ i · s) = [0, 0]

weak updates, if the loop is not
unrolled; then, at the end
∀i , m♯(&t+ i · s) = ⊤

Smashing abstraction:

initially m
♯(t̄) = ⊤

weak updates at each step;
at the end: m

♯(t̄) = ⊤

Array abstractions are fine for coarse properties of array elements

Weak updates may cause a serious loss of precision
More complex array abstractions are needed

Xavier Rival (INRIA) Abstraction of memory states November, 16th. 2012 36 / 81



Abstraction of arrays Abstraction of array contents

Other forms of array smashing

Smashing does not have to affect the whole array

Efficient smashing strategies can be found

Segment smashing

abstraction of the array cells
into {t̄0, . . . , t̄k−1} where t̄i

corresponds to a segment of
the array

useful when sub-segments
have interesting properties

issue: determine the segment
by analysis

Modulo smashing

abstraction of the array cells
into {t̄0, . . . , t̄k−1} where t̄i

corresponds to:
{&+ k · i · s | k · i < n}

useful for arrays of structures

issue: determine k by analysis
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Abstraction of arrays Abstraction of array properties

Example array properties

Static analysis problem

Discover non trivial properties of array regions

Initialization to a constant (e.g., 0)

Sortedness

An array initialization loop:

// t integer array of length n

int i = 0;
while(i < n){

t[i] = 0;
i = i+ 1;

}

Sketch of the manual proof:

At iteration i , i = i and the
segment t[0], . . . t[i − 1] is
initialized

At the loop exit, i = n and
the whole array is initialized

We need to express properties on segments; otherwise the proof
cannot be completed
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Abstraction of arrays Abstraction of array properties

Composing sortedness predicates

Predicates

Initialization: zerot(i , j) iff t initialized to 0 between i and j

Sortedness: sortt(i , j) iff t sorted between i and j

As part of the proof, predicates need be composed

zerot(i , j) ∧ zerot̄(j + 1, k) ⇒ zerot(i , k)
sortt(i , j) ∧ sortt̄(j + 1, k) 6⇒ sortt(i , k)

For sorting, bounds are needed; for [0; 3; 9; 2; 4; 8], we have:

sortt(0, 2) ∧ sortt(3, 5) but not sortt(0, 5)

Alternate predicate: sortt(i , j ,min,max), with bounds
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Abstraction of arrays Abstraction of array properties

Partitioning of arrays

Array partitions

A partition of an array t of length n is a sequence P = {e0, . . . , ek} of
symbolic expressions where

ei denotes the lower (resp., upper) bound of element i (resp. i − 1) of
the partition

e0 should be equal to 0 (and ek to n)

Example:

set of four concrete states:
{

i = 1 [0, 4, 1, 2, 3, 5]
i = 2 [0, 1, 5, 2, 3, 4]

i = 3 [2, 2, 4, 5, 1, 8]
i = 5 [0, 2, 4, 6, 7, 9]

partition: {0, i+ 1, 6}
note that the array is always

◮ sorted between 0 and i
◮ sorted between i+ 1 and 5
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Abstraction of arrays Abstraction of array properties

Abstraction based on array partitions

Segment and array abstraction

An array segmentation is given by a partition P = {e0, . . . , ek} and a set of
abstract properties {P0, . . . ,Pk−1}.
Its concretization is the set of memory states m = (e, h) such that

∀i , [t[v ], t[v + 1], . . . , t[w − 1]] satisfies Pi , where

{

v = JeiK(m)
w = Jei+1K(m)

Partitions can be:
◮ static, i.e., pre-computed by another analysis [HP’08]
◮ dynamic, i.e., computed as part of the analysis [CCL’11]

(more complex abstract domain structure with partitions and

predicates)

Example: array initialization
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Abstraction of strings and buffers A micro-language with strings

Outline

1 Introduction: memory properties

2 Memory models

3 Abstraction of arrays

4 Abstraction of strings and buffers
A micro-language with strings
Abstraction

5 Abstraction of pointers

6 Three valued logic heap abstraction

7 Conclusion
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Abstraction of strings and buffers A micro-language with strings

Strings in programming languages

In high-level programming languages:
◮ high-level API, like OCaml String module or Java String classes
◮ a set of exceptions in case of an invalid operation
◮ no security risk in case of a crash

In C:
◮ arrays of characters
◮ integration in other structures with no protection
◮ direct access, with no protection

We focus on the case of languages with à la C strings
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Abstraction of strings and buffers A micro-language with strings

Programs: syntax and semantics

We extend our simple language with strings...

Encoding of strings in C

Strings are represented by character arrays, with a terminating 0

Only characters to the first zero are meaningful

Example of a string buffer of length 10 containing string “hello”

’h’’e’’l’’l’’o’’/0’’b’’/0’’a’’x’

Thus, the language is essentially the same as for arrays:

data-types remain the same; we include a char type;

expressions and l-values remain the same too

we consider a set of string operations (typically, library functions)
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Abstraction of strings and buffers A micro-language with strings

Programs: string operations

String operations

strcpy(char ⋆ d, char ⋆ s): copies s into d, including terminating 0,
provided there is enough space (unspecified otherwise)

strncpy(char ⋆ d, char ⋆ s, int n): copies exactly n characters at
most, from s into d

printf: interprets “%s” as a string placeholder; displays up to the
terminating 0 (unspecified if there is none)

char q[2];
char s[2];
char t[4];
strcpy(t, "bon");
strncpy(s, t, 2);
strcpy(q, s);
printf("nres: %s/n", q);

Result ?

not fully defined

depends on the order of
declarations
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Abstraction of strings and buffers Abstraction

Abstraction of string buffers

Static analysis problem

Prove the absence of runtime errors in string buffer operations

Such errors could:

cause abrupt crashes (segmentation fault) or undefined behaviors

make exploits possible (e.g., by overwriting other program data)

We remark that:

the positions of “zero” characters matters

the value of the other characters usually does not matter
exception: cases where the program decides what to do depending on
non zero characters, and where that impacts the error behavior of the
program
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Abstraction of strings and buffers Abstraction

Numeric abstraction of strings

String characters abstractions

We consider the character abstraction below:

φ : ∅ 7→ ∅ φ : c 7→′?′
·
φ: c0 · · · cn−1 7→ φ(c0) · · · φ(cn−1)

αstring : S 7→ {
·
φ (s) | s ∈ S}

αstring abstracts unneeded characters information

Numerical abstraction

We consider memory states that comprise only one string buffer t. We can
abstract each such state using two numbers

tn: size of buffer t

tz: position of the first 0 in t if any (otherwise, we let tz = tn)
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Abstraction of strings and buffers Abstraction

Abstraction of string buffers

We consider a program with integer variables Xint = {x, y, . . .} and string
buffer variables Xbuf = {t, u, . . .}

Abstract domain

We let X′ = Xint ⊎ {tn, tz, un, uz, . . .}

Each memory state m gets abstracted into a state m
′ = abs(m) over X′

Given an abstract domain (D♯
num,⊑num) of P(X′ → Z), we can build

an abstraction of (P(M),⊆):

γbuf : D
♯
num −→ P(M)

X ♯ 7−→ {m ∈ M | abs(m) ∈ γnum(X ♯)}

Typical choice: polyhedra
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Abstraction of strings and buffers Abstraction

Example

Example: ’h’’e’’l’’l’’o’’/0’’b’’/0’’a’’x’gets abstracted into
tn = 10, tz = 5

Practical implementation:
◮ either as a classical static analysis
◮ or using a transformation into an integer program

Code transformation approach:

char q[2];
char s[2];
char t[4];
strcpy(t, "bon");
strncpy(s, t, 2);

strcpy(q, s);
printf("nres: %s/n", q);
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


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
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

qn = 2;
sn = 2;
tn = 2;
tz = 3;
if(tz < 2){sz = tz; }
else if(sz < tn){sz = sn}
assert(sz < qn); qz = sz;
assert(qz < qn);
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Abstraction of pointers A micro-language with pointers
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Abstraction of pointers A micro-language with pointers

Programs: syntax and semantics

Syntax extension

Two new kinds of l-value: l ::= . . . | ⋆e | l · f (f structure field)

A new kind of expression: e ::= . . . | &l

We do not consider pointer arithmetics here

Semantics extension

Case of l-value ⋆e:

◮ if JeK(m) ∈ Vaddr and m(JeK(m)) = v ∈ V, then J⋆eK(m) = v

Case of l-value l · f:
if JlK(m) = v ∈ Vaddr, and o is the offset of field f, then
Jl · fK(m) = v + o

Case of expression &l :
if JlK(m) ∈ Vaddr, then J&lK(m) = JlK(m)

Case of statement ⋆l = e: similar to that of l-value ⋆e
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Abstraction of pointers A micro-language with pointers

Example

int x, y;
int ⋆ p = NULL;
if(. . .){

p = &x;
}else{

p = &y;
}
printf(”%d”, ⋆p);
⋆p = . . . ;

The dereference ⋆p will not result in a null pointer dereference
(interesting to verify by static analysis)

What cells may be impacted by ⋆p = . . . ? this is a weak update, as
p may point to x or y...
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Abstraction of pointers Simple pointers abstractions

Null pointer analysis

Static analysis problem

Can the program perform a null pointer dereference ? (and crash)

The analysis

Possible lattices:

⊥

= NULL 6= NULL

⊤

⊥

6= NULL

⊤

A trivial non relational
abstraction of pointer values

list ⋆ l;
list ⋆ c = l;
//l points to a list

while(c 6= NULL){
. . . op. on the first element
c = c -> next;

}

Limited scope, but very light analysis

Detection of invalid pointers: same principle
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Abstraction of pointers Simple pointers abstractions

Dealing with pointers in static analysis

Static analysis problem

Weak updates must be treated conservatively

How to resolve weak updates and avoid a loss in precision ?

Help static analyses in presence of pointers

Examples of static analyzers that need a pointer analysis:

Astrée: value analysis, mostly aimed at inferring numerical invariants

CSSV: analyzer for buffer overruns
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Abstraction of pointers Simple pointers abstractions

Pointer aliasing

Aliasing relation

Given a memory state m = (e, h), pointers p and q are aliases if:

h(e(p)) = h(e(q))

Aliasing also extends to references to variables, structure fields...
Example: p := x · f

When pointers may be aliases, static analyses have to perform weak
updates

x ∈ [−10,−5]; y ∈ [5, 10]
int ⋆ p;
if(?)

p = &x;
else

p = &y;
⋆p = 0;

Best result of the analysis ?

range for x

range for y
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Abstraction of pointers Simple pointers abstractions

Equivalence relations over access paths

Abstraction to infer pointer aliasing properties

A notion of access path describes a sequence of operations to
compute an l-value (i.e., an address); e.g.:

a ::= x | a · f | ⋆ a

An abstraction for aliasing is an over-approximation for
equivalence relations over access paths

Example: {⋆p, x, y}

Examples of aliasing abstractions:

set abstractions: map from access paths to their equivalence class
(implementation with union find structures)

numerical relations, to describe aliasing among paths of the form
x(->n)k
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Abstraction of pointers Simple pointers abstractions

Limitation of pointer analyses

Pointer analyses hardly work on unbounded memory regions

Pointer analyses will not capture structural invariants
light algorithms, but not very strong results
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Three valued logic heap abstraction Basic principles

An abstract representation of memory states: shape graphs

Static analysis problem

Discover complex invariants of programs that manipulate unbounded heap

Observation: representation of memory states by shape graphs

Nodes (aka, atoms) denote memory locations

Edges denote properties, such as:
◮ “field f of location u points to v ”
◮ “variable x is stored at location u”

Two alias pointers:

x

y

u0

u1

u2

A list of length 2:
x u0 u1 u2

n n

⇒ Basically, we need to over-approximate sets of shape graphs
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Three valued logic heap abstraction Basic principles

Shape graphs and their representation

Description with predicates

Boolean encoding: nodes are atoms u0, u1, . . .

Predicates over atoms:
◮ x(u): variable x contains the address of u

◮ n(u, v): field of u points to v

Truth values: traditionally noted 0 and 1 in the TVLA litterature

Two alias pointers:

x

y

u0

u1

u2

x y

u0 1 0
u1 0 1
u2 0 0

7→ u0 u1 u2

u0 0 0 1
u1 0 0 1
u2 0 0 0

A list of length 2:

x u0 u1 u2
n n

x

u0 1
u1 0
u2 0

·n 7→ u0 u1 u2

u0 0 1 0
u1 0 0 1
u2 0 0 0

Xavier Rival (INRIA) Abstraction of memory states November, 16th. 2012 60 / 81



Three valued logic heap abstraction Basic principles

Unknown value: three valued logic

How to abstract away some information ?
i.e., to abstract several graphs into one ?

Example: pointer variable p

alias with x or y

x

p

y

u0

u1

x

p

y

u0

u1

A boolean lattice

Use predicate tables

Add a ⊤ boolean value;
(denoted to by 1

2
in TVLA papers)

0 1

1
2

Graph representation:
dotted edges

Abstract graph:

x

p

y

u0

u1
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Three valued logic heap abstraction Basic principles

Summary nodes

We cannot talk about unbounded memory states with finitely many nodes

Lists of lengths 1, 2, 3:

x u0 u1
n

x u0 u1 u2
n n

x u0 u1 u2 u3
n n n

We would like to summarize the lists

An idea

Choose a node to represent
several concrete nodes

Similar to smashing

x u0 u1
n n

Edges to u1 are dotted

Definition: summary node

A summary node is an atom that may denote several concrete atoms
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Three valued logic heap abstraction Basic principles

A few interesting predicates

We have already seen:

x(u): variable x contains the address of u

n(u, v): field of u points to v

sum(u): whether u is a summary node (convention: either 0 or 1

2
)

The properties of lists are not well-captured in

x u0 u1
n n

“Is shared”

sh(u) ssi:

∃v0, v1,







v0 6= v1

∧ n(v0, u)
∧ n(v1, u)

Predicates defined by transitive closure

Reachability: r(u, v) ssi

u = v ∨ ∃u0, n(u, u0) ∧ r(u0, v)

Acyclicity: acy(v)
similar, with a negation
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Three valued logic heap abstraction Building an abstract domain

Three structures

Definition: 3-structures

A 3-structure is a tuple (U ,P, φ):

a set U = {u0, u1, . . . , pm} of atoms

a set P = {p0, p1, . . . , pn} of predicates
(we write ki for the arity of predicate pi )

a truth table φ such that φ(pi , ul1 , . . . , ulki
) denotes the truth value

of pi for ul1 , . . . , ulki

note: truth values are elements of the lattice {0, 1

2
, 1}

x u0 u1
n n

{

U = {u0, u1}
P = {x(·), n(·, ·), sum(·)}

x sum

u0 1 0
u1 0 1

2

n u0 u1

u0 0 1
u1 0 0
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Three valued logic heap abstraction Building an abstract domain

Embedding

How to compare two 3-structures ?

How to describe the concretization of 3-structures ?

The embedding principle

Let S0 = (U0,P, φ0) and S1 = (U1,P, φ1) be two three structures, with
the same sets of predicates.
Let f : U0 → U1, surjective.
We say that f embeds S0 into S1 iff

for all predicate p ∈ P or arity k ,
for all ul1 , . . . , ulki

∈ U0,

φ0(ul1 , . . . , ulki
) ⊑ φ0(f (ul1), . . . , f (ulki

))

Then, we write S0 ⊑f S1

Note: we use the order ⊑ of the lattice {0, 1

2
, 1}

Xavier Rival (INRIA) Abstraction of memory states November, 16th. 2012 65 / 81



Three valued logic heap abstraction Building an abstract domain

Embedding examples

x u0 u1 u2
n n n ⊑f x u0 u1

n n

where f : u0 7→ u0; u1 7→ u1; u2 7→ u1

x u0 u1 u2 u3
n n n ⊑f x u0 u1

n n

where f : u0 7→ u0; u1 7→ u1; u2 7→ u1; u3 7→ u1

x u0 u1 u2

n
n ⊑f x u0 u1

n n

where f : u0 7→ u0; u1 7→ u1; u2 7→ u1

Note on the last example

Reachability would be necessary to constrain it be a list

Alternatively: cells should not be shared
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Three valued logic heap abstraction Building an abstract domain

Two structures and concretization

Concrete states correspond to 2-structures

2-structure: a 3-structure (U ,P, φ) is a 2-structure, if and only if φ
always returns in {0, 1}

A 2-structure corresponds to a set of concrete memory states
(environment, heap):

◮ we simply need to take into account all mappings of addresses into the
memory
we let stores(S) denote the stores corresponding to 2-structure S

◮ more on this in the next lecture; here we keep it informal

Concretization

γ(S) =
⋃

{stores(S ′) | S ′ 2-structure s.t. ∃f ,S ′ ⊑f S}
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Three valued logic heap abstraction Building an abstract domain

Concretization examples

Without reachability:

x u0 u1 u2

n
n ⊑f x u0 u1

n n

where f : u0 7→ u0; u1 7→ u1; u2 7→ u1; u3 7→ u1

With reachability:

x u0 u1 u2
n n ⊑f x u0 u1

n n r(u0, u1)

where f : u0 7→ u0; u1 7→ u1; u2 7→ u1
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Three valued logic heap abstraction Building an abstract domain

Principle for the design of sound transfer functions

How to carry out static analysis using 3-structures ?

Embedding theorem

Let S0 = (U0,P, φ0) and S1 = (U1,P, φ1) be two three structures,
with the same sets of predicates

Let f : U0 → U1, such that S0 ⊑f S1

Let Ψ be a logical formula, with variables in X and g : X → U0 be an
assignment for the variables of Ψ

Then, JΨ|gK(S0) ⊑ JΨ|f ◦g K(S1)

Xavier Rival (INRIA) Abstraction of memory states November, 16th. 2012 69 / 81



Three valued logic heap abstraction Building an abstract domain

Principle for the design of sound transfer functions

Transfer functions for static analysis

Semantics of concrete statements encoded into boolean formulas
◮ example: assignment y := x
◮ new predicate y′(u) = x(u)

Evaluation in the abstract is sound (embedding theorem)

Advantages:

abstract transfer functions derive directly from the concrete transfer
functions
intuition: α ◦ f ◦ γ...

the same solution works for weakest pre-conditions
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Three valued logic heap abstraction Weakening abstract elements

A powerset abstraction

Do 3-structures allow for a sufficient level of precision ?

How to over-approximate a set of two-structures ?

int ⋆ x;
∫

⋆ y; . . .
int ⋆ p = NULL;
if(. . .){

p = x;
}else{

p = y;
}
printf(”%d”, ⋆p);
⋆p = . . . ;

After the if statement:

x

p

y

u0

u1

x

p

y

u0

u1

abstracting here would be imprecise

Powerset abstraction

Shape analyzers usually rely on a powerset abstract domain
i.e., TVLA manipulates finite disjunctions of 3-structures

How to ensure disjunctions will not grow infinite ?
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Three valued logic heap abstraction Weakening abstract elements

Canonical abstraction

Canonicalization principle

Let L be a lattice, L′ ⊆ L be a finite sub-lattice and can : L → L′:

can called a canonicalization if it is an upper closure operator

then, can extends into a canonicalization operator of P(L), into
P(L′):

can(E) = {can(x) | x ∈ E}

To make the powerset domain work, we simply need a can over 3-structures

A canonicalization over 3-structures

We assume there are n variables x1, . . . , xn

Thus the number of unary predicates is finite

Sub-lattice: structures with atoms distinguished by the values of
the unary predicates (or abstraction predicates) x1, . . . , xn
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Three valued logic heap abstraction Weakening abstract elements

Canonical abstraction

Canonical abstraction by truth blurring

1 Identify nodes that have different abstraction predicates

2 When several nodes have the same abstraction predicate
introduce a summary node

3 Compute new predicate values by doing a join over truth values

Elements not merged:

x

p

y

u0

u1

x

p

y

u0

u1

Elements merged:

Lists of lengths 1, 2, 3:

x u0 u1
n

x u0 u1 u2
n n

x u0 u1 u2 u3
n n n

Abstract into:

x u0 u1
n

x, y r(x)

u0 u1
n n
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Three valued logic heap abstraction Computation of transfer functions

Assignment: a simple case

Statement l0 : y = y -> n; l1 : . . .
Pre-condition S
x, y u0 u1 u2

n n

Transfer function

Should yield an over-approximation of {m1 ∈ M | (l0,m0) → (l1,m1)}

We let “primed predicates” denote predicates after evaluation of the
assignment, to evaluate them in the same structure

Then:
x′(u) = x(u)
y′(u) = ∃v , y(v) ∧ n(v , u)

n′(u, v) = n(u, v)

Result:

x

u0

y

u1 u2
n n

This was exactly what we expected
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Three valued logic heap abstraction Computation of transfer functions

Assignment: a more involved case

Statement l0 : y = y -> n; l1 : . . .

Pre-condition S x, y r(x)

u0 u1
n n

Let us try to resolve the update in the same way as before:

x′(u) = x(u)
y′(u) = ∃v , y(v) ∧ n(v , u)

n′(u, v) = n(u, v)

We cannot resolve y′:
{

y′(u0) = 0
y′(u1) = 1

2

Imprecision: after the statement, y may point to anywhere in the list,
save for the first element...

The assignment transfer function cannot be computed immediately

We need to refine the 3-structure first
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Three valued logic heap abstraction Computation of transfer functions

Focus

Focusing on a formula

We assume a 3-structure S and a boolean formula f are given, we call a
focusing S on f the generation of a set Ŝ such that:

f evaluates to 0 or 1 on all elements of Ŝ

precision was gained: ∀S ′ ∈ Ŝ, S ′ ⊑ S

soundness is preserved: γ(S) =
⋃

{γ(S ′) | S ′ ∈ Ŝ}

Focusing algorithms are complex and tricky (see biblio)

Involves splitting of summary nodes, solving of boolean constraints

Example: focusing on
y′(u) = ∃v , y(v) ∧ n(v , u)

x, y r(x), y′

u0 u1
n n

We obtain (we show y and y′):

x, y r(x)

u0 u1 n

x, y r(x), y′

u0 u1
n n

x, y r(x), y′ r(x)

u0 u1 u2
n n

n
n n
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Three valued logic heap abstraction Computation of transfer functions

Focus and coerce

Some of the 3-structures generated by focus are not precise

x, y r(x)

u0 u1 n

u1 is reachable from x, but there is no
sequence of n fields: this structure has
empty concretization

x, y r(x), y′ r(x)

u0 u1 u2
n n

n
n n

u0 has an n-field to u1 so u1

cannot be a summary node

Coerce operation

It enforces logical constraints among predicates and discards 3-structures
with an empty concretization

Result:
x, y r(x), y′

u0 u1
n

x, y r(x), y′ r(x)

u0 u1 u2
n n n
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Three valued logic heap abstraction Computation of transfer functions

Focus, transfer, abstract...

Computation of a transfer function

We consider a transfer function encoded into boolean formula f

S♯
pre

Ŝpre Ŝpost

S♯
post

focus
coerce

f

can

Soundness proof steps:
1 sound encoding of the semantics of program statements into formulas

typically, no loss of precision at this stage
2 focusing should yield an over-approximation of its input
3 canonicalization over-approximates graph (truth blurring weakening)

A common picture in shape analysis
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Conclusion

Programme overview

November, 23rd. 2012

Another family of shape analyses

Combination of shape abstraction and numerical abstract domains

Design of widening operators in shape analysis
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