Rule-based modeling and application to biomolecular networks Abstract interpretation of protein-protein interactions networks Solution of the Questions Set

Jérôme Feret

LIENS (INRIA, ÉNS, CNRS)

1 Abstract Interpretation

Definition 1 (partial order). A partial order (D, \leq) is given by a set D and a binary relation $\leq \in D \times D$ such that:

- 1. (reflexivity) $\forall a \in D, a \leq a$;
- 2. (antisymmetry) $\forall a, a' \in D, [a \le a' \land a' \le a] \implies a = a';$
- 3. (transitivity) and $\forall a, a', a" \in D$, $[a \leq a' \land a' \leq a''] \implies a \leq a"$.

Definition 2 (closure). Given a partial order (D, \leq) and a mapping $\rho : D \to D$.

- 1. We say that ρ is a upper closure operator, if and only if:
 - (a) (idempotence) $\forall d \in D, \ \rho(\rho(d)) = \rho(d);$
 - (b) (extensivity) $\forall d \in D, d \leq \rho(d);$
 - (c) (monotonicity) $\forall d, d' \in D, d \leq d' \implies \rho(d) \leq \rho(d').$
- 2. We say that ρ is a lower closure operator, if and only if:
 - (a) (idempotence) $\forall d \in D, \ \rho(\rho(d)) = \rho(d);$
 - (b) (antiextensivity) $\forall d \in D, \ \rho(d) \leq d;$
 - (c) (monotonicity) $\forall d, d' \in D, d \leq d' \implies \rho(d) \leq \rho(d').$

Definition 3 (least upper bound). Given a partial order (D, \leq) and a subset $X \subseteq A$, we say that $m \in D$ is a least upper bound for X, if and only if:

- 1. (bound) $\forall a \in X, a \leq m$;
- 2. (least one) and $\forall a \in D, \ [\forall a' \in X, a' \leq a] \implies m \leq a$.

By antisymmetry, if it exists a least upper bound is unique, thus we call it the least upper bound.

Definition 4 (greatest lower bound). Given a partial order (D, \leq) and a subset $X \subseteq A$, we say that $m \in D$ is a greatest lower bound for X, if and only if:

- 1. (bound) $\forall a \in X, m \leq a$;
- 2. (least one) and $\forall a \in D, \ [\forall a' \in X, a \leq a'] \implies a \leq m$.

By antisymmetry, if it exists a greatest lower bound is unique, thus we call it the greatest lower bound.

Definition 5 (complete lattice). Given a partial order (D, \leq) , we say that D is a complete lattice if any subset X has a least upper bound $\sqcup X$.

In a complete lattice, any subset X has a greatest lower bound $\sqcap X$. Moreover,

$$\sqcap(X) = \sqcup \{ d \in X \mid \forall x \in X, d \le x \}.$$

The element $\top = \sqcup(D)$ is the greatest element of D, and the element $\bot = \sqcup(\emptyset)$ is the least element. A complete lattice is usually denoted by $(D, \leq, \bot, \top, \sqcup, \sqcap)$. *Proof.* Let us show that the hypothesis of Def. 4 are satisfied.

- Let x be an element of X. By Def. 1.(1), we have $x \le x$. Thus by Def. 3.(1), we have $x \le \sqcup \{d \in X \mid \forall x \in X, d \le x\}$.
- Let *m* be an element of *D* such that for any element $x \in X$, $m \leq x$. By Def. 3.(2), we have $\sqcup \{d \in X \mid \forall x \in X, d \leq x\} \leq m$.

Thus by Def. 4, $\sqcup \{ d \mid \forall x \in X, d \leq x \}$ is the greatest least bound of X.

Definition 6 (chain-complete partial order). Given a partial order (D, \leq) , we say that (D, \leq) is a chain-complete partial order if and only if any chain $X \subseteq D$ has a least upper bound $\sqcup X$.

A chain-complete partial order is denoted by a triple (D, \leq, \sqcup) .

Definition 7 (inductive function). Given a chain-complete partial order (D, \subseteq, \cup) , we say that a function $\mathbb{F} : D \to D$ is inductive if and only if the two following properties are satisfied:

- 1. $\forall x \in D, x \subseteq \mathbb{F}(x) \implies \mathbb{F}(x) \subseteq \mathbb{F}(\mathbb{F}(x));$
- 2. for any chain C of elements in D such that $x \subseteq \mathbb{F}(x)$, for any $x \in C$, we have: $\cup C \subseteq \mathbb{F}(\cup C)$.

Proposition 1. Let (D, \subseteq, \cup) be a chain-complete partial order and $\mathbb{F} : D \to D$ be a function such that: $\forall x, y \in D, x \subseteq y \implies \mathbb{F}(x) \subseteq \mathbb{F}(y).$ Then \mathbb{F} is an inductive function.

Proof. Let us prove that the hypotheses of Def. 7 are satisfies:

- 1. Let $x_0 \in D$ be an element such that $x_0 \subseteq \mathbb{F}(x_0)$. Since \mathbb{F} is monotonic, it follows that $\mathbb{F}(x_0) \subseteq \mathbb{F}(\mathbb{F}(x_0))$.
- 2. Let C be a chain of elements in D such that, for any element $x \in C$, $x \subseteq \mathbb{F}(x)$. Let $x \in C$ be an element. By Def. 3.(1), $x \subseteq \cup C$. Since \mathbb{F} is monotonic, we have: $\mathbb{F}(x) \subseteq \mathbb{F}(\cup X)$; Since, by hypothesis, $x \subseteq \mathbb{F}(x)$ and by Prop. 1.(3), it follows that $x \subseteq \mathbb{F}(\cup X)$;

Thus, by Def. 3.(2), $\cup C \subseteq \mathbb{F}(\cup C)$.

Definition 8 (inductive definition). Let (D, \subseteq, \cup) be a chain-complete partial order, $x_0 \in D$ be an element such that $x_0 \subseteq \mathbb{F}(x_0)$, and $\mathbb{F} : D \to D$ be an inductive function.

There exists a unique collection of elements (X_o) such that for any ordinal o:

 $\begin{cases} X_o = x_0 & \text{whenever } o = 0\\ X_o = \mathbb{F}(X_{o-1}) & \text{whenever } o \text{ is a succesor ordinal}\\ X_o = \cup \{X_\beta \mid \beta < o\} & \text{otherwise.} \end{cases}$

The collection (X_o) is called the transfinite iteration of \mathbb{F} starting from x_0 . For each ordinal o, the element X_o is usually denoted by $\mathbb{F}^o(x_0)$.

Proof. We show by induction over the ordinals, that for any ordinal o_0 , there exists a unique family of elements $(X_o)_{o < o_0}$ such that the three following properties are satisfied:

-(a)

$$\begin{cases} X_o = x_0 & \text{whenever } o = 0, \\ X_o = \mathbb{F}(X_{o-1}) & \text{whenever } o \text{ is a succesor ordinal}, \\ X_o = \cup \{X_\beta \mid \beta < o\} & \text{otherwise.} \end{cases}$$

- (b) $(X_o)_{o < o_0}$ is increasing,

- (c) and for any ordinal $o < o_0, X_o \subseteq \mathbb{F}(X_o)$.
- 1. (a) There exists a unique element X_0 such that $X_0 = x_0$.
 - (b) (x_0) is an increasing family (of one element).
 - (c) By hypothesis, $x_0 \subseteq \mathbb{F}(x_0)$.
- 2. Let o_0 be an ordinal.

We assume that there exists a unique family $(X_o)_{o \leq o_0}$ such that the equations (a) are satisfied. We also assume that $(X_o)_{o \leq o_0}$ is increasing and that for any ordinal $o \leq o_0$, $X_o \subseteq \mathbb{F}(X_o)$. We define $Y_o = X_o$ whenever $o \leq o_0$ and $Y_{o_0+1} = \mathbb{F}(X_{o_0})$.

- (a) The family $(Y_o)_{o \le o_0+1}$ satisfies the equations (a).
- (b) Now we consider a family $(Z_o)_{o \le o_0+1}$ of elements in D which satisfies the equations (a). Then by induction hypotheses (uniqueness), we have $Z_o = Y_o$ for any ordinal $o \le o_0$. Moreover, since $(Z_o)_{o \le o_0+1}$ satisfies the equations (a), we have $Z_{o_0+1} = \mathbb{F}(Z_{o_0})$. Since $Z_{o_0} = Y_{o_0}$, it follows by extensionality that $\mathbb{F}(Z_{o_0}) = \mathbb{F}(Y_{o_0})$. Moreover, we have: $\mathbb{F}(Y_{o_0}) = Y_{o_0+1}$. So $Z_{o_0+1} = Y_{o_0+1}$. Thus $(Z_o)_{o \le o_0+1} = (Y_o)_{o \le o_0+1}$.
- (c) By induction hypotheses, $(Y_o)_{o \leq o_0}$ is increasing. By induction hypotheses again $Y_{o_0} \leq \mathbb{F}(Y_{o_0})$. Since $Y_{o_0+1} = \mathbb{F}(Y_{o_0})$, it follows that $Y_{o_0} \subseteq Y_{o_0+1}$. Thus $(Y_o)_{o \leq o_0+1}$ is increasing.
- (d) By induction hypotheses, for any $o \leq o_0$, $Y_o \subseteq \mathbb{F}(Y_o)$. Since \mathbb{F} is inductive, by Def. 7.(1), it follows that $\mathbb{F}(Y_{o_0}) \subseteq \mathbb{F}(\mathbb{F}(Y_{o_0}))$. Since $Y_{o_0+1} = \mathbb{F}(Y_{o_0})$, we get $Y_{o_0+1} \subseteq \mathbb{F}(Y_{o_0+1})$.
- 3. Let o_0 be a limit ordinal.

We assume that there exists a unique family $(X_o)_{o < o_0}$ such that the equations (a) are satisfied. We define $Y_o = X_o$ whenever $o < o_0$ and $Y_{o_0} = \bigcup \{X_\beta \mid \beta < o_0\}$.

(a) The family $(Y_o)_{o < o_0}$ satisfies the equations (a).

- (b) Now we consider a family $(Z_o)_{o \le o_0}$ of elements in D which satisfies the equations (a). Then by induction hypotheses (uniqueness), we have $Z_o = Y_o$ for any ordinal $o < o_0$. Moreover, since $(Z_o)_{o \le o_0}$ satisfies the equations (a), we have $Z_{o_0} = \bigcup \{Z_\beta \mid \beta < o_0\}$. Since $Z_\beta = Y_\beta$, for any $\beta < o_0$, it follows that: $\bigcup \{Z_\beta \mid \beta < o_0\} = \bigcup \{Y_\beta \mid \beta < o_0\}$. Moreover, we have: $\bigcup \{Y_\beta \mid \beta < o_0\} = Y_{o_0}$. So $Z_{o_0} = Y_{o_0}$. Thus $(Z_o)_{o \le o_0} = (Y_o)_{o \le o_0}$.
- (c) By induction hypotheses, $(Y_o)_{o < o_0}$ is increasing. By Def. 3.(1), for any ordinal $o < o_0$, we have: $Y_o \leq \bigcup \{Y_{o'} \mid o' < o_0\}$. Since $Y_{o_0} = \bigcup \{Y_{o'} \mid o' < o_0\}$, it follows that $Y_o \subseteq Y_{o_0}$, for any ordinal $o \leq o_0$.
- (d) By induction hypotheses, for any $o < o_0$, $Y_o \subseteq \mathbb{F}(Y_o)$. Since \mathbb{F} is inductive, by Def. 7.(2), it follows that $\cup \{Y_o \mid o < o_0\} \subseteq \mathbb{F}(\cup \{Y_o \mid o < o_0\})$. Since $Y_{o_0} = \cup \{Y_o \mid o < o_0\}$, we get $Y_{o_0} \subseteq \mathbb{F}(Y_{o_0})$.

Proposition 2. Let (D, \subseteq, \cup) be a chain-complete partial order, $x_0 \in D$ be an element such that $x_0 \subseteq \mathbb{F}(x_0)$, and $\mathbb{F} : D \to D$ an inductive function.

Then:

- 1. for any pair of ordinals $(o, o'), [o < o'] \implies \mathbb{F}^{o}(x_0) \subseteq \mathbb{F}^{o'}(x_0);$
- 2. for any ordinal $o, x_0 \subseteq \mathbb{F}^o(x_0)$.

Proof. The assertion 1 is implied by the hypotheses induction of the proof that Def. 8 is well-defined. The assertion 2 follows from the fact that for any ordinal, $0 \le o$, and by the assertion 1.

Lemma 1 (least fix-point). Let:

1. (D, \subseteq, \cup) be a chain-complete partial order;

- 2. $\mathbb{F} \in D \to D$ be a monotonic map;
- 3. $x_0 \in D$ be an element such that: $x_0 \subseteq \mathbb{F}(x_0)$.

Then: there exists $y \in D$ such that:

 $\begin{array}{l} -x_0 \subseteq y, \\ -\mathbb{F}(y) = y, \\ -\forall z \in D, \ [[\mathbb{F}(z) = z \land x_0 \subseteq z] \implies y \subseteq z]. \end{array}$

This element is called the least fix-point of \mathbb{F} which is greater than x_0 , and is written $lfp_{x_0}\mathbb{F}$.

Proof. Let $x_0 \in D$, such that $x_0 \subseteq \mathbb{F}(x_0)$.

By hypothesis, \mathbb{F} is monotonic. By Prop. 1, \mathbb{F} is inductive. By Def. 8, it follows that the collection $(\mathbb{F}^o(x_0))_o$ indexed over the ordinals is well-defined.

By Prop. 2.(1), the collection $(\mathbb{F}^o(x_0))_o$ is increasing. Since D is a set, the collection $(\mathbb{F}^o(x_0))_o$ is ultimately stationary.

Thus there exists an ordinal o such that $\mathbb{F}^{o}(x_0) = \mathbb{F}^{o+1}(x_0)$.

Thus, $\mathbb{F}(\mathbb{F}^{o}(x_0)) = \mathbb{F}^{o}(x_0).$

By Prop. 2.(2), for any ordinal o, we have: $x_0 \subseteq \mathbb{F}^o(x_0)$.

Consider another fix-point $y \in D$ such that $x_0 \subseteq y$. We have $y = \mathbb{F}(y)$.

Let us show by transfinite induction that $\mathbb{F}^{o}(x_0) \subseteq y$.

- We have, by hypothesis, $x_0 \subseteq y$. Since, $\mathbb{F}^0(x_0) = x_0$, it follows that $\mathbb{F}^0(x_0) \subseteq y$.
- Let us consider an ordinal o such that $\mathbb{F}^{o}(x_{0}) \subseteq y$. Since, \mathbb{F} is monotonic, we have $\mathbb{F}(\mathbb{F}^{o}(x_{0})) \subseteq \mathbb{F}(y)$. Then by Def. 8, $\mathbb{F}^{o+1}(x_{0}) = \mathbb{F}(\mathbb{F}^{o}(x_{0}))$. And by hypothesis $\mathbb{F}(y) = y$. Thus $\mathbb{F}^{o+1}(x_{0}) \subseteq y$.
- Let us consider an ordinal o such that for any $\beta < o$, we have $\mathbb{F}^{\beta}(x_0) \subseteq y$. By Def. 3.(2), we get that $\cup \{\mathbb{F}^{\beta}(x_0) \mid \beta < o\} \subseteq y$. By Def. 8, $\mathbb{F}^o(x_0) = \cup \{\mathbb{F}^{\beta}(x_0) \mid \beta < o\}$. Thus, $\mathbb{F}^o(x_0) \subseteq y$.

Thus $\mathbb{F}^{o}(x_0)$ is the least fix-point of \mathbb{F} .

Remark 1. We have seen in this proof that, under the hypotheses of Lemma 1, $lfp_{x_0}\mathbb{F} = \mathbb{F}^o(x_0)$ for a given ordinal o.

Definition 9 (Galois connexion). Given two partial orders (D, \subseteq) and $(D^{\sharp}, \sqsubseteq)$, we say that the pair of maps (α, γ) forms a Galois connection between D and D^{\sharp} if and only if:

1. $\alpha : D \to D^{\sharp};$ 2. $\gamma : D^{\sharp} \to D;$ 3. and $\forall d \in D, \ \forall d^{\sharp} \in D^{\sharp}, [\alpha(d) \sqsubseteq d^{\sharp} \Leftrightarrow d \subseteq \gamma(d^{\sharp})].$

In such a case, we write:

$$D \xleftarrow{\gamma}{\alpha} D^{\sharp}.$$

Proposition 3. Let (D, \subseteq) and (D^{\sharp}, \subseteq) be partial orders, and $D \xleftarrow{\gamma}{\alpha} D^{\sharp}$ be a Galois connexion. The following properties are satisfied:

- 1. $\forall d \in D, d \subseteq \gamma(\alpha(d));$
- 2. $\forall d^{\sharp} \in D^{\sharp}, \ \alpha(\gamma(d^{\sharp})) \sqsubseteq d^{\sharp};$
- 3. (α is monotonic) $\forall d, d' \in D, \ d \subseteq d' \implies \alpha(d) \sqsubseteq \alpha(d');$
- 4. (γ is monotonic) $\forall d^{\sharp}, d'^{\sharp} \in D^{\sharp}, d^{\sharp} \sqsubseteq d'^{\sharp} \implies \gamma(d^{\sharp}) \subseteq \gamma(d'^{\sharp});$
- 5. $\forall d \in D, \ \alpha(d) = \alpha(\gamma(\alpha(d)));$
- 6. $\forall d^{\sharp} \in D^{\sharp}, \ \gamma(d^{\sharp}) = \gamma(\alpha(\gamma(d)));$
- 7. $\gamma \circ \alpha$ is an upper closure operator;
- 8. $\alpha \circ \gamma$ is a lower closure operator.

Proof. Let (D, \subseteq) and (D^{\sharp}, \subseteq) be partial orders, and $D \xleftarrow{\gamma}{\longrightarrow} D^{\sharp}$ be a Galois connexion.

1. Let $d \in D$ be an element.

By Def. 1.(1), we have: $\alpha(d) \sqsubseteq \alpha(d)$. By Def. 9.(3), it follows that: $d \subseteq \gamma(\alpha(d))$.

2. Let $d^{\sharp} \in D^{\sharp}$ be an element.

By Def. 1.(1), we have: $\gamma(d^{\sharp}) \subseteq \gamma(d^{\sharp})$. By Def. 9.(3), it follows that: $\alpha(\gamma(d^{\sharp})) \subseteq d^{\sharp}$.

3. Let $d, d' \in D$ be two elements such that $d \subseteq d'$.

By hypothesis, we have $d \subseteq d'$. Moreover, by Prop. 3.(1), we have $d' \subseteq \gamma(\alpha(d'))$. Thus by Def. 1.(3), we get: $d \subseteq \gamma(\alpha(d'))$. By Def. 9.(3), it follows that: $\alpha(d) \sqsubseteq \alpha(d')$.

4. Let $d^{\sharp}, d'^{\sharp} \in D^{\sharp}$ be two elements such that $d^{\sharp} \sqsubseteq d'^{\sharp}$.

By Prop. 3.(2), we have $\alpha(\gamma(d^{\sharp})) \subseteq d^{\sharp}$. Moreover, by hypothesis, we have $d^{\sharp} \sqsubseteq d'^{\sharp}$. Thus by Def. 1.(3), we get: $\alpha(\gamma(d^{\sharp})) \sqsubseteq d'^{\sharp}$. By Def. 9.(3), it follows that: $\gamma(d^{\sharp}) \sqsubseteq \gamma(d'^{\sharp})$.

5. Let $d \in D$ be an element.

By Prop. 3.(1), we have: $d \subseteq \gamma(\alpha(d))$. By Prop. 3.(3), it follows that $\alpha(d) \sqsubseteq \alpha(\gamma(\alpha(d)))$.

By Def. 1.(1), we have: $\gamma(\alpha(d)) \subseteq \gamma(\alpha(d))$ By Def. 9.(3), it follows that: $\alpha(\gamma(\alpha(d)) \sqsubseteq \alpha(d))$.

By Def. 1.(2), it follows that $\alpha(d) = \alpha(\gamma(\alpha(d)))$.

6. Let $d^{\sharp} \in D^{\sharp}$ be an element.

By Prop. 3.(2), we have: $\alpha(\gamma(d^{\sharp}) \sqsubseteq d^{\sharp})$. By Prop. 3.(4), it follows that $\gamma(\alpha(\gamma(d^{\sharp}))) \subseteq \gamma(d^{\sharp})$.

By Def. 1.(1), we have: $\alpha(\gamma(d^{\sharp})) \sqsubseteq \alpha(\gamma(d^{\sharp}))$ By Def. 9.(3), it follows that: $\gamma(d^{\sharp}) \subseteq \gamma(\alpha(\gamma(d^{\sharp})))$.

By Def. 1.(2), it follows that $\gamma(d^{\sharp}) = \gamma(\alpha(\gamma(d^{\sharp})))$.

7. Let $d, d' \in D$ such that $d \subseteq d'$.

- (a) By Prop. 3.(6), we have $\gamma(\alpha(\gamma(\alpha(d)))) = \gamma(\alpha(d))$.
- (b) By Prop. 3.(1), we have $d \subseteq \gamma(\alpha(d))$.

- (c) By Prop. 3.(3), we have $\alpha(d) \sqsubseteq \alpha(d')$. Then by prop. 3.(4), it follows that $\gamma(\alpha(d)) \subseteq \gamma(\alpha(d'))$.
- 8. Let $d^{\sharp}, d'^{\sharp} \in D^{\sharp}$ such that $d^{\sharp} \sqsubseteq d'^{\sharp}$.
 - (a) By Prop. 3.(5), we have $\alpha(\gamma(\alpha(\gamma(d^{\sharp})))) = \alpha(\gamma(d^{\sharp}))$.
 - (b) By Prop. 3.(2), we have $\alpha(\gamma(d^{\sharp})) \sqsubseteq d^{\sharp}$.
 - (c) By Prop. 3.(4), we have $\gamma(d^{\sharp}) \subseteq \gamma(d'^{\sharp})$.

Then by prop. 3.(3), it follows that $\alpha(\gamma(d^{\sharp})) \sqsubseteq \alpha(\gamma(d'))$.

Proposition 4. Let $(D, \subseteq, \bot, \top, \cup, \cap)$ and $(D^{\sharp}, \sqsubseteq, \bot^{\sharp}, \top^{\sharp}, \sqcup, \cap)$ be two complete lattices. Let α be a mapping between D and D^{\sharp} such that for any subset $X \subseteq D$, we have $\alpha(\cup X) = \sqcup \{\alpha(d) \mid d \in X\}$.

Then there exists a unique mapping γ between D^{\sharp} and D such that:

$$D \xleftarrow{\gamma}{\alpha} D^{\sharp}$$

is a Galois connexion.

Moreover, for any element $d^{\sharp} \in D^{\sharp}$, we have:

$$\gamma(d^{\sharp}) = \bigcup \{ d \mid \alpha(d) \sqsubseteq d^{\sharp} \}.$$

Proof. Let $(D, \subseteq, \bot, \top, \cup, \cap)$ and $(D^{\sharp}, \sqsubseteq, \bot^{\sharp}, \top^{\sharp}, \sqcup, \cap)$ be two complete lattices. Let α be a mapping between D and D^{\sharp} such that for any subset $X \subseteq D$, we have $\alpha(\cup X) = \sqcup \{\alpha(d) \mid d \in X\}$.

1. (α is monotonic)

Let $d, d' \in D$, such that $d \subseteq d'$. By Def. 3, we have $\cup \{d, d'\} = d'$.

Thus, we have: $\alpha(d') = \alpha(\cup\{d, d'\})$. By the hypothesis on α , we have $\alpha(\cup\{d, d'\}) = \sqcup\{\alpha(d), \alpha(d')\}$. Thus, $\alpha(d') = \sqcup\{\alpha(d), \alpha(d')\}$. And by Def. 3.(1), it follow that $\alpha(d) \sqsubseteq \alpha(d')$.

2. (existence)

Let γ' be the mapping between D^{\sharp} and D such that:

$$\gamma'(d^{\sharp}) = \cup \{d \mid \alpha(d) \sqsubseteq d^{\sharp}\}.$$

Let $d \in D$ and $d^{\sharp} \in D^{\sharp}$. – We assume that $\alpha(d) \sqsubseteq d^{\sharp}$. We have: $\gamma'(d^{\sharp}) = \bigcup \{d \mid \alpha(d) \sqsubseteq d^{\sharp}\}$. Thus, by Def. 3.(1), we have $d \subseteq \gamma'(d^{\sharp})$.

- We assume that $d \subseteq \gamma'(d^{\sharp})$. By hypothesis, we have: $\gamma'(d^{\sharp}) = \bigcup \{d \mid \alpha(d) \sqsubseteq d^{\sharp}\}$. Thus, $d \subseteq \bigcup \{d \mid \alpha(d) \sqsubseteq d^{\sharp}\}$. Since α is monotonic, we have: $\alpha(d) \sqsubseteq \alpha(\bigcup \{d \mid \alpha(d) \sqsubseteq d^{\sharp}\})$. By hypothesis on α , we have $\alpha(\bigcup \{d \mid \alpha(d) \sqsubseteq d^{\sharp}\}) = \bigsqcup \{\alpha(d) \mid \alpha(d) \sqsubseteq d^{\sharp}\}$. Thus, $\alpha(d) \sqsubseteq \bigsqcup \{\alpha(d) \mid \alpha(d) \sqsubseteq d^{\sharp}\}$. For any $d \in D$, such that $\alpha(d) \sqsubseteq d^{\sharp}$, we have $\alpha(d) \sqsubseteq d^{\sharp}$. Thus, by Def. 3.(1), we have $\bigsqcup \{\alpha(d) \mid \alpha(d) \sqsubseteq d^{\sharp}\} \sqsubseteq d^{\sharp}$. By Def. 1.(3), we get: $\alpha(d) \sqsubseteq d^{\sharp}$. Thus:

$$D \xleftarrow{\gamma'}{\alpha} D^{\sharp}.$$

3. (uniqueness) Let γ such that:

$$D \xrightarrow{\gamma} D^{\sharp}.$$

Let $d^{\sharp} \in D^{\sharp}$ be an abstract element.

For any $d \in D$ such that $\alpha(d) \sqsubseteq d^{\sharp}$, we have by Def. 9.(3), $d \subseteq \gamma(d^{\sharp})$. By hypothesis, $\gamma'(d^{\sharp}) = \bigcup \{d \mid \alpha(d) \sqsubseteq d^{\sharp}\}$. Thus, Def. 3.(2), we get that $\gamma'(d^{\sharp}) \subseteq \gamma(d^{\sharp})$.

By prop.3.(2), we have $\alpha(\gamma(d^{\sharp})) \subseteq d^{\sharp}$. We have already proved that:

$$D \stackrel{\gamma'}{\longleftrightarrow} D^{\sharp}.$$

is a Galois connexion. Thus, by Def. 9.(3), we have $\gamma(d^{\sharp}) \subseteq \gamma'(d^{\sharp})$.

By Def. 1.(2), we get that $\gamma(d^{\sharp}) = \gamma'(d^{\sharp})$. Thus $\gamma = \gamma'$.

Proposition 5. Given (D, \subseteq) and $(D^{\sharp}, \sqsubseteq)$ two partial orders, $D \xleftarrow{\gamma}{\alpha} D^{\sharp}$ a Galois connexion, and $X \subseteq D$ a subset of D, if, X has a least upper bound $\cup X$ and $\{\alpha(d) \mid d \in X\}$ has a least upper bound $\cup \{\alpha(d) \mid d \in X\}$, then we have:

$$\alpha(\cup X) = \sqcup \{ \alpha(d) \mid d \in X \}.$$

Proof. Let (D, \subseteq) and $(D^{\sharp}, \sqsubseteq)$ be two partial orders, $D \stackrel{\gamma}{\longleftrightarrow} D^{\sharp}$ be a Galois connexion, and $X \subseteq D$ be a subset of D, such that X has a least upper bound $\cup X$ and $\{\alpha(d) \mid d \in X\}$ has a least upper bound $\cup \{\alpha(d) \mid d \in X\}$.

- Let d be an element in X.

Since X has a least upper bound, we have by Def. 3.(1), $d \subseteq \bigcup X$. By Prop. 3.(3), we have $\alpha(d) \sqsubseteq \alpha(\bigcup X)$.

Since $\{\alpha(d) \mid d \in X\}$ has a least upper bound, and by Def. 3.(2), it follows that $\sqcup \{\alpha(d) \mid d \in X\} \sqsubseteq \alpha(\cup X)$.

- Let d be an element in X.

By Prop. 3.(1), we have $d \subseteq \gamma(\alpha(d))$. Since $\{\alpha(d) \mid d \in X\}$ has a least upper bound, and by Def. 3.(1), we have $\alpha(d) \sqsubseteq \sqcup \{\alpha(d) \mid d \in X\}$. Thus by Prop. 3.(4), it follows that $\gamma(\alpha(d)) \subseteq \gamma(\sqcup \{\alpha(d) \mid d \in X\})$. By Def. 1.(3), it follows that $d \subseteq \gamma(\sqcup \{\alpha(d) \mid d \in X\})$.

Since X has a least upper bound, and by Def. 3.(2), it follows that $\cup X \subseteq \gamma(\sqcup \{\alpha(d) \mid d \in X\})$.

By Def. 9.(3), we get that $\alpha(\cup X) \sqsubseteq \sqcup \{\alpha(d) \mid d \in X\}$.

By Def. 1.(2), we conclude that $\alpha(\cup X) = \sqcup \{\alpha(d) \mid d \in X\}$.

Proposition 6. Given (D, \subseteq) and (D^{\sharp}, \subseteq) two partial orders, $D \stackrel{\gamma}{\underset{\alpha}{\longleftarrow}} D^{\sharp}$ a Galois connexion, and $X^{\sharp} \subseteq D^{\sharp}$ a subset of D^{\sharp} , if, X^{\sharp} has a least upper bound $\sqcup X^{\sharp}$ and $\{\gamma(d^{\sharp}) \mid d^{\sharp} \in X^{\sharp}\}$ has a least upper bound $\cup \{\gamma(d^{\sharp}) \mid d^{\sharp} \in X^{\sharp}\}$, then we have:

$$\gamma(\sqcup X^{\sharp}) = \gamma(\alpha(\cup\{\gamma(d^{\sharp}) \mid d^{\sharp} \in X^{\sharp}\})).$$

Proof. Let (D, \subseteq) and $(D^{\sharp}, \sqsubseteq)$ be two partial orders, $D \xrightarrow[]{\alpha} D^{\sharp}$ be a Galois connexion, and $X^{\sharp} \subseteq D^{\sharp}$ be a subset of D^{\sharp} , such that: X^{\sharp} has a least upper bound $\sqcup X^{\sharp}$ and $\{\gamma(d^{\sharp}) \mid d^{\sharp} \in X^{\sharp}\}$ has a least upper bound $\cup \{\gamma(d^{\sharp}) \mid d^{\sharp} \in X^{\sharp}\}$.

- Let d^{\sharp} be an element in X^{\sharp} . Since X^{\sharp} has a least upper bound, we have by Def. 3.(1), $d^{\sharp} \sqsubseteq \sqcup X^{\sharp}$. By Prop. 3.(4), we have $\gamma(d) \subseteq \gamma(\sqcup X^{\sharp})$.

Since $\{\gamma(d^{\sharp}) \mid d^{\sharp} \in X^{\sharp}\}$ has a least upper bound, and by Def. 3.(2), it follows that $\cup \{\gamma(d^{\sharp}) \mid d^{\sharp} \in X^{\sharp}\} \subseteq \gamma(\sqcup X^{\sharp})$.

Then, by Prop. 3.(4) and Prop. 3.(3), we have $\gamma(\alpha(\cup\{\gamma(d^{\sharp}) \mid d^{\sharp} \in X^{\sharp}\})) \subseteq \gamma(\alpha(\gamma(\sqcup X^{\sharp})))$. But, by Prop. 3.(6), we have $\gamma(\alpha(\gamma(\sqcup X^{\sharp}))) = \gamma(\sqcup X^{\sharp})$. Thus, it follows that: $\gamma(\alpha(\cup\{\gamma(d^{\sharp}) \mid d^{\sharp} \in X^{\sharp}\}) \subseteq \gamma(\sqcup X^{\sharp})$.

- Let d^{\sharp} be an element in X^{\sharp} .

By Prop. 3.(2), we have $d^{\sharp} \sqsubseteq \alpha(\gamma(d^{\sharp}))$.

Since $\{\gamma(d^{\sharp}) \mid d^{\sharp} \in X^{\sharp}\}$ has a least upper bound, and by Def. 3.(1), we have $\gamma(d^{\sharp}) \subseteq \cup \{\gamma(d^{\sharp}) \mid d^{\sharp} \in X^{\sharp}\}$. Thus by Prop. 3.(3), it follows that $\alpha(\gamma(d^{\sharp})) \subseteq \alpha(\cup \{\gamma(d^{\sharp}) \mid d^{\sharp} \in X^{\sharp}\})$. By Def. 1.(3), it follows that $d^{\sharp} \subseteq \alpha(\cup \{\gamma(d^{\sharp}) \mid d^{\sharp} \in X^{\sharp}\})$. Since X^{\sharp} has a least upper bound, and by Def. 3.(2), it follows that $\sqcup X^{\sharp} \sqsubset \alpha(\cup \{\gamma(d^{\sharp}) \mid d^{\sharp} \in X^{\sharp}\})$.

By Prop. 3.(4), we get that $\gamma(\sqcup X^{\sharp}) \subseteq \gamma(\alpha(\cup\{\gamma(d^{\sharp}) \mid d^{\sharp} \in X^{\sharp}\})).$

By Def. 1.(2), we conclude that $\gamma(\sqcup X^{\sharp}) = \gamma(\alpha(\cup \{\gamma(d^{\sharp}) \mid d^{\sharp} \in X^{\sharp}\})).$

Lemma 2. Let:

1. (D, \subseteq, \cup) and $(D^{\sharp}, \sqsubseteq, \sqcup)$ be chain-complete partial orders;

- 2. $D \xleftarrow{\gamma}{\longleftrightarrow} D^{\sharp}$ be a Galois connexion;
- 3. $\mathbb{F} \in \overset{\alpha}{D} \to D$ be a monotonic mapping;
- 4. $\mathbb{F}^{\sharp} \in D^{\sharp} \to D^{\sharp}$ be mapping such that: $[\forall d^{\sharp} \in D^{\sharp}, \mathbb{F}(\gamma(d^{\sharp})) \subseteq \gamma(\mathbb{F}^{\sharp}(d^{\sharp}))];$
- 5. $x_0 \in D$ such that $x_0 \subseteq \mathbb{F}(x_0)$.

Then:

$$\alpha(x_0) \sqsubseteq \mathbb{F}^{\sharp}(\alpha(x_0)).$$

Proof. Let us show that $\alpha(x_0) \sqsubseteq \mathbb{F}^{\sharp}(\alpha(x_0))$.

We have: $x_0 \subseteq \mathbb{F}(x_0)$.

By Prop. 3.(1), we have: $x_0 \subseteq \gamma(\alpha(x_0))$. Then, since \mathbb{F} is monotonic, it follows that $\mathbb{F}(x_0) \subseteq \mathbb{F}(\gamma(\alpha(x_0)))$. By hypothesis, $\mathbb{F}(\gamma(\alpha(x_0))) \subseteq \gamma(\mathbb{F}^{\sharp}(\alpha(x_0)))$. Thus, $x_0 \subseteq \gamma(\mathbb{F}^{\sharp}(\alpha(x_0)))$. By Def. 9.(3), it follows that $\alpha(x_0) \subseteq \mathbb{F}^{\sharp}(\alpha(x_0))$.

Theorem 1 (soundness). Let:

- 1. (D, \subseteq, \cup) and $(D^{\sharp}, \sqsubseteq, \sqcup)$ be chain-complete partial orders;
- 2. $D \xleftarrow{\gamma}{\longrightarrow} D^{\sharp}$ be a Galois connexion;
- 3. $\mathbb{F} \in D \to D$ and $\mathbb{F}^{\sharp} \in D^{\sharp} \to D^{\sharp}$ be monotonic mappings such that: $[\forall d^{\sharp} \in D^{\sharp}, \mathbb{F}(\gamma(d^{\sharp})) \subseteq \gamma(\mathbb{F}^{\sharp}(d^{\sharp}))];$
- 4. $x_0 \in D$ be an element such that: $x_0 \subseteq \mathbb{F}(x_0)$.

Then, both $lfp_{x_0}\mathbb{F}$ and $lfp_{\alpha(x_0)}\mathbb{F}^{\sharp}$ exist, and moreover:

$$lfp_{x_0}\mathbb{F} \subseteq \gamma(lfp_{\alpha(x_0)}\mathbb{F}^{\sharp}).$$

Proof. We assume that the hypotheses of The. 1 are satisfied.

- 1. We have $x_0 \subseteq \mathbb{F}(x_0)$ and \mathbb{F} is monotonic. Thus, by Lem. 1, \mathbb{F} has a least fix-point greater than x_0 . Moreover, by Rem. 1, there exists an ordinal o such that $lfp_{x_0}\mathbb{F} = \mathbb{F}^o(x_0)$.
- 2. By Lem. 2, $\alpha(x_0) \subseteq \mathbb{F}^{\sharp}(\alpha(x_0))$.

Thus, by Lem. 1, \mathbb{F}^{\sharp} has a least fix-point greater than x_0 . Moreover, by Rem. 1, there exists an ordinal o^{\sharp} such that $lfp_{\alpha(x_0)}\mathbb{F}^{\sharp} = \mathbb{F}^{\sharp o^{\sharp}}(\alpha(x_0))$.

- 3. We consider an ordinal β such that $o \leq \beta$ and $o^{\sharp} \leq \beta$. We have: $lfp_{x_0}\mathbb{F} = \mathbb{F}^{\beta}(x_0)$ and $lfp_{\alpha(x_0)}\mathbb{F}^{\sharp} = \mathbb{F}^{\sharp\beta}(\alpha(x_0))$. We show by transfinite induction that for any ordinal $o, \mathbb{F}^o(x_0) \subseteq \gamma(\mathbb{F}^{\sharp o}(\alpha(x_0)))$.
 - By Def. 8, we have $\mathbb{F}^0(x_0) = x_0$ and $\mathbb{F}^{\sharp 0}(\alpha(x_0)) = \alpha(x_0)$. By Prop. 3.(1), we have $x_0 \subseteq \gamma(\alpha(x_0))$. Thus, $\mathbb{F}^0(x_0) \subseteq \gamma(\mathbb{F}^{\sharp 0}(\alpha(x_0)))$.
 - We consider an ordinal o such that $\mathbb{F}^{o}(x_{0}) \subseteq \gamma(\mathbb{F}^{\sharp o}(\alpha(x_{0})))$. By Def. 8, we have: $\mathbb{F}^{o+1}(x_{0}) = \mathbb{F}(\mathbb{F}^{o}(x_{0}))$. Since \mathbb{F} is monotonic, we have: $\mathbb{F}(\mathbb{F}^{o}(x_{0})) \subseteq \mathbb{F}(\gamma(\mathbb{F}^{\sharp o}(\alpha(x_{0}))))$. By hypothesis, $\mathbb{F}(\gamma(\mathbb{F}^{\sharp o}(\alpha(x_{0})))) \subseteq \gamma(\mathbb{F}^{\sharp}(\mathbb{F}^{\sharp o}(\alpha(x_{0}))))$. Then, by Def. 8, we have: $\mathbb{F}^{\sharp o+1}(\alpha(x_{0})) = \mathbb{F}^{\sharp}(\mathbb{F}^{\sharp o}(\alpha(x_{0})))$. And by extensionality, $\gamma(\mathbb{F}^{\sharp o+1}(\alpha(x_{0}))) = \gamma(\mathbb{F}^{\sharp}(\mathbb{F}^{\sharp o}(\alpha(x_{0}))))$. Thus: $\mathbb{F}^{o+1}(x_{0}) \subseteq \gamma(\mathbb{F}^{\sharp o+1}(\alpha(x_{0})))$.

- We consider an ordinal o such that for any ordinal $\beta < o$ we have: $\mathbb{F}^{\beta}(x_0) \subseteq \gamma(\mathbb{F}^{\sharp\beta}(\alpha(x_0)))$. By Def. 8, we have: $\mathbb{F}^{o}(x_0) = \bigcup \{ \mathbb{F}^{\beta}(x_0) \mid \beta < o \}.$ Thus, by Def. 3.(1), we get that, for any ordinal β such that $\beta < o$, $\mathbb{F}^{o}(x_{0}) \subseteq \gamma(\mathbb{F}^{\sharp\beta}(\alpha(x_{0})))$. Thus, since $\{\gamma(\mathbb{F}^{\sharp\beta}(\alpha(x_0))) \mid \beta < o\}$ is a chain, by Def. 6, and by Def. 3.(2), it follows that: $\mathbb{F}^{o}(x_{0}) \subseteq \cup \{\gamma(\mathbb{F}^{\sharp\beta}(\alpha(x_{0}))) \mid \beta < o\}.$

For any ordinal β such that $\beta < o$, by Def. 3.(1), we have: $\mathbb{F}^{\sharp\beta}(\alpha(x_0)) \subseteq \sqcup \{\mathbb{F}^{\sharp\beta}(\alpha(x_0))) \mid \beta < o\};$ then by Prop. 3.(4), we get that: $\gamma(\mathbb{F}^{\sharp\beta}(\alpha(x_0))) \subseteq \gamma(\sqcup\{\mathbb{F}^{\sharp\beta}(\alpha(x_0))) \mid \beta < o\}).$ Then by Def. 3.(2), it follows that $\cup \{\gamma(\mathbb{F}^{\sharp\beta}(\alpha(x_0))) \mid \beta < o\} \subseteq \gamma(\sqcup \{\mathbb{F}^{\sharp\beta}(\alpha(x_0))) \mid \beta < o\});$

By Def. 8, $\sqcup \{ \mathbb{F}^{\sharp\beta}(\alpha(x_0)) \mid \beta < o \} = \mathbb{F}^{\sharp o}(\alpha(x_0)).$ Thus, by extensionality, $\gamma(\sqcup \{\mathbb{F}^{\sharp\beta}(\alpha(x_0))) \mid \beta < o\}) = \gamma(\mathbb{F}^{\sharp o}(\alpha(x_0))).$ It follows that: $\mathbb{F}^{o}(x_{0}) \subseteq \gamma(\mathbb{F}^{\sharp o}(\alpha(x_{0}))).$

Theorem 2. We suppose that:

- 1. (D, \subseteq) be a partial order;
- 2. $(D^{\sharp}, \sqsubseteq, \sqcup)$ be chain-complete partial order;
- 3. $D \xleftarrow{\gamma}{\xleftarrow{\alpha}} D^{\sharp}$ be a Galois connexion;
- 4. $\mathbb{F} \in D \to D$ and $\mathbb{F}^{\sharp} \in D^{\sharp} \to D^{\sharp}$ are monotonic;
- 5. $\forall d^{\sharp} \in D^{\sharp}, \ \mathbb{F}(\gamma(d^{\sharp})) \subseteq \gamma(\mathbb{F}^{\sharp}(d^{\sharp}));$
- 6. $x_0, inv \in D$ such that:
 - $-x_0 \subseteq \mathbb{F}(x_0) \subseteq \mathbb{F}(inv) \subseteq inv,$

$$- inv = \gamma(\alpha(inv)),$$

$$- inv = \gamma(\alpha(inv)), \\ - and \alpha(\mathbb{F}(\gamma(\alpha(inv)))) = \mathbb{F}^{\sharp}(\alpha(inv));$$

Then, $lfp_{\alpha(x_0)}\mathbb{F}^{\sharp}$ exists and $\gamma(lfp_{\alpha(x_0)}\mathbb{F}^{\sharp}) \subseteq inv$.

Proof. Let us show this result.

- By Lem. 2, $\alpha(x_0) \subseteq \mathbb{F}^{\sharp}(\alpha(x_0))$.

Thus, by Lem. 1, \mathbb{F}^{\sharp} has a least fix-point greater than x_0 . Moreover, by Rem. 1, there exists an ordinal o^{\sharp} such that $lfp_{\alpha(x_0)}\mathbb{F}^{\sharp} = \mathbb{F}^{\sharp o^{\sharp}}(\alpha(x_0))$.

- Let us show by induction over o^{\sharp} that $\mathbb{F}^{\sharp o^{\sharp}}(\alpha(x_0)) \sqsubseteq \alpha(inv)$.
 - By Def. 8, we have $\mathbb{F}^{\sharp 0}(\alpha(x_0)) = \alpha(x_0)$. Thus, by Def. 1.(1), $\alpha(x_0) \sqsubseteq \alpha(x_0)$. So, $\mathbb{F}^{\sharp 0}(\alpha(x_0)) \sqsubseteq \alpha(x_0)$.

By hypothesis, $x_0 \subseteq inv$. By Prop. 3.(3), we get that $\alpha(x_0) \sqsubseteq \alpha(inv)$.

Thus, by Def. 1.(3), it follows that $\mathbb{F}^{\sharp 0}(\alpha(x_0)) \sqsubseteq \alpha(inv)$.

• Let *o* be an ordinal such that $\mathbb{F}^{\sharp o}(\alpha(x_0)) \sqsubseteq \alpha(inv)$.

Since \mathbb{F}^{\sharp} is monotonic, we have $\mathbb{F}^{\sharp}(\mathbb{F}^{\sharp o}(\alpha(x_0))) \sqsubseteq \mathbb{F}^{\sharp}(\alpha(inv))$. By Def. 8, $\mathbb{F}^{\sharp o+1}(\alpha(x_0)) = \mathbb{F}^{\sharp}(\mathbb{F}^{\sharp o}(\alpha(x_0)))$. By hypothesis, $\alpha(\mathbb{F}(\gamma(\alpha(inv)))) = \mathbb{F}^{\sharp}(\alpha(inv))$. Thus, $\mathbb{F}^{\sharp o+1}(\alpha(x_0)) \sqsubseteq \alpha(\mathbb{F}(\gamma(\alpha(inv))))$.

By hypothesis, $\gamma(\alpha(inv)) = inv$. Thus, by extensionality, $\mathbb{F}(\gamma(\alpha(inv))) = \mathbb{F}(inv)$. By hypothesis, $\mathbb{F}(inv) \subseteq inv$. Thus, $\mathbb{F}(\gamma(\alpha(inv))) \subseteq inv$. By Prop. 3.(3), $\alpha(\mathbb{F}(\gamma(\alpha(inv)))) \subseteq \alpha(inv)$.

Thus, by Def. 1.(3), $\mathbb{F}^{\sharp o+1}(\alpha(x_0)) \sqsubseteq \alpha(inv)$.

• Let o be an ordinal such that for any ordinal $\beta < o$, we have $\mathbb{F}^{\sharp\beta}(\alpha(x_0)) \sqsubseteq \alpha(inv)$.

By Def. 3.(2), $\sqcup \{ \mathbb{F}^{\sharp\beta}(\alpha(x_0)) \mid \beta < o \} \sqsubseteq \alpha(inv).$ By Def. 8, $\mathbb{F}^{\sharp o}(\alpha(x_0)) = \sqcup \{ \mathbb{F}^{\sharp\beta}(\alpha(x_0)) \mid \beta < o \}.$ Thus, $\mathbb{F}^{\sharp o}(\alpha(x_0)) \sqsubseteq \alpha(inv).$

Thus, $lfp_{\alpha(x_0)}\mathbb{F}^{\sharp} \subseteq \alpha(inv)$.

- We have seen that $lfp_{\alpha(x_0)}\mathbb{F}^{\sharp} \sqsubseteq \alpha(inv)$. By Prop. 3.(4), we have: $\gamma(lfp_{\alpha(x_0)}\mathbb{F}^{\sharp}) \subseteq \gamma(\alpha(inv))$. By hypothesis, $\gamma(\alpha(inv)) = inv$. Thus, $\gamma(lfp_{\alpha(x_0)}\mathbb{F}^{\sharp}) \subseteq inv$.

Theorem 3. We suppose that:

1. (D, \subseteq, \cup) and $(D^{\sharp}, \sqsubseteq, \sqcup)$ are chain-complete partial orders; 2. $(D, \subseteq) \xleftarrow{\gamma} (D^{\sharp}, \sqsubseteq)$ is a Galois connexion; 3. $\mathbb{F} : D \to D$ is a monotonic map; 4. x_0 is a concrete element such that $x_0 \subseteq \mathbb{F}(x_0)$; 5. $\mathbb{F} \circ \gamma \subseteq \gamma \circ \mathbb{F}^{\sharp}$; 6. $\mathbb{F}^{\sharp} \circ \alpha = \alpha \circ \mathbb{F} \circ \gamma \circ \alpha$.

Then:

$$\begin{array}{l} - \ lfp_{x_0} \mathbb{F} \ and \ lfp_{\alpha(x_0)} \mathbb{F}^{\sharp} \ exist; \\ - \ lfp_{x_0} \mathbb{F} \in \gamma(D^{\sharp}) \Longleftrightarrow \ lfp_{x_0} \mathbb{F} = \gamma(lfp_{\alpha(x_0)} \mathbb{F}^{\sharp}). \end{array}$$

Proof. We assume that the hypotheses of The. 3 are satisfied.

1. We have $x_0 \subseteq \mathbb{F}(x_0)$ and \mathbb{F} is monotonic. Thus, by Lem. 1, \mathbb{F} has a least fix-point greater than x_0 . Moreover, by Rem. 1, there exists an ordinal o^{\bullet} such that $lfp_{x_0}\mathbb{F} = \mathbb{F}^{o^{\bullet}}(x_0)$.

- 2. Let us show, by induction over the ordinal o_0 , that there exists a unique collection of elements $(X_o^{\sharp})_{o < o_0}$ such that for any ordinal $o < o_0$:
 - i.

 $\begin{cases} X_o^{\sharp} = \alpha(x_0) & \text{whenever } o = 0 \\ X_o^{\sharp} = \mathbb{F}^{\sharp}(X_{o-1}^{\sharp}) & \text{whenever } o \text{ is a succesor ordinal} \\ X_o^{\sharp} = \sqcup \{X_{\beta}^{\sharp} \mid \beta < o\} & \text{otherwise.} \end{cases}$

- ii. for any ordinal $o < o_0$, there exists an element $d \in D$ such that $X_o^{\sharp} = \alpha(d)$,
- iii. $(X_o^{\sharp})_{o < o_0}$ is increasing,
- iv. and for any ordinal $o < o_0, X_o^{\sharp} \subseteq \mathbb{F}^{\sharp}(X_o^{\sharp})$.
- (a) i. There exists a unique element X_0^{\sharp} such that $X_0^{\sharp} = \alpha(x_0)$.
 - ii. $\alpha(x_0) = \alpha(x_0)$.
 - iii. $(\alpha(x_0))$ is an increasing family (of one element).
 - iv. By hypothesis, $x_0 \subseteq \mathbb{F}(x_0)$.

By Prop. 3.(1), $x_0 \subseteq \gamma(\alpha(x_0))$. Since \mathbb{F} is monotonic, $\mathbb{F}(x_0) \subseteq \mathbb{F}(\gamma(\alpha(x_0)))$.

Thus, by Def. 1.(3), it follows that $x_0 \subseteq \mathbb{F}(\gamma(\alpha(x_0)))$.

By Prop. 3.(3), we get that: $\alpha(x_0) \sqsubseteq \alpha(\mathbb{F}(\gamma(\alpha(x_0))))$.

By hypothesis, $\mathbb{F}^{\sharp}(\alpha(x_0)) = \alpha(\mathbb{F}(\gamma(\alpha(x_0)))).$ Thus, $\alpha(x_0) \subseteq \mathbb{F}^{\sharp}(\alpha(x_0)).$

(b) Let o_0 be an ordinal.

We assume that there exists a unique family $(X_o^{\sharp})_{o \leq o_0}$ such that the equations (a) are satisfied. We also assume that there exists a family of elements $(X_o)_{o \leq o_0}$ such that for any ordinal, $\alpha(X_o) = X_o^{\sharp}$, that $(X_o^{\sharp})_{o \leq o_0}$ is increasing and that for any ordinal $o \leq o_0$, $X_o^{\sharp} \sqsubseteq \mathbb{F}^{\sharp}(X_o)$. We define $Y_o^{\sharp} = X_o^{\sharp}$ whenever $o \leq o_0$ and $Y_{o_0+1}^{\sharp} = \mathbb{F}^{\sharp}(X_{o_0}^{\sharp})$.

- i. The family $(Y_o^{\sharp})_{o \leq o_0+1}$ satisfies the equations (a).
- ii. Now we consider a family $(Z_o^{\sharp})_{o \leq o_0+1}$ of elements in D^{\sharp} which satisfies the equations (a).

By induction hypotheses (uniqueness), we have $Z_o^{\sharp} = Y_o^{\sharp}$ for any ordinal $o \leq o_0$.

Moreover, since $(Z_o^{\sharp})_{o \leq o_0+1}$ satisfies the equations (a), we have $Z_{o_0+1}^{\sharp} = \mathbb{F}^{\sharp}(Z_{o_0}^{\sharp})$. Since $Z_{o_0}^{\sharp} = Y_{o_0}^{\sharp}$, it follows by extensionality that $\mathbb{F}^{\sharp}(Z_{o_0}^{\sharp}) = \mathbb{F}^{\sharp}(Y_{o_0}^{\sharp})$. Moreover, we have: $\mathbb{F}^{\sharp}(Y_{o_0}^{\sharp}) = Y_{o_0+1}^{\sharp}$. Thus $Z_{o+1}^{\sharp} = Y_{o+1}^{\sharp}$.

It follows that $(Z_o^{\sharp})_{o \leq o_0+1} = (Y_o^{\sharp})_{o \leq o_0+1}$.

iii. By induction hypotheses, there exists a family $(X_o)_{o \leq o_0}$ such that $(Y_o^{\sharp})_{o \leq o_0} = (\alpha(X_o))_{o \leq o_0}$.

It follows that $Y_{o_0}^{\sharp} = \alpha(X_o)$. By extensionality, $\mathbb{F}^{\sharp}(Y_{o_0}^{\sharp}) = \mathbb{F}^{\sharp}(\alpha(X_o))$. By hypothesis, $Y_{o_0+1}^{\sharp} = \mathbb{F}^{\sharp}(Y_{o_0}^{\sharp})$. By hypothesis, $\mathbb{F}^{\sharp}(\alpha(X_o)) = \alpha(\mathbb{F}(\gamma(\alpha(X_0))))$. Thus, $Y_{o_0+1}^{\sharp} = \alpha(\mathbb{F}(\gamma(\alpha(X_0))))$.

We define $X_{o_0+1} = \mathbb{F}(\gamma(\alpha(X_0))).$ We have $Y_{o_0+1}^{\sharp} = \alpha(X_{o_0+1}).$

Since $(Y_o^{\sharp})_{o \leq o_0} = (\alpha(X_o))_{o \leq o_0}$, it follows that $(Y_o^{\sharp})_{o \leq o_0+1} = (\alpha(X_o))_{o \leq o_0+1}$.

- iv. By induction hypotheses, $(Y_o^{\sharp})_{o \leq o_0}$ is increasing. By induction hypotheses again $Y_{o_0}^{\sharp} \sqsubseteq \mathbb{F}^{\sharp}(Y_{o_0}^{\sharp})$. Since $Y_{o_0+1}^{\sharp} = \mathbb{F}^{\sharp}(Y_{o_0}^{\sharp})$, it follows that $Y_{o_0}^{\sharp} \sqsubseteq Y_{o_0+1}^{\sharp}$. Thus $(Y_o^{\sharp})_{o \leq o_0+1}$ is increasing.
- v. By induction hypotheses, for any $o \leq o_0$, $Y_o^{\sharp} \sqsubseteq \mathbb{F}^{\sharp}(Y_o^{\sharp})$.

Moreover, $Y_{o_0}^{\sharp} \subseteq Y_{o_0+1}^{\sharp}$. Since $Y_{o_0}^{\sharp} = \alpha(X_{o_0})$ and $Y_{o_0+1}^{\sharp} = \alpha(X_{o_0+1})$, it follows that $\alpha(X_{o_0}) \subseteq \alpha(X_{o_0+1})$. By Prop. 3.(4), since \mathbb{F} is monotonic, and by Prop. 3.(3), $\alpha(\mathbb{F}(\gamma(\alpha(X_{o_0})))) \subseteq \alpha(\mathbb{F}(\gamma(\alpha(X_{o_0+1}))))$. By hypothesis, $\alpha \circ \mathbb{F} \circ \gamma \circ \alpha = \mathbb{F}^{\sharp} \circ \alpha$, thus $\mathbb{F}^{\sharp}(\alpha(X_{o_0})) \subseteq \mathbb{F}^{\sharp}(\alpha(X_{o_0+1}^{\sharp}))$. Since, $Y_{o_0}^{\sharp} = \alpha(X_{o_0})$ and $Y_{o_0+1}^{\sharp} = \alpha(X_{o_0+1})$, it follows that $\mathbb{F}^{\sharp}(Y_{o_0}^{\sharp}) \subseteq \mathbb{F}^{\sharp}(\mathbb{F}^{\sharp}(Y_{o_0}^{\sharp}))$. By induction hypothesis, $Y_{o_0+1}^{\sharp} = \mathbb{F}^{\sharp}(Y_{o_0}^{\sharp})$. Thus, $Y_{o_0+1}^{\sharp} \subseteq \mathbb{F}^{\sharp}(Y_{o_0+1}^{\sharp})$.

Thus, we denote by $\mathbb{F}^{\sharp o}(\alpha(x_0))$ the unique collection which satisfies the equations (2).

(c) Let us show that \mathbb{F}^{\sharp} has a fix-point.

The collection $(\mathbb{F}^{\sharp o}(\alpha(x_0)))$ which is indexed over the ordinals is increasing. Since D^{\sharp} is a set, it follows that there exists an ordinal o^{\sharp} , such that $\mathbb{F}^{\sharp o^{\sharp}}(\alpha(x_0)) = \mathbb{F}^{\sharp o^{\sharp}+1}(\alpha(x_0))$. Since $(\mathbb{F}^{\sharp o}(\alpha(x_0)))$ satisfied equation (2), it follows that $\mathbb{F}^{\sharp}(\mathbb{F}^{\sharp o^{\sharp}}(\alpha(x_0))) = \mathbb{F}^{\sharp o^{\sharp}}(\alpha(x_0))$. Moreover, we have already proven that $\alpha(x_0) \sqsubseteq \mathbb{F}^{\sharp o^{\sharp}}(\alpha(x_0))$.

(d) Let is show that $\mathbb{F}^{\sharp o}(\alpha(x_0))$ is the least fix-point of \mathbb{F}^{\sharp} .

Consider another fix-point $y^{\sharp} \in D^{\sharp}$ such that $\alpha(x_0) \sqsubseteq y^{\sharp}$. We have $y^{\sharp} = \mathbb{F}^{\sharp}(y^{\sharp})$.

Let us show by transfinite induction that $\mathbb{F}^{\sharp o^{\sharp}}(\alpha(x_0)) \sqsubseteq y^{\sharp}$. – We have, by hypothesis, $\alpha(x_0) \sqsubseteq y^{\sharp}$. Since, $\mathbb{F}^{\sharp 0}(\alpha(x_0)) = \alpha(x_0)$, it follows that $\mathbb{F}^{\sharp 0}(\alpha(x_0)) \sqsubseteq \alpha(y)$. - Let us consider an ordinal o such that $\mathbb{F}^{\sharp o}(\alpha(x_0)) \sqsubseteq y^{\sharp}$. We know that $\mathbb{F}^{\sharp o}(\alpha(x_0)) \in \alpha(D)$. Thus there exists an element $x \in D$ such that $\mathbb{F}^{\sharp o}(\alpha(x_0)) = \alpha(x)$. Then, $\alpha(x) \sqsubset y^{\sharp}$. By Prop. 3.(4), since \mathbb{F} is monotonic, and by Prop. 3.(3), $\alpha(\mathbb{F}(\gamma(\alpha(x)))) \sqsubset \alpha(\mathbb{F}(\gamma(y^{\sharp})))$. By hypothesis, $\mathbb{F}(\gamma(y^{\sharp})) \subseteq \gamma(\mathbb{F}^{\sharp}(y^{\sharp})).$ By Prop. 3.(3), we get that $\alpha(\mathbb{F}(\gamma(y^{\sharp}))) \sqsubseteq \alpha(\gamma(\mathbb{F}^{\sharp}(y^{\sharp})))$. By Prop. 3.(2), $\alpha(\gamma(\mathbb{F}^{\sharp}(y^{\sharp}))) \sqsubset \mathbb{F}^{\sharp}(y^{\sharp})$. Thus, by Def. 1.(3), $\alpha(\mathbb{F}(\gamma(\alpha(x)))) \sqsubset \mathbb{F}^{\sharp}(y^{\sharp})$. By hypothesis, $\alpha(\mathbb{F}(\gamma(\alpha(x)))) = \mathbb{F}^{\sharp}(\alpha(x)).$ Moreover, $\alpha(x) = \mathbb{F}^{\sharp o}(\alpha(x_0)).$ Thus, by extensionality, $\alpha(\mathbb{F}(\gamma(\mathbb{F}^{\sharp o}(\alpha(x_0)))))) = \mathbb{F}^{\sharp}(\mathbb{F}^{\sharp o}(\alpha(x_0))).$ But by definition, $\mathbb{F}^{\sharp}(\mathbb{F}^{\sharp o}(\alpha(x_0))) = \mathbb{F}^{\sharp o+1}(\alpha(x_0)).$ Thus, $\mathbb{F}^{\sharp o+1}(\alpha(x_0)) \sqsubseteq \mathbb{F}^{\sharp}(y^{\sharp}).$ By hypothesis, $\mathbb{F}^{\sharp}(y^{\sharp}) = y^{\sharp}$. Thus $\mathbb{F}^{\sharp o+1}(\alpha(x_0)) \sqsubseteq y^{\sharp}$.

- Let us consider an ordinal o such that for any $\beta < o$, we have $\mathbb{F}^{\sharp\beta}(x_0) \sqsubseteq y$. By Def. 3.(2), we get that $\sqcup \{\mathbb{F}^{\sharp\beta}(x_0) \mid \beta < o\} \sqsubseteq y$. By hypothesis, $\mathbb{F}^{\sharp o}(x_0) = \sqcup \{\mathbb{F}^{\sharp\beta}(x_0) \mid \beta < o\}$. Thus, $\mathbb{F}^{\sharp o}(x_0) \subseteq y$.

Thus, $\mathbb{F}^{\sharp o^{\sharp}}$ is the least fix-point of \mathbb{F}^{\sharp} which is bigger than $\alpha(x_0)$.

(e) Let us prove that $lfp_{x_0}\mathbb{F} \subseteq \gamma(lfp_{\alpha(x_0)}\mathbb{F}^{\sharp})$.

We consider an ordinal β such that $o^{\bullet} \leq \beta$ and $o^{\sharp} \leq \beta$.

We have: $lfp_{x_0}\mathbb{F} = \mathbb{F}^{\beta}(x_0)$ and $lfp_{\alpha(x_0)}\mathbb{F}^{\sharp} = \mathbb{F}^{\sharp\beta}(\alpha(x_0))$. We show by transfinite induction that for any ordinal $o, \mathbb{F}^o(x_0) \subseteq \gamma(\mathbb{F}^{\sharp o}(\alpha(x_0)))$.

- By hypotheses, we have $\mathbb{F}^{0}(x_{0}) = x_{0}$ and $\mathbb{F}^{\sharp 0}(\alpha(x_{0})) = \alpha(x_{0})$. By Prop. 3.(1), we have $x_{0} \subseteq \gamma(\alpha(x_{0}))$. Thus, $\mathbb{F}^{0}(x_{0}) \subseteq \gamma(\mathbb{F}^{\sharp 0}(\alpha(x_{0})))$.
- We consider an ordinal o such that $\mathbb{F}^{o}(x_{0}) \subseteq \gamma(\mathbb{F}^{\sharp o}(\alpha(x_{0})))$. By Def. 8, we have: $\mathbb{F}^{o+1}(x_{0}) = \mathbb{F}(\mathbb{F}^{o}(x_{0}))$. Since \mathbb{F} is monotonic, we have: $\mathbb{F}(\mathbb{F}^{o}(x_{0})) \subseteq \mathbb{F}(\gamma(\mathbb{F}^{\sharp o}(\alpha(x_{0}))))$. By hypothesis, $\mathbb{F}(\gamma(\mathbb{F}^{\sharp o}(\alpha(x_{0})))) \subseteq \gamma(\mathbb{F}^{\sharp}(\mathbb{F}^{\sharp o}(\alpha(x_{0}))))$. Then, by hypothesis, we have: $\mathbb{F}^{\sharp o+1}(\alpha(x_{0})) = \mathbb{F}^{\sharp}(\mathbb{F}^{\sharp o}(\alpha(x_{0})))$. And by extensionality, $\gamma(\mathbb{F}^{\sharp o+1}(\alpha(x_{0}))) = \gamma(\mathbb{F}^{\sharp}(\mathbb{F}^{\sharp o}(\alpha(x_{0}))))$. Thus: $\mathbb{F}^{o+1}(x_{0}) \subseteq \gamma(\mathbb{F}^{\sharp o+1}(\alpha(x_{0})))$.

- We consider an ordinal o such that for any ordinal $\beta < o$ we have: $\mathbb{F}^{\beta}(x_0) \subseteq \gamma(\mathbb{F}^{\sharp\beta}(\alpha(x_0)))$. By Def. 8, we have: $\mathbb{F}^{o}(x_0) = \bigcup \{\mathbb{F}^{\beta}(x_0) \mid \beta < o\}$. Thus, by Def. 3.(1), we get that, for any ordinal β such that $\beta < o$, $\mathbb{F}^{o}(x_0) \subseteq \gamma(\mathbb{F}^{\sharp\beta}(\alpha(x_0)))$. Thus, since $\{\gamma(\mathbb{F}^{\sharp\beta}(\alpha(x_0))) \mid \beta < o\}$ is a chain, by Def. 6, and by Def. 3.(2), it follows that: $\mathbb{F}^{o}(x_0) \subseteq \bigcup \{\gamma(\mathbb{F}^{\sharp\beta}(\alpha(x_0))) \mid \beta < o\}$.

For any ordinal β such that $\beta < o$, by Def. 3.(1), we have: $\mathbb{F}^{\sharp\beta}(\alpha(x_0)) \subseteq \sqcup \{\mathbb{F}^{\sharp\beta}(\alpha(x_0))) \mid \beta < o\};$ then by Prop. 3.(4), we get that: $\gamma(\mathbb{F}^{\sharp\beta}(\alpha(x_0))) \subseteq \gamma(\sqcup \{\mathbb{F}^{\sharp\beta}(\alpha(x_0))) \mid \beta < o\}).$ Then by Def. 3.(2), it follows that $\cup \{\gamma(\mathbb{F}^{\sharp\beta}(\alpha(x_0))) \mid \beta < o\} \subseteq \gamma(\sqcup \{\mathbb{F}^{\sharp\beta}(\alpha(x_0))) \mid \beta < o\});$

By hypothesis, $\sqcup \{ \mathbb{F}^{\sharp\beta}(\alpha(x_0)) \mid \beta < o \} = \mathbb{F}^{\sharp o}(\alpha(x_0)).$ Thus, by extensionality, $\gamma(\sqcup \{ \mathbb{F}^{\sharp\beta}(\alpha(x_0))) \mid \beta < o \}) = \gamma(\mathbb{F}^{\sharp o}(\alpha(x_0))).$ It follows that: $\mathbb{F}^o(x_0) \subseteq \gamma(\mathbb{F}^{\sharp o}(\alpha(x_0))).$

Thus, $lfp_{x_0}\mathbb{F} \subseteq \gamma(lfp_{\mathbb{F}^{\sharp}}\alpha(x_0)).$

- (f) Let us prove that: $lfp_{x_0}\mathbb{F} \in \gamma(D^{\sharp}) \iff lfp_{x_0}\mathbb{F} = \gamma(lfp_{\alpha(x_0)}\mathbb{F}^{\sharp}).$
 - i. We assume that $lfp_{x_0}\mathbb{F} = \gamma(lfp_{\alpha(x_0)}\mathbb{F}^{\sharp})$.

Then, by definition of $\gamma(D^{\sharp})$, $lfp_{x_0}\mathbb{F} \in \gamma(D^{\sharp})$.

- ii. Now we assume that $lfp_{x_0}\mathbb{F} \in \gamma(D^{\sharp})$.
 - A. We know that: $lfp_{x_0}\mathbb{F} \subseteq \gamma(lfp_{\alpha(x_0)}\mathbb{F}^{\sharp}).$
 - B. Let us prove that: $\gamma(lfp_{\alpha(x_0)}\mathbb{F}^{\sharp}) \subseteq lfp_{x_0}\mathbb{F}$.

We propose to prove by induction over the ordinals that $\mathbb{F}^{\sharp\beta}(\alpha(x_0)) \sqsubseteq \alpha(lfp_{x_0}\mathbb{F}).$

* We have $x_0 \subseteq lfp_{x_0}\mathbb{F}$. By Prop. 3.(3), $\alpha(x_0) \sqsubseteq \alpha(lfp_{x_0}\mathbb{F})$.

* Let us assume that there exists an ordinal o, such that $\mathbb{F}^{\sharp o}(\alpha(x_0)) \sqsubseteq \alpha(lfp_{x_0}\mathbb{F})$. There exists $x \in D$, such that $\mathbb{F}^{\sharp o}(\alpha(x_0)) = \alpha(x)$. Thus $\alpha(x) \sqsubseteq \alpha(lfp_{x_0}(x_0))$. By Prop. 4, since \mathbb{F} is monotonic, and by Prop. 3, $\alpha(\mathbb{F}(\gamma(\alpha(x)))) \sqsubseteq \alpha(\mathbb{F}(\gamma(\alpha(lfp_{x_0}(\mathbb{F})))))$.

By hypothesis, $\alpha(\mathbb{F}(\gamma(\alpha(x)))) = \mathbb{F}^{\sharp}(\alpha(x))$. Since $\mathbb{F}^{\sharp o}(\alpha(x_0)) = \alpha(x)$, by extensionality, we get that: $\mathbb{F}^{\sharp}(\mathbb{F}^{\sharp o}(\alpha(x_0))) = \mathbb{F}^{\sharp}(\alpha(x))$. Since by equations (2), it follows that $\mathbb{F}^{\sharp o+1}(\alpha(x_0)) = \mathbb{F}^{\sharp}(\mathbb{F}^{\sharp o}(\alpha(x_0)))$. Thus, $\mathbb{F}^{\sharp o+1}(\alpha(x_0)) \sqsubseteq \alpha(\mathbb{F}(\gamma(\alpha(lfp_{x_0}\mathbb{F}))))$.

By Prop. 3.(1), $\gamma(\alpha(lfp_{x_0}\mathbb{F})) \sqsubseteq lfp_{x_0}\mathbb{F}$. Since \mathbb{F} is monotonic, $\mathbb{F}(\gamma(\alpha(lfp_{x_0}\mathbb{F}))) \sqsubseteq \mathbb{F}(lfp_{x_0}\mathbb{F})$. But $\mathbb{F}(lfp_{x_0}\mathbb{F}) = lfp_{x_0}\mathbb{F}$. $\begin{array}{l} \text{Thus, } \mathbb{F}(\gamma(\alpha(\mathit{lfp}_{x_0}\mathbb{F}))) \sqsubseteq \mathit{lfp}_{x_0}\mathbb{F}.\\ \text{By Prop. 3.(3), } \alpha(\mathbb{F}(\gamma(\alpha(\mathit{lfp}_{x_0}\mathbb{F})))) \sqsubseteq \alpha(\mathit{lfp}_{x_0}\mathbb{F}). \end{array}$

By Def. 1.(3), it follows that: $\mathbb{F}^{\sharp o+1}(\alpha(x_0)) \sqsubseteq \alpha(lfp_{x_0}\mathbb{F}).$

* Let us assume that there exists an ordinal o_0 , such that for any ordinal $o < o_0$, $\mathbb{F}^{\sharp o}(\alpha(x_0)) \sqsubseteq \alpha(lfp_{x_0}\mathbb{F})$.

Since $(\mathbb{F}^{\sharp o}(\alpha(x_0)))$ is a chain, $\sqcup \{\mathbb{F}^{\sharp o}(\alpha(x_0)) \mid o < o_0\}$ exists. By Def. 3.(2), $\sqcup \{\mathbb{F}^{\sharp o}(\alpha(x_0)) \mid o < o_0\} \sqsubseteq \alpha(lfp_{x_0}\mathbb{F})$. By equations (2), we have $\mathbb{F}^{\sharp o+1}(\alpha(x_0)) = \sqcup \{\mathbb{F}^{\sharp o}(\alpha(x_0)) \mid o < o_0\}$. Thus, $\mathbb{F}^{\sharp o+1}(\alpha(x_0)) \sqsubseteq \alpha(lfp_{x_0}\mathbb{F})$.

We have proved that $lfp_{\alpha(x_0)}\mathbb{F}^{\sharp} \sqsubseteq \alpha(lfp_{x_0}\mathbb{F})$. By Prop. 3.(4), $\gamma(lfp_{\alpha(x_0)}\mathbb{F}^{\sharp}) \subseteq \gamma(\alpha(lfp_{x_0}\mathbb{F}))$. But since, $lfp_{x_0}\mathbb{F} \in \gamma(D^{\sharp})$, there exists $x \in D$, such that $\gamma(x) = lfp_{x_0}\mathbb{F}$. By extensionality, $\gamma(\alpha(\gamma(x))) = \gamma(\alpha(lfp_{x_0}\mathbb{F}))$. By Prop. 3.(6), $\gamma(x) = \gamma(\alpha(\gamma(x)))$. Thus $\gamma(\alpha(lfp_{x_0}\mathbb{F})) = lfp_{x_0}\mathbb{F}$. It follows that: $\gamma(lfp_{\alpha(x_0)}\mathbb{F}^{\sharp}) \subseteq lfp_{x_0}\mathbb{F}$.

Thus $lfp_{x_0}\mathbb{F} = \gamma(lfp_{\alpha(x_0)}\mathbb{F}^{\sharp}).$

Corollary 1 (relative completeness). We suppose that:

1. (D, \subseteq, \cup) and $(D^{\sharp}, \sqsubseteq, \sqcup)$ are chain-complete partial orders; 2. $(D, \subseteq) \xrightarrow{\gamma} (D^{\sharp}, \sqsubseteq)$ is a Galois connexion; 3. for any chain $X^{\sharp} \subseteq D^{\sharp}, \cup (\gamma(X^{\sharp})) \in \gamma(D^{\sharp});$ 4. $\mathbb{F} : D \to D$ is a monotonic map; 5. x_0 is a concrete element such that $x_0 \subseteq \mathbb{F}(x_0);$ 6. $\alpha \circ \mathbb{F} \circ \gamma = \mathbb{F}^{\sharp};$ 7. $x_0 \in \gamma(D^{\sharp});$ 8. $\mathbb{F}(\gamma(D^{\sharp})) \subseteq \gamma(D^{\sharp}).$

Then, both $lfp_{x_0}\mathbb{F}$ and $lfp_{\alpha(x_0)}\mathbb{F}^{\sharp}$ exist, and moreover:

$$lfp_{x_0}\mathbb{F} = \gamma(lfp_{\alpha(x_0)}\mathbb{F}^{\sharp}).$$

Proof. We assume that the hypotheses of The. 1 are satisfied.

- By hypothesis 4, \mathbb{F} is monotonic. By hypothesis 5, $x_0 \subseteq \mathbb{F}(x_0)$. Thus, by Lem. 1, \mathbb{F} has a least fix-point greater than x_0 . Moreover, by Rem. 1, there exists an ordinal o such that $lfp_{x_0}\mathbb{F} = \mathbb{F}^o(x_0)$.
- Let us show by induction over the ordinal o that $\mathbb{F}^o(x_0) \in \gamma(D^{\sharp})$.

• We have $\mathbb{F}^0(x_0) = x_0$.

By hypothesis 7, $x_0 \in \gamma(D^{\sharp})$.

Thus $\mathbb{F}^0(x_0) \in \gamma(D^{\sharp})$.

• We assume that there exists an ordinal β such that $\mathbb{F}^{\beta}(x_0) \in \gamma(D^{\sharp})$.

By induction hypothesis, $\mathbb{F}^{\beta}(x_0) \in \gamma(D^{\sharp})$. By hypothesis 8, $\mathbb{F}(\mathbb{F}^{\beta}(x_0)) \in \gamma(D^{\sharp})$. Since $\mathbb{F}^{\beta+1}(x_0) = \mathbb{F}(\mathbb{F}^{\beta}(x_0))$. It follows that $\mathbb{F}^{\beta+1}(x_0) \in \gamma(D^{\sharp})$.

• We assume that there exists an ordinal β such that for any ordinal $\beta' < \beta$, $\mathbb{F}^{\beta'}(x_0) \in \gamma(D^{\sharp})$.

We have $\mathbb{F}^{\beta}(x_0) = \bigcup \{ \mathbb{F}^{\beta'} \mid \beta' < \beta \}$. By hypothesis 3, $\mathbb{F}^{\beta}(x_0) \in \gamma(D^{\sharp})$.

Thus, since $lfp_{x_0}\mathbb{F} = \mathbb{F}^o(x_0)$, it follows that $lfp_{x_0}\mathbb{F} \in \gamma(D^{\sharp})$. All the hypotheses of The. 3 are satisfied. Thus, $lfp_{\alpha(x_0)}\mathbb{F}^{\sharp}$ exists. Moreover, since $lfp_{x_0}\mathbb{F} \in \gamma(D^{\sharp})$, it follows that: $lfp_{\alpha(x_0)}\mathbb{F}^{\sharp} = \gamma(lfp_{\alpha(x_0)}\mathbb{F}^{\sharp})$.

2 Site-graphs

Let \mathbb{N} be a countable set of agent identifiers. Let \mathcal{A} be a finite set of agent types. Let \mathcal{S} be a finite set of site types.

Definition 10 (site-graphs). A site-graph is a triple (Ag, Site, Link) where:

- $-Ag : \mathbb{N} \rightarrow \mathcal{A}$ is a partial map between \mathbb{N} and \mathcal{A} such that the subset of \mathbb{N} of the elements *i* such that Ag(i) is defined is finite;
- Site $\subseteq \mathbb{N} \times S$ is a subset of $\mathbb{N} \times S$ such that for any pair $(i, s) \in Site$, Ag(i) is defined;
- $Link \subseteq Site^2$ is a relation over Site such that:
 - 1. for any site $a \in Site$, $(a, a) \notin Link$;
 - 2. for any pair $(a, b) \in Link$, we have $(b, a) \in Link$;
 - 3. for any sites $a, b, b' \in Site$, if both $(a, b) \in Link$ and $(a, b') \in Link$, then b = b'.

Whenever $(a, b) \in Link$, we say that there is a link between the site a and the site b.

Whenever $a \in Site$, but there exists no $b \in Site$ such that $(a, b) \in Link$, we say that a is free.

Definition 11 (embeddings). An embedding between two site-graphs (Ag, Site, Link) and (Ag', Site', Link') is given by a partial mapping $\phi : \mathbb{N} \to \mathbb{N}$, such that:

- 1. (agent mapping) For any $i \in \mathbb{N}$, Ag(i) is defined if and only if $\phi(i)$ is defined;
- 2. (well-formedness) For any $i \in \mathbb{N}$, if Ag(i) is defined, then $Ag'(\phi(i))$ is defined;
- 3. (into mapping) For any $i, i' \in \mathbb{N}$, if $\phi(i)$ and $\phi'(i)$ are defined, then $\phi(i) = \phi(i') \implies i = i'$;
- 4. (agent types) For any $i \in \mathbb{N}$, if Ag(i) is defined, then $Ag(i) = Ag'(\phi(i))$;

- 5. (site types) For any site $(i, s) \in Site$, $(\phi(i), s) \in Site'$;
- 6. (free sites) For any pair $(i, s) \in Site$ such that for any $(i', s') \in Site$, $((i, s), (i', s')) \notin Link$, then for any $(i'', s'') \in Site'$, $((\phi(i), s), (i'', s'')) \notin Link$;
- 7. (links) For any link $((i, s), (i', s')) \in Link, ((\phi(i), s), (\phi(i'), s')) \in Link'.$

Definition 12 (automorphism). An embedding between a site-graph and itself is called an automorphism.

Definition 13 (paths). Let $\mathcal{G} = (Ag, Site, Link)$ be a site-graph. We define a path of length n > 0 in the site-graph \mathcal{G} a sequence $(i_k, s_k)_{0 \le k \le 2 \times n-1}$ of $2 \times n$ pairs of sites in Site such that:

- 1. For any j such that $0 \le j < n$, $((i_{2 \times j}, s_{2 \times j}), (i_{2 \times j+1}, s_{2 \times j+1})) \in Link$.
- 2. For any j such that $1 \leq j < n$, $i_{2 \times j} = i_{2 \times j-1}$ and $s_{2 \times j} \neq s_{2 \times j-1}$.

Proposition 7 (sub-paths). Let $\mathcal{G} = (Ag, Site, Link)$ be a site-graph and $(i_k, s_k)_{0 \le k \le 2 \times n-1}$ be a path of length n > 0 in the site-graph \mathcal{G} . Let m, m' be two integers such that $0 \le m < m' \le n$, then, $(i_k, s_k)_{2 \times m < k < 2 \times m'-1}$ is a path in the site-graph \mathcal{G} .

Proof. We have m' - m > 0. For any integer k such that $2 \times m \le k \le 2 \times m' - 1$, we have by Def. 13, $(i_k, s_k) \in Site$. Moreover,

- 1. for any integer k such that $m \le k < m'$, by Def. 13.(1), $((i_{2\times k}, s_{2\times k}), (i_{2\times k+1}, s_{2\times k+1})) \in Link;$
- 2. for any integer k such that m < k < m', by Def. 13.(2), $i_{2 \times k} = i_{2 \times k-1}$ and $s_{2 \times k} \neq s_{2 \times k-1}$.

By Def. 13, it follows that $(i_k, s_k)_{2 \times m \le k \le 2 \times m'-1}$ is a path in the site-graph \mathcal{G} . \Box

Proposition 8 (path composition). Let $\mathcal{G} = (Ag, Site, Link)$ be a site-graph and $(i_k, s_k)_{0 \le k \le 2 \times n-1}$ and $(i'_k, s'_k)_{0 \le k \le 2 \times n'-1}$ be two paths of length n > 0 and n' > 0 in the site-graph \mathcal{G} such that $i_{2 \times n-1} = i'_0$ and $s_{2 \times n-1} \neq s'_0$.

Then, the sequence $(i''_k, s''_k)_{0 \le k \le 2 \times (n+n')-1}$ where:

$$\begin{cases} (i''_k, s''_k) = (i_k, s_k) & \text{whenever } 0 \le k \le 2 \times n - 1 \\ (i''_k, s''_k) = (i'_{k-2 \times n}, s'_{k-2 \times n}) & \text{whenever } 2 \times n \le k \le 2 \times (n+n') - 1 \end{cases}$$

is a path of length n + n' in \mathcal{G} .

Proof. Let $\mathcal{G} = (Ag, Site, Link)$ be a site-graph and $(i_k, s_k)_{0 \le k \le 2 \times n-1}$ and $(i'_k, s'_k)_{0 \le k \le 2 \times n'-1}$ be two paths of size n > 0 and n' > 0 in the site-graph \mathcal{G} such that $i_{2 \times n-1} = i'_0$ and $s_{2 \times n-1} \ne s'_0$. We have $2 \times (n + n') > 0$.

We consider the sequence $(i''_k, s''_k)_{0 \le k \le 2 \times (n+n')-1}$ which is defined as follows:

$$\begin{cases} (i_k'', s_k'') = (i_k, s_k) & \text{whenever } 0 \le k \le 2 \times n - 1 \\ (i_k'', s_k'') = (i_{k-2 \times n}', s_{k-2 \times n}') & \text{whenever } 2 \times n \le k \le 2 \times (n+n') - 1 \end{cases}$$

Let k be an integer such that $0 \le k \le 2 \times (n + n') - 1$.

- We assume that $k \leq 2 \times n 1$.
 - We have: $(i_k'', s_k'') = (i_k, s_k)$. Thus, by Def. 13, $(i_k, s_k) \in Site$. Thus $(i_k'', s_k'') \in Site$.

- We assume that $k > 2 \times n - 1$.

We have: $(i''_k, s''_k) = (i'_{k-2 \times n}, s'_{k-2 \times n}).$ Thus, by Def. 13, $(i'_{k-2 \times n}, s'_{k-2 \times n}) \in Site.$ Thus $(i''_k, s''_k) \in Site.$

- Let k be an integer such that $0 \le k < n + n'$.
 - We assume that k < n.

We have $(i''_{2\times k}, s''_{2\times k}) = (i_{2\times k}, s_{2\times k})$ and $(i''_{2\times k+1}, s''_{2\times k+1}) = (i_{2\times k+1}, s_{2\times k+1})$. Since $(i_k, s_k)_{0 \le k \le 2 \times n-1}$ is a path, by Def. 13.(1), $((i_{2\times k}, s_{2\times k}), (i_{2\times k+1}, s_{2\times k+1})) \in Link$. Thus, $((i''_{2\times k}, s''_{2\times k}), (i''_{2\times k+1}, s''_{2\times k+1})) \in Link$.

• We assume that $k \ge n$.

We have $(i''_{2\times k}, s''_{2\times k}) = (i'_{2\times (k-n)}, s'_{2\times (k-n)})$ and $(i''_{2\times k+1}, s''_{2\times k+1}) = (i'_{2\times (k-n)+1}, s'_{2\times (k-n)+1})$. We know that the sequence $(i'_k, s'_k)_{0 \le k \le 2 \times n'-1}$ is a path. By Def. 13.(1), $((i'_{2\times (k-n)}, s'_{2\times (k-n)}), (i'_{2\times (k-n)+1}, s'_{2\times (k-n)+1})) \in Link$. Thus, $((i''_{2\times k}, s''_{2\times k}), (i''_{2\times k+1}, s''_{2\times k+1})) \in Link$.

- Let k be an integer such that $1 \le k < n + n'$.
 - We assume that k < n.

We have $(i_{2\times k}'', s_{2\times k}'') = (i_{2\times k}, s_{2\times k})$ and $(i_{2\times k-1}', s_{2\times k-1}'') = (i_{2\times k-1}, s_{2\times k-1})$. Since $(i_k, s_k)_{0 \le k \le 2\times n-1}$ is a path, by Def. 13.(2), $i_{2\times k} = i_{2\times k-1}$ and $s_{2\times k} \ne s_{2\times k-1}$. Thus, $i_{2\times k}'' = i_{2\times k-1}''$ and $s_{2\times k}' \ne s_{2\times k-1}''$.

• We assume that k = n.

We have $i''_{2\times k} = i'_0, i''_{2\times k-1} = i_{2\times n-1}, s''_{2\times k} = s'_0, s''_{2\times k-1} = s_{2\times n-1}.$ By hypothesis, $i'_0 = i_{2\times n-1}$ and $s'_0 \neq s_{2\times n-1}.$ Thus, $i''_{2\times k} = i''_{2\times k-1}$ and $s''_{2\times k} \neq s''_{2\times k-1}.$

• We assume that k > n.

We have $(i''_{2\times k}, s''_{2\times k}) = (i'_{2\times (k-n)}, s'_{2\times (k-n)})$ and $(i''_{2\times k-1}, s''_{2\times k-1}) = (i'_{2\times (k-n)-1}, s'_{2\times (k-n)-1})$. Since $(i'_k, s'_k)_{0 \le k \le 2\times n'-1}$ is a path, by Def. 13.(2), $i'_{2\times (k-n)} = i'_{2\times (k-n)-1}$ and $s'_{2\times (k-n)} \ne s'_{2\times (k-n)-1}$. Thus, $i''_{2\times k} = i''_{2\times k-1}$ and $s''_{2\times k} \ne s''_{2\times k-1}$.

Thus, by Def. 13, $(i''_k, s''_k)_{0 \le k \le 2 \times (n+n')-1}$ is a path in \mathcal{G} .

Proposition 9 (path image). Let $\mathcal{G} = (Ag, Site, Link)$ be a site-graph, ϕ be an automorphism of \mathcal{G} , and $(i_k, s_k)_{0 \le k \le 2 \times n-1}$ be a path of length n > 0 in \mathcal{G} , then $(\phi(i_k), s_k)_{0 \le k \le 2 \times n-1}$ is a path of length n in \mathcal{G} .

Proof. Let $\mathcal{G} = (Ag, Site, Link)$ be a site-graph, ϕ be an automorphism of \mathcal{G} , and $(i_k, s_k)_{0 \le k \le 2 \times n-1}$ be a path in \mathcal{G} , then $(\phi(i_k), s_k)_{0 \le k \le 2 \times n-1}$ is a path in \mathcal{G} .

- Let k be an integer such that $0 \le k \le 2 \times n - 1$.

By Def. 13, $(i_k, s_k) \in Site$. By Def. 10, $Ag(i_k)$ is defined. By Def. 11.(1), $\phi(i_k)$ is defined. By Def. 11.(2), $Ag(\phi(i_k))$ is defined. By Def. 11.(5), $(\phi(i_k), s_k) \in Site$.

- Let k be an integer such that $0 \le k < n$.

By Def. 13.(1), $((i_{2\times k}, s_{2\times k}), (i_{2\times k+1}, s_{2\times k+1})) \in Link$. By Def. 11.(7), $((\phi(i_{2\times k}), s_{2\times k}), (\phi(i_{2\times k+1}), s_{2\times k+1})) \in Link$.

- Let k be an integer such that $1 \le k < n$.

By Def. 13.(2), $i_{2\times k} = i_{2\times k-1}$ and $s_{2\times k} \neq s_{2\times k-1}$. By extensionality, $\phi(i_{2\times k}) = \phi(i_{2\times k-1})$.

Thus, by Def. 13, $(\phi(i_k), s_k)_{0 \le k \le 2 \times n-1}$ is a path in \mathcal{G} . \Box

Definition 14 (connected components). A site-graph (Ag, Site, Link) is a connected component, if and only if, for any pair $(i, i') \in \mathbb{N}^2$ of agent identifiers such that Ag(i) and Ag(i') are defined and $i \neq i'$, there exists a pair $(s, s') \in S^2$ of site types, such that $(i, s) \in Site$, $(i', s') \in Site$, and there is a path in \mathcal{G} between the site (i, s) and the site (i', s').

Definition 15 (cycle). Let \mathcal{G} be a site-graph. A cycle of length n > 0 is a path $(i_k, s_k)_{0 \le k \le 2 \times n-1}$ in the site-graph \mathcal{G} such that $i_0 = i_{2 \times n-1}$ and $s_0 \ne s_{2 \times n-1}$.

Lemma 1 (rigidity) An embedding between two connected components is fully characterized by the image of one agent.

Proof. Let $\mathcal{G} = (Ag, Site, Link)$ and $\mathcal{G}' = (Ag', Site', Link')$ be two connected components and ϕ, ϕ' be two embeddings between \mathcal{G} and \mathcal{G}' .

Let $i \in \mathbb{N}$ be an agent identifier such that Ag(i) is defined. We assume that $\phi(i) = \phi'(i)$.

For any agent identifier $i' \in \mathbb{N}$,

- We assume that Ag(i') is not defined.

Then by Def. 11.(1), neither $\phi(i')$ nor $\phi'(i')$ are defined.

- We assume that Ag(i') is defined and that i' = i.

By hypothesis, $\phi(i) = \phi'(i)$. Thus, $\phi(i') = \phi'(i')$.

- We assume that Ag(i') is defined and that $i' \neq i$.

By Def. 14 and since $i \neq i'$, there exist two sites s and s' and a path $(i_k, s_k)_{0 \leq k \leq 2 \times n-1}$ of length n > 0 between (i, s) and (i', s'). Moreover, by Def. 11 (1), both $\phi(i)$ and $\phi'(i)$ are defined.

Moreover, by Def. 11.(1), both $\phi(i)$ and $\phi'(i)$ are defined.

By absurd, let us assume that $\phi(i') \neq \phi'(i')$ and that n is minimal for this property. We have n > 0.

- For any $j \in \mathbb{N}$, such that $0 \leq j < n$, we have by Def. 13.(1), $((i_{2 \times j}, s_{2 \times j}), (i_{2 \times j+1}, s_{2 \times j+1})) \in Link;$
- For any j such that $1 \leq j < n$, we have by Def. 13.(2), $i_{2\times j} = i_{2\times j-1}$ and $s_{2\times j} = s_{2\times j-1}$.

We consider two cases:

1. We assume that n = 1.

We have $\phi(i_{2 \times n}) = \phi'(i_{2 \times n})$.

2. We assume that $n \geq 2$.

Thus, by Def. 13, $(i_k, s_k)_{0 \le k \le 2 \times (n-1)+1}$ is a path between $i_0 = i$ and $i_{2 \times (n-1)+1}$. Since *n* is minimal, we get that $\phi(i_{2 \times (n-1)+1}) = \phi'(i_{2 \times (n-1)+1})$. By Def. 13.(2), we have $i_{2 \times (n-1)+1} = i_{2 \times (n-1)+2}$ and $s_{2 \times (n-1)+1} \ne s_{2 \times (n-1)+2}$. Thus, by extensionality, $\phi(i_{2 \times (n-1)+1}) = \phi(i_{2 \times (n-1)+2})$ and $\phi'(i_{2 \times (n-1)+1}) = \phi'(i_{2 \times (n-1)+2})$. Thus, $\phi(i_{2 \times n}) = \phi'(i_{2 \times n})$. By Def. 13.(1), we have $((i_{2 \times n}, s_{2 \times n}), (i_{2 \times n+1}, s_{2 \times n+1})) \in Link$. Thus, by Def. 11.(7), $((\phi(i_{2 \times n}), s_{2 \times n}), (\phi(i_{2 \times n+1}), s_{2 \times n+1})) \in Link$ and $((\phi'(i_{2 \times n}), s_{2 \times n}), (\phi'(i_{2 \times n+1}), s_{2 \times n+1})) \in Link$. Since $\phi(i_{2 \times n}) = \phi'(i_{2 \times n})$, it follows that $((\phi(i_{2 \times n}), s_{2 \times n}), (\phi(i_{2 \times n+1}), s_{2 \times n+1})) \in Link$. Then, by Def. 10.(3), it follows that $\phi(i_{2 \times n+1}) = \phi'(i_{2 \times n+1})$. Thus, since $i' = i_{2 \times n+1}, \phi(i') = \phi'(i')$ which is absurd.

So whenever Ag(i') is defined, $\phi(i') = \phi'(i')$.

Thus ϕ and ϕ' are equal. \Box

Proposition 10. Let $\mathcal{G} = (Ag, Site, Link)$ be a connected component without any cycle. Let ϕ be an automorphism of \mathcal{G} . Let i be an agent identifier such that Ag(i) is defined. Let $(i_k, s_k)_{0 \le k \le 2 \times n-1}$ be a path between i and $\phi(i)$.

Then $s_0 = s_{2 \times n-1}$.

Proof. Let $\mathcal{G} = (Ag, Site, Link)$ be a connected component without any cycle. Let ϕ be an automorphism of \mathcal{G} . Let *i* be an agent identifier such that Ag(i) is defined. Let $(i_k, s_k)_{0 \le k \le 2 \le n-1}$ be a path between *i* and $\phi(i)$ such that $s_0 \ne s_{2 \le n-1}$.

Let us prove by induction over m, that for any $m \in \mathbb{N}$, $(\phi^m(i_k), s_k)_{0 \le k \le 2 \le n-1}$ is a path in \mathcal{G} .

- We assume that m = 0.

The sequence $(\phi^m(i_k), s_k)_{0 \le k \le 2 \times n-1}$ is equal to the sequence $(i_k, s_k)_{0 \le k \le 2 \times n-1}$. By hypothesis, $(i_k, s_k)_{0 \le k \le 2 \times n-1}$ is a path in \mathcal{G} . Thus, $(\phi^m(i_k), s_k)_{0 < k < 2 \times n-1}$ is a path in \mathcal{G} .

- We consider $m \in \mathbb{N}$ such that $(\phi^m(i_k), s_k)_{0 \le k \le 2 \times n-1}$ is a path in \mathcal{G} .

By Prop. 9, $(\phi(\phi^m(i_k)), s_k)_{0 \le k \le 2 \times n-1}$ is a path in \mathcal{G} . Since the sequence, $(\phi(\phi^m(i_k)), s_k)_{0 \le k \le 2 \times n-1}$ is equal to the sequence $(\phi^{m+1}(i_k), s_k)_{0 \le k \le 2 \times n-1}$. $(\phi^{m+1}(i_k), s_k)_{0 \le k \le 2 \times n-1}$ is a path in \mathcal{G} .

Let us prove by induction over m', that for any $m, m' \in \mathbb{N}$, such that m < m', there exists a path $(i'_k, s'_k)_{0 \le k \le 2 \times n'-1}$ in \mathcal{G} such that $i'_0 = \phi^m(i_0), i'_{2 \times n'-1} = \phi^{m'}(i_0), s'_0 = s_0$, and $s'_{2 \times n'-1} = s_{2 \times n-1}$.

- We assume that m' = m + 1.

We have $\phi^{m'}(i_0) = \phi^m(\phi(i_0))$. We have proved that $(\phi^m(i_k), s_k)_{0 \le k \le 2 \times n-1}$ is a path in \mathcal{G} . Moreover, $\phi^m(i_0) = \phi^m(i_0)$.

Since $i_{2 \times n-1} = \phi(i_0)$, by extensionaly, $\phi(\phi^m(i_0)) = \phi(\phi^m(i_0))$. So $\phi^m(i_{2 \times n-1}) = \phi^{m'}(i_{2 \times n-1})$.

Lastly, $s_0 = s_0$ and $s_{2 \times n-1} = s_{2 \times n-1}$.

- We assume that there exist $m, m' \in \mathbb{N}$, such that m < m' and a path $(i'_k, s'_k)_{0 \le k \le 2 \times n'-1}$ in \mathcal{G} such that $i'_0 = \phi^m(i_0)$ and $i'_{2 \times n'-1} = \phi^{m'}(i_0)$ such that $s'_0 = s_0$ and $s'_{2 \times n'-1} = s_{2 \times n-1}$.

We have already proved that there exists a path $(i_k'', s_k'')_{0 \le k \le 2 \times n''-1}$ in \mathcal{G} such that $i_0'' = \phi^{m'}(i_0)$, $i_{2 \times n''-1}'' = \phi^{m'+1}(i_0)$, $s_0'' = s_0$ and $s_{2 \times n''-1}'' = s_{2 \times n-1}$.

Since $s_0 \neq s_{2 \times n-1}$, by Prop. 8, there exists a path between the site $(\phi^m(i_0), s_0)$ and the site $(\phi^{m'+1}(i_0), s_{2 \times n-1})$ in \mathcal{G} .

By Def. 10, Def. 11.(1), and Def. 11.(2), the set $\{\phi^{m''}(i_0) \mid m'' \in \mathbb{N}\}$ is finite. Thus there exists m < m' such that $\phi^m(i_0) = \phi^{m'}(i_0)$. By Def. 15, there exists a cycle in (Ag, Site, Link), which is absurd. \Box

Lemma 2 (automorphism) Let $\mathcal{G} = (Ag, Site, Link)$ be a connected component without any cycle.

- \mathcal{G} has at most two automorphisms.
- If ϕ is a automorphism over \mathcal{G} , such that there exists $i \in \mathbb{N}$, such that Ag(i) is defined and $\phi(i) \neq i$, then there exist two agent identifiers $i, i' \in \mathbb{N}$ and a site type $s \in \mathcal{S}$, such that Ag(i) = Ag(i'), $(i, s), (i', s) \in$ Site, and $((i, s), (i', s)) \in Link$.

Proof. Let (Ag, Site, Link) be a connected component without any cycle.

- By Def. 11, the identify function restricted to the elements $i \in \mathbb{N}$ such that Ag(i) is defined, is an automorphism.
- Let us assume that there exists another automorphism ϕ of (Ag, Site, Link).
 - Let us show that for any agent identifier $i \in \mathbb{N}$ such that Aq(i) is defined, then $\phi(i) \neq i$.

We assume that there exists $i \in \mathbb{N}$ such that Ag(i) is defined and $\phi(i) = i$. Then, ϕ and the restriction of the identify function to the elements $i \in \mathbb{N}$ such that Ag(i) is defined are two embeddings between (Ag, Site, Link) and (Ag, Site, Link). Since (Ag, Site, Link) is connected, by Lem. 1, ϕ is equal to the restriction of the identify function to the elements $i \in \mathbb{N}$ such that Ag(i) is defined are two embeddings between (Ag, Site, Link) and (Aq, Site, Link), which is absurd.

• Let $i \in \mathbb{N}$ be an agent identifier such that Ag(i) is defined.

Since (Ag, Site, Link) is connected and $i \neq \phi(i)$, we can consider a path $(i_k, s_k)_{0 \leq k \leq 2 \times n-1}$ between i and $\phi(i)$.

By Prop. 10, $s_0 = s_{2 \times n-1}$.

Let us prove by induction, that for any $k \in \mathbb{N}$, such that $0 \leq k \leq n$, $Ag(i_k) = Ag(i_{2 \times n-1-k})$, $s_k = s_{2 \times n-1-k}$, $\phi(i_k) = i_{2 \times n-1-k}$.

* We assume that k = 0.

By Def. 13, we have $i_0 = i$ and $i_{2 \times n-1} = \phi(i)$. By Def. 11.(4), $Ag(\phi(i)) = Ag(i)$. Thus, $Ag(i_0) = Ag(i_{2 \times n-1})$.

By hypothesis, we have $s_0 = s_{2 \times n-1}$.

- By hypothesis, we have $\phi(i_0) = i_{2 \times n-1}$.
- * We assume that there exists $k \in \mathbb{N}$ such that $0 \le k < n$, $Ag(i_k) = Ag(i_{2 \times n-k-1})$, $s_k = s_{2 \times n-k-1}$ and $\phi(i_k) = i_{2 \times n-1-k}$.

• We assume that k is even.

```
We have by Def. 13.(1), ((i_k, s_k), (i_{k+1}, s_{k+1})) \in Link
and ((i_{2 \times n-k}, s_{2 \times n-k}), (i_{2 \times n-k+1}, s_{2 \times n-k+1})) \in Link.
By Def. 10, ((i_{2 \times n-k+1}, s_{2 \times n-k+1}), (i_{2 \times n-k}, s_{2 \times n-k})) \in Link.
```

By Def. 11.(1), $\phi(i_k)$ and $\phi(i_{k+1})$ are defined. By Def. 11.(2), $Ag(\phi(i_k))$ and $Ag(\phi(i_{k+1}))$ are defined. By Def. 11.(5), $(\phi(i_k), s_k) \in Site$ and $(\phi(i_{k+1}), s_{k+1}) \in Site$. By Def. 11.(7), $((\phi(i_k), s_k), (\phi(i_{k+1}), s_{k+1})) \in Link$. By induction hypothesis, $\phi(i_k) = i_{2 \times n+1-k}$ and $s_k = s_{2 \times n+1-k}$. Thus, $((i_{2 \times n-k+1}, s_{2 \times n-k+1}), (\phi(i_{k+1}), s_{k+1})) \in Link$. We already proved that $((i_{2 \times n-k+1}, s_{2 \times n-k+1}), (i_{2 \times n-k}, s_{2 \times n-k})) \in Link$. By Def. 10.(3), it follows that $\phi(i_{k+1}) = i_{2 \times n-k}$ and $s_{k+1} = s_{2 \times n-k}$.

• We assume that k is odd and k < n

We have by Def. 13.(2), $i_k = i_{k+1}$ and $i_{2 \times n-k} = i_{2 \times n-k+1}$. By induction hypothesis, $\phi(i_k) = i_{2 \times n-k+1}$. By extensionality, $\phi(i_{k+1}) = i_{2 \times n-k+1}$. Thus, $\phi(i_{k+1}) = i_{2 \times n-k}$. We can deduce that $i_{k+1} \neq i_{2 \times n-k}$. Since, moreover, $(i_l, s_l)_{0 \le l \le 2 \times n+1}$ is a path and k+1 is even, $2 \times n - k - 1$ is even, and $k+1 < 2 \times n - k + 1$, and by Prop. 7, $(i_l, s_l)_{k+1 < l < 2 \times n - k}$ is a path between (i_{l+1}, s_{l+1}) and $(\phi(i_{l+1}), s_{2 \times n-k}).$ Thus, by Lem. 10, $s_{k+1} = s_{2 \times n-k}$. By Def. 10, $((i_{2 \times n-k+1}, s_{2 \times n-k+1}), (i_{2 \times n-k}, s_{2 \times n-k})) \in Link.$ By Def. 11.(1), $\phi(i_k)$ and $\phi(i_{k+1})$ are defined. By Def. 11.(2), $Ag(\phi(i_k))$ and $Ag(\phi(i_{k+1}))$ are defined. By Def. 11.(5), $(\phi(i_k), s_k) \in Site$ and $(\phi(i_{k+1}), s_{k+1}) \in Site$. By Def. 11.(7), $((\phi(i_k), s_k), (\phi(i_{k+1}), s_{k+1})) \in Link$. By induction hypothesis, $\phi(i_k) = i_{2 \times n+1-k}$ and $s_k = s_{2 \times n+1-k}$. Thus, $((i_{2 \times n-k+1}, s_{2 \times n-k+1}), (\phi(i_{k+1}), s_{k+1})) \in Link.$ We already proved that $((i_{2 \times n-k+1}, s_{2 \times n-k+1}), (i_{2 \times n-k}, s_{2 \times n-k})) \in Link$. By Def. 10.(3), it follows that $\phi(i_{k+1}) = i_{2 \times n-k}$ and $s_{k+1} = s_{2 \times n-k}$.

Thus, we have $(Ag(i_n), s_n) = (Ag(i_{n+1}), s_{n+1})$. and $\phi(i_n) = i_{n+1}$.

Lemma 3 (Euler) If a site-graph has no cycle, then it has an agent with at most one bound site.

Proof. Let $\mathcal{G} = (Ag, Site, Link)$ be a site-graph such that for any agent identifier $i \in \mathbb{N}$ such that Ag(i) is defined, there exists two links $((i_1, s_1), (i_2, s_2)), ((i'_1, s'_1), (i'_2, s'_2)) \in Link$ such that $i_1 = i'_1 = i$ and $s_1 \neq s'_1$.

We can assume, without any loss of generality, that the set \mathbb{N} and \mathcal{S} are totally ordered. We define the following sequence $(x_n)_{n \in \mathbb{N}}$ of sites:

$$\begin{cases} x_0 = (\min\{i \in \mathbb{N} \mid Ag(i) \text{ is defined }\}, \min\{s \mid (\min\{i \in \mathbb{N} \mid Ag(i) \text{ is defined }\}, s) \text{ is bound in } \mathcal{G}\}) \\ x_{2 \times n+1} = (x', s') \mid ((x_{2 \times n}, s_{2 \times n}), (x', s')) \in Link \\ x_{2 \times n+2} = (x_{2 \times n+1}, \min\{s \mid s \neq s_{2 \times n+1} \land (x_{2 \times n+1}, s) \text{ is bound in } \mathcal{G}\}). \end{cases}$$

Let us prove that the sequence $(x_n)_{n \in \mathbb{N}}$ is well-defined and for any $n \in \mathbb{N}$, Ag(n) is defined, and (x_n) is bound in (Ag, Site, Link).

 $-x_0$ is well-defined, since any site has at least two bound sites. Let us denote $x_0 = (i_0, s_0)$.

By definition, $Ag(i_0)$ is defined, and x_0 is bound in \mathcal{G} .

- Let us assume that $x_{2\times n}$ is well-defined, that $Ag(FST(x_{2\times n}))$ is defined, and $x_{2\times n}$ is bound in \mathcal{G} . Let us denote $x_{2\times n} = (i_{2\times n}, s_{2\times n})$. Since $x_{2\times n}$ is bound in \mathcal{G} , by Def. 10, there exists a unique pair (i', s') such that $(x_{2\times n}, (i', s')) \in Link$. Moreover, by Def. 10, Ag(i') is defined and (i', s') is bound in \mathcal{G} .
- Let us assume that $x_{2 \times m+1}$ is well-defined, that $Ag(FST(x_{2 \times n+1}))$ is defined.

Let us denote $x_{2\times n+1} = (i_{2\times n+1}, s_{2\times n+1})$. By hypothesis, $i_{2\times n+1}$ has at least two bound sites. Thus the set $\{s \mid s \neq s_{2\times n+1} \land (x_{2\times n+1}, s) \text{ is bound in } \mathcal{G}\}$ is not empty, and $x_{2\times n}$ is well defined. Moreover, $i_{2\times n+1} = i_{2\times n}$ and $Ag(i_{2\times n})$ is defined, thus $Ag(i_{2\times n+1})$ is defined. Lastly, $x_{2\times n+1}$ is bound in \mathcal{G} .

By Def. 10, the set of the elements $i \in \mathbb{N}$ such that Ag(i) is defined is finite. Moreover S is finite.

Thus the Cartesian product between the set of the elements $i \in \mathbb{N}$ such that Ag(i) is defined and S is finite. Thus the set $\{x_{2 \times k} \mid k \in \mathbb{N}\}$ is finite.

Thus, there exists k and k' such that k < k' and $x_{2 \times k} = x_{2 \times k'}$. Let us prove that the sequence $(x_l)_{2 \times k < l < 2 \times k'+1}$ is a path between $FST(x_{2 \times k})$ and $FST(x_{2 \times k'})$.

- We have k' > k.
- For any integer l such that $k \leq l \leq k'$, we have, by definition of $(x_n)_{n \in \mathbb{N}}$, $(x_{2 \times l}, x_{2 \times l+1}) \in Link;$
- For any integer l such that $k \leq l \leq k'$, we have, by definition of $(x_n)_{n \in \mathbb{N}}$, $FST(x_{2 \times l+1}) = FST(x_{2 \times l+2})$ and $SND(x_{2 \times l+1}) \neq SND(x_{2 \times l+2})$.

This is absurd, thus there exists an agent identifier $i \in \mathbb{N}$ such that Ag(i) is defined and such that there exists at most one site $s \in S$ such that $(i, s) \in Site$ and (i, s) is bound in (Ag, Site, Link).