Rule-based modeling and application to biomolecular networks Abstract interpretation of protein-protein interactions networks Solution of the Questions Set

Jérôme Feret

LIENS (INRIA,ÉNS,CNRS)

1 Abstract Interpretation

Definition 1 (partial order). A partial order (D, \leq) is given by a set D and a binary relation $\leq \in D \times D$ such that:

1. (reflexivity) $\forall a \in D, a \leq a$;
2. (antisymmetry) $\forall a, a^{\prime} \in D,\left[a \leq a^{\prime} \wedge a^{\prime} \leq a\right] \Longrightarrow a=a^{\prime}$;
3. (transitivity) and $\forall a, a^{\prime}, a " \in D,\left[a \leq a^{\prime} \wedge a^{\prime} \leq a^{\prime \prime}\right] \Longrightarrow a \leq a "$.

Definition 2 (closure). Given a partial order (D, \leq) and a mapping $\rho: D \rightarrow D$.

1. We say that ρ is a upper closure operator, if and only if:
(a) (idempotence) $\forall d \in D, \rho(\rho(d))=\rho(d)$;
(b) (extensivity) $\forall d \in D, d \leq \rho(d)$;
(c) (monotonicity) $\forall d, d^{\prime} \in D, d \leq d^{\prime} \Longrightarrow \rho(d) \leq \rho\left(d^{\prime}\right)$.
2. We say that ρ is a lower closure operator, if and only if:
(a) (idempotence) $\forall d \in D, \rho(\rho(d))=\rho(d)$;
(b) (antiextensivity) $\forall d \in D, \rho(d) \leq d$;
(c) (monotonicity) $\forall d, d^{\prime} \in D, d \leq d^{\prime} \Longrightarrow \rho(d) \leq \rho\left(d^{\prime}\right)$.

Definition 3 (least upper bound). Given a partial order (D, \leq) and a subset $X \subseteq A$, we say that $m \in D$ is a least upper bound for X, if and only if:

1. (bound) $\forall a \in X, a \leq m$;
2. (least one) and $\forall a \in D,\left[\forall a^{\prime} \in X, a^{\prime} \leq a\right] \Longrightarrow m \leq a$.

By antisymmetry, if it exists a least upper bound is unique, thus we call it the least upper bound.
Definition 4 (greatest lower bound). Given a partial order (D, \leq) and a subset $X \subseteq A$, we say that $m \in D$ is a greatest lower bound for X, if and only if:

1. (bound) $\forall a \in X, m \leq a$;
2. (least one) and $\forall a \in D,\left[\forall a^{\prime} \in X, a \leq a^{\prime}\right] \Longrightarrow a \leq m$.

By antisymmetry, if it exists a greatest lower bound is unique, thus we call it the greatest lower bound.
Definition 5 (complete lattice). Given a partial order (D, \leq), we say that D is a complete lattice if any subset X has a least upper bound $\sqcup X$.

In a complete lattice, any subset X has a greatest lower bound $\sqcap X$. Moreover,

$$
\sqcap(X)=\sqcup\{d \in X \mid \forall x \in X, d \leq x\}
$$

The element $\top=\sqcup(D)$ is the greatest element of D, and the element $\perp=\sqcup(\emptyset)$ is the least element. A complete lattice is usually denoted by $(D, \leq, \perp, \top, \sqcup, \sqcap)$.

Proof. Let us show that the hypothesis of Def. 4 are satisfied.

- Let x be an element of X.

By Def. 1.(1), we have $x \leq x$.
Thus by Def. 3.(1), we have $x \leq \sqcup\{d \in X \mid \forall x \in X, d \leq x\}$.

- Let m be an element of D such that for any element $x \in X, m \leq x$.

By Def. 3.(2), we have $\sqcup\{d \in X \mid \forall x \in X, d \leq x\} \leq m$.
Thus by Def. $4, \sqcup\{d \mid \forall x \in X, d \leq x\}$ is the greatest least bound of X.

Definition 6 (chain-complete partial order). Given a partial order (D, \leq), we say that (D, \leq) is a chain-complete partial order if and only if any chain $X \subseteq D$ has a least upper bound $\sqcup X$.

A chain-complete partial order is denoted by a triple (D, \leq, \sqcup).
Definition 7 (inductive function). Given a chain-complete partial order (D, \subseteq, \cup), we say that a function $\mathbb{F}: D \rightarrow D$ is inductive if and only if the two following properties are satisfied:

1. $\forall x \in D, x \subseteq \mathbb{F}(x) \Longrightarrow \mathbb{F}(x) \subseteq \mathbb{F}(\mathbb{F}(x))$;
2. for any chain C of elements in D such that $x \subseteq \mathbb{F}(x)$, for any $x \in C$, we have: $\cup C \subseteq \mathbb{F}(\cup C)$.

Proposition 1. Let (D, \subseteq, \cup) be a chain-complete partial order and $\mathbb{F}: D \rightarrow D$ be a function such that: $\forall x, y \in D, x \subseteq y \Longrightarrow \mathbb{F}(x) \subseteq \mathbb{F}(y)$.

Then \mathbb{F} is an inductive function.
Proof. Let us prove that the hypotheses of Def. 7 are satisfies:

1. Let $x_{0} \in D$ be an element such that $x_{0} \subseteq \mathbb{F}\left(x_{0}\right)$.

Since \mathbb{F} is monotonic, it follows that $\mathbb{F}\left(x_{0}\right) \subseteq \mathbb{F}\left(\mathbb{F}\left(x_{0}\right)\right)$.
2. Let C be a chain of elements in D such that, for any element $x \in C, x \subseteq \mathbb{F}(x)$.

Let $x \in C$ be an element.
By Def. 3.(1), $x \subseteq \cup C$.
Since \mathbb{F} is monotonic, we have: $\mathbb{F}(x) \subseteq \mathbb{F}(\cup X)$;
Since, by hypothesis, $x \subseteq \mathbb{F}(x)$ and by Prop. 1.(3), it follows that $x \subseteq \mathbb{F}(\cup X)$;

Thus, by Def. 3.(2), $\cup C \subseteq \mathbb{F}(\cup C)$.

Definition 8 (inductive definition). Let (D, \subseteq, \cup) be a chain-complete partial order, $x_{0} \in D$ be an element such that $x_{0} \subseteq \mathbb{F}\left(x_{0}\right)$, and $\mathbb{F}: D \rightarrow D$ be an inductive function.

There exists a unique collection of elements $\left(X_{o}\right)$ such that for any ordinal o:

$$
\begin{cases}X_{o}=x_{0} & \text { whenever } o=0 \\ X_{o}=\mathbb{F}\left(X_{o-1}\right) & \text { whenever } o \text { is a succesor ordinal } \\ X_{o}=\cup\left\{X_{\beta} \mid \beta<o\right\} & \text { otherwise } .\end{cases}
$$

The collection $\left(X_{o}\right)$ is called the transfinite iteration of \mathbb{F} starting from x_{0}. For each ordinal o, the element X_{o} is usually denoted by $\mathbb{F}^{o}\left(x_{0}\right)$.

Proof. We show by induction over the ordinals, that for any ordinal o_{0}, there exists a unique family of elements $\left(X_{o}\right)_{o<o_{0}}$ such that the three following properties are satisfied:

- (a)

$$
\begin{cases}X_{o}=x_{0} & \text { whenever } o=0 \\ X_{o}=\mathbb{F}\left(X_{o-1}\right) & \text { whenever } o \text { is a succesor ordinal } \\ X_{o}=\cup\left\{X_{\beta} \mid \beta<o\right\} & \text { otherwise }\end{cases}
$$

- (b) $\left(X_{o}\right)_{o<o_{0}}$ is increasing,
- (c) and for any ordinal $o<o_{0}, X_{o} \subseteq \mathbb{F}\left(X_{o}\right)$.

1. (a) There exists a unique element X_{0} such that $X_{0}=x_{0}$.
(b) $\left(x_{0}\right)$ is an increasing family (of one element).
(c) By hypothesis, $x_{0} \subseteq \mathbb{F}\left(x_{0}\right)$.
2. Let o_{0} be an ordinal.

We assume that there exists a unique family $\left(X_{o}\right)_{o \leq o_{0}}$ such that the equations (a) are satisfied.
We also assume that $\left(X_{o}\right)_{o \leq o_{0}}$ is increasing and that for any ordinal $o \leq o_{0}, X_{o} \subseteq \mathbb{F}\left(X_{o}\right)$.
We define $Y_{o}=X_{o}$ whenever $o \leq o_{0}$ and $Y_{o_{0}+1}=\mathbb{F}\left(X_{o_{0}}\right)$.
(a) The family $\left(Y_{o}\right)_{o \leq o_{0}+1}$ satisfies the equations (a).
(b) Now we consider a family $\left(Z_{o}\right)_{o \leq o_{0}+1}$ of elements in D which satisfies the equations (a).

Then by induction hypotheses (uniqueness), we have $Z_{o}=Y_{o}$ for any ordinal $o \leq o_{0}$.
Moreover, since $\left(Z_{o}\right)_{o \leq o_{0}+1}$ satisfies the equations (a), we have $Z_{o_{0}+1}=\mathbb{F}\left(Z_{o_{0}}\right)$.
Since $Z_{o_{0}}=Y_{o_{0}}$, it follows by extensionality that $\mathbb{F}\left(Z_{o_{0}}\right)=\mathbb{F}\left(Y_{o_{0}}\right)$.
Moreover, we have: $\mathbb{F}\left(Y_{o_{0}}\right)=Y_{o_{0}+1}$.
So $Z_{o_{0}+1}=Y_{o_{0}+1}$.
Thus $\left(Z_{o}\right)_{o \leq o_{0}+1}=\left(Y_{o}\right)_{o \leq o_{0}+1}$.
(c) By induction hypotheses, $\left(Y_{o}\right)_{o \leq o_{0}}$ is increasing.

By induction hypotheses again $\bar{Y}_{o_{0}} \leq \mathbb{F}\left(Y_{o_{0}}\right)$.
Since $Y_{o_{0}+1}=\mathbb{F}\left(Y_{o_{0}}\right)$, it follows that $Y_{o_{0}} \subseteq Y_{o_{0}+1}$.
Thus $\left(Y_{o}\right)_{o \leq o_{0}+1}$ is increasing.
(d) By induction hypotheses, for any $o \leq o_{0}, Y_{o} \subseteq \mathbb{F}\left(Y_{o}\right)$.

Since \mathbb{F} is inductive, by Def. 7.(1), it follows that $\mathbb{F}\left(Y_{o_{0}}\right) \subseteq \mathbb{F}\left(\mathbb{F}\left(Y_{o_{0}}\right)\right)$.
Since $Y_{o_{0}+1}=\mathbb{F}\left(Y_{o_{0}}\right)$, we get $Y_{o_{0}+1} \subseteq \mathbb{F}\left(Y_{o_{0}+1}\right)$.
3. Let o_{0} be a limit ordinal.

We assume that there exists a unique family $\left(X_{o}\right)_{o<o_{0}}$ such that the equations (a) are satisfied. We define $Y_{o}=X_{o}$ whenever $o<o_{0}$ and $Y_{o_{0}}=\cup\left\{X_{\beta} \mid \beta<o_{0}\right\}$.
(a) The family $\left(Y_{o}\right)_{o \leq o_{0}}$ satisfies the equations (a).
(b) Now we consider a family $\left(Z_{o}\right)_{o \leq o_{0}}$ of elements in D which satisfies the equations (a).

Then by induction hypotheses (uniqueness), we have $Z_{o}=Y_{o}$ for any ordinal $o<o_{0}$.
Moreover, since $\left(Z_{o}\right)_{o \leq o_{0}}$ satisfies the equations (a), we have $Z_{o_{0}}=\cup\left\{Z_{\beta} \mid \beta<o_{0}\right\}$.
Since $Z_{\beta}=Y_{\beta}$, for any $\beta<o_{0}$, it follows that: $\cup\left\{Z_{\beta} \mid \beta<o_{0}\right\}=\cup\left\{Y_{\beta} \mid \beta<o_{0}\right\}$.
Moreover, we have: $\cup\left\{Y_{\beta} \mid \beta<o_{0}\right\}=Y_{o_{0}}$.
So $Z_{o_{0}}=Y_{o_{0}}$.
Thus $\left(Z_{o}\right)_{o \leq o_{0}}=\left(Y_{o}\right)_{o \leq o_{0}}$.
(c) By induction hypotheses, $\left(Y_{o}\right)_{o<o_{0}}$ is increasing.

By Def. 3.(1), for any ordinal $o<o_{0}$, we have: $Y_{o} \leq \cup\left\{Y_{o^{\prime}} \mid o^{\prime}<o_{0}\right\}$.
Since $Y_{o_{0}}=\cup\left\{Y_{o^{\prime}} \mid o^{\prime}<o_{0}\right\}$, it follows that $Y_{o} \subseteq Y_{o_{0}}$, for any ordinal $o \leq o_{0}$.
(d) By induction hypotheses, for any $o<o_{0}, Y_{o} \subseteq \mathbb{F}\left(Y_{o}\right)$.

Since \mathbb{F} is inductive, by Def. 7.(2), it follows that $\cup\left\{Y_{o} \mid o<o_{0}\right\} \subseteq \mathbb{F}\left(\cup\left\{Y_{o} \mid o<o_{0}\right\}\right)$. Since $Y_{o_{0}}=\cup\left\{Y_{o} \mid o<o_{0}\right\}$, we get $Y_{o_{0}} \subseteq \mathbb{F}\left(Y_{o_{0}}\right)$.

Proposition 2. Let (D, \subseteq, \cup) be a chain-complete partial order, $x_{0} \in D$ be an element such that $x_{0} \subseteq \mathbb{F}\left(x_{0}\right)$, and $\mathbb{F}: D \rightarrow D$ an inductive function.

Then:

1. for any pair of ordinals $\left(o, o^{\prime}\right),\left[o<o^{\prime}\right] \Longrightarrow \mathbb{F}^{o}\left(x_{0}\right) \subseteq \mathbb{F}^{o^{\prime}}\left(x_{0}\right)$;
2. for any ordinal $o, x_{0} \subseteq \mathbb{F}^{o}\left(x_{0}\right)$.

Proof. The assertion 1 is implied by the hypotheses induction of the proof that Def. 8 is well-defined. The assertion 2 follows from the fact that for any ordinal, $0 \leq o$, and by the assertion 1 .

Lemma 1 (least fix-point). Let:

1. (D, \subseteq, \cup) be a chain-complete partial order;
2. $\mathbb{F} \in D \rightarrow D$ be a monotonic map;
3. $x_{0} \in D$ be an element such that: $x_{0} \subseteq \mathbb{F}\left(x_{0}\right)$.

Then: there exists $y \in D$ such that:
$-x_{0} \subseteq y$,
$-\mathbb{F}(y)=y$,
$-\forall z \in D,\left[\left[\mathbb{F}(z)=z \wedge x_{0} \subseteq z\right] \Longrightarrow y \subseteq z\right]$.
This element is called the least fix-point of \mathbb{F} which is greater than x_{0}, and is written $l f p_{x_{0}} \mathbb{F}$.
Proof. Let $x_{0} \in D$, such that $x_{0} \subseteq \mathbb{F}\left(x_{0}\right)$.
By hypothesis, \mathbb{F} is monotonic.
By Prop. 1, \mathbb{F} is inductive.
By Def. 8, it follows that the collection $\left(\mathbb{F}^{o}\left(x_{0}\right)\right)_{o}$ indexed over the ordinals is well-defined.

By Prop. 2.(1), the collection $\left(\mathbb{F}^{o}\left(x_{0}\right)\right)_{o}$ is increasing.
Since D is a set, the collection $\left(\mathbb{F}^{o}\left(x_{0}\right)\right)_{o}$ is ultimately stationary.
Thus there exists an ordinal o such that $\mathbb{F}^{o}\left(x_{0}\right)=\mathbb{F}^{o+1}\left(x_{0}\right)$.

Thus, $\mathbb{F}\left(\mathbb{F}^{o}\left(x_{0}\right)\right)=\mathbb{F}^{o}\left(x_{0}\right)$.

By Prop. 2.(2), for any ordinal o, we have: $x_{0} \subseteq \mathbb{F}^{o}\left(x_{0}\right)$.

Consider another fix-point $y \in D$ such that $x_{0} \subseteq y$.
We have $y=\mathbb{F}(y)$.
Let us show by transfinite induction that $\mathbb{F}^{o}\left(x_{0}\right) \subseteq y$.

- We have, by hypothesis, $x_{0} \subseteq y$.

Since, $\mathbb{F}^{0}\left(x_{0}\right)=x_{0}$, it follows that $\mathbb{F}^{0}\left(x_{0}\right) \subseteq y$.

- Let us consider an ordinal o such that $\mathbb{F}^{o}\left(x_{0}\right) \subseteq y$.

Since, \mathbb{F} is monotonic, we have $\mathbb{F}\left(\mathbb{F}^{o}\left(x_{0}\right)\right) \subseteq \mathbb{F}(y)$.
Then by Def. $8, \mathbb{F}^{o+1}\left(x_{0}\right)=\mathbb{F}\left(\mathbb{F}^{o}\left(x_{0}\right)\right)$.
And by hypothesis $\mathbb{F}(y)=y$.
Thus $\mathbb{F}^{o+1}\left(x_{0}\right) \subseteq y$.

- Let us consider an ordinal o such that for any $\beta<o$, we have $\mathbb{F}^{\beta}\left(x_{0}\right) \subseteq y$.

By Def. 3.(2), we get that $\cup\left\{\mathbb{F}^{\beta}\left(x_{0}\right) \mid \beta<o\right\} \subseteq y$.
By Def. $8, \mathbb{F}^{o}\left(x_{0}\right)=\cup\left\{\mathbb{F}^{\beta}\left(x_{0}\right) \mid \beta<o\right\}$.
Thus, $\mathbb{F}^{o}\left(x_{0}\right) \subseteq y$.

Thus $\mathbb{F}^{o}\left(x_{0}\right)$ is the least fix-point of \mathbb{F}.

Remark 1. We have seen in this proof that, under the hypotheses of Lemma 1 , lfp $p_{x_{0}} \mathbb{F}=\mathbb{F}^{o}\left(x_{0}\right)$ for a given ordinal o.

Definition 9 (Galois connexion). Given two partial orders (D, \subseteq) and $\left(D^{\sharp}, \sqsubseteq\right)$, we say that the pair of maps (α, γ) forms a Galois connection between D and D^{\sharp} if and only if:

1. $\alpha: D \rightarrow D^{\sharp}$;
2. $\gamma: D^{\sharp} \rightarrow D$;
3. and $\forall d \in D, \forall d^{\sharp} \in D^{\sharp},\left[\alpha(d) \sqsubseteq d^{\sharp} \Leftrightarrow d \subseteq \gamma\left(d^{\sharp}\right)\right]$.

In such a case, we write:

$$
D \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}} D^{\sharp} .
$$

Proposition 3. Let (D, \subseteq) and $\left(D^{\sharp}, \sqsubseteq\right)$ be partial orders, and $D \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}} D^{\sharp}$ be a Galois connexion.
The following properties are satisfied:

1. $\forall d \in D, d \subseteq \gamma(\alpha(d))$;
2. $\forall d^{\sharp} \in D^{\sharp}, \alpha\left(\gamma\left(d^{\sharp}\right)\right) \sqsubseteq d^{\sharp}$;
3. $\left(\alpha\right.$ is monotonic) $\forall d, d^{\prime} \in D, d \subseteq d^{\prime} \Longrightarrow \alpha(d) \sqsubseteq \alpha\left(d^{\prime}\right)$;
4. $\left(\gamma\right.$ is monotonic) $\forall d^{\sharp}, d^{\prime \sharp} \in D^{\sharp}, d^{\sharp} \sqsubseteq d^{\prime \sharp} \Longrightarrow \gamma\left(d^{\sharp}\right) \subseteq \gamma\left(d^{\prime \sharp}\right)$;
5. $\forall d \in D, \alpha(d)=\alpha(\gamma(\alpha(d)))$;
6. $\forall d^{\sharp} \in D^{\sharp}, \gamma\left(d^{\sharp}\right)=\gamma(\alpha(\gamma(d)))$;
7. $\gamma \circ \alpha$ is an upper closure operator;
8. $\alpha \circ \gamma$ is a lower closure operator.

Proof. Let (D, \subseteq) and $\left(D^{\sharp}, \sqsubseteq\right)$ be partial orders, and $D \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}} D^{\sharp}$ be a Galois connexion.

1. Let $d \in D$ be an element.

By Def. 1.(1), we have: $\alpha(d) \sqsubseteq \alpha(d)$.
By Def. 9.(3), it follows that: $d \subseteq \gamma(\alpha(d))$.
2. Let $d^{\sharp} \in D^{\sharp}$ be an element.

By Def. 1.(1), we have: $\gamma\left(d^{\sharp}\right) \subseteq \gamma\left(d^{\sharp}\right)$.
By Def. 9.(3), it follows that: $\alpha\left(\gamma\left(d^{\sharp}\right)\right) \subseteq d^{\sharp}$.
3. Let $d, d^{\prime} \in D$ be two elements such that $d \subseteq d^{\prime}$.

By hypothesis, we have $d \subseteq d^{\prime}$.
Moreover, by Prop. 3.(1), we have $d^{\prime} \subseteq \gamma\left(\alpha\left(d^{\prime}\right)\right)$.
Thus by Def. 1.(3), we get: $d \subseteq \gamma\left(\alpha\left(d^{\prime}\right)\right)$.
By Def. 9.(3), it follows that: $\alpha(d) \sqsubseteq \alpha\left(d^{\prime}\right)$.
4. Let $d^{\sharp}, d^{\prime \sharp} \in D^{\sharp}$ be two elements such that $d^{\sharp} \sqsubseteq d^{\prime \sharp}$.

By Prop. 3.(2), we have $\alpha\left(\gamma\left(d^{\sharp}\right)\right) \subseteq d^{\sharp}$.
Moreover, by hypothesis, we have $d^{\sharp} \sqsubseteq d^{\prime \sharp}$.
Thus by Def. 1.(3), we get: $\alpha\left(\gamma\left(d^{\sharp}\right)\right) \sqsubseteq d^{\prime \sharp}$.
By Def. 9.(3), it follows that: $\gamma\left(d^{\sharp}\right) \sqsubseteq \gamma\left(d^{\not / \sharp}\right)$.
5. Let $d \in D$ be an element.

By Prop. 3.(1), we have: $d \subseteq \gamma(\alpha(d))$.
By Prop. 3.(3), it follows that $\alpha(d) \sqsubseteq \alpha(\gamma(\alpha(d)))$.

By Def. 1.(1), we have: $\gamma(\alpha(d)) \subseteq \gamma(\alpha(d))$
By Def. 9.(3), it follows that: $\alpha(\gamma(\alpha(d)) \sqsubseteq \alpha(d)$.

By Def. 1.(2), it follows that $\alpha(d)=\alpha(\gamma(\alpha(d)))$.
6. Let $d^{\sharp} \in D^{\sharp}$ be an element.

By Prop. 3.(2), we have: $\alpha\left(\gamma\left(d^{\sharp}\right) \sqsubseteq d^{\sharp}\right.$.
By Prop. 3.(4), it follows that $\gamma\left(\alpha\left(\gamma\left(d^{\sharp}\right)\right)\right) \subseteq \gamma\left(d^{\sharp}\right)$.

By Def. 1.(1), we have: $\alpha\left(\gamma\left(d^{\sharp}\right)\right) \sqsubseteq \alpha\left(\gamma\left(d^{\sharp}\right)\right)$
By Def. 9.(3), it follows that: $\gamma\left(d^{\sharp}\right) \subseteq \gamma\left(\alpha\left(\gamma\left(d^{\sharp}\right)\right)\right)$.

By Def. 1.(2), it follows that $\gamma\left(d^{\sharp}\right)=\gamma\left(\alpha\left(\gamma\left(d^{\sharp}\right)\right)\right)$.
7. Let $d, d^{\prime} \in D$ such that $d \subseteq d^{\prime}$.
(a) By Prop. 3.(6), we have $\gamma(\alpha(\gamma(\alpha(d))))=\gamma(\alpha(d))$.
(b) By Prop. 3.(1), we have $d \subseteq \gamma(\alpha(d))$.
(c) By Prop. 3.(3), we have $\alpha(d) \sqsubseteq \alpha\left(d^{\prime}\right)$.

Then by prop. 3.(4), it follows that $\gamma(\alpha(d)) \subseteq \gamma\left(\alpha\left(d^{\prime}\right)\right)$.
8. Let $d^{\sharp}, d^{\prime \sharp} \in D^{\sharp}$ such that $d^{\sharp} \sqsubseteq d^{\prime \sharp}$.
(a) By Prop. 3.(5), we have $\alpha\left(\gamma\left(\alpha\left(\gamma\left(d^{\sharp}\right)\right)\right)\right)=\alpha\left(\gamma\left(d^{\sharp}\right)\right)$.
(b) By Prop. 3.(2), we have $\alpha\left(\gamma\left(d^{\sharp}\right)\right) \sqsubseteq d^{\sharp}$.
(c) By Prop. 3.(4), we have $\gamma\left(d^{\sharp}\right) \subseteq \gamma\left(d^{\prime \sharp}\right)$.

Then by prop. 3.(3), it follows that $\alpha\left(\gamma\left(d^{\sharp}\right)\right) \sqsubseteq \alpha\left(\gamma\left(d^{\prime}\right)\right)$.

Proposition 4. Let $(D, \subseteq, \perp, \top, \cup, \cap)$ and $\left(D^{\sharp}, \sqsubseteq, \perp^{\sharp}, \top^{\sharp}, \sqcup, \sqcap\right)$ be two complete lattices. Let α be a mapping between D and D^{\sharp} such that for any subset $X \subseteq D$, we have $\alpha(\cup X)=\sqcup\{\alpha(d) \mid d \in X\}$.

Then there exists a unique mapping γ between D^{\sharp} and D such that:

$$
D \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}} D^{\sharp}
$$

is a Galois connexion.
Moreover, for any element $d^{\sharp} \in D^{\sharp}$, we have:

$$
\gamma\left(d^{\sharp}\right)=\cup\left\{d \mid \alpha(d) \sqsubseteq d^{\sharp}\right\} .
$$

Proof. Let $(D, \subseteq, \perp, \top, \cup, \cap)$ and $\left(D^{\sharp}, \sqsubseteq, \perp^{\sharp}, \top^{\sharp}, \sqcup, \sqcap\right)$ be two complete lattices. Let α be a mapping between D and D^{\sharp} such that for any subset $X \subseteq D$, we have $\alpha(\cup X)=\sqcup\{\alpha(d) \mid d \in X\}$.

1. $(\alpha$ is monotonic)

Let $d, d^{\prime} \in D$, such that $d \subseteq d^{\prime}$.
By Def. 3, we have $\cup\left\{d, d^{\prime}\right\}=d^{\prime}$.
Thus, we have: $\alpha\left(d^{\prime}\right)=\alpha\left(\cup\left\{d, d^{\prime}\right\}\right)$.
By the hypothesis on α, we have $\alpha\left(\cup\left\{d, d^{\prime}\right\}\right)=\sqcup\left\{\alpha(d), \alpha\left(d^{\prime}\right)\right\}$.
Thus, $\alpha\left(d^{\prime}\right)=\sqcup\left\{\alpha(d), \alpha\left(d^{\prime}\right)\right\}$.
And by Def. 3.(1), it follow that $\alpha(d) \sqsubseteq \alpha\left(d^{\prime}\right)$.
2. (existence)

Let γ^{\prime} be the mapping between D^{\sharp} and D such that:

$$
\gamma^{\prime}\left(d^{\sharp}\right)=\cup\left\{d \mid \alpha(d) \sqsubseteq d^{\sharp}\right\} .
$$

Let $d \in D$ and $d^{\sharp} \in D^{\sharp}$.

- We assume that $\alpha(d) \sqsubseteq d^{\sharp}$.

We have: $\gamma^{\prime}\left(d^{\sharp}\right)=\cup\left\{d \mid \alpha(d) \sqsubseteq d^{\sharp}\right\}$.
Thus, by Def. 3.(1), we have $d \subseteq \gamma^{\prime}\left(d^{\sharp}\right)$.

- We assume that $d \subseteq \gamma^{\prime}\left(d^{\sharp}\right)$.

By hypothesis, we have: $\gamma^{\prime}\left(d^{\sharp}\right)=\cup\left\{d \mid \alpha(d) \sqsubseteq d^{\sharp}\right\}$.
Thus, $d \subseteq \cup\left\{d \mid \alpha(d) \sqsubseteq d^{\sharp}\right\}$.
Since α is monotonic, we have: $\alpha(d) \sqsubseteq \alpha\left(\cup\left\{d \mid \alpha(d) \sqsubseteq d^{\sharp}\right\}\right)$.
By hypothesis on α, we have $\alpha\left(\cup\left\{d \mid \alpha(d) \sqsubseteq d^{\sharp}\right\}\right)=\sqcup\left\{\alpha(d) \mid \alpha(d) \sqsubseteq d^{\sharp}\right\}$.
Thus, $\alpha(d) \sqsubseteq \sqcup\left\{\alpha(d) \mid \alpha(d) \sqsubseteq d^{\sharp}\right\}$.
For any $d \in D$, such that $\alpha(d) \sqsubseteq d^{\sharp}$, we have $\alpha(d) \sqsubseteq d^{\sharp}$.
Thus, by Def. 3.(1), we have $\sqcup\left\{\alpha(d) \mid \alpha(d) \sqsubseteq d^{\sharp}\right\} \sqsubseteq d^{\sharp}$.
By Def. 1.(3), we get: $\alpha(d) \sqsubseteq d^{\sharp}$.

Thus:

$$
D \underset{\alpha}{\stackrel{\gamma^{\prime}}{\leftrightarrows}} D^{\sharp} .
$$

3. (uniqueness) Let γ such that:

$$
D \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}} D^{\sharp} .
$$

Let $d^{\sharp} \in D^{\sharp}$ be an abstract element.

For any $d \in D$ such that $\alpha(d) \sqsubseteq d^{\sharp}$, we have by Def. 9.(3), $d \subseteq \gamma\left(d^{\sharp}\right)$.
By hypothesis, $\gamma^{\prime}\left(d^{\sharp}\right)=\cup\left\{d \mid \alpha(d) \sqsubseteq d^{\sharp}\right\}$.
Thus, Def. 3.(2), we get that $\gamma^{\prime}\left(d^{\sharp}\right) \subseteq \gamma\left(d^{\sharp}\right)$.

By prop.3.(2), we have $\alpha\left(\gamma\left(d^{\sharp}\right)\right) \subseteq d^{\sharp}$.
We have already proved that:

$$
D \underset{\alpha}{\stackrel{\gamma^{\prime}}{\leftrightarrows}} D^{\sharp} .
$$

is a Galois connexion.
Thus, by Def. 9.(3), we have $\gamma\left(d^{\sharp}\right) \subseteq \gamma^{\prime}\left(d^{\sharp}\right)$.
By Def. 1.(2), we get that $\gamma\left(d^{\sharp}\right)=\gamma^{\prime}\left(d^{\sharp}\right)$.
Thus $\gamma=\gamma^{\prime}$.

Proposition 5. Given (D, \subseteq) and $\left(D^{\sharp}, \sqsubseteq\right)$ two partial orders, $D \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}} D^{\sharp}$ a Galois connexion, and $X \subseteq D$ a subset of D, if, X has a least upper bound $\cup X$ and $\{\alpha(d) \mid d \in X\}$ has a least upper bound $\sqcup\{\alpha(d) \mid d \in X\}$, then we have:

$$
\alpha(\cup X)=\sqcup\{\alpha(d) \mid d \in X\}
$$

Proof. Let (D, \subseteq) and $\left(D^{\sharp}, \sqsubseteq\right)$ be two partial orders, $D \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}} D^{\sharp}$ be a Galois connexion, and $X \subseteq D$ be a subset of D, such that X has a least upper bound $\cup X$ and $\{\alpha(d) \mid d \in X\}$ has a least upper bound $\sqcup\{\alpha(d) \mid d \in X\}$.

- Let d be an element in X.

Since X has a least upper bound, we have by Def. 3.(1), $d \subseteq \cup X$.
By Prop. 3.(3), we have $\alpha(d) \sqsubseteq \alpha(\cup X)$.
Since $\{\alpha(d) \mid d \in X\}$ has a least upper bound, and by Def. 3.(2), it follows that $\sqcup\{\alpha(d) \mid d \in X\} \sqsubseteq \alpha(\cup X)$.

- Let d be an element in X.

By Prop. 3.(1), we have $d \subseteq \gamma(\alpha(d))$.
Since $\{\alpha(d) \mid d \in X\}$ has a least upper bound, and by Def. 3.(1), we have $\alpha(d) \sqsubseteq \sqcup\{\alpha(d) \mid d \in X\}$.
Thus by Prop. 3.(4), it follows that $\gamma(\alpha(d)) \subseteq \gamma(\sqcup\{\alpha(d) \mid d \in X\})$.
By Def. 1.(3), it follows that $d \subseteq \gamma(\sqcup\{\alpha(d) \mid d \in X\})$.

Since X has a least upper bound, and by Def. 3.(2), it follows that $\cup X \subseteq \gamma(\sqcup\{\alpha(d) \mid d \in X\})$.
By Def. 9.(3), we get that $\alpha(\cup X) \sqsubseteq \sqcup\{\alpha(d) \mid d \in X\}$.

By Def. 1.(2), we conclude that $\alpha(\cup X)=\sqcup\{\alpha(d) \mid d \in X\}$.

Proposition 6. Given (D, \subseteq) and $\left(D^{\sharp}, \sqsubseteq\right)$ two partial orders, $D \underset{\alpha}{\stackrel{\gamma}{\alpha}} D^{\sharp}$ a Galois connexion, and $X^{\sharp} \subseteq$ D^{\sharp} a subset of D^{\sharp}, if, X^{\sharp} has a least upper bound $\sqcup X^{\sharp}$ and $\left\{\gamma\left(d^{\sharp}\right) \mid d^{\sharp} \in X^{\sharp}\right\}$ has a least upper bound $\cup\left\{\gamma\left(d^{\sharp}\right) \mid d^{\sharp} \in X^{\sharp}\right\}$, then we have:

$$
\gamma\left(\sqcup X^{\sharp}\right)=\gamma\left(\alpha\left(\cup\left\{\gamma\left(d^{\sharp}\right) \mid d^{\sharp} \in X^{\sharp}\right\}\right)\right) .
$$

Proof. Let (D, \subseteq) and $\left(D^{\sharp}, \sqsubseteq\right)$ be two partial orders, $D \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}} D^{\sharp}$ be a Galois connexion, and $X^{\sharp} \subseteq D^{\sharp}$ be a subset of D^{\sharp}, such that: X^{\sharp} has a least upper bound $\sqcup X^{\sharp}$ and $\left\{\gamma\left(d^{\sharp}\right) \mid d^{\sharp} \in X^{\sharp}\right\}$ has a least upper bound $\cup\left\{\gamma\left(d^{\sharp}\right) \mid d^{\sharp} \in X^{\sharp}\right\}$.

- Let d^{\sharp} be an element in X^{\sharp}.

Since X^{\sharp} has a least upper bound, we have by Def. 3.(1), $d^{\sharp} \sqsubseteq \sqcup X^{\sharp}$.
By Prop. 3.(4), we have $\gamma(d) \subseteq \gamma\left(\sqcup X^{\sharp}\right)$.
Since $\left\{\gamma\left(d^{\sharp}\right) \mid d^{\sharp} \in X^{\sharp}\right\}$ has a least upper bound, and by Def. 3.(2), it follows that $\cup\left\{\gamma\left(d^{\sharp}\right) \mid d^{\sharp} \in X^{\sharp}\right\} \subseteq$ $\gamma\left(\sqcup X^{\sharp}\right)$.

Then, by Prop. 3.(4) and Prop. 3.(3), we have $\gamma\left(\alpha\left(\cup\left\{\gamma\left(d^{\sharp}\right) \mid d^{\sharp} \in X^{\sharp}\right\}\right)\right) \subseteq \gamma\left(\alpha\left(\gamma\left(\sqcup X^{\sharp}\right)\right)\right)$.
But, by Prop. 3.(6), we have $\gamma\left(\alpha\left(\gamma\left(\sqcup X^{\sharp}\right)\right)\right)=\gamma\left(\sqcup X^{\sharp}\right)$.
Thus, it follows that: $\gamma\left(\alpha\left(\cup\left\{\gamma\left(d^{\sharp}\right) \mid d^{\sharp} \in X^{\sharp}\right\} \subseteq \gamma\left(\sqcup X^{\sharp}\right)\right.\right.$.

- Let d^{\sharp} be an element in X^{\sharp}.

By Prop. 3.(2), we have $d^{\sharp} \sqsubseteq \alpha\left(\gamma\left(d^{\sharp}\right)\right)$.
Since $\left\{\gamma\left(d^{\sharp}\right) \mid d^{\sharp} \in X^{\sharp}\right\}$ has a least upper bound, and by Def. 3.(1), we have $\gamma\left(d^{\sharp}\right) \subseteq \cup\left\{\gamma\left(d^{\sharp}\right) \mid d^{\sharp} \in X^{\sharp}\right\}$. Thus by Prop. 3.(3), it follows that $\alpha\left(\gamma\left(d^{\sharp}\right)\right) \subseteq \alpha\left(\cup\left\{\gamma\left(d^{\sharp}\right) \mid d^{\sharp} \in X^{\sharp}\right\}\right)$.
By Def. 1.(3), it follows that $d^{\sharp} \subseteq \alpha\left(\cup\left\{\gamma\left(d^{\sharp}\right) \mid d^{\sharp} \in X^{\sharp}\right\}\right)$.
Since X^{\sharp} has a least upper bound, and by Def. 3.(2), it follows that $\sqcup X^{\sharp} \sqsubseteq \alpha\left(\cup\left\{\gamma\left(d^{\sharp}\right) \mid d^{\sharp} \in X^{\sharp}\right\}\right)$.
By Prop. 3.(4), we get that $\gamma\left(\sqcup X^{\sharp}\right) \subseteq \gamma\left(\alpha\left(\cup\left\{\gamma\left(d^{\sharp}\right) \mid d^{\sharp} \in X^{\sharp}\right\}\right)\right)$.

By Def. 1.(2), we conclude that $\gamma\left(\sqcup X^{\sharp}\right)=\gamma\left(\alpha\left(\cup\left\{\gamma\left(d^{\sharp}\right) \mid d^{\sharp} \in X^{\sharp}\right\}\right)\right)$.

Lemma 2. Let:

1. (D, \subseteq, \cup) and $\left(D^{\sharp}, \sqsubseteq, \sqcup\right)$ be chain-complete partial orders;
2. $D \underset{\alpha}{\stackrel{\gamma}{\alpha}} D^{\sharp}$ be a Galois connexion;
3. $\mathbb{F} \in \stackrel{\alpha}{D} \rightarrow D$ be a monotonic mapping;
4. $\mathbb{F}^{\sharp} \in D^{\sharp} \rightarrow D^{\sharp}$ be mapping such that: $\left[\forall d^{\sharp} \in D^{\sharp}, \mathbb{F}\left(\gamma\left(d^{\sharp}\right)\right) \subseteq \gamma\left(\mathbb{F}^{\sharp}\left(d^{\sharp}\right)\right)\right]$;
5. $x_{0} \in D$ such that $x_{0} \subseteq \mathbb{F}\left(x_{0}\right)$.

Then:

$$
\alpha\left(x_{0}\right) \sqsubseteq \mathbb{F}^{\sharp}\left(\alpha\left(x_{0}\right)\right) .
$$

Proof. Let us show that $\alpha\left(x_{0}\right) \sqsubseteq \mathbb{F}^{\sharp}\left(\alpha\left(x_{0}\right)\right)$.

We have: $x_{0} \subseteq \mathbb{F}\left(x_{0}\right)$.
By Prop. 3.(1), we have: $x_{0} \subseteq \gamma\left(\alpha\left(x_{0}\right)\right)$.
Then, since \mathbb{F} is monotonic, it follows that $\mathbb{F}\left(x_{0}\right) \subseteq \mathbb{F}\left(\gamma\left(\alpha\left(x_{0}\right)\right)\right)$.
By hypothesis, $\mathbb{F}\left(\gamma\left(\alpha\left(x_{0}\right)\right)\right) \subseteq \gamma\left(\mathbb{F}^{\sharp}\left(\alpha\left(x_{0}\right)\right)\right)$.
Thus, $x_{0} \subseteq \gamma\left(\mathbb{F}^{\sharp}\left(\alpha\left(x_{0}\right)\right)\right)$. By Def. 9.(3), it follows that $\alpha\left(x_{0}\right) \subseteq \mathbb{F}^{\sharp}\left(\alpha\left(x_{0}\right)\right)$.

Theorem 1 (soundness). Let:

1. (D, \subseteq, \cup) and $\left(D^{\sharp}, \sqsubseteq, \sqcup\right)$ be chain-complete partial orders;
2. $D \underset{\alpha}{\stackrel{\gamma}{\hookrightarrow}} D^{\sharp}$ be a Galois connexion;
3. $\mathbb{F} \in D \rightarrow D$ and $\mathbb{F}^{\sharp} \in D^{\sharp} \rightarrow D^{\sharp}$ be monotonic mappings such that: $\left[\forall d^{\sharp} \in D^{\sharp}, \mathbb{F}\left(\gamma\left(d^{\sharp}\right)\right) \subseteq \gamma\left(\mathbb{F}^{\sharp}\left(d^{\sharp}\right)\right)\right]$;
4. $x_{0} \in D$ be an element such that: $x_{0} \subseteq \mathbb{F}\left(x_{0}\right)$.

Then, both $l f p_{x_{0}} \mathbb{F}$ and $l f p_{\alpha\left(x_{0}\right)} \mathbb{F}^{\sharp}$ exist, and moreover:

$$
l f p_{x_{0}} \mathbb{F} \subseteq \gamma\left(l f p_{\alpha\left(x_{0}\right)} \mathbb{F}^{\sharp}\right)
$$

Proof. We assume that the hypotheses of The. 1 are satisfied.

1. We have $x_{0} \subseteq \mathbb{F}\left(x_{0}\right)$ and \mathbb{F} is monotonic.

Thus, by Lem. $1, \mathbb{F}$ has a least fix-point greater than x_{0}.
Moreover, by Rem. 1, there exists an ordinal o such that $l f p_{x_{0}} \mathbb{F}=\mathbb{F}^{o}\left(x_{0}\right)$.
2. By Lem. $2, \alpha\left(x_{0}\right) \subseteq \mathbb{F}^{\sharp}\left(\alpha\left(x_{0}\right)\right)$.

Thus, by Lem. $1, \mathbb{F}^{\sharp}$ has a least fix-point greater than x_{0}.
Moreover, by Rem. 1, there exists an ordinal o^{\sharp} such that $l f p_{\alpha\left(x_{0}\right)} \mathbb{F}^{\sharp}=\mathbb{F}^{\sharp o^{\sharp}}\left(\alpha\left(x_{0}\right)\right)$.
3. We consider an ordinal β such that $o \leq \beta$ and $o^{\sharp} \leq \beta$.

We have: $l f p_{x_{0}} \mathbb{F}=\mathbb{F}^{\beta}\left(x_{0}\right)$ and $l f p_{\alpha\left(x_{0}\right)} \mathbb{F}^{\sharp}=\mathbb{F}^{\sharp \beta}\left(\alpha\left(x_{0}\right)\right)$.
We show by transfinite induction that for any ordinal $o, \mathbb{F}^{o}\left(x_{0}\right) \subseteq \gamma\left(\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)\right)$.

- By Def. 8, we have $\mathbb{F}^{0}\left(x_{0}\right)=x_{0}$ and $\mathbb{F}^{\sharp 0}\left(\alpha\left(x_{0}\right)\right)=\alpha\left(x_{0}\right)$.

By Prop. 3.(1), we have $x_{0} \subseteq \gamma\left(\alpha\left(x_{0}\right)\right)$.
Thus, $\mathbb{F}^{0}\left(x_{0}\right) \subseteq \gamma\left(\mathbb{F}^{\sharp 0}\left(\alpha\left(x_{0}\right)\right)\right)$.

- We consider an ordinal o such that $\mathbb{F}^{o}\left(x_{0}\right) \subseteq \gamma\left(\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)\right)$.

By Def. 8 , we have: $\mathbb{F}^{o+1}\left(x_{0}\right)=\mathbb{F}\left(\mathbb{F}^{o}\left(x_{0}\right)\right)$.
Since \mathbb{F} is monotonic, we have: $\mathbb{F}\left(\mathbb{F}^{o}\left(x_{0}\right)\right) \subseteq \mathbb{F}\left(\gamma\left(\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)\right)\right)$.
By hypothesis, $\mathbb{F}\left(\gamma\left(\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)\right)\right) \subseteq \gamma\left(\mathbb{F}^{\sharp}\left(\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)\right)\right)$.
Then, by Def. 8, we have: $\mathbb{F}^{\sharp o+1}\left(\alpha\left(x_{0}\right)\right)=\mathbb{F}^{\sharp}\left(\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)\right)$.
And by extensionality, $\gamma\left(\mathbb{F}^{\sharp o+1}\left(\alpha\left(x_{0}\right)\right)\right)=\gamma\left(\mathbb{F}^{\sharp}\left(\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)\right)\right)$.
Thus: $\mathbb{F}^{o+1}\left(x_{0}\right) \subseteq \gamma\left(\mathbb{F}^{\sharp o+1}\left(\alpha\left(x_{0}\right)\right)\right)$.

- We consider an ordinal o such that for any ordinal $\beta<o$ we have: $\mathbb{F}^{\beta}\left(x_{0}\right) \subseteq \gamma\left(\mathbb{F}^{\sharp \beta}\left(\alpha\left(x_{0}\right)\right)\right)$. By Def. 8 , we have: $\mathbb{F}^{o}\left(x_{0}\right)=\cup\left\{\mathbb{F}^{\beta}\left(x_{0}\right) \mid \beta<o\right\}$. Thus, by Def. 3.(1), we get that, for any ordinal β such that $\beta<o, \mathbb{F}^{o}\left(x_{0}\right) \subseteq \gamma\left(\mathbb{F}^{\sharp \beta}\left(\alpha\left(x_{0}\right)\right)\right)$.
Thus, since $\left\{\gamma\left(\mathbb{F}^{\sharp \beta}\left(\alpha\left(x_{0}\right)\right)\right) \mid \beta<o\right\}$ is a chain, by Def. 6, and by Def. 3.(2), it follows that: $\mathbb{F}^{o}\left(x_{0}\right) \subseteq \cup\left\{\gamma\left(\mathbb{F}^{\sharp \beta}\left(\alpha\left(x_{0}\right)\right)\right) \mid \beta<o\right\}$.

For any ordinal β such that $\beta<o$,
by Def. 3.(1), we have: $\left.\mathbb{F}^{\sharp \beta}\left(\alpha\left(x_{0}\right)\right) \subseteq \sqcup\left\{\mathbb{F}^{\sharp \beta}\left(\alpha\left(x_{0}\right)\right)\right) \mid \beta<o\right\}$;
then by Prop. 3.(4), we get that: $\left.\gamma\left(\mathbb{F}^{\sharp} \beta\left(\alpha\left(x_{0}\right)\right)\right) \subseteq \gamma\left(\sqcup\left\{\mathbb{F}^{\sharp \beta}\left(\alpha\left(x_{0}\right)\right)\right) \mid \beta<o\right\}\right)$.
Then by Def. 3.(2), it follows that $\left.\cup\left\{\gamma\left(\mathbb{F}^{\sharp \beta}\left(\alpha\left(x_{0}\right)\right)\right) \mid \beta<o\right\} \subseteq \gamma\left(\sqcup\left\{\mathbb{F}^{\sharp \beta}\left(\alpha\left(x_{0}\right)\right)\right) \mid \beta<o\right\}\right)$;
By Def. $\left.8, \sqcup\left\{\mathbb{F}^{\sharp \beta}\left(\alpha\left(x_{0}\right)\right)\right) \mid \beta<o\right\}=\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)$.
Thus, by extensionality, $\left.\gamma\left(\sqcup\left\{\mathbb{F}^{\sharp \beta}\left(\alpha\left(x_{0}\right)\right)\right) \mid \beta<o\right\}\right)=\gamma\left(\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)\right)$.
It follows that: $\mathbb{F}^{o}\left(x_{0}\right) \subseteq \gamma\left(\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)\right)$.

Theorem 2. We suppose that:

1. (D, \subseteq) be a partial order;
2. $\left(D^{\sharp}, \sqsubseteq, \sqcup\right)$ be chain-complete partial order;
3. $D \underset{\alpha}{\stackrel{\gamma}{\hookrightarrow}} D^{\sharp}$ be a Galois connexion;
4. $\mathbb{F} \in D \rightarrow D$ and $\mathbb{F}^{\sharp} \in D^{\sharp} \rightarrow D^{\sharp}$ are monotonic;
5. $\forall d^{\sharp} \in D^{\sharp}, \mathbb{F}\left(\gamma\left(d^{\sharp}\right)\right) \subseteq \gamma\left(\mathbb{F}^{\sharp}\left(d^{\sharp}\right)\right)$;
6. $x_{0}, i n v \in D$ such that:
$-x_{0} \subseteq \mathbb{F}\left(x_{0}\right) \subseteq \mathbb{F}(i n v) \subseteq i n v$,
$-i n v=\gamma(\alpha(i n v))$,
$-\operatorname{and} \alpha(\mathbb{F}(\gamma(\alpha(i n v))))=\mathbb{F}^{\sharp}(\alpha(i n v)) ;$
Then, lfp $\cos _{\left(x_{0}\right)} \mathbb{F}^{\sharp}$ exists and $\gamma\left(l f p_{\alpha\left(x_{0}\right)} \mathbb{F}^{\sharp}\right) \subseteq$ inv.
Proof. Let us show this result.

- By Lem. 2, $\alpha\left(x_{0}\right) \subseteq \mathbb{F}^{\sharp}\left(\alpha\left(x_{0}\right)\right)$.

Thus, by Lem. $1, \mathbb{F}^{\sharp}$ has a least fix-point greater than x_{0}.
Moreover, by Rem. 1, there exists an ordinal o^{\sharp} such that $l f p_{\alpha\left(x_{0}\right)} \mathbb{F}^{\sharp}=\mathbb{F}^{\sharp o^{\sharp}}\left(\alpha\left(x_{0}\right)\right)$.

- Let us show by induction over o^{\sharp} that $\mathbb{F}^{\sharp o^{\sharp}}\left(\alpha\left(x_{0}\right)\right) \sqsubseteq \alpha(i n v)$.
- By Def. 8 , we have $\mathbb{F}^{\sharp 0}\left(\alpha\left(x_{0}\right)\right)=\alpha\left(x_{0}\right)$.

Thus, by Def. 1.(1), $\alpha\left(x_{0}\right) \sqsubseteq \alpha\left(x_{0}\right)$.
So, $\mathbb{F}^{\sharp 0}\left(\alpha\left(x_{0}\right)\right) \sqsubseteq \alpha\left(x_{0}\right)$.

By hypothesis, $x_{0} \subseteq i n v$.
By Prop. 3.(3), we get that $\alpha\left(x_{0}\right) \sqsubseteq \alpha(i n v)$.

Thus, by Def. 1.(3), it follows that $\mathbb{F}^{\sharp 0}\left(\alpha\left(x_{0}\right)\right) \sqsubseteq \alpha(i n v)$.

- Let o be an ordinal such that $\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right) \sqsubseteq \alpha(i n v)$.

Since \mathbb{F}^{\sharp} is monotonic, we have $\mathbb{F}^{\sharp}\left(\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)\right) \sqsubseteq \mathbb{F}^{\sharp}(\alpha(i n v))$.
By Def. 8, $\mathbb{F}^{\sharp o+1}\left(\alpha\left(x_{0}\right)\right)=\mathbb{F}^{\sharp}\left(\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)\right)$.
By hypothesis, $\alpha(\mathbb{F}(\gamma(\alpha(i n v))))=\mathbb{F}^{\sharp}(\alpha(i n v))$.
Thus, $\mathbb{F}^{\sharp o+1}\left(\alpha\left(x_{0}\right)\right) \sqsubseteq \alpha(\mathbb{F}(\gamma(\alpha(i n v))))$.

By hypothesis, $\gamma(\alpha(i n v))=i n v$.
Thus, by extensionality, $\mathbb{F}(\gamma(\alpha(i n v)))=\mathbb{F}(i n v)$.
By hypothesis, $\mathbb{F}(i n v) \subseteq i n v$.
Thus, $\mathbb{F}(\gamma(\alpha(i n v))) \subseteq$ inv.
By Prop. 3.(3), $\alpha(\mathbb{F}(\gamma(\alpha(i n v)))) \subseteq \alpha(i n v)$.

Thus, by Def. 1.(3), $\mathbb{F}^{\sharp o+1}\left(\alpha\left(x_{0}\right)\right) \sqsubseteq \alpha(i n v)$.

- Let o be an ordinal such that for any ordinal $\beta<o$, we have $\mathbb{F}^{\sharp} \beta\left(\alpha\left(x_{0}\right)\right) \sqsubseteq \alpha(i n v)$.

By Def. 3. $(2), \sqcup\left\{\mathbb{F}^{\sharp \beta}\left(\alpha\left(x_{0}\right)\right) \mid \beta<o\right\} \sqsubseteq \alpha(i n v)$.
By Def. 8, $\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)=\sqcup\left\{\mathbb{F}^{\sharp \beta}\left(\alpha\left(x_{0}\right)\right) \mid \beta<o\right\}$. Thus, $\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right) \sqsubseteq \alpha(i n v)$.

Thus, $l f p_{\alpha\left(x_{0}\right)} \mathbb{F}^{\sharp} \sqsubseteq \alpha(i n v)$.

- We have seen that $l f p_{\alpha\left(x_{0}\right)} \mathbb{F}^{\sharp} \sqsubseteq \alpha(i n v)$.

By Prop. 3.(4), we have: $\gamma\left(l f p_{\alpha\left(x_{0}\right)} \mathbb{F}^{\sharp}\right) \subseteq \gamma(\alpha(i n v))$.
By hypothesis, $\gamma(\alpha(i n v))=i n v$.
Thus, $\gamma\left(l f p_{\alpha\left(x_{0}\right)} \mathbb{F}^{\sharp}\right) \subseteq i n v$.

Theorem 3. We suppose that:

1. (D, \subseteq, \cup) and $\left(D^{\sharp}, \sqsubseteq, \sqcup\right)$ are chain-complete partial orders;
2. $(D, \subseteq) \underset{\alpha}{\stackrel{\gamma}{\hookrightarrow}}\left(D^{\sharp}, \sqsubseteq\right)$ is a Galois connexion;
3. $\mathbb{F}: D \rightarrow{ }^{\alpha} D$ is a monotonic map;
4. x_{0} is a concrete element such that $x_{0} \subseteq \mathbb{F}\left(x_{0}\right)$;
5. $\mathbb{F} \circ \gamma \subseteq \gamma \circ \mathbb{F}^{\sharp}$;
6. $\mathbb{F}^{\sharp} \circ \alpha=\alpha \circ \mathbb{F} \circ \gamma \circ \alpha$.

Then:
$-l f p_{x_{0}} \mathbb{F}$ and $l f p_{\alpha\left(x_{0}\right)} \mathbb{F}^{\sharp}$ exist;
$-l f p_{x_{0}} \mathbb{F} \in \gamma\left(D^{\sharp}\right) \Longleftrightarrow l f p_{x_{0}} \mathbb{F}=\gamma\left(l f p_{\alpha\left(x_{0}\right)} \mathbb{F}^{\sharp}\right)$.
Proof. We assume that the hypotheses of The. 3 are satisfied.

1. We have $x_{0} \subseteq \mathbb{F}\left(x_{0}\right)$ and \mathbb{F} is monotonic.

Thus, by Lem. $1, \mathbb{F}$ has a least fix-point greater than x_{0}.
Moreover, by Rem. 1, there exists an ordinal o^{\bullet} such that $l f p_{x_{0}} \mathbb{F}=\mathbb{F}^{\boldsymbol{0}^{\bullet}}\left(x_{0}\right)$.
2. Let us show, by induction over the ordinal o_{0}, that there exists a unique collection of elements $\left(X_{o}^{\sharp}\right)_{o<o_{0}}$ such that for any ordinal $o<o_{0}$:
-i .

$$
\begin{cases}X_{o}^{\sharp}=\alpha\left(x_{0}\right) & \text { whenever } o=0 \\ X_{o}^{\sharp}=\mathbb{F}^{\sharp}\left(X_{o-1}^{\sharp}\right) & \text { whenever } o \text { is a succesor ordinal } \\ X_{o}^{\sharp}=\sqcup\left\{X_{\beta}^{\sharp} \mid \beta<o\right\} & \text { otherwise. }\end{cases}
$$

- ii. for any ordinal $o<o_{0}$, there exists an element $d \in D$ such that $X_{o}^{\sharp}=\alpha(d)$,
- iii. $\left(X_{o}^{\sharp}\right)_{o<o_{0}}$ is increasing,
- iv. and for any ordinal $o<o_{0}, X_{o}^{\sharp} \sqsubseteq \mathbb{F}^{\sharp}\left(X_{o}^{\sharp}\right)$.
(a) i. There exists a unique element X_{0}^{\sharp} such that $X_{0}^{\sharp}=\alpha\left(x_{0}\right)$.
ii. $\alpha\left(x_{0}\right)=\alpha\left(x_{0}\right)$.
iii. $\left(\alpha\left(x_{0}\right)\right)$ is an increasing family (of one element).
iv. By hypothesis, $x_{0} \subseteq \mathbb{F}\left(x_{0}\right)$.

By Prop. 3.(1), $x_{0} \subseteq \gamma\left(\alpha\left(x_{0}\right)\right)$.
Since \mathbb{F} is monotonic, $\mathbb{F}\left(x_{0}\right) \subseteq \mathbb{F}\left(\gamma\left(\alpha\left(x_{0}\right)\right)\right)$.
Thus, by Def. 1.(3), it follows that $x_{0} \subseteq \mathbb{F}\left(\gamma\left(\alpha\left(x_{0}\right)\right)\right)$.
By Prop. 3.(3), we get that: $\alpha\left(x_{0}\right) \sqsubseteq \alpha\left(\mathbb{F}\left(\gamma\left(\alpha\left(x_{0}\right)\right)\right)\right)$.
By hypothesis, $\mathbb{F}^{\sharp}\left(\alpha\left(x_{0}\right)\right)=\alpha\left(\mathbb{F}\left(\gamma\left(\alpha\left(x_{0}\right)\right)\right)\right)$.
Thus, $\alpha\left(x_{0}\right) \sqsubseteq \mathbb{F}^{\sharp}\left(\alpha\left(x_{0}\right)\right)$.
(b) Let o_{0} be an ordinal.

We assume that there exists a unique family $\left(X_{o}^{\sharp}\right)_{o \leq o_{0}}$ such that the equations (a) are satisfied.
We also assume that there exists a family of elements $\left(X_{o}\right)_{o \leq o_{0}}$ such that for any ordinal, $\alpha\left(X_{o}\right)=X_{o}^{\sharp}$, that $\left(X_{o}^{\sharp}\right)_{o \leq o_{0}}$ is increasing and that for any ordinal $o \leq o_{0}, X_{o}^{\sharp} \sqsubseteq \mathbb{F}^{\sharp}\left(X_{o}\right)$.
We define $Y_{o}^{\sharp}=X_{o}^{\sharp}$ whenever $o \leq o_{0}$ and $Y_{o_{0}+1}^{\sharp}=\mathbb{F}^{\sharp}\left(X_{o_{0}}^{\sharp}\right)$.
i. The family $\left(Y_{o}^{\sharp}\right)_{o \leq o_{0}+1}$ satisfies the equations (a).
ii. Now we consider a family $\left(Z_{o}^{\sharp}\right)_{o \leq o_{0}+1}$ of elements in D^{\sharp} which satisfies the equations (a).

By induction hypotheses (uniqueness), we have $Z_{o}^{\sharp}=Y_{o}^{\sharp}$ for any ordinal $o \leq o_{0}$.
Moreover, since $\left(Z_{o}^{\sharp}\right)_{o \leq o_{0}+1}$ satisfies the equations (a), we have $Z_{o_{0}+1}^{\sharp}=\mathbb{F}^{\sharp}\left(Z_{o_{0}}^{\sharp}\right)$.
Since $Z_{o_{0}}^{\sharp}=Y_{o_{0}}^{\sharp}$, it follows by extensionality that $\mathbb{F}^{\sharp}\left(Z_{o_{0}}^{\sharp}\right)=\mathbb{F}^{\sharp}\left(Y_{o_{0}}^{\sharp}\right)$.
Moreover, we have: $\mathbb{F}^{\sharp}\left(Y_{o_{0}}^{\sharp}\right)=Y_{o_{0}+1}^{\sharp}$.
Thus $Z_{o+1}^{\sharp}=Y_{o+1}^{\sharp}$.
It follows that $\left(Z_{o}^{\sharp}\right)_{o \leq o_{0}+1}=\left(Y_{o}^{\sharp}\right)_{o \leq o_{0}+1}$.
iii. By induction hypotheses, there exists a family $\left(X_{o}\right)_{o \leq o_{0}}$ such that $\left(Y_{o}^{\sharp}\right)_{o \leq o_{0}}=\left(\alpha\left(X_{o}\right)\right)_{o \leq o_{0}}$.

It follows that $Y_{o_{0}}^{\sharp}=\alpha\left(X_{o}\right)$.
By extensionality, $\mathbb{F}^{\sharp}\left(Y_{O_{0}}^{\sharp}\right)=\mathbb{F}^{\sharp}\left(\alpha\left(X_{o}\right)\right)$.
By hypothesis, $Y_{o_{0}+1}^{\sharp}=\mathbb{F}^{\sharp}\left(Y_{o_{0}}^{\sharp}\right)$.
By hypothesis, $\mathbb{F}^{\sharp}\left(\alpha\left(X_{o}\right)\right)=\alpha\left(\mathbb{F}\left(\gamma\left(\alpha\left(X_{0}\right)\right)\right)\right)$.
Thus, $Y_{o_{0}+1}^{\sharp}=\alpha\left(\mathbb{F}\left(\gamma\left(\alpha\left(X_{0}\right)\right)\right)\right)$.

We define $X_{o_{0}+1}=\mathbb{F}\left(\gamma\left(\alpha\left(X_{0}\right)\right)\right)$.
We have $Y_{o_{0}+1}^{\sharp}=\alpha\left(X_{o_{0}+1}\right)$.
Since $\left(Y_{o}^{\sharp}\right)_{o \leq o_{0}}=\left(\alpha\left(X_{o}\right)\right)_{o \leq o_{0}}$, it follows that $\left(Y_{o}^{\sharp}\right)_{o \leq o_{0}+1}=\left(\alpha\left(X_{o}\right)\right)_{o \leq o_{0}+1}$.
iv. By induction hypotheses, $\left(Y_{o}^{\sharp}\right)_{o \leq o_{0}}$ is increasing.

By induction hypotheses again $Y_{o_{0}}^{\sharp} \sqsubseteq \mathbb{F}^{\sharp}\left(Y_{o_{0}}^{\sharp}\right)$.
Since $Y_{o_{0}+1}^{\sharp}=\mathbb{F}^{\sharp}\left(Y_{o_{0}}^{\sharp}\right)$, it follows that $Y_{o_{0}}^{\sharp} \sqsubseteq Y_{o_{0}+1}^{\sharp}$.
Thus $\left(Y_{o}^{\sharp}\right)_{o \leq o_{0}+1}$ is increasing.
v. By induction hypotheses, for any $o \leq o_{0}, Y_{o}^{\sharp} \sqsubseteq \mathbb{F}^{\sharp}\left(Y_{o}^{\sharp}\right)$.

Moreover, $Y_{o_{0}}^{\sharp} \sqsubseteq Y_{o_{0}+1}^{\sharp}$.
Since $Y_{o_{0}}^{\sharp}=\alpha\left(X_{o_{0}}\right)$ and $Y_{o_{0}+1}^{\sharp}=\alpha\left(X_{o_{0}+1}\right)$, it follows that $\alpha\left(X_{o_{0}}\right) \sqsubseteq \alpha\left(X_{o_{0}+1}\right)$.
By Prop. 3.(4), since \mathbb{F} is monotonic, and by Prop. 3.(3), $\alpha\left(\mathbb{F}\left(\gamma\left(\alpha\left(X_{o_{0}}\right)\right)\right)\right) \sqsubseteq \alpha\left(\mathbb{F}\left(\gamma\left(\alpha\left(X_{o_{0}+1}\right)\right)\right)\right)$.
By hypothesis, $\alpha \circ \mathbb{F} \circ \gamma \circ \alpha=\mathbb{F}^{\sharp} \circ \alpha$, thus $\mathbb{F}^{\sharp}\left(\alpha\left(X_{o_{0}}\right)\right) \sqsubseteq \mathbb{F}^{\sharp}\left(\alpha\left(X_{o_{0}+1}^{\sharp}\right)\right)$.
Since, $Y_{o_{0}}^{\sharp}=\alpha\left(X_{o_{0}}\right)$ and $Y_{o_{0}+1}^{\sharp}=\alpha\left(X_{o_{0}+1}\right)$, it follows that $\mathbb{F}^{\sharp}\left(Y_{o_{0}}^{\sharp}\right) \sqsubseteq \mathbb{F}^{\sharp}\left(\mathbb{F}^{\sharp}\left(Y_{o_{0}}^{\sharp}\right)\right)$.
By induction hypothesis, $Y_{o_{0}+1}^{\sharp}=\mathbb{F}^{\sharp}\left(Y_{o_{0}}^{\sharp}\right)$.
Thus, $Y_{o_{0}+1}^{\sharp} \sqsubseteq \mathbb{F}^{\sharp}\left(Y_{o_{0}+1}^{\sharp}\right)$.
Thus, we denote by $\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)$ the unique collection which satisfies the equations (2).
(c) Let us show that \mathbb{F}^{\sharp} has a fix-point.

The collection $\left(\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)\right)$ which is indexed over the ordinals is increasing.
Since D^{\sharp} is a set, it follows that there exists an ordinal o^{\sharp}, such that $\mathbb{F}^{\sharp o^{\sharp}}\left(\alpha\left(x_{0}\right)\right)=\mathbb{F}^{\sharp o^{\sharp}+1}\left(\alpha\left(x_{0}\right)\right)$.
Since $\left(\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)\right)$ satisfied equation (2), it follows that $\mathbb{F}^{\sharp}\left(\mathbb{F}^{\sharp o^{\sharp}}\left(\alpha\left(x_{0}\right)\right)\right)=\mathbb{F}^{\sharp o^{\sharp}}\left(\alpha\left(x_{0}\right)\right)$.
Moreover, we have already proven that $\alpha\left(x_{0}\right) \sqsubseteq \mathbb{F}^{\sharp o^{\sharp}}\left(\alpha\left(x_{0}\right)\right)$.
(d) Let is show that $\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)$ is the least fix-point of \mathbb{F}^{\sharp}.

Consider another fix-point $y^{\sharp} \in D^{\sharp}$ such that $\alpha\left(x_{0}\right) \sqsubseteq y^{\sharp}$.
We have $y^{\sharp}=\mathbb{F}^{\sharp}\left(y^{\sharp}\right)$.
Let us show by transfinite induction that $\mathbb{F}^{\sharp o^{\sharp}}\left(\alpha\left(x_{0}\right)\right) \sqsubseteq y^{\sharp}$.

- We have, by hypothesis, $\alpha\left(x_{0}\right) \sqsubseteq y^{\sharp}$.

Since, $\mathbb{F}^{\sharp 0}\left(\alpha\left(x_{0}\right)\right)=\alpha\left(x_{0}\right)$, it follows that $\mathbb{F}^{\sharp 0}\left(\alpha\left(x_{0}\right)\right) \sqsubseteq \alpha(y)$.

- Let us consider an ordinal o such that $\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right) \sqsubseteq y^{\sharp}$.

We know that $\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right) \in \alpha(D)$.
Thus there exists an element $x \in D$ such that $\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)=\alpha(x)$.
Then, $\alpha(x) \sqsubseteq y^{\sharp}$.
By Prop. 3.(4), since \mathbb{F} is monotonic, and by Prop. 3.(3), $\alpha(\mathbb{F}(\gamma(\alpha(x)))) \sqsubseteq \alpha\left(\mathbb{F}\left(\gamma\left(y^{\sharp}\right)\right)\right)$.

By hypothesis, $\mathbb{F}\left(\gamma\left(y^{\sharp}\right)\right) \subseteq \gamma\left(\mathbb{F}^{\sharp}\left(y^{\sharp}\right)\right)$.
By Prop. 3.(3), we get that $\alpha\left(\mathbb{F}\left(\gamma\left(y^{\sharp}\right)\right)\right) \sqsubseteq \alpha\left(\gamma\left(\mathbb{F}^{\sharp}\left(y^{\sharp}\right)\right)\right)$.

By Prop. 3. $(2), \alpha\left(\gamma\left(\mathbb{F}^{\sharp}\left(y^{\sharp}\right)\right)\right) \sqsubseteq \mathbb{F}^{\sharp}\left(y^{\sharp}\right)$.
Thus, by Def. 1.(3), $\alpha(\mathbb{F}(\gamma(\alpha(x)))) \sqsubseteq \mathbb{F}^{\sharp}\left(y^{\sharp}\right)$.

By hypothesis, $\alpha(\mathbb{F}(\gamma(\alpha(x))))=\mathbb{F}^{\sharp}(\alpha(x))$.
Moreover, $\alpha(x)=\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)$.
Thus, by extensionality, $\alpha\left(\mathbb{F}\left(\gamma\left(\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)\right)\right)\right)=\mathbb{F}^{\sharp}\left(\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)\right)$.
But by definition, $\mathbb{F}^{\sharp}\left(\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)\right)=\mathbb{F}^{\sharp o+1}\left(\alpha\left(x_{0}\right)\right)$.
Thus, $\mathbb{F}^{\sharp o+1}\left(\alpha\left(x_{0}\right)\right) \sqsubseteq \mathbb{F}^{\sharp}\left(y^{\sharp}\right)$.

By hypothesis, $\mathbb{F}^{\sharp}\left(y^{\sharp}\right)=y^{\sharp}$.
Thus $\mathbb{F}^{\sharp o+1}\left(\alpha\left(x_{0}\right)\right) \sqsubseteq y^{\sharp}$.

- Let us consider an ordinal o such that for any $\beta<o$, we have $\mathbb{F}^{\sharp \beta}\left(x_{0}\right) \sqsubseteq y$.

By Def. 3.(2), we get that $\sqcup\left\{\mathbb{F}^{\sharp \beta}\left(x_{0}\right) \mid \beta<o\right\} \sqsubseteq y$.
By hypothesis, $\mathbb{F}^{\sharp o}\left(x_{0}\right)=\sqcup\left\{\mathbb{F}^{\sharp \beta}\left(x_{0}\right) \mid \beta<o\right\}$.
Thus, $\mathbb{F}^{\sharp o}\left(x_{0}\right) \subseteq y$.
Thus, $\mathbb{F}^{\sharp O^{\sharp}}$ is the least fix-point of \mathbb{F}^{\sharp} which is bigger than $\alpha\left(x_{0}\right)$.
(e) Let us prove that $l f p_{x_{0}} \mathbb{F} \subseteq \gamma\left(l f p_{\alpha\left(x_{0}\right)} \mathbb{F}^{\sharp}\right)$.

We consider an ordinal β such that $o^{\bullet} \leq \beta$ and $o^{\sharp} \leq \beta$.
We have: $l f p_{x_{0}} \mathbb{F}=\mathbb{F}^{\beta}\left(x_{0}\right)$ and $l f p_{\alpha\left(x_{0}\right)} \mathbb{F}^{\sharp}=\mathbb{F}^{\sharp \beta}\left(\alpha\left(x_{0}\right)\right)$.
We show by transfinite induction that for any ordinal $o, \mathbb{F}^{o}\left(x_{0}\right) \subseteq \gamma\left(\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)\right)$.

- By hypotheses, we have $\mathbb{F}^{0}\left(x_{0}\right)=x_{0}$ and $\mathbb{F}^{\sharp 0}\left(\alpha\left(x_{0}\right)\right)=\alpha\left(x_{0}\right)$.

By Prop. 3.(1), we have $x_{0} \subseteq \gamma\left(\alpha\left(x_{0}\right)\right)$.
Thus, $\mathbb{F}^{0}\left(x_{0}\right) \subseteq \gamma\left(\mathbb{F}^{\sharp 0}\left(\alpha\left(x_{0}\right)\right)\right)$.

- We consider an ordinal o such that $\mathbb{F}^{o}\left(x_{0}\right) \subseteq \gamma\left(\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)\right)$.

By Def. 8 , we have: $\mathbb{F}^{o+1}\left(x_{0}\right)=\mathbb{F}\left(\mathbb{F}^{o}\left(x_{0}\right)\right)$.
Since \mathbb{F} is monotonic, we have: $\mathbb{F}\left(\mathbb{F}^{o}\left(x_{0}\right)\right) \subseteq \mathbb{F}\left(\gamma\left(\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)\right)\right)$.
By hypothesis, $\mathbb{F}\left(\gamma\left(\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)\right)\right) \subseteq \gamma\left(\mathbb{F}^{\sharp}\left(\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)\right)\right)$.
Then, by hypothesis, we have: $\mathbb{F}^{\sharp o+1}\left(\alpha\left(x_{0}\right)\right)=\mathbb{F}^{\sharp}\left(\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)\right)$.
And by extensionality, $\gamma\left(\mathbb{F}^{\sharp o+1}\left(\alpha\left(x_{0}\right)\right)\right)=\gamma\left(\mathbb{F}^{\sharp}\left(\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)\right)\right)$.
Thus: $\mathbb{F}^{o+1}\left(x_{0}\right) \subseteq \gamma\left(\mathbb{F}^{\sharp o+1}\left(\alpha\left(x_{0}\right)\right)\right)$.

- We consider an ordinal o such that for any ordinal $\beta<o$ we have: $\mathbb{F}^{\beta}\left(x_{0}\right) \subseteq \gamma\left(\mathbb{F}^{\sharp \beta}\left(\alpha\left(x_{0}\right)\right)\right)$. By Def. 8, we have: $\mathbb{F}^{o}\left(x_{0}\right)=\cup\left\{\mathbb{F}^{\beta}\left(x_{0}\right) \mid \beta<o\right\}$.
Thus, by Def. 3.(1), we get that, for any ordinal β such that $\beta<o, \mathbb{F}^{o}\left(x_{0}\right) \subseteq \gamma\left(\mathbb{F}^{\sharp \beta}\left(\alpha\left(x_{0}\right)\right)\right)$. Thus, since $\left\{\gamma\left(\mathbb{F}^{\sharp \beta}\left(\alpha\left(x_{0}\right)\right)\right) \mid \beta<o\right\}$ is a chain, by Def. 6, and by Def. 3.(2), it follows that: $\mathbb{F}^{o}\left(x_{0}\right) \subseteq \cup\left\{\gamma\left(\mathbb{F}^{\sharp \beta}\left(\alpha\left(x_{0}\right)\right)\right) \mid \beta<o\right\}$.

For any ordinal β such that $\beta<o$,
by Def. 3.(1), we have: $\left.\mathbb{F}^{\sharp \beta}\left(\alpha\left(x_{0}\right)\right) \subseteq \sqcup\left\{\mathbb{F}^{\sharp \beta}\left(\alpha\left(x_{0}\right)\right)\right) \mid \beta<o\right\}$;
then by Prop. 3.(4), we get that: $\left.\gamma\left(\mathbb{\mathbb { F } ^ { \sharp }} \boldsymbol{\beta}\left(\alpha\left(x_{0}\right)\right)\right) \subseteq \gamma\left(\sqcup\left\{\mathbb{F}^{\sharp \beta}\left(\alpha\left(x_{0}\right)\right)\right) \mid \beta<o\right\}\right)$.
Then by Def. 3.(2), it follows that $\left.\cup\left\{\gamma\left(\mathbb{F}^{\sharp \beta}\left(\alpha\left(x_{0}\right)\right)\right) \mid \beta<o\right\} \subseteq \gamma\left(\sqcup\left\{\mathbb{F}^{\sharp \beta}\left(\alpha\left(x_{0}\right)\right)\right) \mid \beta<o\right\}\right)$;
By hypothesis, $\left.\sqcup\left\{\mathbb{F}^{\sharp \beta}\left(\alpha\left(x_{0}\right)\right)\right) \mid \beta<o\right\}=\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)$.
Thus, by extensionality, $\left.\gamma\left(\sqcup\left\{\mathbb{F}^{\sharp \beta}\left(\alpha\left(x_{0}\right)\right)\right) \mid \beta<o\right\}\right)=\gamma\left(\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)\right)$.
It follows that: $\mathbb{F}^{o}\left(x_{0}\right) \subseteq \gamma\left(\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)\right)$.
Thus, $l f p_{x_{0}} \mathbb{F} \subseteq \gamma\left(l f p_{\mathbb{F}^{\sharp}} \alpha\left(x_{0}\right)\right)$.
(f) Let us prove that: $l f p_{x_{0}} \mathbb{F} \in \gamma\left(D^{\sharp}\right) \Longleftrightarrow l f p_{x_{0}} \mathbb{F}=\gamma\left(l f p_{\alpha\left(x_{0}\right)} \mathbb{F}^{\sharp}\right)$.
i. We assume that $l f p_{x_{0}} \mathbb{F}=\gamma\left(l f p_{\alpha\left(x_{0}\right)} \mathbb{F}^{\sharp}\right)$.

Then, by definition of $\gamma\left(D^{\sharp}\right), l f p_{x_{0}} \mathbb{F} \in \gamma\left(D^{\sharp}\right)$.
ii. Now we assume that $l f p_{x_{0}} \mathbb{F} \in \gamma\left(D^{\sharp}\right)$.
A. We know that: $l f p_{x_{0}} \mathbb{F} \subseteq \gamma\left(l f p_{\alpha\left(x_{0}\right)} \mathbb{F}^{\sharp}\right)$.
B. Let us prove that: $\gamma\left(l f p_{\alpha\left(x_{0}\right)} \mathbb{F}^{\sharp}\right) \subseteq l f p_{x_{0}} \mathbb{F}$.

We propose to prove by induction over the ordinals that $\mathbb{F}^{\sharp}\left(\alpha\left(x_{0}\right)\right) \sqsubseteq \alpha\left(l f p_{x_{0}} \mathbb{F}\right)$.
\star We have $x_{0} \subseteq l f p_{x_{0}} \mathbb{F}$.
By Prop. 3.(3), $\alpha\left(x_{0}\right) \sqsubseteq \alpha\left(l f p_{x_{0}} \mathbb{F}\right)$.
\star Let us assume that there exists an ordinal o, such that $\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right) \sqsubseteq \alpha\left(l f p_{x_{0}} \mathbb{F}\right)$.
There exists $x \in D$, such that $\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)=\alpha(x)$.
Thus $\alpha(x) \sqsubseteq \alpha\left(l f p_{x_{0}}\left(x_{0}\right)\right)$.
By Prop. 4, since \mathbb{F} is monotonic, and by Prop. 3, $\alpha(\mathbb{F}(\gamma(\alpha(x)))) \sqsubseteq \alpha\left(\mathbb{F}\left(\gamma\left(\alpha\left(l f p_{x_{0}}(\mathbb{F})\right)\right)\right)\right)$.
By hypothesis, $\alpha(\mathbb{F}(\gamma(\alpha(x))))=\mathbb{F}^{\sharp}(\alpha(x))$.
Since $\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)=\alpha(x)$, by extensionality, we get that: $\mathbb{F}^{\sharp}\left(\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)\right)=\mathbb{F}^{\sharp}(\alpha(x))$.
Since by equations (2), it follows that $\mathbb{F}^{\sharp o+1}\left(\alpha\left(x_{0}\right)\right)=\mathbb{F}^{\sharp}\left(\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)\right)$.
Thus, $\mathbb{F}^{\sharp o+1}\left(\alpha\left(x_{0}\right)\right) \sqsubseteq \alpha\left(\mathbb{F}\left(\gamma\left(\alpha\left(l f p_{x_{0}} \mathbb{F}\right)\right)\right)\right)$.
By Prop. 3.(1), $\gamma\left(\alpha\left(l f p_{x_{0}} \mathbb{F}\right)\right) \sqsubseteq l f p_{x_{0}} \mathbb{F}$.
Since \mathbb{F} is monotonic, $\mathbb{F}\left(\gamma\left(\alpha\left(l f p_{x_{0}} \mathbb{F}\right)\right)\right) \sqsubseteq \mathbb{F}\left(l f p_{x_{0}} \mathbb{F}\right)$.
But $\mathbb{F}\left(l f p_{x_{0}} \mathbb{F}\right)=l f p_{x_{0}} \mathbb{F}$.

Thus, $\mathbb{F}\left(\gamma\left(\alpha\left(l f p_{x_{0}} \mathbb{F}\right)\right)\right) \sqsubseteq l f p_{x_{0}} \mathbb{F}$.
By Prop. 3.(3), $\alpha\left(\mathbb{F}\left(\gamma\left(\alpha\left(l f p_{x_{0}} \mathbb{F}\right)\right)\right) \sqsubseteq \alpha\left(l f p_{x_{0}} \mathbb{F}\right)\right.$.

By Def. 1.(3), it follows that: $\mathbb{F}^{\sharp o+1}\left(\alpha\left(x_{0}\right)\right) \sqsubseteq \alpha\left(l f p_{x_{0}} \mathbb{F}\right)$.
\star Let us assume that there exists an ordinal o_{0}, such that for any ordinal $o<o_{0}, \mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right) \sqsubseteq$ $\alpha\left(l f p_{x_{0}} \mathbb{F}\right)$.

Since $\left(\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right)\right)$ is a chain, $\sqcup\left\{\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right) \mid o<o_{0}\right\}$ exists.
By Def. 3.(2), $\sqcup\left\{\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right) \mid o<o_{0}\right\} \sqsubseteq \alpha\left(l f p_{x_{0}} \mathbb{F}\right)$.
By equations (2), we have $\mathbb{F}^{\sharp o+1}\left(\alpha\left(x_{0}\right)\right)=\sqcup\left\{\mathbb{F}^{\sharp o}\left(\alpha\left(x_{0}\right)\right) \mid o<o_{0}\right\}$.
Thus, $\mathbb{F}^{\sharp o+1}\left(\alpha\left(x_{0}\right)\right) \sqsubseteq \alpha\left(l f p_{x_{0}} \mathbb{F}\right)$.

We have proved that $l f p_{\alpha\left(x_{0}\right)} \mathbb{F}^{\sharp} \sqsubseteq \alpha\left(l f p_{x_{0}} \mathbb{F}\right)$.
By Prop. 3.(4), $\gamma\left(l f p_{\alpha\left(x_{0}\right)} \mathbb{F}^{\sharp}\right) \subseteq \gamma\left(\alpha\left(l f p_{x_{0}} \mathbb{F}\right)\right)$.
But since, $l f p_{x_{0}} \mathbb{F} \in \gamma\left(D^{\sharp}\right)$, there exists $x \in D$, such that $\gamma(x)=l f p_{x_{0}} \mathbb{F}$.
By extensionality, $\gamma(\alpha(\gamma(x)))=\gamma\left(\alpha\left(l f p_{x_{0}} \mathbb{F}\right)\right)$.
By Prop. 3.(6), $\gamma(x)=\gamma(\alpha(\gamma(x)))$.
Thus $\gamma\left(\alpha\left(l f p_{x_{0}} \mathbb{F}\right)\right)=l f p_{x_{0}} \mathbb{F}$.
It follows that: $\gamma\left(l f p_{\alpha\left(x_{0}\right)} \mathbb{F}^{\sharp}\right) \subseteq l f p_{x_{0}} \mathbb{F}$.
Thus $l f p_{x_{0}} \mathbb{F}=\gamma\left(l f p_{\alpha\left(x_{0}\right)} \mathbb{F}^{\sharp}\right)$.

Corollary 1 (relative completeness). We suppose that:

1. (D, \subseteq, \cup) and $\left(D^{\sharp}, \sqsubseteq, \sqcup\right)$ are chain-complete partial orders;
2. $(D, \subseteq) \underset{\alpha}{\stackrel{\gamma}{\longleftrightarrow}}\left(D^{\sharp}, \sqsubseteq\right)$ is a Galois connexion;
3. for any chain $X^{\sharp} \subseteq D^{\sharp}, \cup\left(\gamma\left(X^{\sharp}\right)\right) \in \gamma\left(D^{\sharp}\right)$;
4. $\mathbb{F}: D \rightarrow D$ is a monotonic map;
5. x_{0} is a concrete element such that $x_{0} \subseteq \mathbb{F}\left(x_{0}\right)$;
6. $\alpha \circ \mathbb{F} \circ \gamma=\mathbb{F}^{\sharp}$;
7. $x_{0} \in \gamma\left(D^{\sharp}\right)$;
8. $\mathbb{F}\left(\gamma\left(D^{\sharp}\right)\right) \subseteq \gamma\left(D^{\sharp}\right)$.

Then, both $l f p_{x_{0}} \mathbb{F}$ and $l f p_{\alpha\left(x_{0}\right)} \mathbb{F}^{\sharp}$ exist, and moreover:

$$
l f p_{x_{0}} \mathbb{F}=\gamma\left(l f p_{\alpha\left(x_{0}\right)} \mathbb{F}^{\sharp}\right)
$$

Proof. We assume that the hypotheses of The. 1 are satisfied.

- By hypothesis $4, \mathbb{F}$ is monotonic.

By hypothesis $5, x_{0} \subseteq \mathbb{F}\left(x_{0}\right)$.
Thus, by Lem. $1, \mathbb{F}$ has a least fix-point greater than x_{0}.
Moreover, by Rem. 1, there exists an ordinal o such that $l f p_{x_{0}} \mathbb{F}=\mathbb{F}^{o}\left(x_{0}\right)$.

- Let us show by induction over the ordinal o that $\mathbb{F}^{o}\left(x_{0}\right) \in \gamma\left(D^{\sharp}\right)$.
- We have $\mathbb{F}^{0}\left(x_{0}\right)=x_{0}$.

By hypothesis $7, x_{0} \in \gamma\left(D^{\sharp}\right)$.
Thus $\mathbb{F}^{0}\left(x_{0}\right) \in \gamma\left(D^{\sharp}\right)$.

- We assume that there exists an ordinal β such that $\mathbb{F}^{\beta}\left(x_{0}\right) \in \gamma\left(D^{\sharp}\right)$.

By induction hypothesis, $\mathbb{F}^{\beta}\left(x_{0}\right) \in \gamma\left(D^{\sharp}\right)$.
By hypothesis $8, \mathbb{F}\left(\mathbb{F}^{\beta}\left(x_{0}\right)\right) \in \gamma\left(D^{\sharp}\right)$.
Since $\mathbb{F}^{\beta+1}\left(x_{0}\right)=\mathbb{F}\left(\mathbb{F}^{\beta}\left(x_{0}\right)\right)$.
It follows that $\mathbb{F}^{\beta+1}\left(x_{0}\right) \in \gamma\left(D^{\sharp}\right)$.

- We assume that there exists an ordinal β such that for any ordinal $\beta^{\prime}<\beta, \mathbb{F}^{\beta^{\prime}}\left(x_{0}\right) \in \gamma\left(D^{\sharp}\right)$.

We have $\mathbb{F}^{\beta}\left(x_{0}\right)=\cup\left\{\mathbb{F}^{\beta^{\prime}} \mid \beta^{\prime}<\beta\right\}$.
By hypothesis $3, \mathbb{F}^{\beta}\left(x_{0}\right) \in \gamma\left(D^{\sharp}\right)$.

Thus, since $l f p_{x_{0}} \mathbb{F}=\mathbb{F}^{o}\left(x_{0}\right)$, it follows that $l f p_{x_{0}} \mathbb{F} \in \gamma\left(D^{\sharp}\right)$.
All the hypotheses of The. 3 are satisfied.
Thus, $l f p_{\alpha\left(x_{0}\right)} \mathbb{F}^{\sharp}$ exists.
Moreover, since $l f p_{x_{0}} \mathbb{F} \in \gamma\left(D^{\sharp}\right)$, it follows that: $l f p_{\alpha\left(x_{0}\right)} \mathbb{F}^{\sharp}=\gamma\left(l f p_{\alpha\left(x_{0}\right)} \mathbb{F}^{\sharp}\right)$.

2 Site-graphs

Let \mathbb{N} be a countable set of agent identifiers.
Let \mathcal{A} be a finite set of agent types.
Let \mathcal{S} be a finite set of site types.

Definition 10 (site-graphs). A site-graph is a triple (Ag, Site, Link) where:
$-A g: \mathbb{N} \rightharpoonup \mathcal{A}$ is a partial map between \mathbb{N} and \mathcal{A} such that the subset of \mathbb{N} of the elements i such that $A g(i)$ is defined is finite;

- Site $\subseteq \mathbb{N} \times \mathcal{S}$ is a subset of $\mathbb{N} \times \mathcal{S}$ such that for any pair $(i, s) \in$ Site, $A g(i)$ is defined;
$-L i n k \subseteq S_{i t e}{ }^{2}$ is a relation over Site such that:

1. for any site $a \in$ Site, $(a, a) \notin$ Link;
2. for any pair $(a, b) \in \operatorname{Link}$, we have $(b, a) \in \operatorname{Link}$;
3. for any sites $a, b, b^{\prime} \in$ Site, if both $(a, b) \in \operatorname{Link}$ and $\left(a, b^{\prime}\right) \in \operatorname{Link}$, then $b=b^{\prime}$.

Whenever $(a, b) \in L i n k$, we say that there is a link between the site a and the site b.
Whenever $a \in$ Site, but there exists no $b \in$ Site such that $(a, b) \in L i n k$, we say that a is free.
Definition 11 (embeddings). An embedding between two site-graphs ($A g$, Site, Link) and ($A g^{\prime}$, Site $\left.^{\prime}, \operatorname{Link} k^{\prime}\right)$ is given by a partial mapping $\phi: \mathbb{N} \rightharpoonup \mathbb{N}$, such that:

1. (agent mapping) For any $i \in \mathbb{N}, A g(i)$ is defined if and only if $\phi(i)$ is defined;
2. (well-formedness) For any $i \in \mathbb{N}$, if $A g(i)$ is defined, then $A g^{\prime}(\phi(i))$ is defined;
3. (into mapping) For any $i, i^{\prime} \in \mathbb{N}$, if $\phi(i)$ and $\phi^{\prime}(i)$ are defined, then $\phi(i)=\phi\left(i^{\prime}\right) \Longrightarrow i=i^{\prime}$;
4. (agent types) For any $i \in \mathbb{N}$, if $\operatorname{Ag}(i)$ is defined, then $A g(i)=A g^{\prime}(\phi(i))$;
5. (site types) For any site $(i, s) \in$ Site, $(\phi(i), s) \in$ Site $^{\prime}$;
6. (free sites) For any pair $(i, s) \in$ Site such that for any $\left(i^{\prime}, s^{\prime}\right) \in$ Site, $\left((i, s),\left(i^{\prime}, s^{\prime}\right)\right) \notin$ Link, then for any $\left(i^{\prime \prime}, s^{\prime \prime}\right) \in$ Site $^{\prime},\left((\phi(i), s),\left(i^{\prime \prime}, s^{\prime \prime}\right)\right) \notin \operatorname{Link} ;$
7. (links) For any link $\left((i, s),\left(i^{\prime}, s^{\prime}\right)\right) \in \operatorname{Link},\left((\phi(i), s),\left(\phi\left(i^{\prime}\right), s^{\prime}\right)\right) \in \operatorname{Link}$.

Definition 12 (automorphism). An embedding between a site-graph and itself is called an automorphism.
Definition 13 (paths). Let $\mathcal{G}=($ Ag, Site, Link) be a site-graph. We define a path of length $n>0$ in the site-graph \mathcal{G} a sequence $\left(i_{k}, s_{k}\right)_{0 \leq k \leq 2 \times n-1}$ of $2 \times n$ pairs of sites in Site such that:

1. For any j such that $0 \leq j<n$, $\left(\left(i_{2 \times j}, s_{2 \times j}\right),\left(i_{2 \times j+1}, s_{2 \times j+1}\right)\right) \in$ Link.
2. For any j such that $1 \leq j<n, i_{2 \times j}=i_{2 \times j-1}$ and $s_{2 \times j} \neq s_{2 \times j-1}$.

Proposition 7 (sub-paths). Let $\mathcal{G}=\left(\right.$ Ag, Site, Link) be a site-graph and $\left(i_{k}, s_{k}\right)_{0 \leq k \leq 2 \times n-1}$ be a path of length $n>0$ in the site-graph \mathcal{G}. Let m, m^{\prime} be two integers such that $0 \leq m<m^{\prime} \leq n$, then, $\left(i_{k}, s_{k}\right)_{2 \times m \leq k \leq 2 \times m^{\prime}-1}$ is a path in the site-graph \mathcal{G}.

Proof. We have $m^{\prime}-m>0$.
For any integer k such that $2 \times m \leq k \leq 2 \times m^{\prime}-1$, we have by Def. $13,\left(i_{k}, s_{k}\right) \in$ Site.
Moreover,

1. for any integer k such that $m \leq k<m^{\prime}$, by Def. 13.(1), $\left(\left(i_{2 \times k}, s_{2 \times k}\right),\left(i_{2 \times k+1}, s_{2 \times k+1}\right)\right) \in$ Link;
2. for any integer k such that $m<k<m^{\prime}$, by Def. 13.(2), $i_{2 \times k}=i_{2 \times k-1}$ and $s_{2 \times k} \neq s_{2 \times k-1}$.

By Def. 13 , it follows that $\left(i_{k}, s_{k}\right)_{2 \times m \leq k \leq 2 \times m^{\prime}-1}$ is a path in the site-graph \mathcal{G}.

Proposition 8 (path composition). Let $\mathcal{G}=\left(\right.$ Ag, Site, Link) be a site-graph and $\left(i_{k}, s_{k}\right)_{0 \leq k \leq 2 \times n-1}$ and $\left(i_{k}^{\prime}, s_{k}^{\prime}\right)_{0 \leq k \leq 2 \times n^{\prime}-1}$ be two paths of length $n>0$ and $n^{\prime}>0$ in the site-graph \mathcal{G} such that $i_{2 \times n-1}=i_{0}^{\prime}$ and $s_{2 \times n-1} \neq s_{0}^{\prime}$.
Then, the sequence $\left(i_{k}^{\prime \prime}, s_{k}^{\prime \prime}\right)_{0 \leq k \leq 2 \times\left(n+n^{\prime}\right)-1}$ where:

$$
\begin{cases}\left(i_{k}^{\prime \prime}, s_{k}^{\prime \prime}\right)=\left(i_{k}, s_{k}\right) & \text { whenever } 0 \leq k \leq 2 \times n-1 \\ \left(i_{k}^{\prime \prime}, s_{k}^{\prime \prime}\right)=\left(i_{k-2 \times n}^{\prime}, s_{k-2 \times n}^{\prime}\right) & \text { whenever } 2 \times n \leq k \leq 2 \times\left(n+n^{\prime}\right)-1\end{cases}
$$

is a path of length $n+n^{\prime}$ in \mathcal{G}.
Proof. Let $\mathcal{G}=\left(A g\right.$, Site, Link) be a site-graph and $\left(i_{k}, s_{k}\right)_{0 \leq k \leq 2 \times n-1}$ and $\left(i_{k}^{\prime}, s_{k}^{\prime}\right)_{0 \leq k \leq 2 \times n^{\prime}-1}$ be two paths of size $n>0$ and $n^{\prime}>0$ in the site-graph \mathcal{G} such that $i_{2 \times n-1}=i_{0}^{\prime}$ and $s_{2 \times n-1} \neq s_{0}^{\prime}$.
We have $2 \times\left(n+n^{\prime}\right)>0$.
We consider the sequence $\left(i_{k}^{\prime \prime}, s_{k}^{\prime \prime}\right)_{0 \leq k \leq 2 \times\left(n+n^{\prime}\right)-1}$ which is defined as follows:

$$
\begin{cases}\left(i_{k}^{\prime \prime}, s_{k}^{\prime \prime}\right)=\left(i_{k}, s_{k}\right) & \text { whenever } 0 \leq k \leq 2 \times n-1 \\ \left(i_{k}^{\prime \prime}, s_{k}^{\prime \prime}\right)=\left(i_{k-2 \times n}^{\prime}, s_{k-2 \times n}^{\prime}\right) & \text { whenever } 2 \times n \leq k \leq 2 \times\left(n+n^{\prime}\right)-1\end{cases}
$$

Let k be an integer such that $0 \leq k \leq 2 \times\left(n+n^{\prime}\right)-1$.

- We assume that $k \leq 2 \times n-1$.

We have: $\left(i_{k}^{\prime \prime}, s_{k}^{\prime \prime}\right)=\left(i_{k}, s_{k}\right)$.
Thus, by Def. 13, $\left(i_{k}, s_{k}\right) \in$ Site.
Thus $\left(i_{k}^{\prime \prime}, s_{k}^{\prime \prime}\right) \in$ Site.

- We assume that $k>2 \times n-1$.

We have: $\left(i_{k}^{\prime \prime}, s_{k}^{\prime \prime}\right)=\left(i_{k-2 \times n}^{\prime}, s_{k-2 \times n}^{\prime}\right)$.
Thus, by Def. 13, $\left(i_{k-2 \times n}^{\prime}, s_{k-2 \times n}^{\prime}\right) \in$ Site.
Thus $\left(i_{k}^{\prime \prime}, s_{k}^{\prime \prime}\right) \in$ Site.

- Let k be an integer such that $0 \leq k<n+n^{\prime}$.
- We assume that $k<n$.

We have $\left(i_{2 \times k}^{\prime \prime}, s_{2 \times k}^{\prime \prime}\right)=\left(i_{2 \times k}, s_{2 \times k}\right)$ and $\left(i_{2 \times k+1}^{\prime \prime}, s_{2 \times k+1}^{\prime \prime}\right)=\left(i_{2 \times k+1}, s_{2 \times k+1}\right)$.
Since $\left(i_{k}, s_{k}\right)_{0 \leq k \leq 2 \times n-1}$ is a path, by Def. 13.(1), $\left(\left(i_{2 \times k}, s_{2 \times k}\right),\left(i_{2 \times k+1}, s_{2 \times k+1}\right)\right) \in$ Link.
Thus, $\left(\left(i_{2 \times k}^{\prime \prime}, s_{2 \times k}^{\prime \prime}\right),\left(i_{2 \times k+1}^{\prime \prime}, s_{2 \times k+1}^{\prime \prime}\right)\right) \in$ Link.

- We assume that $k \geq n$.

We have $\left(i_{2 \times k}^{\prime \prime}, s_{2 \times k}^{\prime \prime}\right)=\left(i_{2 \times(k-n)}^{\prime}, s_{2 \times(k-n)}^{\prime}\right)$ and $\left(i_{2 \times k+1}^{\prime \prime}, s_{2 \times k+1}^{\prime \prime}\right)=\left(i_{2 \times(k-n)+1}^{\prime}, s_{2 \times(k-n)+1}^{\prime}\right)$.
We know that the sequence $\left(i_{k}^{\prime}, s_{k}^{\prime}\right)_{0 \leq k \leq 2 \times n^{\prime}-1}$ is a path.
By Def. 13.(1), $\left(\left(i_{2 \times(k-n)}^{\prime}, s_{2 \times(k-n)}^{\prime}\right),\left(i_{2 \times(k-n)+1}^{\prime}, s_{2 \times(k-n)+1}^{\prime}\right)\right) \in$ Link.
Thus, $\left(\left(i_{2 \times k}^{\prime \prime}, s_{2 \times k}^{\prime \prime}\right),\left(i_{2 \times k+1}^{\prime \prime}, s_{2 \times k+1}^{\prime \prime}\right)\right) \in$ Link.

- Let k be an integer such that $1 \leq k<n+n^{\prime}$.
- We assume that $k<n$.

We have $\left(i_{2 \times k}^{\prime \prime}, s_{2 \times k}^{\prime \prime}\right)=\left(i_{2 \times k}, s_{2 \times k}\right)$ and $\left(i_{2 \times k-1}^{\prime \prime}, s_{2 \times k-1}^{\prime \prime}\right)=\left(i_{2 \times k-1}, s_{2 \times k-1}\right)$.
Since $\left(i_{k}, s_{k}\right)_{0 \leq k \leq 2 \times n-1}$ is a path, by Def. 13.(2), $i_{2 \times k}=i_{2 \times k-1}$ and $s_{2 \times k} \neq s_{2 \times k-1}$.
Thus, $i_{2 \times k}^{\prime \prime}=\overline{i_{2 \times k-1}^{\prime \prime}}$ and $s_{2 \times k}^{\prime \prime} \neq s_{2 \times k-1}^{\prime \prime}$.

- We assume that $k=n$.

We have $i_{2 \times k}^{\prime \prime}=i_{0}^{\prime}, i_{2 \times k-1}^{\prime \prime}=i_{2 \times n-1}, s_{2 \times k}^{\prime \prime}=s_{0}^{\prime}, s_{2 \times k-1}^{\prime \prime}=s_{2 \times n-1}$.
By hypothesis, $i_{0}^{\prime}=i_{2 \times n-1}$ and $s_{0}^{\prime} \neq s_{2 \times n-1}$.
Thus, $i_{2 \times k}^{\prime \prime}=i_{2 \times k-1}^{\prime \prime}$ and $s_{2 \times k}^{\prime \prime} \neq s_{2 \times k-1}^{\prime \prime}$.

- We assume that $k>n$.

We have $\left(i_{2 \times k}^{\prime \prime}, s_{2 \times k}^{\prime \prime}\right)=\left(i_{2 \times(k-n)}^{\prime}, s_{2 \times(k-n)}^{\prime}\right)$ and $\left(i_{2 \times k-1}^{\prime \prime}, s_{2 \times k-1}^{\prime \prime}\right)=\left(i_{2 \times(k-n)-1}^{\prime}, s_{2 \times(k-n)-1}^{\prime}\right)$.
Since $\left(i_{k}^{\prime}, s_{k}^{\prime}\right)_{0 \leq k \leq 2 \times n^{\prime}-1}$ is a path, by Def. 13.(2), $i_{2 \times(k-n)}^{\prime}=i_{2 \times(k-n)-1}^{\prime}$ and $s_{2 \times(k-n)}^{\prime} \neq s_{2 \times(k-n)-1}^{\prime}$. Thus, $i_{2 \times k}^{\prime \prime}=i_{2 \times k-1}^{\prime \prime}$ and $s_{2 \times k}^{\prime \prime} \neq s_{2 \times k-1}^{\prime \prime}$.

Thus, by Def. $13,\left(i_{k}^{\prime \prime}, s_{k}^{\prime \prime}\right)_{0 \leq k \leq 2 \times\left(n+n^{\prime}\right)-1}$ is a path in \mathcal{G}.

Proposition 9 (path image). Let $\mathcal{G}=($ Ag, Site, Link) be a site-graph, ϕ be an automorphism of \mathcal{G}, and $\left(i_{k}, s_{k}\right)_{0 \leq k \leq 2 \times n-1}$ be a path of length $n>0$ in \mathcal{G}, then $\left(\phi\left(i_{k}\right), s_{k}\right)_{0 \leq k \leq 2 \times n-1}$ is a path of length n in \mathcal{G}.

Proof. Let $\mathcal{G}=($ Ag, Site, Link $)$ be a site-graph, ϕ be an automorphism of \mathcal{G}, and $\left(i_{k}, s_{k}\right)_{0 \leq k \leq 2 \times n-1}$ be a path in \mathcal{G}, then $\left(\phi\left(i_{k}\right), s_{k}\right)_{0 \leq k \leq 2 \times n-1}$ is a path in \mathcal{G}.

- Let k be an integer such that $0 \leq k \leq 2 \times n-1$.

By Def. $13,\left(i_{k}, s_{k}\right) \in$ Site.
By Def. 10, $A g\left(i_{k}\right)$ is defined.
By Def. 11.(1), $\phi\left(i_{k}\right)$ is defined.
By Def. 11.(2), $A g\left(\phi\left(i_{k}\right)\right)$ is defined.
By Def. 11.(5), $\left(\phi\left(i_{k}\right), s_{k}\right) \in$ Site.

- Let k be an integer such that $0 \leq k<n$.

By Def. 13.(1), $\left(\left(i_{2 \times k}, s_{2 \times k}\right),\left(i_{2 \times k+1}, s_{2 \times k+1}\right)\right) \in$ Link.
By Def. 11.(7), $\left(\left(\phi\left(i_{2 \times k}\right), s_{2 \times k}\right),\left(\phi\left(i_{2 \times k+1}\right), s_{2 \times k+1}\right)\right) \in$ Link.

- Let k be an integer such that $1 \leq k<n$.

By Def. 13.(2), $i_{2 \times k}=i_{2 \times k-1}$ and $s_{2 \times k} \neq s_{2 \times k-1}$.
By extensionality, $\phi\left(i_{2 \times k}\right)=\phi\left(i_{2 \times k-1}\right)$.

Thus, by Def. $13,\left(\phi\left(i_{k}\right), s_{k}\right)_{0 \leq k \leq 2 \times n-1}$ is a path in \mathcal{G}.

Definition 14 (connected components). A site-graph (Ag, Site, Link) is a connected component, if and only if, for any pair $\left(i, i^{\prime}\right) \in \mathbb{N}^{2}$ of agent identifiers such that $\operatorname{Ag}(i)$ and $\operatorname{Ag}\left(i^{\prime}\right)$ are defined and $i \neq i^{\prime}$, there exists a pair $\left(s, s^{\prime}\right) \in \mathcal{S}^{2}$ of site types, such that $(i, s) \in$ Site, $\left(i^{\prime}, s^{\prime}\right) \in$ Site, and there is a path in \mathcal{G} between the site (i, s) and the site (i^{\prime}, s^{\prime}).

Definition 15 (cycle). Let \mathcal{G} be a site-graph. A cycle of length $n>0$ is a path $\left(i_{k}, s_{k}\right)_{0 \leq k \leq 2 \times n-1}$ in the site-graph \mathcal{G} such that $i_{0}=i_{2 \times n-1}$ and $s_{0} \neq s_{2 \times n-1}$.

Lemma 1 (rigidity) An embedding between two connected components is fully characterized by the image of one agent.

Proof. Let $\mathcal{G}=(A g$, Site, Link $)$ and $\mathcal{G}^{\prime}=\left(A g^{\prime}\right.$, Site ${ }^{\prime}$, Link $\left.k^{\prime}\right)$ be two connected components and ϕ, ϕ^{\prime} be two embeddings between \mathcal{G} and \mathcal{G}^{\prime}.

Let $i \in \mathbb{N}$ be an agent identifier such that $A g(i)$ is defined.
We assume that $\phi(i)=\phi^{\prime}(i)$.
For any agent identifier $i^{\prime} \in \mathbb{N}$,

- We assume that $\operatorname{Ag}\left(i^{\prime}\right)$ is not defined.

Then by Def. 11.(1), neither $\phi\left(i^{\prime}\right)$ nor $\phi^{\prime}\left(i^{\prime}\right)$ are defined.

- We assume that $A g\left(i^{\prime}\right)$ is defined and that $i^{\prime}=i$.

By hypothesis, $\phi(i)=\phi^{\prime}(i)$.
Thus, $\phi\left(i^{\prime}\right)=\phi^{\prime}\left(i^{\prime}\right)$.

- We assume that $\operatorname{Ag}\left(i^{\prime}\right)$ is defined and that $i^{\prime} \neq i$.

By Def. 14 and since $i \neq i^{\prime}$, there exist two sites s and s^{\prime} and a path $\left(i_{k}, s_{k}\right)_{0 \leq k \leq 2 \times n-1}$ of length $n>0$ between (i, s) and $\left(i^{\prime}, s^{\prime}\right)$.
Moreover, by Def. 11.(1), both $\phi(i)$ and $\phi^{\prime}(i)$ are defined.

By absurd, let us assume that $\phi\left(i^{\prime}\right) \neq \phi^{\prime}\left(i^{\prime}\right)$ and that n is minimal for this property.
We have $n>0$.

- For any $j \in \mathbb{N}$, such that $0 \leq j<n$, we have by Def. 13.(1), $\left(\left(i_{2 \times j}, s_{2 \times j}\right),\left(i_{2 \times j+1}, s_{2 \times j+1}\right)\right) \in$ Link;
- For any j such that $1 \leq j<n$, we have by Def. 13.(2), $i_{2 \times j}=i_{2 \times j-1}$ and $s_{2 \times j}=s_{2 \times j-1}$.

We consider two cases:

1. We assume that $n=1$.

We have $\phi\left(i_{2 \times n}\right)=\phi^{\prime}\left(i_{2 \times n}\right)$.
2. We assume that $n \geq 2$.

Thus, by Def. 13, $\left(i_{k}, s_{k}\right)_{0 \leq k \leq 2 \times(n-1)+1}$ is a path between $i_{0}=i$ and $i_{2 \times(n-1)+1}$.
Since n is minimal, we get that $\phi\left(i_{2 \times(n-1)+1}\right)=\phi^{\prime}\left(i_{2 \times(n-1)+1}\right)$.
By Def. 13.(2), we have $i_{2 \times(n-1)+1}=i_{2 \times(n-1)+2}$ and $s_{2 \times(n-1)+1} \neq s_{2 \times(n-1)+2}$.
Thus, by extensionality, $\phi\left(i_{2 \times(n-1)+1}\right)=\phi\left(i_{2 \times(n-1)+2}\right)$ and $\phi^{\prime}\left(i_{2 \times(n-1)+1}\right)=\phi^{\prime}\left(i_{2 \times(n-1)+2}\right)$.
Thus, $\phi\left(i_{2 \times n}\right)=\phi^{\prime}\left(i_{2 \times n}\right)$.
By Def. 13.(1), we have $\left(\left(i_{2 \times n}, s_{2 \times n}\right),\left(i_{2 \times n+1}, s_{2 \times n+1}\right)\right) \in L i n k$.
Thus, by Def. 11.(7), $\left(\left(\phi\left(i_{2 \times n}\right), s_{2 \times n}\right),\left(\phi\left(i_{2 \times n+1}\right), s_{2 \times n+1}\right)\right) \in \operatorname{Link}$
and $\left(\left(\phi^{\prime}\left(i_{2 \times n}\right), s_{2 \times n}\right),\left(\phi^{\prime}\left(i_{2 \times n+1}\right), s_{2 \times n+1}\right)\right) \in$ Link.
Since $\phi\left(i_{2 \times n}\right)=\phi^{\prime}\left(i_{2 \times n}\right)$, it follows that $\left(\left(\phi\left(i_{2 \times n}\right), s_{2 \times n}\right),\left(\phi\left(i_{2 \times n+1}\right), s_{2 \times n+1}\right)\right) \in \operatorname{Link}$
and $\left(\left(\phi\left(i_{2 \times n}\right), s_{2 \times n}\right),\left(\phi^{\prime}\left(i_{2 \times n+1}\right), s_{2 \times n+1}\right)\right) \in$ Link.
Then, by Def. 10.(3), it follows that $\phi\left(i_{2 \times n+1}\right)=\phi^{\prime}\left(i_{2 \times n+1}\right)$.
Thus, since $i^{\prime}=i_{2 \times n+1}, \phi\left(i^{\prime}\right)=\phi^{\prime}\left(i^{\prime}\right)$ which is absurd.

So whenever $A g\left(i^{\prime}\right)$ is defined, $\phi\left(i^{\prime}\right)=\phi^{\prime}\left(i^{\prime}\right)$.
Thus ϕ and ϕ^{\prime} are equal.

Proposition 10. Let $\mathcal{G}=(A g$, Site, Link $)$ be a connected component without any cycle. Let ϕ be an automorphism of \mathcal{G}. Let i be an agent identifier such that $\operatorname{Ag}(i)$ is defined. Let $\left(i_{k}, s_{k}\right)_{0 \leq k \leq 2 \times n-1}$ be a path between i and $\phi(i)$.
Then $s_{0}=s_{2 \times n-1}$.
Proof. Let $\mathcal{G}=(A g$, Site, Link $)$ be a connected component without any cycle.
Let ϕ be an automorphism of \mathcal{G}.
Let i be an agent identifier such that $\operatorname{Ag}(i)$ is defined.

Let $\left(i_{k}, s_{k}\right)_{0 \leq k \leq 2 \times n-1}$ be a path between i and $\phi(i)$ such that $s_{0} \neq s_{2 \times n-1}$.
Let us prove by induction over m, that for any $m \in \mathbb{N},\left(\phi^{m}\left(i_{k}\right), s_{k}\right)_{0 \leq k \leq 2 \times n-1}$ is a path in \mathcal{G}.

- We assume that $m=0$.

The sequence $\left(\phi^{m}\left(i_{k}\right), s_{k}\right)_{0 \leq k \leq 2 \times n-1}$ is equal to the sequence $\left(i_{k}, s_{k}\right)_{0 \leq k \leq 2 \times n-1}$.
By hypothesis, $\left(i_{k}, s_{k}\right)_{0 \leq k \leq 2 \times n-1}$ is a path in \mathcal{G}.
Thus, $\left(\phi^{m}\left(i_{k}\right), s_{k}\right)_{0 \leq k \leq 2 \times n-1}$ is a path in \mathcal{G}.

- We consider $m \in \mathbb{N}$ such that $\left(\phi^{m}\left(i_{k}\right), s_{k}\right)_{0 \leq k \leq 2 \times n-1}$ is a path in \mathcal{G}.

By Prop. 9, $\left(\phi\left(\phi^{m}\left(i_{k}\right)\right), s_{k}\right)_{0 \leq k \leq 2 \times n-1}$ is a path in \mathcal{G}.
Since the sequence, $\left(\phi\left(\phi^{m}\left(i_{k}\right)\right), s_{k}\right)_{0 \leq k \leq 2 \times n-1}$ is equal to the sequence $\left(\phi^{m+1}\left(i_{k}\right), s_{k}\right)_{0 \leq k \leq 2 \times n-1}$. $\left(\phi^{m+1}\left(i_{k}\right), s_{k}\right)_{0 \leq k \leq 2 \times n-1}$ is a path in $\overline{\mathcal{G}}$.

Let us prove by induction over m^{\prime}, that for any $m, m^{\prime} \in \mathbb{N}$, such that $m<m^{\prime}$, there exists a path $\left(i_{k}^{\prime}, s_{k}^{\prime}\right)_{0 \leq k \leq 2 \times n^{\prime}-1}$ in \mathcal{G} such that $i_{0}^{\prime}=\phi^{m}\left(i_{0}\right), i_{2 \times n^{\prime}-1}^{\prime}=\phi^{m^{\prime}}\left(i_{0}\right), s_{0}^{\prime}=s_{0}$, and $s_{2 \times n^{\prime}-1}^{\prime}=s_{2 \times n-1}$.

- We assume that $m^{\prime}=m+1$.

We have $\phi^{m^{\prime}}\left(i_{0}\right)=\phi^{m}\left(\phi\left(i_{0}\right)\right)$.
We have proved that $\left(\phi^{m}\left(i_{k}\right), s_{k}\right)_{0 \leq k \leq 2 \times n-1}$ is a path in \mathcal{G}.
Moreover, $\phi^{m}\left(i_{0}\right)=\phi^{m}\left(i_{0}\right)$.

Since $i_{2 \times n-1}=\phi\left(i_{0}\right)$, by extensionaly, $\phi\left(\phi^{m}\left(i_{0}\right)\right)=\phi\left(\phi^{m}\left(i_{0}\right)\right)$.
So $\phi^{m}\left(i_{2 \times n-1}\right)=\phi^{m^{\prime}}\left(i_{2 \times n-1}\right)$.

Lastly, $s_{0}=s_{0}$ and $s_{2 \times n-1}=s_{2 \times n-1}$.

- We assume that there exist $m, m^{\prime} \in \mathbb{N}$, such that $m<m^{\prime}$ and a path $\left(i_{k}^{\prime}, s_{k}^{\prime}\right)_{0 \leq k \leq 2 \times n^{\prime}-1}$ in \mathcal{G} such that $i_{0}^{\prime}=\phi^{m}\left(i_{0}\right)$ and $i_{2 \times n^{\prime}-1}^{\prime}=\phi^{m^{\prime}}\left(i_{0}\right)$ such that $s_{0}^{\prime}=s_{0}$ and $s_{2 \times n^{\prime}-1}^{\prime}=s_{2 \times n-1}$.

We have already proved that there exists a path $\left(i_{k}^{\prime \prime}, s_{k}^{\prime \prime}\right)_{0 \leq k \leq 2 \times n^{\prime \prime}-1}$ in \mathcal{G} such that $i_{0}^{\prime \prime}=\phi^{m^{\prime}}\left(i_{0}\right)$, $i_{2 \times n^{\prime \prime}-1}^{\prime \prime}=\phi^{m^{\prime}+1}\left(i_{0}\right), s_{0}^{\prime \prime}=s_{0}$ and $s_{2 \times n^{\prime \prime}-1}^{\prime \prime}=s_{2 \times n-1}$.

Since $s_{0} \neq s_{2 \times n-1}$, by Prop. 8 , there exists a path between the site $\left(\phi^{m}\left(i_{0}\right), s_{0}\right)$ and the site $\left(\phi^{m^{\prime}+1}\left(i_{0}\right), s_{2 \times n-1}\right)$ in \mathcal{G}.

By Def. 10, Def. 11.(1), and Def. 11.(2), the set $\left\{\phi^{m^{\prime \prime}}\left(i_{0}\right) \mid m^{\prime \prime} \in \mathbb{N}\right\}$ is finite.
Thus there exists $m<m^{\prime}$ such that $\phi^{m}\left(i_{0}\right)=\phi^{m^{\prime}}\left(i_{0}\right)$.
By Def. 15 , there exists a cycle in $(A g, S i t e, L i n k)$, which is absurd.

Lemma 2 (automorphism) Let $\mathcal{G}=($ Ag, Site, Link) be a connected component without any cycle.
$-\mathcal{G}$ has at most two automorphisms.

- If ϕ is a automorphism over \mathcal{G}, such that there exists $i \in \mathbb{N}$, such that $\operatorname{Ag}(i)$ is defined and $\phi(i) \neq i$, then there exist two agent identifiers $i, i^{\prime} \in \mathbb{N}$ and a site type $s \in \mathcal{S}$, such that $\operatorname{Ag}(i)=\operatorname{Ag}\left(i^{\prime}\right),(i, s),\left(i^{\prime}, s\right) \in$ Site, and $\left((i, s),\left(i^{\prime}, s\right)\right) \in$ Link.

Proof. Let (Ag, Site, Link) be a connected component without any cycle.

- By Def. 11, the identify function restricted to the elements $i \in \mathbb{N}$ such that $A g(i)$ is defined, is an automorphism.
- Let us assume that there exists another automorphism ϕ of (Ag, Site, Link).
- Let us show that for any agent identifier $i \in \mathbb{N}$ such that $\operatorname{Ag}(i)$ is defined, then $\phi(i) \neq i$.

We assume that there exists $i \in \mathbb{N}$ such that $A g(i)$ is defined and $\phi(i)=i$.
Then, ϕ and the restriction of the identify function to the elements $i \in \mathbb{N}$ such that $A g(i)$ is defined are two embeddings between ($A g, S i t e, L i n k)$ and ($A g, S i t e, L i n k)$.
Since ($A g, S i t e, L i n k)$ is connected, by Lem. $1, \phi$ is equal to the restriction of the identify function to the elements $i \in \mathbb{N}$ such that $A g(i)$ is defined are two embeddings between ($A g$, Site, Link $)$ and (Ag , Site, Link), which is absurd.

- Let $i \in \mathbb{N}$ be an agent identifier such that $A g(i)$ is defined.

Since $(A g$, Site, $\operatorname{Link})$ is connected and $i \neq \phi(i)$, we can consider a path $\left(i_{k}, s_{k}\right)_{0 \leq k \leq 2 \times n-1}$ between i and $\phi(i)$.

By Prop. 10, $s_{0}=s_{2 \times n-1}$.
Let us prove by induction, that for any $k \in \mathbb{N}$, such that $0 \leq k \leq n, \operatorname{Ag}\left(i_{k}\right)=\operatorname{Ag}\left(i_{2 \times n-1-k}\right)$, $s_{k}=s_{2 \times n-1-k}, \phi\left(i_{k}\right)=i_{2 \times n-1-k}$.

* We assume that $k=0$.

By Def. 13, we have $i_{0}=i$ and $i_{2 \times n-1}=\phi(i)$.
By Def. 11.(4), $A g(\phi(i))=A g(1)$.
Thus, $A g\left(i_{0}\right)=A g\left(i_{2 \times n-1}\right)$.

By hypothesis, we have $s_{0}=s_{2 \times n-1}$.

By hypothesis, we have $\phi\left(i_{0}\right)=i_{2 \times n-1}$.

* We assume that there exists $k \in \mathbb{N}$ such that $0 \leq k<n, A g\left(i_{k}\right)=A g\left(i_{2 \times n-k-1}\right), s_{k}=s_{2 \times n-k-1}$ and $\phi\left(i_{k}\right)=i_{2 \times n-1-k}$.
- We assume that k is even.

We have by Def. 13.(1), $\left(\left(i_{k}, s_{k}\right),\left(i_{k+1}, s_{k+1}\right)\right) \in \operatorname{Link}$
and $\left(\left(i_{2 \times n-k}, s_{2 \times n-k}\right),\left(i_{2 \times n-k+1}, s_{2 \times n-k+1}\right)\right) \in$ Link.
By Def. 10, $\left(\left(i_{2 \times n-k+1}, s_{2 \times n-k+1}\right),\left(i_{2 \times n-k}, s_{2 \times n-k}\right)\right) \in$ Link.

By Def. 11.(1), $\phi\left(i_{k}\right)$ and $\phi\left(i_{k+1}\right)$ are defined.
By Def. 11.(2), $A g\left(\phi\left(i_{k}\right)\right)$ and $\operatorname{Ag}\left(\phi\left(i_{k+1}\right)\right)$ are defined.
By Def. 11.(5), $\left(\phi\left(i_{k}\right), s_{k}\right) \in$ Site and $\left(\phi\left(i_{k+1}\right), s_{k+1}\right) \in$ Site.
By Def. 11.(7), $\left(\left(\phi\left(i_{k}\right), s_{k}\right),\left(\phi\left(i_{k+1}\right), s_{k+1}\right)\right) \in$ Link.
By induction hypothesis, $\phi\left(i_{k}\right)=i_{2 \times n+1-k}$ and $s_{k}=s_{2 \times n+1-k}$.
Thus, $\left(\left(i_{2 \times n-k+1}, s_{2 \times n-k+1}\right),\left(\phi\left(i_{k+1}\right), s_{k+1}\right)\right) \in$ Link.
We already proved that $\left(\left(i_{2 \times n-k+1}, s_{2 \times n-k+1}\right),\left(i_{2 \times n-k}, s_{2 \times n-k}\right)\right) \in$ Link.
By Def. 10.(3), it follows that $\phi\left(i_{k+1}\right)=i_{2 \times n-k}$ and $s_{k+1}=s_{2 \times n-k}$.

We assume that k is odd and $k<n$

We have by Def. 13.(2), $i_{k}=i_{k+1}$ and $i_{2 \times n-k}=i_{2 \times n-k+1}$.
By induction hypothesis, $\phi\left(i_{k}\right)=i_{2 \times n-k+1}$.
By extensionality, $\phi\left(i_{k+1}\right)=i_{2 \times n-k+1}$.
Thus, $\phi\left(i_{k+1}\right)=i_{2 \times n-k}$.
We can deduce that $i_{k+1} \neq i_{2 \times n-k}$.
Since, moreover, $\left(i_{l}, s_{l}\right)_{0 \leq l \leq 2 \times n+1}$ is a path and $k+1$ is even, $2 \times n-k-1$ is even, and $k+1<2 \times n-k+1$, and by Prop. $7,\left(i_{l}, s_{l}\right)_{k+1 \leq l \leq 2 \times n-k}$ is a path between $\left(i_{l+1}, s_{l+1}\right)$ and $\left(\phi\left(i_{l+1}\right), s_{2 \times n-k}\right)$.
Thus, by Lem. 10, $s_{k+1}=s_{2 \times n-k}$.
By Def. 10, $\left(\left(i_{2 \times n-k+1}, s_{2 \times n-k+1}\right),\left(i_{2 \times n-k}, s_{2 \times n-k}\right)\right) \in$ Link.
By Def. 11.(1), $\phi\left(i_{k}\right)$ and $\phi\left(i_{k+1}\right)$ are defined.
By Def. 11.(2), $\operatorname{Ag}\left(\phi\left(i_{k}\right)\right)$ and $\operatorname{Ag}\left(\phi\left(i_{k+1}\right)\right)$ are defined.
By Def. 11.(5), $\left(\phi\left(i_{k}\right), s_{k}\right) \in$ Site and $\left(\phi\left(i_{k+1}\right), s_{k+1}\right) \in$ Site.
By Def. 11.(7), $\left(\left(\phi\left(i_{k}\right), s_{k}\right),\left(\phi\left(i_{k+1}\right), s_{k+1}\right)\right) \in$ Link.
By induction hypothesis, $\phi\left(i_{k}\right)=i_{2 \times n+1-k}$ and $s_{k}=s_{2 \times n+1-k}$.
Thus, $\left(\left(i_{2 \times n-k+1}, s_{2 \times n-k+1}\right),\left(\phi\left(i_{k+1}\right), s_{k+1}\right)\right) \in \operatorname{Link}$.
We already proved that $\left(\left(i_{2 \times n-k+1}, s_{2 \times n-k+1}\right),\left(i_{2 \times n-k}, s_{2 \times n-k}\right)\right) \in$ Link.
By Def. 10.(3), it follows that $\phi\left(i_{k+1}\right)=i_{2 \times n-k}$ and $s_{k+1}=s_{2 \times n-k}$.
Thus, we have $\left(\operatorname{Ag}\left(i_{n}\right), s_{n}\right)=\left(A g\left(i_{n+1}\right), s_{n+1}\right)$. and $\phi\left(i_{n}\right)=i_{n+1}$.

Lemma 3 (Euler) If a site-graph has no cycle, then it has an agent with at most one bound site.
Proof. Let $\mathcal{G}=(A g$, Site, Link $)$ be a site-graph such that for any agent identifier $i \in \mathbb{N}$ such that $A g(i)$ is defined, there exists two links $\left(\left(i_{1}, s_{1}\right),\left(i_{2}, s_{2}\right)\right),\left(\left(i_{1}^{\prime}, s_{1}^{\prime}\right),\left(i_{2}^{\prime}, s_{2}^{\prime}\right)\right) \in \operatorname{Link}$ such that $i_{1}=i_{1}^{\prime}=i$ and $s_{1} \neq s_{1}^{\prime}$.

We can assume, without any loss of generality, that the set \mathbb{N} and \mathcal{S} are totally ordered. We define the following sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ of sites:

$$
\left\{\begin{array}{l}
x_{0}=(\operatorname{MIN}\{i \in \mathbb{N} \mid A g(i) \text { is defined }\}, \operatorname{Min}\{s \mid(\operatorname{MIN}\{i \in \mathbb{N} \mid A g(i) \text { is defined }\}, s) \text { is bound in } \mathcal{G}\}) \\
x_{2 \times n+1}=\left(x^{\prime}, s^{\prime}\right) \mid\left(\left(x_{2 \times n}, s_{2 \times n}\right),\left(x^{\prime}, s^{\prime}\right)\right) \in \operatorname{Link} \\
x_{2 \times n+2}=\left(x_{2 \times n+1}, \operatorname{MIN}\left\{s \mid s \neq s_{2 \times n+1} \wedge\left(x_{2 \times n+1}, s\right) \text { is bound in } \mathcal{G}\right\}\right)
\end{array}\right.
$$

Let us prove that the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is well-defined and for any $n \in \mathbb{N}, A g(n)$ is defined, and $\left(x_{n}\right)$ is bound in ($A g$, Site, Link).

- x_{0} is well-defined, since any site has at least two bound sites.

Let us denote $x_{0}=\left(i_{0}, s_{0}\right)$.
By definition, $\operatorname{Ag}\left(i_{0}\right)$ is defined, and x_{0} is bound in \mathcal{G}.

- Let us assume that $x_{2 \times n}$ is well-defined, that $\operatorname{Ag}\left(\operatorname{FST}\left(x_{2 \times n}\right)\right)$ is defined, and $x_{2 \times n}$ is bound in \mathcal{G}.

Let us denote $x_{2 \times n}=\left(i_{2 \times n}, s_{2 \times n}\right)$.
Since $x_{2 \times n}$ is bound in \mathcal{G}, by Def. 10 , there exists a unique pair $\left(i^{\prime}, s^{\prime}\right)$ such that $\left(x_{2 \times n},\left(i^{\prime}, s^{\prime}\right)\right) \in \operatorname{Link}$. Moreover, by Def. $10, \operatorname{Ag}\left(i^{\prime}\right)$ is defined and $\left(i^{\prime}, s^{\prime}\right)$ is bound in \mathcal{G}.

- Let us assume that $x_{2 \times m+1}$ is well-defined, that $\operatorname{Ag}\left(\operatorname{FST}\left(x_{2 \times n+1}\right)\right)$ is defined.

Let us denote $x_{2 \times n+1}=\left(i_{2 \times n+1}, s_{2 \times n+1}\right)$.
By hypothesis, $i_{2 \times n+1}$ has at least two bound sites.
Thus the set $\left\{s \mid s \neq s_{2 \times n+1} \wedge\left(x_{2 \times n+1}, s\right)\right.$ is bound in $\left.\mathcal{G}\right\}$ is not empty, and $x_{2 \times n}$ is well defined.
Moreover, $i_{2 \times n+1}=i_{2 \times n}$ and $\operatorname{Ag}\left(i_{2 \times n}\right)$ is defined, thus $A g\left(i_{2 \times n+1}\right)$ is defined.
Lastly, $x_{2 \times n+1}$ is bound in \mathcal{G}.

By Def. 10, the set of the elements $i \in \mathbb{N}$ such that $A g(i)$ is defined is finite.
Moreover \mathcal{S} is finite.
Thus the Cartesian product between the set of the elements $i \in \mathbb{N}$ such that $\operatorname{Ag}(i)$ is defined and \mathcal{S} is finite.
Thus the set $\left\{x_{2 \times k} \mid k \in \mathbb{N}\right\}$ is finite.
Thus, there exists k and k^{\prime} such that $k<k^{\prime}$ and $x_{2 \times k}=x_{2 \times k^{\prime}}$.
Let us prove that the sequence $\left(x_{l}\right)_{2 \times k \leq l \leq 2 \times k^{\prime}+1}$ is a path between $\operatorname{FST}\left(x_{2 \times k}\right)$ and $\operatorname{FST}\left(x_{2 \times k^{\prime}}\right)$.

- We have $k^{\prime}>k$.
- For any integer l such that $k \leq l \leq k^{\prime}$, we have, by definition of $\left(x_{n}\right)_{n \in \mathbb{N}},\left(x_{2 \times l}, x_{2 \times l+1}\right) \in \operatorname{Link}$;
- For any integer l such that $k \leq l \leq k^{\prime}$, we have, by definition of $\left(x_{n}\right)_{n \in \mathbb{N}}, \operatorname{FST}\left(x_{2 \times l+1}\right)=\operatorname{FST}\left(x_{2 \times l+2)}\right)$ and $\operatorname{SND}\left(x_{2 \times l+1}\right) \neq \operatorname{SND}\left(x_{2 \times l+2))}\right)$.

This is absurd, thus there exists an agent identifier $i \in \mathbb{N}$ such that $A g(i)$ is defined and such that there exists at most one site $s \in \mathcal{S}$ such that $(i, s) \in \operatorname{Site}$ and (i, s) is bound in $(A g, \operatorname{Site}, L i n k)$.

