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1 Abstract Interpretation

Definition 1 (partial order). A partial order (D,≤) is given by a set D and a binary relation ≤ ∈ D×D
such that:

1. (reflexivity) ∀a ∈ D, a ≤ a;
2. (antisymmetry) ∀a, a′ ∈ D, [a ≤ a′ ∧ a′ ≤ a] =⇒ a = a′;
3. (transitivity) and ∀a, a′, a” ∈ D, [a ≤ a′ ∧ a′ ≤ a′′] =⇒ a ≤ a”.

Definition 2 (closure). Given a partial order (D,≤) and a mapping ρ : D → D.

1. We say that ρ is a upper closure operator, if and only if:
(a) (idempotence) ∀d ∈ D, ρ(ρ(d)) = ρ(d);
(b) (extensivity) ∀d ∈ D, d ≤ ρ(d);
(c) (monotonicity) ∀d, d′ ∈ D, d ≤ d′ =⇒ ρ(d) ≤ ρ(d′).

2. We say that ρ is a lower closure operator, if and only if:
(a) (idempotence) ∀d ∈ D, ρ(ρ(d)) = ρ(d);
(b) (antiextensivity) ∀d ∈ D, ρ(d) ≤ d;
(c) (monotonicity) ∀d, d′ ∈ D, d ≤ d′ =⇒ ρ(d) ≤ ρ(d′).

Definition 3 (least upper bound). Given a partial order (D,≤) and a subset X ⊆ A, we say that m ∈ D
is a least upper bound for X, if and only if:

1. (bound) ∀a ∈ X, a ≤ m;
2. (least one) and ∀a ∈ D, [∀a′ ∈ X, a′ ≤ a] =⇒ m ≤ a.

By antisymmetry, if it exists a least upper bound is unique, thus we call it the least upper bound.

Definition 4 (greatest lower bound). Given a partial order (D,≤) and a subset X ⊆ A, we say that
m ∈ D is a greatest lower bound for X, if and only if:

1. (bound) ∀a ∈ X, m ≤ a;
2. (least one) and ∀a ∈ D, [∀a′ ∈ X, a ≤ a′] =⇒ a ≤ m.

By antisymmetry, if it exists a greatest lower bound is unique, thus we call it the greatest lower bound.

Definition 5 (complete lattice). Given a partial order (D,≤), we say that D is a complete lattice if any
subset X has a least upper bound tX.

In a complete lattice, any subset X has a greatest lower bound uX. Moreover,

u(X) = t{d ∈ X | ∀x ∈ X, d ≤ x}.

The element > = t(D) is the greatest element of D, and the element ⊥ = t(∅) is the least element.
A complete lattice is usually denoted by (D,≤,⊥,>,t,u).



Proof. Let us show that the hypothesis of Def. 4 are satisfied.

– Let x be an element of X.
By Def. 1.(1), we have x ≤ x.

Thus by Def. 3.(1), we have x ≤ t{d ∈ X | ∀x ∈ X, d ≤ x}.

– Let m be an element of D such that for any element x ∈ X, m ≤ x.
By Def. 3.(2), we have t{d ∈ X | ∀x ∈ X, d ≤ x} ≤ m.

Thus by Def. 4, t{d | ∀x ∈ X, d ≤ x} is the greatest least bound of X.
2

Definition 6 (chain-complete partial order). Given a partial order (D,≤), we say that (D,≤) is a
chain-complete partial order if and only if any chain X ⊆ D has a least upper bound tX.

A chain-complete partial order is denoted by a triple (D,≤,t).

Definition 7 (inductive function). Given a chain-complete partial order (D,⊆,∪), we say that a function
F : D → D is inductive if and only if the two following properties are satisfied:

1. ∀x ∈ D, x ⊆ F(x) =⇒ F(x) ⊆ F(F(x));
2. for any chain C of elements in D such that x ⊆ F(x), for any x ∈ C, we have: ∪C ⊆ F(∪C).

Proposition 1. Let (D,⊆,∪) be a chain-complete partial order and F : D → D be a function such that:
∀x, y ∈ D,x ⊆ y =⇒ F(x) ⊆ F(y).

Then F is an inductive function.

Proof. Let us prove that the hypotheses of Def. 7 are satisfies:

1. Let x0 ∈ D be an element such that x0 ⊆ F(x0).
Since F is monotonic, it follows that F(x0) ⊆ F(F(x0)).

2. Let C be a chain of elements in D such that, for any element x ∈ C, x ⊆ F(x).

Let x ∈ C be an element.
By Def. 3.(1), x ⊆ ∪C.
Since F is monotonic, we have: F(x) ⊆ F(∪X);
Since, by hypothesis, x ⊆ F(x) and by Prop. 1.(3), it follows that x ⊆ F(∪X);

Thus, by Def. 3.(2), ∪C ⊆ F(∪C).

2

Definition 8 (inductive definition). Let (D,⊆,∪) be a chain-complete partial order, x0 ∈ D be an ele-
ment such that x0 ⊆ F(x0), and F : D → D be an inductive function.

There exists a unique collection of elements (Xo) such that for any ordinal o:
Xo = x0 whenever o = 0

Xo = F(Xo−1) whenever o is a succesor ordinal

Xo = ∪{Xβ | β < o} otherwise.

The collection (Xo) is called the transfinite iteration of F starting from x0. For each ordinal o, the element
Xo is usually denoted by Fo(x0).
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Proof. We show by induction over the ordinals, that for any ordinal o0, there exists a unique family of
elements (Xo)o<o0 such that the three following properties are satisfied:

– (a) 
Xo = x0 whenever o = 0,

Xo = F(Xo−1) whenever o is a succesor ordinal,

Xo = ∪{Xβ | β < o} otherwise.

– (b) (Xo)o<o0 is increasing,

– (c) and for any ordinal o < o0, Xo ⊆ F(Xo).

1. (a) There exists a unique element X0 such that X0 = x0.

(b) (x0) is an increasing family (of one element).

(c) By hypothesis, x0 ⊆ F(x0).

2. Let o0 be an ordinal.

We assume that there exists a unique family (Xo)o≤o0 such that the equations (a) are satisfied.

We also assume that (Xo)o≤o0 is increasing and that for any ordinal o ≤ o0, Xo ⊆ F(Xo).

We define Yo = Xo whenever o ≤ o0 and Yo0+1 = F(Xo0).

(a) The family (Yo)o≤o0+1 satisfies the equations (a).

(b) Now we consider a family (Zo)o≤o0+1 of elements in D which satisfies the equations (a).

Then by induction hypotheses (uniqueness), we have Zo = Yo for any ordinal o ≤ o0.

Moreover, since (Zo)o≤o0+1 satisfies the equations (a), we have Zo0+1 = F(Zo0).

Since Zo0 = Yo0 , it follows by extensionality that F(Zo0) = F(Yo0).

Moreover, we have: F(Yo0) = Yo0+1.

So Zo0+1 = Yo0+1.

Thus (Zo)o≤o0+1 = (Yo)o≤o0+1.

(c) By induction hypotheses, (Yo)o≤o0 is increasing.
By induction hypotheses again Yo0 ≤ F(Yo0).
Since Yo0+1 = F(Yo0), it follows that Yo0 ⊆ Yo0+1.
Thus (Yo)o≤o0+1 is increasing.

(d) By induction hypotheses, for any o ≤ o0, Yo ⊆ F(Yo).
Since F is inductive, by Def. 7.(1), it follows that F(Yo0) ⊆ F(F(Yo0)).
Since Yo0+1 = F(Yo0), we get Yo0+1 ⊆ F(Yo0+1).

3. Let o0 be a limit ordinal.

We assume that there exists a unique family (Xo)o<o0 such that the equations (a) are satisfied.
We define Yo = Xo whenever o < o0 and Yo0 = ∪{Xβ | β < o0}.

(a) The family (Yo)o≤o0 satisfies the equations (a).
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(b) Now we consider a family (Zo)o≤o0 of elements in D which satisfies the equations (a).
Then by induction hypotheses (uniqueness), we have Zo = Yo for any ordinal o < o0.
Moreover, since (Zo)o≤o0 satisfies the equations (a), we have Zo0 = ∪{Zβ | β < o0}.
Since Zβ = Yβ , for any β < o0, it follows that: ∪{Zβ | β < o0} = ∪{Yβ | β < o0}.
Moreover, we have: ∪{Yβ | β < o0} = Yo0 .
So Zo0 = Yo0 .
Thus (Zo)o≤o0 = (Yo)o≤o0 .

(c) By induction hypotheses, (Yo)o<o0 is increasing.
By Def. 3.(1), for any ordinal o < o0, we have: Yo ≤ ∪{Yo′ | o′ < o0}.
Since Yo0 = ∪{Yo′ | o′ < o0}, it follows that Yo ⊆ Yo0 , for any ordinal o ≤ o0.

(d) By induction hypotheses, for any o < o0, Yo ⊆ F(Yo).
Since F is inductive, by Def. 7.(2), it follows that ∪{Yo | o < o0} ⊆ F(∪{Yo | o < o0}).
Since Yo0 = ∪{Yo | o < o0}, we get Yo0 ⊆ F(Yo0).

2

Proposition 2. Let (D,⊆,∪) be a chain-complete partial order, x0 ∈ D be an element such that x0 ⊆ F(x0),
and F : D → D an inductive function.

Then:

1. for any pair of ordinals (o, o′), [o < o′] =⇒ Fo(x0) ⊆ Fo′(x0);
2. for any ordinal o, x0 ⊆ Fo(x0).

Proof. The assertion 1 is implied by the hypotheses induction of the proof that Def. 8 is well-defined.
The assertion 2 follows from the fact that for any ordinal, 0 ≤ o, and by the assertion 1.
2

Lemma 1 (least fix-point). Let:

1. (D,⊆,∪) be a chain-complete partial order;
2. F ∈ D → D be a monotonic map;
3. x0 ∈ D be an element such that: x0 ⊆ F(x0).

Then: there exists y ∈ D such that:

– x0 ⊆ y,
– F(y) = y,
– ∀z ∈ D, [[F(z) = z ∧ x0 ⊆ z] =⇒ y ⊆ z].

This element is called the least fix-point of F which is greater than x0, and is written lfpx0
F.

Proof. Let x0 ∈ D, such that x0 ⊆ F(x0).

By hypothesis, F is monotonic.
By Prop. 1, F is inductive.
By Def. 8, it follows that the collection (Fo(x0))o indexed over the ordinals is well-defined.

By Prop. 2.(1), the collection (Fo(x0))o is increasing.
Since D is a set, the collection (Fo(x0))o is ultimately stationary.

Thus there exists an ordinal o such that Fo(x0) = Fo+1(x0).
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Thus, F(Fo(x0)) = Fo(x0).

By Prop. 2.(2), for any ordinal o, we have: x0 ⊆ Fo(x0).

Consider another fix-point y ∈ D such that x0 ⊆ y.
We have y = F(y).

Let us show by transfinite induction that Fo(x0) ⊆ y.
–• We have, by hypothesis, x0 ⊆ y.

Since, F0(x0) = x0, it follows that F0(x0) ⊆ y.

• Let us consider an ordinal o such that Fo(x0) ⊆ y.
Since, F is monotonic, we have F(Fo(x0)) ⊆ F(y).
Then by Def. 8, Fo+1(x0) = F(Fo(x0)).
And by hypothesis F(y) = y.

Thus Fo+1(x0) ⊆ y.

• Let us consider an ordinal o such that for any β < o, we have Fβ(x0) ⊆ y.
By Def. 3.(2), we get that ∪{Fβ(x0) | β < o} ⊆ y.
By Def. 8, Fo(x0) = ∪{Fβ(x0) | β < o}.
Thus, Fo(x0) ⊆ y.

Thus Fo(x0) is the least fix-point of F.
2

Remark 1. We have seen in this proof that, under the hypotheses of Lemma 1, lfpx0
F = Fo(x0) for a given

ordinal o.

Definition 9 (Galois connexion). Given two partial orders (D,⊆) and (D],v), we say that the pair of
maps (α, γ) forms a Galois connection between D and D] if and only if:

1. α : D → D];
2. γ : D] → D;
3. and ∀d ∈ D, ∀d] ∈ D], [α(d) v d] ⇔ d ⊆ γ(d])].

In such a case, we write:

D −−−→←−−−α
γ

D].

Proposition 3. Let (D,⊆) and (D],v) be partial orders, and D −−−→←−−−α
γ

D] be a Galois connexion.
The following properties are satisfied:

1. ∀d ∈ D, d ⊆ γ(α(d));
2. ∀d] ∈ D], α(γ(d])) v d];
3. (α is monotonic) ∀d, d′ ∈ D, d ⊆ d′ =⇒ α(d) v α(d′);
4. (γ is monotonic) ∀d], d′] ∈ D], d] v d′] =⇒ γ(d]) ⊆ γ(d′]);
5. ∀d ∈ D, α(d) = α(γ(α(d)));
6. ∀d] ∈ D], γ(d]) = γ(α(γ(d)));
7. γ ◦ α is an upper closure operator;
8. α ◦ γ is a lower closure operator.

Proof. Let (D,⊆) and (D],v) be partial orders, and D −−−→←−−−α
γ

D] be a Galois connexion.
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1. Let d ∈ D be an element.

By Def. 1.(1), we have: α(d) v α(d).
By Def. 9.(3), it follows that: d ⊆ γ(α(d)).

2. Let d] ∈ D] be an element.

By Def. 1.(1), we have: γ(d]) ⊆ γ(d]).
By Def. 9.(3), it follows that: α(γ(d])) ⊆ d].

3. Let d, d′ ∈ D be two elements such that d ⊆ d′.

By hypothesis, we have d ⊆ d′.
Moreover, by Prop. 3.(1), we have d′ ⊆ γ(α(d′)).
Thus by Def. 1.(3), we get: d ⊆ γ(α(d′)).
By Def. 9.(3), it follows that: α(d) v α(d′).

4. Let d], d′] ∈ D] be two elements such that d] v d′].

By Prop. 3.(2), we have α(γ(d])) ⊆ d].
Moreover, by hypothesis, we have d] v d′].
Thus by Def. 1.(3), we get: α(γ(d])) v d′].
By Def. 9.(3), it follows that: γ(d]) v γ(d′]).

5. Let d ∈ D be an element.

By Prop. 3.(1), we have: d ⊆ γ(α(d)).
By Prop. 3.(3), it follows that α(d) v α(γ(α(d))).

By Def. 1.(1), we have: γ(α(d)) ⊆ γ(α(d))
By Def. 9.(3), it follows that: α(γ(α(d)) v α(d).

By Def. 1.(2), it follows that α(d) = α(γ(α(d))).

6. Let d] ∈ D] be an element.

By Prop. 3.(2), we have: α(γ(d]) v d].
By Prop. 3.(4), it follows that γ(α(γ(d]))) ⊆ γ(d]).

By Def. 1.(1), we have: α(γ(d])) v α(γ(d]))
By Def. 9.(3), it follows that: γ(d]) ⊆ γ(α(γ(d]))).

By Def. 1.(2), it follows that γ(d]) = γ(α(γ(d]))).

7. Let d, d′ ∈ D such that d ⊆ d′.

(a) By Prop. 3.(6), we have γ(α(γ(α(d)))) = γ(α(d)).
(b) By Prop. 3.(1), we have d ⊆ γ(α(d)).

6



(c) By Prop. 3.(3), we have α(d) v α(d′).
Then by prop. 3.(4), it follows that γ(α(d)) ⊆ γ(α(d′)).

8. Let d], d′] ∈ D] such that d] v d′].

(a) By Prop. 3.(5), we have α(γ(α(γ(d])))) = α(γ(d])).
(b) By Prop. 3.(2), we have α(γ(d])) v d].
(c) By Prop. 3.(4), we have γ(d]) ⊆ γ(d′]).

Then by prop. 3.(3), it follows that α(γ(d])) v α(γ(d′)).

2

Proposition 4. Let (D,⊆,⊥,>,∪,∩) and (D],v,⊥],>],t,u) be two complete lattices. Let α be a mapping
between D and D] such that for any subset X ⊆ D, we have α(∪X) = t{α(d) | d ∈ X}.

Then there exists a unique mapping γ between D] and D such that:

D −−−→←−−−α
γ

D]

is a Galois connexion.
Moreover, for any element d] ∈ D], we have:

γ(d]) = ∪{d | α(d) v d]}.

Proof. Let (D,⊆,⊥,>,∪,∩) and (D],v,⊥],>],t,u) be two complete lattices. Let α be a mapping between
D and D] such that for any subset X ⊆ D, we have α(∪X) = t{α(d) | d ∈ X}.

1. (α is monotonic)

Let d, d′ ∈ D, such that d ⊆ d′.
By Def. 3, we have ∪{d, d′} = d′.

Thus, we have: α(d′) = α(∪{d, d′}).
By the hypothesis on α, we have α(∪{d, d′}) = t{α(d), α(d′)}.
Thus, α(d′) = t{α(d), α(d′)}.
And by Def. 3.(1), it follow that α(d) v α(d′).

2. (existence)
Let γ′ be the mapping between D] and D such that:

γ′(d]) = ∪{d | α(d) v d]}.

Let d ∈ D and d] ∈ D].
– We assume that α(d) v d].

We have: γ′(d]) = ∪{d | α(d) v d]}.
Thus, by Def. 3.(1), we have d ⊆ γ′(d]).

– We assume that d ⊆ γ′(d]).
By hypothesis, we have: γ′(d]) = ∪{d | α(d) v d]}.
Thus, d ⊆ ∪{d | α(d) v d]}.
Since α is monotonic, we have: α(d) v α(∪{d | α(d) v d]}).
By hypothesis on α, we have α(∪{d | α(d) v d]}) = t{α(d) | α(d) v d]}.
Thus, α(d) v t{α(d) | α(d) v d]}.
For any d ∈ D, such that α(d) v d], we have α(d) v d].
Thus, by Def. 3.(1), we have t{α(d) | α(d) v d]} v d].
By Def. 1.(3), we get: α(d) v d].
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Thus:

D −−−→←−−−α
γ′

D].

3. (uniqueness) Let γ such that:

D −−−→←−−−α
γ

D].

Let d] ∈ D] be an abstract element.

For any d ∈ D such that α(d) v d], we have by Def. 9.(3), d ⊆ γ(d]).
By hypothesis, γ′(d]) = ∪{d | α(d) v d]}.
Thus, Def. 3.(2), we get that γ′(d]) ⊆ γ(d]).

By prop.3.(2), we have α(γ(d])) ⊆ d].
We have already proved that:

D −−−→←−−−α
γ′

D].

is a Galois connexion.
Thus, by Def. 9.(3), we have γ(d]) ⊆ γ′(d]).

By Def. 1.(2), we get that γ(d]) = γ′(d]).
Thus γ = γ′.

2

Proposition 5. Given (D,⊆) and (D],v) two partial orders, D −−−→←−−−α
γ

D] a Galois connexion, and X ⊆ D a

subset of D, if, X has a least upper bound ∪X and {α(d) | d ∈ X} has a least upper bound t{α(d) | d ∈ X},
then we have:

α(∪X) = t{α(d) | d ∈ X}.

Proof. Let (D,⊆) and (D],v) be two partial orders, D −−−→←−−−α
γ

D] be a Galois connexion, and X ⊆ D be

a subset of D, such that X has a least upper bound ∪X and {α(d) | d ∈ X} has a least upper bound
t{α(d) | d ∈ X}.

– Let d be an element in X.

Since X has a least upper bound, we have by Def. 3.(1), d ⊆ ∪X.
By Prop. 3.(3), we have α(d) v α(∪X).

Since {α(d) | d ∈ X} has a least upper bound, and by Def. 3.(2), it follows that t{α(d) | d ∈ X} v α(∪X).

– Let d be an element in X.

By Prop. 3.(1), we have d ⊆ γ(α(d)).
Since {α(d) | d ∈ X} has a least upper bound, and by Def. 3.(1), we have α(d) v t{α(d) | d ∈ X}.
Thus by Prop. 3.(4), it follows that γ(α(d)) ⊆ γ(t{α(d) | d ∈ X}).
By Def. 1.(3), it follows that d ⊆ γ(t{α(d) | d ∈ X}).

Since X has a least upper bound, and by Def. 3.(2), it follows that ∪X ⊆ γ(t{α(d) | d ∈ X}).

By Def. 9.(3), we get that α(∪X) v t{α(d) | d ∈ X}.
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By Def. 1.(2), we conclude that α(∪X) = t{α(d) | d ∈ X}.

2

Proposition 6. Given (D,⊆) and (D],v) two partial orders, D −−−→←−−−α
γ

D] a Galois connexion, and X] ⊆
D] a subset of D], if, X] has a least upper bound tX] and {γ(d]) | d] ∈ X]} has a least upper bound
∪{γ(d]) | d] ∈ X]}, then we have:

γ(tX]) = γ(α(∪{γ(d]) | d] ∈ X]})).

Proof. Let (D,⊆) and (D],v) be two partial orders, D −−−→←−−−α
γ

D] be a Galois connexion, and X] ⊆ D] be a

subset of D], such that: X] has a least upper bound tX] and {γ(d]) | d] ∈ X]} has a least upper bound
∪{γ(d]) | d] ∈ X]}.

– Let d] be an element in X].
Since X] has a least upper bound, we have by Def. 3.(1), d] v tX].
By Prop. 3.(4), we have γ(d) ⊆ γ(tX]).

Since {γ(d]) | d] ∈ X]} has a least upper bound, and by Def. 3.(2), it follows that ∪{γ(d]) | d] ∈ X]} ⊆
γ(tX]).

Then, by Prop. 3.(4) and Prop. 3.(3), we have γ(α(∪{γ(d]) | d] ∈ X]})) ⊆ γ(α(γ(tX]))).
But, by Prop. 3.(6), we have γ(α(γ(tX]))) = γ(tX]).
Thus, it follows that: γ(α(∪{γ(d]) | d] ∈ X]} ⊆ γ(tX]).

– Let d] be an element in X].

By Prop. 3.(2), we have d] v α(γ(d])).

Since {γ(d]) | d] ∈ X]} has a least upper bound, and by Def. 3.(1), we have γ(d]) ⊆ ∪{γ(d]) | d] ∈ X]}.
Thus by Prop. 3.(3), it follows that α(γ(d])) ⊆ α(∪{γ(d]) | d] ∈ X]}).
By Def. 1.(3), it follows that d] ⊆ α(∪{γ(d]) | d] ∈ X]}).
Since X] has a least upper bound, and by Def. 3.(2), it follows that tX] v α(∪{γ(d]) | d] ∈ X]}).
By Prop. 3.(4), we get that γ(tX]) ⊆ γ(α(∪{γ(d]) | d] ∈ X]})).

By Def. 1.(2), we conclude that γ(tX]) = γ(α(∪{γ(d]) | d] ∈ X]})).

2

Lemma 2. Let:

1. (D,⊆,∪) and (D],v,t) be chain-complete partial orders;

2. D −−−→←−−−α
γ

D] be a Galois connexion;
3. F ∈ D → D be a monotonic mapping;
4. F] ∈ D] → D] be mapping such that: [∀d] ∈ D], F(γ(d])) ⊆ γ(F](d]))];
5. x0 ∈ D such that x0 ⊆ F(x0).

Then:

α(x0) v F](α(x0)).
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Proof. Let us show that α(x0) v F](α(x0)).

We have: x0 ⊆ F(x0).

By Prop. 3.(1), we have: x0 ⊆ γ(α(x0)).
Then, since F is monotonic, it follows that F(x0) ⊆ F(γ(α(x0))).

By hypothesis, F(γ(α(x0))) ⊆ γ(F](α(x0))).

Thus, x0 ⊆ γ(F](α(x0))). By Def. 9.(3), it follows that α(x0) ⊆ F](α(x0)).

2

Theorem 1 (soundness). Let:

1. (D,⊆,∪) and (D],v,t) be chain-complete partial orders;

2. D −−−→←−−−α
γ

D] be a Galois connexion;

3. F ∈ D → D and F] ∈ D] → D] be monotonic mappings such that: [∀d] ∈ D], F(γ(d])) ⊆ γ(F](d]))];
4. x0 ∈ D be an element such that: x0 ⊆ F(x0).

Then, both lfpx0
F and lfpα(x0)F

] exist, and moreover:

lfpx0
F ⊆ γ(lfpα(x0)F

]).

Proof. We assume that the hypotheses of The. 1 are satisfied.

1. We have x0 ⊆ F(x0) and F is monotonic.
Thus, by Lem. 1, F has a least fix-point greater than x0.
Moreover, by Rem. 1, there exists an ordinal o such that lfpx0

F = Fo(x0).

2. By Lem. 2, α(x0) ⊆ F](α(x0)).

Thus, by Lem. 1, F] has a least fix-point greater than x0.

Moreover, by Rem. 1, there exists an ordinal o] such that lfpα(x0)F
] = F]o](α(x0)).

3. We consider an ordinal β such that o ≤ β and o] ≤ β.

We have: lfpx0
F = Fβ(x0) and lfpα(x0)F

] = F]β(α(x0)).

We show by transfinite induction that for any ordinal o, Fo(x0) ⊆ γ(F]o(α(x0))).

– By Def. 8, we have F0(x0) = x0 and F]0(α(x0)) = α(x0).
By Prop. 3.(1), we have x0 ⊆ γ(α(x0)).
Thus, F0(x0) ⊆ γ(F]0(α(x0))).

– We consider an ordinal o such that Fo(x0) ⊆ γ(F]o(α(x0))).
By Def. 8, we have: Fo+1(x0) = F(Fo(x0)).
Since F is monotonic, we have: F(Fo(x0)) ⊆ F(γ(F]o(α(x0)))).
By hypothesis, F(γ(F]o(α(x0)))) ⊆ γ(F](F]o(α(x0)))).
Then, by Def. 8, we have: F]o+1(α(x0)) = F](F]o(α(x0))).
And by extensionality, γ(F]o+1(α(x0))) = γ(F](F]o(α(x0)))).
Thus: Fo+1(x0) ⊆ γ(F]o+1(α(x0))).
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– We consider an ordinal o such that for any ordinal β < o we have: Fβ(x0) ⊆ γ(F]β(α(x0))).
By Def. 8, we have: Fo(x0) = ∪{Fβ(x0) | β < o}.
Thus, by Def. 3.(1), we get that, for any ordinal β such that β < o, Fo(x0) ⊆ γ(F]β(α(x0))).
Thus, since {γ(F]β(α(x0))) | β < o} is a chain, by Def. 6, and by Def. 3.(2), it follows that:
Fo(x0) ⊆ ∪{γ(F]β(α(x0))) | β < o}.

For any ordinal β such that β < o,
by Def. 3.(1), we have: F]β(α(x0)) ⊆ t{F]β(α(x0))) | β < o};
then by Prop. 3.(4), we get that: γ(F]β(α(x0))) ⊆ γ(t{F]β(α(x0))) | β < o}).
Then by Def. 3.(2), it follows that ∪{γ(F]β(α(x0))) | β < o} ⊆ γ(t{F]β(α(x0))) | β < o});

By Def. 8, t{F]β(α(x0))) | β < o} = F]o(α(x0)).
Thus, by extensionality, γ(t{F]β(α(x0))) | β < o}) = γ(F]o(α(x0))).
It follows that: Fo(x0) ⊆ γ(F]o(α(x0))).

2

Theorem 2. We suppose that:

1. (D,⊆) be a partial order;
2. (D],v,t) be chain-complete partial order;

3. D −−−→←−−−α
γ

D] be a Galois connexion;

4. F ∈ D → D and F] ∈ D] → D] are monotonic;
5. ∀d] ∈ D], F(γ(d])) ⊆ γ(F](d]));
6. x0, inv ∈ D such that:

– x0 ⊆ F(x0) ⊆ F(inv) ⊆ inv,
– inv = γ(α(inv)),
– and α(F(γ(α(inv)))) = F](α(inv));

Then, lfpα(x0)F
] exists and γ(lfpα(x0)F

]) ⊆ inv.

Proof. Let us show this result.

– By Lem. 2, α(x0) ⊆ F](α(x0)).

Thus, by Lem. 1, F] has a least fix-point greater than x0.

Moreover, by Rem. 1, there exists an ordinal o] such that lfpα(x0)F
] = F]o](α(x0)).

– Let us show by induction over o] that F]o](α(x0)) v α(inv).

• By Def. 8, we have F]0(α(x0)) = α(x0).
Thus, by Def. 1.(1), α(x0) v α(x0).
So, F]0(α(x0)) v α(x0).

By hypothesis, x0 ⊆ inv.
By Prop. 3.(3), we get that α(x0) v α(inv).

Thus, by Def. 1.(3), it follows that F]0(α(x0)) v α(inv).

11



• Let o be an ordinal such that F]o(α(x0)) v α(inv).

Since F] is monotonic, we have F](F]o(α(x0))) v F](α(inv)).
By Def. 8, F]o+1(α(x0)) = F](F]o(α(x0))).
By hypothesis, α(F(γ(α(inv)))) = F](α(inv)).
Thus, F]o+1(α(x0)) v α(F(γ(α(inv)))).

By hypothesis, γ(α(inv)) = inv.
Thus, by extensionality, F(γ(α(inv))) = F(inv).
By hypothesis, F(inv) ⊆ inv.
Thus, F(γ(α(inv))) ⊆ inv.
By Prop. 3.(3), α(F(γ(α(inv)))) ⊆ α(inv).

Thus, by Def. 1.(3), F]o+1(α(x0)) v α(inv).

• Let o be an ordinal such that for any ordinal β < o, we have F]β(α(x0)) v α(inv).

By Def. 3.(2), t{F]β(α(x0)) | β < o} v α(inv).
By Def. 8, F]o(α(x0)) = t{F]β(α(x0)) | β < o}.
Thus, F]o(α(x0)) v α(inv).

Thus, lfpα(x0)F
] v α(inv).

– We have seen that lfpα(x0)F
] v α(inv).

By Prop. 3.(4), we have: γ(lfpα(x0)F
]) ⊆ γ(α(inv)).

By hypothesis, γ(α(inv)) = inv.
Thus, γ(lfpα(x0)F

]) ⊆ inv.

2

Theorem 3. We suppose that:

1. (D,⊆,∪) and (D],v,t) are chain-complete partial orders;

2. (D,⊆) −−−→←−−−α
γ

(D],v) is a Galois connexion;
3. F : D → D is a monotonic map;
4. x0 is a concrete element such that x0 ⊆ F(x0);

5. F ◦ γ
.
⊆ γ ◦ F];

6. F] ◦ α = α ◦ F ◦ γ ◦ α.

Then:

– lfpx0
F and lfpα(x0)F

] exist;

– lfpx0
F ∈ γ(D])⇐⇒ lfpx0

F = γ(lfpα(x0)F
]).

Proof. We assume that the hypotheses of The. 3 are satisfied.

1. We have x0 ⊆ F(x0) and F is monotonic.
Thus, by Lem. 1, F has a least fix-point greater than x0.
Moreover, by Rem. 1, there exists an ordinal o• such that lfpx0

F = Fo•(x0).
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2. Let us show, by induction over the ordinal o0, that there exists a unique collection of elements (X]
o)o<o0

such that for any ordinal o < o0:
– i. 

X]
o = α(x0) whenever o = 0

X]
o = F](X]

o−1) whenever o is a succesor ordinal

X]
o = t{X]

β | β < o} otherwise.

– ii. for any ordinal o < o0, there exists an element d ∈ D such that X]
o = α(d),

– iii. (X]
o)o<o0 is increasing,

– iv. and for any ordinal o < o0, X]
o v F](X]

o).

(a) i. There exists a unique element X]
0 such that X]

0 = α(x0).

ii. α(x0) = α(x0).

iii. (α(x0)) is an increasing family (of one element).

iv. By hypothesis, x0 ⊆ F(x0).

By Prop. 3.(1), x0 ⊆ γ(α(x0)).
Since F is monotonic, F(x0) ⊆ F(γ(α(x0))).

Thus, by Def. 1.(3), it follows that x0 ⊆ F(γ(α(x0))).

By Prop. 3.(3), we get that: α(x0) v α(F(γ(α(x0)))).

By hypothesis, F](α(x0)) = α(F(γ(α(x0)))).
Thus, α(x0) v F](α(x0)).

(b) Let o0 be an ordinal.
We assume that there exists a unique family (X]

o)o≤o0 such that the equations (a) are satisfied.
We also assume that there exists a family of elements (Xo)o≤o0 such that for any ordinal, α(Xo) = X]

o,
that (X]

o)o≤o0 is increasing and that for any ordinal o ≤ o0, X]
o v F](Xo).

We define Y ]o = X]
o whenever o ≤ o0 and Y ]o0+1 = F](X]

o0).

i. The family (Y ]o )o≤o0+1 satisfies the equations (a).

ii. Now we consider a family (Z]o)o≤o0+1 of elements in D] which satisfies the equations (a).

By induction hypotheses (uniqueness), we have Z]o = Y ]o for any ordinal o ≤ o0.

Moreover, since (Z]o)o≤o0+1 satisfies the equations (a), we have Z]o0+1 = F](Z]o0).

Since Z]o0 = Y ]o0 , it follows by extensionality that F](Z]o0) = F](Y ]o0).

Moreover, we have: F](Y ]o0) = Y ]o0+1.

Thus Z]o+1 = Y ]o+1.

It follows that (Z]o)o≤o0+1 = (Y ]o )o≤o0+1.
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iii. By induction hypotheses, there exists a family (Xo)o≤o0 such that (Y ]o )o≤o0 = (α(Xo))o≤o0 .

It follows that Y ]o0 = α(Xo).
By extensionality, F](Y ]o0) = F](α(Xo)).

By hypothesis, Y ]o0+1 = F](Y ]o0).

By hypothesis, F](α(Xo)) = α(F(γ(α(X0)))).

Thus, Y ]o0+1 = α(F(γ(α(X0)))).

We define Xo0+1 = F(γ(α(X0))).

We have Y ]o0+1 = α(Xo0+1).

Since (Y ]o )o≤o0 = (α(Xo))o≤o0 , it follows that (Y ]o )o≤o0+1 = (α(Xo))o≤o0+1.

iv. By induction hypotheses, (Y ]o )o≤o0 is increasing.
By induction hypotheses again Y ]o0 v F](Y ]o0).

Since Y ]o0+1 = F](Y ]o0), it follows that Y ]o0 v Y
]
o0+1.

Thus (Y ]o )o≤o0+1 is increasing.

v. By induction hypotheses, for any o ≤ o0, Y ]o v F](Y ]o ).

Moreover, Y ]o0 v Y
]
o0+1.

Since Y ]o0 = α(Xo0) and Y ]o0+1 = α(Xo0+1), it follows that α(Xo0) v α(Xo0+1).
By Prop. 3.(4), since F is monotonic, and by Prop. 3.(3), α(F(γ(α(Xo0)))) v α(F(γ(α(Xo0+1)))).

By hypothesis, α ◦ F ◦ γ ◦ α = F] ◦ α, thus F](α(Xo0)) v F](α(X]
o0+1)).

Since, Y ]o0 = α(Xo0) and Y ]o0+1 = α(Xo0+1), it follows that F](Y ]o0) v F](F](Y ]o0)).

By induction hypothesis, Y ]o0+1 = F](Y ]o0).

Thus, Y ]o0+1 v F](Y ]o0+1).

Thus, we denote by F]o(α(x0)) the unique collection which satisfies the equations (2).

(c) Let us show that F] has a fix-point.

The collection (F]o(α(x0))) which is indexed over the ordinals is increasing.

Since D] is a set, it follows that there exists an ordinal o], such that F]o](α(x0)) = F]o]+1(α(x0)).

Since (F]o(α(x0))) satisfied equation (2), it follows that F](F]o](α(x0))) = F]o](α(x0)).

Moreover, we have already proven that α(x0) v F]o](α(x0)).

(d) Let is show that F]o(α(x0)) is the least fix-point of F].

Consider another fix-point y] ∈ D] such that α(x0) v y].
We have y] = F](y]).

Let us show by transfinite induction that F]o](α(x0)) v y].
– We have, by hypothesis, α(x0) v y].

Since, F]0(α(x0)) = α(x0), it follows that F]0(α(x0)) v α(y).
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– Let us consider an ordinal o such that F]o(α(x0)) v y].
We know that F]o(α(x0)) ∈ α(D).
Thus there exists an element x ∈ D such that F]o(α(x0)) = α(x).
Then, α(x) v y].
By Prop. 3.(4), since F is monotonic, and by Prop. 3.(3), α(F(γ(α(x)))) v α(F(γ(y]))).

By hypothesis, F(γ(y])) ⊆ γ(F](y])).
By Prop. 3.(3), we get that α(F(γ(y]))) v α(γ(F](y]))).

By Prop. 3.(2), α(γ(F](y]))) v F](y]).

Thus, by Def. 1.(3), α(F(γ(α(x)))) v F](y]).

By hypothesis, α(F(γ(α(x)))) = F](α(x)).
Moreover, α(x) = F]o(α(x0)).
Thus, by extensionality, α(F(γ(F]o(α(x0))))) = F](F]o(α(x0))).
But by definition, F](F]o(α(x0))) = F]o+1(α(x0)).
Thus, F]o+1(α(x0)) v F](y]).

By hypothesis, F](y]) = y].
Thus F]o+1(α(x0)) v y].

– Let us consider an ordinal o such that for any β < o, we have F]β(x0) v y.

By Def. 3.(2), we get that t{F]β(x0) | β < o} v y.
By hypothesis, F]o(x0) = t{F]β(x0) | β < o}.
Thus, F]o(x0) ⊆ y.

Thus, F]o] is the least fix-point of F] which is bigger than α(x0).

(e) Let us prove that lfpx0
F ⊆ γ(lfpα(x0)F

]).

We consider an ordinal β such that o• ≤ β and o] ≤ β.

We have: lfpx0
F = Fβ(x0) and lfpα(x0)F

] = F]β(α(x0)).

We show by transfinite induction that for any ordinal o, Fo(x0) ⊆ γ(F]o(α(x0))).

– By hypotheses, we have F0(x0) = x0 and F]0(α(x0)) = α(x0).
By Prop. 3.(1), we have x0 ⊆ γ(α(x0)).
Thus, F0(x0) ⊆ γ(F]0(α(x0))).

– We consider an ordinal o such that Fo(x0) ⊆ γ(F]o(α(x0))).
By Def. 8, we have: Fo+1(x0) = F(Fo(x0)).
Since F is monotonic, we have: F(Fo(x0)) ⊆ F(γ(F]o(α(x0)))).
By hypothesis, F(γ(F]o(α(x0)))) ⊆ γ(F](F]o(α(x0)))).
Then, by hypothesis, we have: F]o+1(α(x0)) = F](F]o(α(x0))).
And by extensionality, γ(F]o+1(α(x0))) = γ(F](F]o(α(x0)))).
Thus: Fo+1(x0) ⊆ γ(F]o+1(α(x0))).
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– We consider an ordinal o such that for any ordinal β < o we have: Fβ(x0) ⊆ γ(F]β(α(x0))).
By Def. 8, we have: Fo(x0) = ∪{Fβ(x0) | β < o}.
Thus, by Def. 3.(1), we get that, for any ordinal β such that β < o, Fo(x0) ⊆ γ(F]β(α(x0))).
Thus, since {γ(F]β(α(x0))) | β < o} is a chain, by Def. 6, and by Def. 3.(2), it follows that:
Fo(x0) ⊆ ∪{γ(F]β(α(x0))) | β < o}.

For any ordinal β such that β < o,
by Def. 3.(1), we have: F]β(α(x0)) ⊆ t{F]β(α(x0))) | β < o};
then by Prop. 3.(4), we get that: γ(F]β(α(x0))) ⊆ γ(t{F]β(α(x0))) | β < o}).
Then by Def. 3.(2), it follows that ∪{γ(F]β(α(x0))) | β < o} ⊆ γ(t{F]β(α(x0))) | β < o});

By hypothesis, t{F]β(α(x0))) | β < o} = F]o(α(x0)).
Thus, by extensionality, γ(t{F]β(α(x0))) | β < o}) = γ(F]o(α(x0))).
It follows that: Fo(x0) ⊆ γ(F]o(α(x0))).

Thus, lfpx0
F ⊆ γ(lfpF]α(x0)).

(f) Let us prove that: lfpx0
F ∈ γ(D])⇐⇒ lfpx0

F = γ(lfpα(x0)F
]).

i. We assume that lfpx0
F = γ(lfpα(x0)F

]).

Then, by definition of γ(D]), lfpx0
F ∈ γ(D]).

ii. Now we assume that lfpx0
F ∈ γ(D]).

A. We know that: lfpx0
F ⊆ γ(lfpα(x0)F

]).

B. Let us prove that: γ(lfpα(x0)F
]) ⊆ lfpx0

F.

We propose to prove by induction over the ordinals that F]β(α(x0)) v α(lfpx0
F).

? We have x0 ⊆ lfpx0
F.

By Prop. 3.(3), α(x0) v α(lfpx0
F).

? Let us assume that there exists an ordinal o, such that F]o(α(x0)) v α(lfpx0
F).

There exists x ∈ D, such that F]o(α(x0)) = α(x).
Thus α(x) v α(lfpx0

(x0)).
By Prop. 4, since F is monotonic, and by Prop. 3, α(F(γ(α(x)))) v α(F(γ(α(lfpx0

(F))))).

By hypothesis, α(F(γ(α(x)))) = F](α(x)).
Since F]o(α(x0)) = α(x), by extensionality, we get that: F](F]o(α(x0))) = F](α(x)).
Since by equations (2), it follows that F]o+1(α(x0)) = F](F]o(α(x0))).
Thus, F]o+1(α(x0)) v α(F(γ(α(lfpx0

F)))).

By Prop. 3.(1), γ(α(lfpx0
F)) v lfpx0

F.
Since F is monotonic, F(γ(α(lfpx0

F))) v F(lfpx0
F).

But F(lfpx0
F) = lfpx0

F.
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Thus, F(γ(α(lfpx0
F))) v lfpx0

F.
By Prop. 3.(3), α(F(γ(α(lfpx0

F)))) v α(lfpx0
F).

By Def. 1.(3), it follows that: F]o+1(α(x0)) v α(lfpx0
F).

? Let us assume that there exists an ordinal o0, such that for any ordinal o < o0, F]o(α(x0)) v
α(lfpx0

F).

Since (F]o(α(x0))) is a chain, t{F]o(α(x0)) | o < o0} exists.
By Def. 3.(2), t{F]o(α(x0)) | o < o0} v α(lfpx0

F).
By equations (2), we have F]o+1(α(x0)) = t{F]o(α(x0)) | o < o0}.
Thus, F]o+1(α(x0)) v α(lfpx0

F).

We have proved that lfpα(x0)F
] v α(lfpx0

F).

By Prop. 3.(4), γ(lfpα(x0)F
]) ⊆ γ(α(lfpx0

F)).

But since, lfpx0
F ∈ γ(D]), there exists x ∈ D, such that γ(x) = lfpx0

F.
By extensionality, γ(α(γ(x))) = γ(α(lfpx0

F)).
By Prop. 3.(6), γ(x) = γ(α(γ(x))).
Thus γ(α(lfpx0

F)) = lfpx0
F.

It follows that: γ(lfpα(x0)F
]) ⊆ lfpx0

F.

Thus lfpx0
F = γ(lfpα(x0)F

]).

2

Corollary 1 (relative completeness). We suppose that:

1. (D,⊆,∪) and (D],v,t) are chain-complete partial orders;

2. (D,⊆) −−−→←−−−α
γ

(D],v) is a Galois connexion;

3. for any chain X] ⊆ D], ∪(γ(X])) ∈ γ(D]);
4. F : D → D is a monotonic map;
5. x0 is a concrete element such that x0 ⊆ F(x0);
6. α ◦ F ◦ γ = F];
7. x0 ∈ γ(D]);
8. F(γ(D])) ⊆ γ(D]).

Then, both lfpx0
F and lfpα(x0)F

] exist, and moreover:

lfpx0
F = γ(lfpα(x0)F

]).

Proof. We assume that the hypotheses of The. 1 are satisfied.

– By hypothesis 4, F is monotonic.
By hypothesis 5, x0 ⊆ F(x0).
Thus, by Lem. 1, F has a least fix-point greater than x0.
Moreover, by Rem. 1, there exists an ordinal o such that lfpx0

F = Fo(x0).

– Let us show by induction over the ordinal o that Fo(x0) ∈ γ(D]).
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• We have F0(x0) = x0.

By hypothesis 7, x0 ∈ γ(D]).

Thus F0(x0) ∈ γ(D]).

• We assume that there exists an ordinal β such that Fβ(x0) ∈ γ(D]).

By induction hypothesis, Fβ(x0) ∈ γ(D]).
By hypothesis 8, F(Fβ(x0)) ∈ γ(D]).
Since Fβ+1(x0) = F(Fβ(x0)).

It follows that Fβ+1(x0) ∈ γ(D]).

• We assume that there exists an ordinal β such that for any ordinal β′ < β, Fβ′(x0) ∈ γ(D]).

We have Fβ(x0) = ∪{Fβ′ | β′ < β}.
By hypothesis 3, Fβ(x0) ∈ γ(D]).

Thus, since lfpx0
F = Fo(x0), it follows that lfpx0

F ∈ γ(D]).
All the hypotheses of The. 3 are satisfied.
Thus, lfpα(x0)F

] exists.

Moreover, since lfpx0
F ∈ γ(D]), it follows that: lfpα(x0)F

] = γ(lfpα(x0)F
]).

2

2 Site-graphs

Let N be a countable set of agent identifiers.
Let A be a finite set of agent types.
Let S be a finite set of site types.

Definition 10 (site-graphs). A site-graph is a triple (Ag,Site,Link) where:

– Ag : N ⇀ A is a partial map between N and A such that the subset of N of the elements i such that
Ag(i) is defined is finite;

– Site ⊆ N× S is a subset of N× S such that for any pair (i, s) ∈ Site, Ag(i) is defined;
– Link ⊆ Site2 is a relation over Site such that:

1. for any site a ∈ Site, (a, a) 6∈ Link;
2. for any pair (a, b) ∈ Link, we have (b, a) ∈ Link;
3. for any sites a, b, b′ ∈ Site, if both (a, b) ∈ Link and (a, b′) ∈ Link, then b = b′.

Whenever (a, b) ∈ Link, we say that there is a link between the site a and the site b.
Whenever a ∈ Site, but there exists no b ∈ Site such that (a, b) ∈ Link, we say that a is free.

Definition 11 (embeddings). An embedding between two site-graphs (Ag,Site,Link) and (Ag′,Site′,Link′)
is given by a partial mapping φ : N⇀ N, such that:

1. (agent mapping) For any i ∈ N, Ag(i) is defined if and only if φ(i) is defined;
2. (well-formedness) For any i ∈ N, if Ag(i) is defined, then Ag′(φ(i)) is defined;
3. (into mapping) For any i, i′ ∈ N, if φ(i) and φ′(i) are defined, then φ(i) = φ(i′) =⇒ i = i′;
4. (agent types) For any i ∈ N, if Ag(i) is defined, then Ag(i) = Ag′(φ(i));
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5. (site types) For any site (i, s) ∈ Site, (φ(i), s) ∈ Site′;
6. (free sites) For any pair (i, s) ∈ Site such that for any (i′, s′) ∈ Site, ((i, s), (i′, s′)) 6∈ Link, then for any

(i′′, s′′) ∈ Site′, ((φ(i), s), (i′′, s′′)) 6∈ Link;
7. (links) For any link ((i, s), (i′, s′)) ∈ Link, ((φ(i), s), (φ(i′), s′)) ∈ Link′.

Definition 12 (automorphism). An embedding between a site-graph and itself is called an automorphism.

Definition 13 (paths). Let G = (Ag,Site,Link) be a site-graph. We define a path of length n > 0 in the
site-graph G a sequence (ik, sk)0≤k≤2×n−1 of 2× n pairs of sites in Site such that:

1. For any j such that 0 ≤ j < n, ((i2×j , s2×j), (i2×j+1, s2×j+1)) ∈ Link.
2. For any j such that 1 ≤ j < n, i2×j = i2×j−1 and s2×j 6= s2×j−1.

Proposition 7 (sub-paths). Let G = (Ag,Site,Link) be a site-graph and (ik, sk)0≤k≤2×n−1 be a path
of length n > 0 in the site-graph G. Let m,m′ be two integers such that 0 ≤ m < m′ ≤ n, then,
(ik, sk)2×m≤k≤2×m′−1 is a path in the site-graph G.

Proof. We have m′ −m > 0.
For any integer k such that 2×m ≤ k ≤ 2×m′ − 1, we have by Def. 13, (ik, sk) ∈ Site.
Moreover,

1. for any integer k such that m ≤ k < m′, by Def. 13.(1), ((i2×k, s2×k), (i2×k+1, s2×k+1)) ∈ Link;
2. for any integer k such that m < k < m′, by Def. 13.(2), i2×k = i2×k−1 and s2×k 6= s2×k−1.

By Def. 13, it follows that (ik, sk)2×m≤k≤2×m′−1 is a path in the site-graph G.
2

Proposition 8 (path composition). Let G = (Ag,Site,Link) be a site-graph and (ik, sk)0≤k≤2×n−1 and
(i′k, s

′
k)0≤k≤2×n′−1 be two paths of length n > 0 and n′ > 0 in the site-graph G such that i2×n−1 = i′0 and

s2×n−1 6= s′0.
Then, the sequence (i′′k , s

′′
k)0≤k≤2×(n+n′)−1 where:{

(i′′k , s
′′
k) = (ik, sk) whenever 0 ≤ k ≤ 2× n− 1

(i′′k , s
′′
k) = (i′k−2×n, s

′
k−2×n) whenever 2× n ≤ k ≤ 2× (n+ n′)− 1

is a path of length n+ n′ in G.

Proof. Let G = (Ag,Site,Link) be a site-graph and (ik, sk)0≤k≤2×n−1 and (i′k, s
′
k)0≤k≤2×n′−1 be two paths

of size n > 0 and n′ > 0 in the site-graph G such that i2×n−1 = i′0 and s2×n−1 6= s′0.
We have 2× (n+ n′) > 0.
We consider the sequence (i′′k , s

′′
k)0≤k≤2×(n+n′)−1 which is defined as follows:{

(i′′k , s
′′
k) = (ik, sk) whenever 0 ≤ k ≤ 2× n− 1

(i′′k , s
′′
k) = (i′k−2×n, s

′
k−2×n) whenever 2× n ≤ k ≤ 2× (n+ n′)− 1

Let k be an integer such that 0 ≤ k ≤ 2× (n+ n′)− 1.

– We assume that k ≤ 2× n− 1.

We have: (i′′k , s
′′
k) = (ik, sk).

Thus, by Def. 13, (ik, sk) ∈ Site.
Thus (i′′k , s

′′
k) ∈ Site.
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– We assume that k > 2× n− 1.

We have: (i′′k , s
′′
k) = (i′k−2×n, s

′
k−2×n).

Thus, by Def. 13, (i′k−2×n, s
′
k−2×n) ∈ Site.

Thus (i′′k , s
′′
k) ∈ Site.

– Let k be an integer such that 0 ≤ k < n+ n′.

• We assume that k < n.

We have (i′′2×k, s
′′
2×k) = (i2×k, s2×k) and (i′′2×k+1, s

′′
2×k+1) = (i2×k+1, s2×k+1).

Since (ik, sk)0≤k≤2×n−1 is a path, by Def. 13.(1), ((i2×k, s2×k), (i2×k+1, s2×k+1)) ∈ Link.
Thus, ((i′′2×k, s

′′
2×k), (i′′2×k+1, s

′′
2×k+1)) ∈ Link.

• We assume that k ≥ n.

We have (i′′2×k, s
′′
2×k) = (i′2×(k−n), s

′
2×(k−n)) and (i′′2×k+1, s

′′
2×k+1) = (i′2×(k−n)+1, s

′
2×(k−n)+1).

We know that the sequence (i′k, s
′
k)0≤k≤2×n′−1 is a path.

By Def. 13.(1), ((i′2×(k−n), s
′
2×(k−n)), (i

′
2×(k−n)+1, s

′
2×(k−n)+1)) ∈ Link.

Thus, ((i′′2×k, s
′′
2×k), (i′′2×k+1, s

′′
2×k+1)) ∈ Link.

– Let k be an integer such that 1 ≤ k < n+ n′.

• We assume that k < n.

We have (i′′2×k, s
′′
2×k) = (i2×k, s2×k) and (i′′2×k−1, s

′′
2×k−1) = (i2×k−1, s2×k−1).

Since (ik, sk)0≤k≤2×n−1 is a path, by Def. 13.(2), i2×k = i2×k−1 and s2×k 6= s2×k−1.
Thus, i′′2×k = i′′2×k−1 and s′′2×k 6= s′′2×k−1.

• We assume that k = n.

We have i′′2×k = i′0, i′′2×k−1 = i2×n−1, s′′2×k = s′0, s′′2×k−1 = s2×n−1.
By hypothesis, i′0 = i2×n−1 and s′0 6= s2×n−1.
Thus, i′′2×k = i′′2×k−1 and s′′2×k 6= s′′2×k−1.

• We assume that k > n.

We have (i′′2×k, s
′′
2×k) = (i′2×(k−n), s

′
2×(k−n)) and (i′′2×k−1, s

′′
2×k−1) = (i′2×(k−n)−1, s

′
2×(k−n)−1).

Since (i′k, s
′
k)0≤k≤2×n′−1 is a path, by Def. 13.(2), i′2×(k−n) = i′2×(k−n)−1 and s′2×(k−n) 6= s′2×(k−n)−1.

Thus, i′′2×k = i′′2×k−1 and s′′2×k 6= s′′2×k−1.

Thus, by Def. 13, (i′′k , s
′′
k)0≤k≤2×(n+n′)−1 is a path in G.

2

Proposition 9 (path image). Let G = (Ag,Site,Link) be a site-graph, φ be an automorphism of G, and
(ik, sk)0≤k≤2×n−1 be a path of length n > 0 in G, then (φ(ik), sk)0≤k≤2×n−1 is a path of length n in G.

20



Proof. Let G = (Ag,Site,Link) be a site-graph, φ be an automorphism of G, and (ik, sk)0≤k≤2×n−1 be a path
in G, then (φ(ik), sk)0≤k≤2×n−1 is a path in G.

– Let k be an integer such that 0 ≤ k ≤ 2× n− 1.

By Def. 13, (ik, sk) ∈ Site.
By Def. 10, Ag(ik) is defined.
By Def. 11.(1), φ(ik) is defined.
By Def. 11.(2), Ag(φ(ik)) is defined.
By Def. 11.(5), (φ(ik), sk) ∈ Site.

– Let k be an integer such that 0 ≤ k < n.

By Def. 13.(1), ((i2×k, s2×k), (i2×k+1, s2×k+1)) ∈ Link.
By Def. 11.(7), ((φ(i2×k), s2×k), (φ(i2×k+1), s2×k+1)) ∈ Link.

– Let k be an integer such that 1 ≤ k < n.

By Def. 13.(2), i2×k = i2×k−1 and s2×k 6= s2×k−1.
By extensionality, φ(i2×k) = φ(i2×k−1).

Thus, by Def. 13, (φ(ik), sk)0≤k≤2×n−1 is a path in G.

2

Definition 14 (connected components). A site-graph (Ag,Site,Link) is a connected component, if and
only if, for any pair (i, i′) ∈ N2 of agent identifiers such that Ag(i) and Ag(i′) are defined and i 6= i′, there
exists a pair (s, s′) ∈ S2 of site types, such that (i, s) ∈ Site, (i′, s′) ∈ Site, and there is a path in G between
the site (i, s) and the site (i′, s′).

Definition 15 (cycle). Let G be a site-graph. A cycle of length n > 0 is a path (ik, sk)0≤k≤2×n−1 in the
site-graph G such that i0 = i2×n−1 and s0 6= s2×n−1.

Lemma 1 (rigidity) An embedding between two connected components is fully characterized by the image
of one agent.

Proof. Let G = (Ag,Site,Link) and G′ = (Ag′,Site′,Link′) be two connected components and φ, φ′ be two
embeddings between G and G′.

Let i ∈ N be an agent identifier such that Ag(i) is defined.
We assume that φ(i) = φ′(i).

For any agent identifier i′ ∈ N,

– We assume that Ag(i′) is not defined.

Then by Def. 11.(1), neither φ(i′) nor φ′(i′) are defined.
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– We assume that Ag(i′) is defined and that i′ = i.

By hypothesis, φ(i) = φ′(i).
Thus, φ(i′) = φ′(i′).

– We assume that Ag(i′) is defined and that i′ 6= i.

By Def. 14 and since i 6= i′ , there exist two sites s and s′ and a path (ik, sk)0≤k≤2×n−1 of length n > 0
between (i, s) and (i′, s′).
Moreover, by Def. 11.(1), both φ(i) and φ′(i) are defined.

By absurd, let us assume that φ(i′) 6= φ′(i′) and that n is minimal for this property.
We have n > 0.
• For any j ∈ N, such that 0 ≤ j < n, we have by Def. 13.(1), ((i2×j , s2×j), (i2×j+1, s2×j+1)) ∈ Link;
• For any j such that 1 ≤ j < n, we have by Def. 13.(2), i2×j = i2×j−1 and s2×j = s2×j−1.

We consider two cases:

1. We assume that n = 1.

We have φ(i2×n) = φ′(i2×n).

2. We assume that n ≥ 2.

Thus, by Def. 13, (ik, sk)0≤k≤2×(n−1)+1 is a path between i0 = i and i2×(n−1)+1.
Since n is minimal, we get that φ(i2×(n−1)+1) = φ′(i2×(n−1)+1).
By Def. 13.(2), we have i2×(n−1)+1 = i2×(n−1)+2 and s2×(n−1)+1 6= s2×(n−1)+2.
Thus, by extensionality, φ(i2×(n−1)+1) = φ(i2×(n−1)+2) and φ′(i2×(n−1)+1) = φ′(i2×(n−1)+2) .
Thus, φ(i2×n) = φ′(i2×n).
By Def. 13.(1), we have ((i2×n, s2×n), (i2×n+1, s2×n+1)) ∈ Link.
Thus, by Def. 11.(7), ((φ(i2×n), s2×n), (φ(i2×n+1), s2×n+1)) ∈ Link
and ((φ′(i2×n), s2×n), (φ′(i2×n+1), s2×n+1)) ∈ Link.
Since φ(i2×n) = φ′(i2×n), it follows that ((φ(i2×n), s2×n), (φ(i2×n+1), s2×n+1)) ∈ Link
and ((φ(i2×n), s2×n), (φ′(i2×n+1), s2×n+1)) ∈ Link.
Then, by Def. 10.(3), it follows that φ(i2×n+1) = φ′(i2×n+1).
Thus, since i′ = i2×n+1, φ(i′) = φ′(i′) which is absurd.

So whenever Ag(i′) is defined, φ(i′) = φ′(i′).

Thus φ and φ′ are equal.
2

Proposition 10. Let G = (Ag,Site,Link) be a connected component without any cycle. Let φ be an auto-
morphism of G. Let i be an agent identifier such that Ag(i) is defined. Let (ik, sk)0≤k≤2×n−1 be a path between
i and φ(i).
Then s0 = s2×n−1.

Proof. Let G = (Ag,Site,Link) be a connected component without any cycle.
Let φ be an automorphism of G.
Let i be an agent identifier such that Ag(i) is defined.
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Let (ik, sk)0≤k≤2×n−1 be a path between i and φ(i) such that s0 6= s2×n−1.

Let us prove by induction over m, that for any m ∈ N, (φm(ik), sk)0≤k≤2×n−1 is a path in G.

– We assume that m = 0.

The sequence (φm(ik), sk)0≤k≤2×n−1 is equal to the sequence (ik, sk)0≤k≤2×n−1.
By hypothesis, (ik, sk)0≤k≤2×n−1 is a path in G.
Thus, (φm(ik), sk)0≤k≤2×n−1 is a path in G.

– We consider m ∈ N such that (φm(ik), sk)0≤k≤2×n−1 is a path in G.

By Prop. 9, (φ(φm(ik)), sk)0≤k≤2×n−1 is a path in G.
Since the sequence, (φ(φm(ik)), sk)0≤k≤2×n−1 is equal to the sequence (φm+1(ik), sk)0≤k≤2×n−1.
(φm+1(ik), sk)0≤k≤2×n−1 is a path in G.

Let us prove by induction over m′, that for any m,m′ ∈ N, such that m < m′, there exists a path
(i′k, s

′
k)0≤k≤2×n′−1 in G such that i′0 = φm(i0), i′2×n′−1 = φm

′
(i0), s′0 = s0, and s′2×n′−1 = s2×n−1.

– We assume that m′ = m+ 1.

We have φm
′
(i0) = φm(φ(i0)).

We have proved that (φm(ik), sk)0≤k≤2×n−1 is a path in G.
Moreover, φm(i0) = φm(i0).

Since i2×n−1 = φ(i0), by extensionaly, φ(φm(i0)) = φ(φm(i0)).
So φm(i2×n−1) = φm

′
(i2×n−1).

Lastly, s0 = s0 and s2×n−1 = s2×n−1.

– We assume that there exist m,m′ ∈ N, such that m < m′ and a path (i′k, s
′
k)0≤k≤2×n′−1 in G such that

i′0 = φm(i0) and i′2×n′−1 = φm
′
(i0) such that s′0 = s0 and s′2×n′−1 = s2×n−1.

We have already proved that there exists a path (i′′k , s
′′
k)0≤k≤2×n′′−1 in G such that i′′0 = φm

′
(i0),

i′′2×n′′−1 = φm
′+1(i0), s′′0 = s0 and s′′2×n′′−1 = s2×n−1.

Since s0 6= s2×n−1, by Prop. 8, there exists a path between the site (φm(i0), s0) and the site (φm
′+1(i0), s2×n−1)

in G.

By Def. 10, Def. 11.(1), and Def. 11.(2), the set {φm′′(i0) | m′′ ∈ N} is finite.
Thus there exists m < m′ such that φm(i0) = φm

′
(i0).

By Def. 15, there exists a cycle in (Ag,Site,Link), which is absurd.
2

Lemma 2 (automorphism) Let G = (Ag,Site,Link) be a connected component without any cycle.
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– G has at most two automorphisms.
– If φ is a automorphism over G, such that there exists i ∈ N, such that Ag(i) is defined and φ(i) 6= i, then

there exist two agent identifiers i, i′ ∈ N and a site type s ∈ S, such that Ag(i) = Ag(i′), (i, s), (i′, s) ∈
Site, and ((i, s), (i′, s)) ∈ Link.

Proof. Let (Ag,Site,Link) be a connected component without any cycle.

– By Def. 11, the identify function restricted to the elements i ∈ N such that Ag(i) is defined, is an auto-
morphism.

– Let us assume that there exists another automorphism φ of (Ag,Site,Link).

• Let us show that for any agent identifier i ∈ N such that Ag(i) is defined, then φ(i) 6= i.

We assume that there exists i ∈ N such that Ag(i) is defined and φ(i) = i.
Then, φ and the restriction of the identify function to the elements i ∈ N such that Ag(i) is defined
are two embeddings between (Ag,Site,Link) and (Ag,Site,Link).
Since (Ag,Site,Link) is connected, by Lem. 1, φ is equal to the restriction of the identify function
to the elements i ∈ N such that Ag(i) is defined are two embeddings between (Ag,Site,Link) and
(Ag,Site,Link), which is absurd.

• Let i ∈ N be an agent identifier such that Ag(i) is defined.

Since (Ag,Site,Link) is connected and i 6= φ(i), we can consider a path (ik, sk)0≤k≤2×n−1 between i
and φ(i).

By Prop. 10, s0 = s2×n−1.

Let us prove by induction, that for any k ∈ N, such that 0 ≤ k ≤ n, Ag(ik) = Ag(i2×n−1−k),
sk = s2×n−1−k, φ(ik) = i2×n−1−k.

∗ We assume that k = 0.

By Def. 13, we have i0 = i and i2×n−1 = φ(i).
By Def. 11.(4), Ag(φ(i)) = Ag(ı).
Thus, Ag(i0) = Ag(i2×n−1).

By hypothesis, we have s0 = s2×n−1.

By hypothesis, we have φ(i0) = i2×n−1.

∗ We assume that there exists k ∈ N such that 0 ≤ k < n, Ag(ik) = Ag(i2×n−k−1), sk = s2×n−k−1
and φ(ik) = i2×n−1−k.

· We assume that k is even.

We have by Def. 13.(1), ((ik, sk), (ik+1, sk+1)) ∈ Link
and ((i2×n−k, s2×n−k), (i2×n−k+1, s2×n−k+1)) ∈ Link.
By Def. 10, ((i2×n−k+1, s2×n−k+1), (i2×n−k, s2×n−k)) ∈ Link.
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By Def. 11.(1), φ(ik) and φ(ik+1) are defined.
By Def. 11.(2), Ag(φ(ik)) and Ag(φ(ik+1)) are defined.
By Def. 11.(5), (φ(ik), sk) ∈ Site and (φ(ik+1), sk+1) ∈ Site.
By Def. 11.(7), ((φ(ik), sk), (φ(ik+1), sk+1)) ∈ Link.
By induction hypothesis, φ(ik) = i2×n+1−k and sk = s2×n+1−k.
Thus, ((i2×n−k+1, s2×n−k+1), (φ(ik+1), sk+1)) ∈ Link.
We already proved that ((i2×n−k+1, s2×n−k+1), (i2×n−k, s2×n−k)) ∈ Link.
By Def. 10.(3), it follows that φ(ik+1) = i2×n−k and sk+1 = s2×n−k.

· We assume that k is odd and k < n

We have by Def. 13.(2), ik = ik+1 and i2×n−k = i2×n−k+1.
By induction hypothesis, φ(ik) = i2×n−k+1.
By extensionality, φ(ik+1) = i2×n−k+1.
Thus, φ(ik+1) = i2×n−k.
We can deduce that ik+1 6= i2×n−k.
Since, moreover, (il, sl)0≤l≤2×n+1 is a path and k + 1 is even, 2 × n − k − 1 is even, and
k + 1 < 2× n− k + 1, and by Prop. 7, (il, sl)k+1≤l≤2×n−k is a path between (il+1, sl+1) and
(φ(il+1), s2×n−k).
Thus, by Lem. 10, sk+1 = s2×n−k.

By Def. 10, ((i2×n−k+1, s2×n−k+1), (i2×n−k, s2×n−k)) ∈ Link.
By Def. 11.(1), φ(ik) and φ(ik+1) are defined.
By Def. 11.(2), Ag(φ(ik)) and Ag(φ(ik+1)) are defined.
By Def. 11.(5), (φ(ik), sk) ∈ Site and (φ(ik+1), sk+1) ∈ Site.
By Def. 11.(7), ((φ(ik), sk), (φ(ik+1), sk+1)) ∈ Link.
By induction hypothesis, φ(ik) = i2×n+1−k and sk = s2×n+1−k.
Thus, ((i2×n−k+1, s2×n−k+1), (φ(ik+1), sk+1)) ∈ Link.
We already proved that ((i2×n−k+1, s2×n−k+1), (i2×n−k, s2×n−k)) ∈ Link.
By Def. 10.(3), it follows that φ(ik+1) = i2×n−k and sk+1 = s2×n−k.

Thus, we have (Ag(in), sn) = (Ag(in+1), sn+1). and φ(in) = in+1.
2

Lemma 3 (Euler) If a site-graph has no cycle, then it has an agent with at most one bound site.

Proof. Let G = (Ag,Site,Link) be a site-graph such that for any agent identifier i ∈ N such that Ag(i) is
defined, there exists two links ((i1, s1), (i2, s2)), ((i′1, s

′
1), (i′2, s

′
2)) ∈ Link such that i1 = i′1 = i and s1 6= s′1.

We can assume, without any loss of generality, that the set N and S are totally ordered.
We define the following sequence (xn)n∈N of sites:

x0 = (min{i ∈ N | Ag(i) is defined },min{s | (min{i ∈ N | Ag(i) is defined }, s) is bound in G})
x2×n+1 = (x′, s′) | ((x2×n, s2×n), (x′, s′)) ∈ Link

x2×n+2 = (x2×n+1,min{s | s 6= s2×n+1 ∧ (x2×n+1, s) is bound in G}).

Let us prove that the sequence (xn)n∈N is well-defined and for any n ∈ N, Ag(n) is defined, and (xn) is
bound in (Ag,Site,Link).

– x0 is well-defined, since any site has at least two bound sites.
Let us denote x0 = (i0, s0).
By definition, Ag(i0) is defined, and x0 is bound in G.
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– Let us assume that x2×n is well-defined, that Ag(fst(x2×n)) is defined, and x2×n is bound in G.

Let us denote x2×n = (i2×n , s2×n).
Since x2×n is bound in G, by Def. 10, there exists a unique pair (i′, s′) such that (x2×n, (i

′, s′)) ∈ Link.
Moreover, by Def. 10, Ag(i′) is defined and (i′, s′) is bound in G.

– Let us assume that x2×m+1 is well-defined, that Ag(fst(x2×n+1)) is defined.

Let us denote x2×n+1 = (i2×n+1, s2×n+1).
By hypothesis, i2×n+1 has at least two bound sites.
Thus the set {s | s 6= s2×n+1 ∧ (x2×n+1, s) is bound in G} is not empty, and x2×n is well defined.
Moreover, i2×n+1 = i2×n and Ag(i2×n) is defined, thus Ag(i2×n+1) is defined.
Lastly, x2×n+1 is bound in G.

By Def. 10, the set of the elements i ∈ N such that Ag(i) is defined is finite.
Moreover S is finite.
Thus the Cartesian product between the set of the elements i ∈ N such that Ag(i) is defined and S is finite.
Thus the set {x2×k | k ∈ N} is finite.
Thus, there exists k and k′ such that k < k′ and x2×k = x2×k′ .
Let us prove that the sequence (xl)2×k≤l≤2×k′+1 is a path between fst(x2×k) and fst(x2×k′).

– We have k′ > k.

– For any integer l such that k ≤ l ≤ k′, we have, by definition of (xn)n∈N, (x2×l, x2×l+1) ∈ Link;

– For any integer l such that k ≤ l ≤ k′, we have, by definition of (xn)n∈N, fst(x2×l+1) = fst(x2×l+2)))
and snd(x2×l+1) 6= snd(x2×l+2))).

This is absurd, thus there exists an agent identifier i ∈ N such that Ag(i) is defined and such that there
exists at most one site s ∈ S such that (i, s) ∈ Site and (i, s) is bound in (Ag,Site,Link).
2
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