Symbolic Abstract Domains

Laurent Mauborgne

IMDEA Software

Interprétation abstraite, MPRI 2-6, année 2012-2013

Laurent Mauborgne (IMDEA)

Goal:

Represent and manipulate sets of values

In practice:

- the representation should be compact
- operations should be fast

In abstract interpretation

- we can approximate
- ... but not too much (false alarms!)

What operations should be efficient?

- Sets of value computed by fixpoint iteration
- \Rightarrow needs efficient inclusion testing
 - Each iteration adds an increment
- ⇒ incremental structures
 - Each individual instruction that is evaluated only modifies a small part of the environment
- ⇒ needs a mechanism to perform local modifications and avoid copying the whole environment.

- Representation of (big) sets of values ⇒ symbolic representations
- Programs manipulate symbolic values or numeric values
 - everything is a number in fine, but
 - sets of enum not well approximated by intervals
 - or $\mathcal{V} \! \rightarrow \! \mathbb{B}$ not well approximated by polyhedra
 - idem for memory structure

Symbolic values of Programs

Sets of value without arithmetic structure

- Symbolic properties (about programs)
 - so-called necessary variables
 - reasoning about traces
 - temporal properties

Boolean Relations

- 2 Cartesian Approximation
- More Interpretations to Logical Formulæ

4 Graphs and Trees

Boolean Formulæ

- Decision Trees
- BDD approximation

2 Cartesian Approximation

- Classic Logic
- Kleene's Logic

3 More Interpretations to Logical Formulæ

- Satisfiability Modulo Theory
- First Order Logic as Abstract Domains

Graphs and Trees

- Classic Representations
- Example of Representation Designed for AI

Sets, Relations and Boolean Functions

• Consider a finite set of symbols (= enum, properties ...)

Example	Example			
Values of a variable x	Properties of a variable x such as			
enum {Blue Green	• $p1 = x$ is reachable from variable y			
Red}x;	• $p^2 = x$ is necessary for function f			
• Abstract concerning and a factor bala				

Abstract property = set of symbols

 \Rightarrow bit vector

Exact representation

Set of bit vectors (Coded as sequences of bits)

- Logical formula
- Relation
- Boolean function

Logical Formulæ First Order Logic

Definition

Logical formula ::= \times boolean variable| $f \land f \mid f \lor f \mid \neg f$ logical connectors| $\forall x.f \mid \exists x.f$ quantifiers

Interpretation

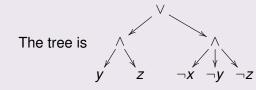
- f(x, y, z) represents the set of boolean vectors < b₀, b₁, b₂ > such that f(b₀, b₁, b₂) is true
- Formula = algorithm of a function $\mathbb{B}^n \to \mathbb{B}$

Set Membership Algorithm

Going through the formula tree

Example

Let
$$f(x, y, z) = (y \land z) \lor (\neg x \land \neg y \land \neg z)$$



Bottom up traversal

Inclusion Testing

- Set of $f \subset$ set of g iff $f \Rightarrow g$
- It's often the construction ordering in static analysis

SAT solvers

- Computes if a formula is satisfiable, and when it is, gives an element
- State of the art software very efficient (but needs fine tuning)
- Very much used in hardware verification

For static analysis

- SAT $(f \land \neg g)$ for inclusion
- Problems :
 - negation expensive (because of normal forms)
 - formulæ can grow unboundedly

Relations

Definition

Let $(E_i)_{i \in I}$ be a family of sets. A relation of support $(E_i)_{i \in I}$ is a sub-set of $\bigotimes_{i \in I} E_i$.

- On booleans, amounts to sets of bit vectors
- We denote the projection R_(J)
- and partial evaluation R_{i=b}

{000,011,111}

0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

A formula

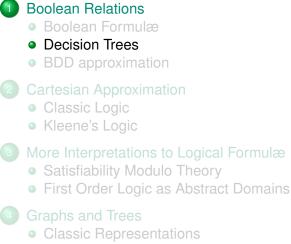
$$f(x,y,z) = (y \land z) \lor (\neg x \land \neg y \land \neg z)$$

Another formula

$$f(x, y, z) = (\exists t.t \land y \land z) \lor \neg (x \lor y \lor z)$$

Many other formulæ

as big as you like...



Example of Representation Designed for AI

Boolean Relations as Abstract Domain

- How can we be efficient?
- For which operations?
 - abstract transfer functions
 - fixpoint testing (implications)
 - testing emptiness
 - union, but with a lot of recomputations

A Possible Solution

Sharing and incremental (whenever possible) representation.

- Sharing ⇒ constant emptiness testing
- Sharing ⇒ memoization

Decision Trees or Shannon trees

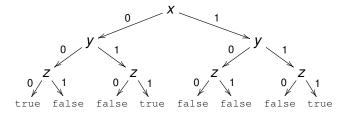
Definition

Shannon's identity: $f = x \land f_{x=true} \lor \neg x \land f_{x=false}$

Let *f* be the set {000, 011, 111}.

$$f(x,y,z) = (y \land z) \lor (\neg x \land \neg y \land \neg z)$$

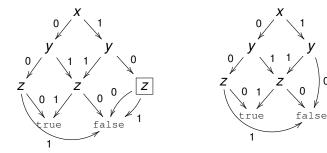
The decision tree of *f* pour the (ordered) variables x, y, z:



BDDs Binary Decision Diagrams

Definition

The BDD of f for the variables \mathcal{V} is the decision tree of f for those variables, with sub-tree sharing and redundant nodes elimination.



0

n

Hashconsing

Unique representation: $t_1 = t_2 \Leftrightarrow t_1 == t_2$

- Nodes numbering
- Dictionary (hash table):

(variable, left id, right id) -> id

- Incremental construction.
- Basic operation: if x then f₁ else f₀.
- Memoization. Worst case cost of binary operations is quadratic.

BDD Complexity

- Worst case size: exponential in the number of variables
- Average size: exponential
- Average gain compared to an array: linear factor (which comes from the sharing)
- The elimination of redundant nodes allows the manipulation of different functions in the same dictionary.
- But in practice, most of the time, very big gain
- BDD exploits the structure the problem
- In abstract interpretation, approximations are possible...

- Boolean Formulæ
- Decision Trees
- BDD approximation
- 2 Cartesian Approximation
 - Classic Logic
 - Kleene's Logic

3 More Interpretations to Logical Formulæ

- Satisfiability Modulo Theory
- First Order Logic as Abstract Domains

Graphs and Trees

- Classic Representations
- Example of Representation Designed for AI

Approximating BDDs for space

- BDDs size can change with variable ordering, but
 - The problem of finding an optimal variable ordering is NP-hard
 - For some classes of functions, all variable orderings yield an exponential size BDD
 - \Rightarrow needs to change the function to obtain tractability

Problem

Given a function *f* find a function f' such that $f \Rightarrow f'$ and the BDD representing *f* is smaller than the BDD representing *f*.

- Solution: f' = true
- Add a new constraint:
 - the model (number of vectors evaluating to true) of f' should be as small as possible.
 - but balance that with the gain in size...

Density of a BDD

Definition

- A minterm of a boolean function *f* is an assignment to the variables of *f* that evaluates to true.
- The density of a BDD is the number of nodes in the BDD, divided by the number of minterms of the boolean function it represents.
- A density driven algorithm will try heuristics at each node of the BDD and estimate the gain in density
- When the density reaches a predefined threshold, the algorithm terminates
- Two such algorithms are available in a standard BDD package (CUDD)

Two Simple Heuristics

Heavy Branch

- Compute the number of minterms at each node
- Starting from the root, at each node, replace the direct child with the most minterms by true
- Until the size of the BDD is below a given threshold
- ⇒ Biased towards BDD with first variables having a child true
- ⇒ Depends on the variable ordering (not semantic)

Shortest Path

- idea: shortest paths give better density
- Compute the length of the shortest path starting at each node
- Replace each node with too big a shortest path by true
- ⇒ Not much control over the desired size of the BDD
- ⇒ Not very predictable algorithm

Both techniques can be modified to allow sharing of direct children (replacing N.I and N.r by their union).

imdea software

Laurent Mauborgne (IMDEA)

Symbolic Abstract Domains

Dual Prime Implicants

Definition

- A clause is a disjunction of variables or negation of variables (called literals)
- A clause c is a dual prime implicant of a boolean function f if
 - $f \Rightarrow c$
 - There is no clause c' (other than c) such that $f \Rightarrow c' \Rightarrow c$
- We denote *primes* (f) the set of dual prime implicants of f.

Property

For all boolean function,

$$f = \bigwedge primes(f)$$

Approximation based on dual prime implicants^a

^aBased on Neil KETTLE's thesis

- A set of dual prime implicants is a sound approximation
- The smaller the clauses, the denser
- Deterministic approximation
 - compute the dual prime implicants of length at most k
 - take their conjunction
 - in practice much better than other heuristics, because semantic based
- Randomized approximation
 - randomly select a path to false in the BDD
 - extract a dual prime implicant c
 - collect the conjunction of such clauses
 - before selecting next path, can transform f into $f \land \neg c$
 - probability to select a given clause = $2^{n-|c|}$

- Boolean Formulæ
- Decision Trees
- BDD approximation

2 Cartesian Approximation

- Classic Logic
- Kleene's Logic

3 More Interpretations to Logical Formulæ

- Satisfiability Modulo Theory
- First Order Logic as Abstract Domains

Graphs and Trees

- Classic Representations
- Example of Representation Designed for AI

=

Classic Logic

exponential size

Cartesian Approximation

Exact representation of boolean relations

Definition

$$\wp\left(\bigotimes_{i\in I} E_i\right) \xrightarrow{\gamma} \bigotimes_{i\in I} \wp\left(E_i\right)$$

$$\alpha(V) \stackrel{\text{def}}{=} \bigotimes_{i \in I} V_{(i)}$$

The cost becomes linear!

Example

$$\alpha(\{000,011\}) = \{0\}.\{0,1\}.\{0,1\}$$

Laurent Mauborgne (IMDEA)

Smash Product

- Let $\bigotimes_{i \in I} V_{(i)}$ be a cartesian approximation
- If one V_i is \emptyset , then the product is empty too

Smash

More efficient if just one possible representation for \emptyset

- In a bit vector, we needed 2 bits per boolean variable
- but the sequence 00 $\Rightarrow \emptyset$

Approximation using classic logic

Only 1 bit per boolean variable \Rightarrow either 0 = {0} and 1 = {0,1}, either 0 = {0,1} and 1 = {1}

First Example: Predicate Abstraction

- Given a set of predicates, \mathcal{P}
- Approximate a set of states by the set of predicates in \mathcal{P} which are true for all states in the set

•
$$\alpha_{\mathbb{P}}(\boldsymbol{Q}) \stackrel{\text{def}}{=} \{ \boldsymbol{p} \in \mathbb{P} \mid \boldsymbol{Q} \subseteq \mathcal{I} [\![\boldsymbol{p}]\!] \}$$

•
$$\gamma_{\mathbb{P}}(P) \stackrel{\text{def}}{=} \bigcap \left\{ \mathcal{I} \left[p \right] \mid p \in P \right\}$$

$$\langle \wp(M), \subseteq
angle \xrightarrow{\gamma_{\mathbb{P}}} \langle \wp(\mathbb{P}), \supseteq
angle$$

- ⇒ just keep the set of predicates which are true, represented by bit vector
 - So, in this representation, 1 represents $\{1\}$ and 0 represents $\{0,1\}$

Second Example: Strictness Analysis

- Property about the program: parameter x evaluates or not (either because of error or non-termination)
- To know if x is strict:

Deduction rule

if (x does not terminate or produces an error \Rightarrow f (x) too), then x is strict in f.

• Approximation:

Only errors are for sure

- $\alpha(x) \stackrel{\text{def}}{=} 0$ if x does not terminate
- $\alpha(x) \stackrel{\text{def}}{=} 1$ represents all cases

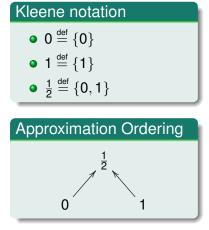
First Order Logic as Abstract Domains

Graphs and Trees

- Classic Representations
- Example of Representation Designed for AI

Kleene's Logic

 \emptyset is superfluous, but we keep $\{0\},\,\{1\}$ and $\{0,1\}.$



Logical Ordering

With that ordering, logical connectors and quantifiers on Kleene's logic are a sound approximation of the operators on sets of booleans.

TVLA Three Values Logic Analyzer

- Static analysis tool by abstract interpretation
- Developed at Tel Aviv University, by Mooly SAGIV et al.
- Parameterized by a finite set of predicates (but predicates with arguments ⇒ not finite...
- Mainly used to determine the shape of the heap during program execution
- Can represent unbounded heaps, thanks to "summary nodes"

Boolean Relations

- Boolean Formulæ
- Decision Trees
- BDD approximation

2 Cartesian Approximation

- Classic Logic
- Kleene's Logic

3 More Interpretations to Logical Formulæ

- Satisfiability Modulo Theory
- First Order Logic as Abstract Domains

Graphs and Trees

- Classic Representations
- Example of Representation Designed for AI

Adding Predicates and Functions to Formulæ

$$\begin{array}{rcl} \mathbf{x}, \mathbf{y}, \mathbf{z}, \dots &\in & \mathbf{x} \\ \mathbf{a}, \mathbf{b}, \mathbf{c}, \dots &\in & \mathbf{f}^{\mathbf{0}} \\ \mathbf{f}, \mathbf{g}, \mathbf{h}, \dots &\in & \mathbf{f}^{n} \\ & t &\in & \mathbb{T}(\mathbf{x}, \mathbf{f}) \quad t \ ::= & \mathbf{x} \mid \mathbf{c} \mid \mathbf{f}(t_{1}, \dots, t_{n}) \\ \mathbf{p}, \mathbf{q}, \mathbf{r}, \dots &\in & \mathbf{p}^{n}, \quad \mathbf{p} \triangleq \bigcup_{n \geq \mathbf{0}} \mathbf{p}^{n} \\ & \mathbf{a} \in & \mathbb{A}(\mathbf{x}, \mathbf{f}, \mathbf{p}) \quad \mathbf{a} \ ::= & \mathbf{false} \mid \mathbf{p}(t_{1}, \dots, t_{n}) \mid \neg \mathbf{a} \\ & \mathbf{e} \in & \mathbb{E}(\mathbf{x}, \mathbf{f}, \mathbf{p}) \quad \triangleq & \mathbb{T}(\mathbf{x}, \mathbf{f}) \cup \mathbb{A}(\mathbf{x}, \mathbf{f}, \mathbf{p}) \\ & \varphi \in & \mathbb{C}(\mathbf{x}, \mathbf{f}, \mathbf{p}) \quad \varphi \ ::= & \mathbf{a} \mid \varphi \land \varphi \\ & \Psi \in & \mathbb{F}(\mathbf{x}, \mathbf{f}, \mathbf{p}) \quad \Psi \ ::= & \mathbf{a} \mid \neg \Psi \mid \Psi \land \Psi \mid \exists \mathbf{x} : \Psi \end{array}$$

Plus special predicate for equality

Interpretations

Definition

Interpretation set of values + meanings of predicates and functions $I = \langle I_{\mathcal{V}}, I_{\gamma} \rangle \in \mathfrak{I}$ Environment $\eta \in \mathcal{R}_I \stackrel{\text{def}}{=} \mathfrak{x} \rightarrow h_{\mathcal{V}}$

$$I \models_{\eta} a \triangleq [\![a]\!]_{_{I}} \eta \qquad I \models_{\eta} \Psi \land \Psi' \triangleq (I \models_{\eta} \Psi) \land (I \models_{\eta} \Psi')$$
$$I \models_{\eta} \neg \Psi \triangleq \neg (I \models_{\eta} \Psi) \qquad I \models_{\eta} \exists x : \Psi \triangleq \exists v \in I_{\mathcal{V}} : I \models_{\eta[x \leftarrow v]} \Psi$$

Natural meaning

$$\gamma^{\mathfrak{a}}(\Psi) \triangleq \{ \langle I, \eta \rangle \mid I \models_{\eta} \Psi \}$$

Theories and Models

Definition

- Sentence = formula without free variables
- Theory = set of sentences + signature
- Model = interpretation on which a sentence is true

Idea: Restrict the possible meanings to those that make the sentences true.

A theory can be

- deductive,
- defined by a set of axioms,
- complete,
- the theory of an interpretation

 $\mathfrak{M}(\mathcal{T})$ = set of interpretations of \mathcal{T}

Satisfiability, Validity and Decidability

- Ψ satisfiable iff $\exists I \in \mathfrak{I} : \exists \eta : I \models_{\eta} \Psi$
- satisfiable in \mathcal{T} : replace \mathfrak{I} by models of \mathcal{T}
- T decidable iff there is an algorithm deciding if a sentence is in T.

decide $_{\mathcal{T}}(\exists \vec{x}_{\Psi} : \Psi) \implies satisfiable _{\mathcal{T}}(\Psi)$

Equivalence when theory is *complete* only.

Comparison of theories

- \mathcal{T}_1 more general than \mathcal{T}_2 iff $\mathfrak{M}(\mathcal{T}_2) \subseteq \mathfrak{M}(\mathcal{T}_1)$
- \Rightarrow satisfiable_{T_2}(Ψ) \implies satisfiable_{T_1}(Ψ)
- \Rightarrow We can use decisions in \mathcal{T}_2 to approximate satisfiability in \mathcal{T}_1
 - $\mathcal{T}_1 \cup \mathcal{T}_2$ is the combination of \mathcal{T}_1 and \mathcal{T}_2

- Boolean Formulæ
- Decision Trees
- BDD approximation
- 2 Cartesian Approximation
 - Classic Logic
 - Kleene's Logic

3 More Interpretations to Logical Formulæ

- Satisfiability Modulo Theory
- First Order Logic as Abstract Domains

Graphs and Trees

- Classic Representations
- Example of Representation Designed for AI

Axiomatic Semantics

- Gives a semantics to program in terms of logical formulæ
- Ordered by \implies
- Approximation of the concrete semantics (but often exact)

Example

$$\begin{array}{rcl} & f_{\mathfrak{a}} & \in & (\mathbb{x} \times \mathbb{T}(\mathbb{x}, \mathbb{f})) \to \mathbb{F}(\mathbb{x}, \mathbb{f}, \mathbb{p}) \to \mathbb{F}(\mathbb{x}, \mathbb{f}, \mathbb{p}) \\ & f_{\mathfrak{a}} \| \mathbb{x} := t \| \Psi & \triangleq & \exists x' : \Psi[\mathbb{x} \leftarrow x'] \land \mathbb{x} = t[\mathbb{x} \leftarrow x'] \\ & \mathsf{b}_{\mathfrak{a}} & \in & (\mathbb{x} \times \mathbb{T}(\mathbb{x}, \mathbb{f})) \to \mathbb{F}(\mathbb{x}, \mathbb{f}, \mathbb{p}) \to \mathbb{F}(\mathbb{x}, \mathbb{f}, \mathbb{p}) \\ & \mathsf{b}_{\mathfrak{a}} \| \mathbb{x} := t \| \Psi & \triangleq & \Psi[\mathbb{x} \leftarrow t] \\ & \mathsf{p}_{\mathfrak{a}} & \in & \mathbb{C}(\mathbb{x}, \mathbb{f}, \mathbb{p}) \to \mathbb{F}(\mathbb{x}, \mathbb{f}, \mathbb{p}) \to \mathcal{B} \\ & \mathsf{p}_{\mathfrak{a}} \| \varphi \| \Psi & \triangleq & \Psi \land \varphi \end{array}$$

Example of program

$$\begin{aligned} & F_{\mathfrak{a}} \left[\mathbb{P} \right] \left(\Psi \right) \triangleq \left(\mathbf{x} = 0 \right) \lor \left(\exists \mathbf{x}' : \Psi [\mathbf{x} \leftarrow \mathbf{x}'] \land \mathbf{x} = \\ \text{incr}\left(\mathbf{x} \right) \left[\mathbf{x} \leftarrow \mathbf{x}' \right] \right) \iff \left(\mathbf{x} = 0 \right) \lor \left(\exists \mathbf{x}' : \\ \Psi [\mathbf{x} \leftarrow \mathbf{x}'] \land \mathbf{x} = \text{incr}\left(\mathbf{x}' \right) \right) \end{aligned}$$

•
$$F_{\mathfrak{a}} \|\mathbb{P}\|^{0} \triangleq \text{false}$$

• $F_{\mathfrak{a}} \|\mathbb{P}\|^{1} \triangleq F_{\mathfrak{a}} \|\mathbb{P}\| (F_{\mathfrak{a}} \|\mathbb{P}\|^{0}) =$
 $(x = 0) \lor (\exists x' : \text{false}[x \leftarrow x'] \land x = \text{incr}(x'))$
• $F_{\mathfrak{a}} \|\mathbb{P}\|^{2} = (x = 0) \lor (\exists x_{2} : (x_{2} = 0) \land x = \text{incr}(x_{2}))$
• ...

No least fixpoint, even though theory is decidable.

Multi-interpreted Semantics

- Give semantics in a set of interpretations
- Could correspond e.g. to different platforms of execution, loose specification of language, ...

$$egin{array}{lll} \mathcal{R}_I & {
m pi} \ \mathcal{P}_\mathcal{I} & \triangleq & I \in \mathcal{I}
eq \wp(\mathcal{R}_I) & {
m in} \ & \simeq & \wp(\{\langle I, \eta
angle \mid I \in \mathcal{I} \land \eta \in \mathcal{R}_I\}) \end{array}$$

program observables interpreted properties

Example

For imperative programs, $\mathcal{R}_I = \mathbb{x} \rightarrow I_{\mathcal{V}}$ and

$$\begin{split} & \mathfrak{f}_{\mathcal{I}} \, \| \mathbf{x} := \boldsymbol{e} \| \, \boldsymbol{P} \ \triangleq \ \left\{ \langle \boldsymbol{I}, \eta [\mathbf{x} \leftarrow \| \boldsymbol{e} \|_{l} \, \eta] \rangle \mid \boldsymbol{I} \in \mathcal{I} \land \langle \boldsymbol{I}, \eta \rangle \in \boldsymbol{P} \right\} \quad \text{post-condition} \\ & \mathsf{b}_{\mathcal{I}} \, \| \mathbf{x} := \boldsymbol{e} \| \, \boldsymbol{P} \ \triangleq \ \left\{ \langle \boldsymbol{I}, \eta \rangle \mid \boldsymbol{I} \in \mathcal{I} \land \langle \boldsymbol{I}, \eta [\mathbf{x} \leftarrow \| \boldsymbol{e} \|_{l} \, \eta] \rangle \in \boldsymbol{P} \right\} \quad \text{pre-condition} \\ & \mathsf{p}_{\mathcal{I}} \, \| \varphi \| \, \boldsymbol{P} \ \triangleq \ \left\{ \langle \boldsymbol{I}, \eta \rangle \in \boldsymbol{P} \mid \boldsymbol{I} \in \mathcal{I} \land \| \varphi \|_{l} \, \eta = \textit{true} \right\} \quad \text{test} \end{split}$$

Abstractions between Multi-interpretations

We must consider

- \mathcal{I} the set of interpretations for which the program is defined
- $\bullet\,$ and \mathcal{I}^{\sharp} the set of interpretations used in the analysis

Then we have the Galois connections (for the \subseteq ordering):

$$\langle \mathcal{P}_{\mathcal{I}}, \subseteq \rangle \xrightarrow[\alpha_{\mathcal{I} \to \mathcal{I}^{\sharp}}]{\gamma_{\mathcal{I}^{\sharp} \to \mathcal{I}}} \langle \mathcal{P}_{\mathcal{I}^{\sharp}}, \subseteq \rangle$$

where

$$\begin{array}{lll} \alpha_{\mathcal{I} \to \mathcal{I}^{\sharp}}(\boldsymbol{P}) & \triangleq & \boldsymbol{P} \cap \mathcal{P}_{\mathcal{I}^{\sharp}} \\ \gamma_{\mathcal{I}^{\sharp} \to \mathcal{I}}(\boldsymbol{Q}) & \triangleq & \Big\{ \langle \boldsymbol{I}, \eta \rangle \mid \; \boldsymbol{I} \in \mathcal{I} \land \Big(\boldsymbol{I} \in \mathcal{I}^{\sharp} \implies \langle \boldsymbol{I}, \eta \rangle \in \boldsymbol{Q} \Big) \Big\} \end{array}$$

Example of abstractions

Uniform abstraction: forget about the interpretations

$$\langle \mathcal{P}_{\mathcal{I}}, \subseteq \rangle \xrightarrow[\alpha_{\mathcal{I}}]{\gamma_{\mathcal{I}}} \langle \cup_{I \in \mathcal{I}} \mathcal{R}_{I}, \subseteq \rangle$$

$$\begin{array}{ll} \gamma_{\mathcal{I}}(\boldsymbol{E}) &\triangleq \{ \langle \boldsymbol{I}, \eta \rangle \mid \eta \in \boldsymbol{E} \} \\ \alpha_{\mathcal{I}}(\boldsymbol{P}) &\triangleq \{ \eta \mid \exists \, \boldsymbol{I} : \langle \boldsymbol{I}, \eta \rangle \in \boldsymbol{P} \} \end{array}$$

 ASTRÉE does that for rounding errors of floating points computations

• Abstraction by a theory: only keep interpretations in the theory

- theories used to represent an infinite number of interpretations
- Necessarily an approximation when we have just one interpretation
- But no best interpretation (Gödel's first incompleteness theorem)

Logical Abstract Domains

Difficult points

- Computing (or approximating) the least fixpoint
- Checking that the invariant is strong enough to prove desired property

Solutions

- Restrict the set of formulæ to enforce ascending chain condition
- Use a decidable theory

Definition

Logical Abstract Domain = set of formulæ + a theory

Ordering is $(\Psi \sqsubseteq \Psi') \triangleq ((\forall \vec{x}_{\Psi} \cup \vec{x}_{\Psi'} : \Psi \implies \Psi') \in \mathcal{T})$

Abstraction to Logical Abstract Domain

- Can use context-independent $alpha_{A}^{\mathcal{I}} \in \mathbb{F}(\mathbb{x}, \mathbb{f}, \mathbb{p}) \rightarrow A$
- Soundness: $\forall \Psi \in \mathbb{F}(\mathbb{x}, \mathbb{f}, \mathbb{p}), \forall I \in \mathcal{I} : I \models \Psi \implies alpha_{\mathcal{A}}^{\mathcal{I}}(\Psi)$
- Assignment then becomes $f^{\sharp} \, [\![x := t]\!] \, \varphi \triangleq alpha_{\mathcal{A}}^{\mathcal{I}}(f \, [\![x := t]\!] \, \varphi)$

Example: Literal Elimination

- $A = \mathbb{F}(\mathbb{x}, \mathbb{f}_A, \mathbb{P}_A), \mathbb{f}_A \subseteq \mathbb{f}$ and $\mathbb{P}_A \subseteq \mathbb{P}A$
- $\Psi[t, \ldots, t]$, where $t \in \mathbb{f} \setminus \mathbb{f}_A$ is approximated by $\exists x : \Psi[x, \ldots, x]$

Example: Quantifier Elimination

- A is quantifier-free
- Quantifiers can be eliminated without loss of precision in some theories (but size blow-up)
- But approximations, using heuristics are possible (Simplify, ...)

Other Abstract Operations

Examples of Widenings

- Widen to finite sub-domain
- Limit the size of formulæ, eliminating new literals (in conjunctive form)
- Reduce only the evolving parts, comparing syntactic evolution
- Make generalizations

 (*I*(1) ∨ *I*(2) ∨ ... implies
 ∃*k* ≥ 0 : *I*(*k*))

- Can be composed with other abstract domains
- Nelson-Oppen procedure is an instance of domain reduction
- ⇒ Reuse of existing, well tested and efficient SMT solvers
 - Satisfiability can be approximated

Structures

- To describe an infinite set, need a structure or algebra
- The most general:
 - uninterpreted symbols
 - combined
 - \Rightarrow trees (Herbrand model), or if possible graphs
- ⇒ Representing sets of trees
 - For what usage?...

What Usage?

• Static analysis :

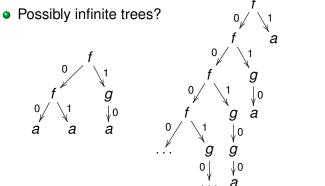
- sets of traces
- memory shapes
- protocol analysis
- any non-linear property (term algebra);

• Computation of a set of terms:

- abstract transfer functions
- fixpoint testing (inclusion)
- testing emptiness
- union, but with a lot of recomputations

What trees?

- Labeled trees;
- Finite number of children (finite arity of children, but not compulsory);
- Ordered children;



What graphs?

Definition

- An oriented graph is a set of nodes V and a set of edges
 E ⊆ V × V
- An oriented labeled multigraph is a set of nodes V, a node labeling function (V→F), and a set of labeled edges E ⊆ V × V × L.

• Example: program heap structure

- Node = memory location
- Node label = data
- Labeled edge = named field pointing to another memory location
- From now on: graph = oriented labeled multigraph

What Tree language?

Representing *everything* is impossible.

 \Rightarrow Each representation defines a class of tree languages.

Relevance of the class

- What trees (infinite, regular...)?
- True branching or linearity?
- If branching, what level of relationship between subtrees?

Operations closure

- In general, yes for boolean operations
- In general, no for limits of sequences of languages
- ⇒ Approximating tree languages (smartly?)

- Boolean Formulæ
- Decision Trees
- BDD approximation
- 2 Cartesian Approximation
 - Classic Logic
 - Kleene's Logic

3 More Interpretations to Logical Formulæ

- Satisfiability Modulo Theory
- First Order Logic as Abstract Domains

Graphs and Trees

- Classic Representations
- Example of Representation Designed for AI

A few examples using variables:

Tree Grammars:

- simple and easy to understand (good descriptive tools),
- unsuccessful attempts to use them in static analysis (bad tools for automatic manipulation);

Set constraints:

- with \cup and \cap , emptiness testing is EXPTIME,
- possibility to add infinite trees using coinductive definitions;

• μ -calculus:

- powerful tool to describe languages over possibly infinite trees,
- too powerful for a practical usage.

Usage as a Representation for Automatic Manipulation

- Inherent default of representations using expressions:
 - renaming and increasing number of variables;
 - looking for normal (or just simplified) forms.
- Lesson: the more operations we use in expressions (∪, ∩), the more equality testing is difficult;
- in practice :
 - if representation not too powerful, translated into an automaton,
 - if too powerful, restrain to a proper subset, then translate into an automaton.

Definition of Tree Automata

- Invented to show the decidability of a logic;
- Natural extension to word automata;
- Word automata are a good representation
- \Rightarrow using tree automata for practical representation

But there are differences between the two classes of automata

Definition

- A: alphabet (or labels),
- Q: set of states,
- $\delta \subset \mathbf{Q} \times \mathbf{A} \times \mathbf{Q}^n$: transition relations (n = 1 for words),
- $I, F \subset Q$: sets of starting states and ending states.

Comparing words/trees

Word automata

- Defines rational languages, quite expressive in practice.
- Same class if δ is deterministic $(Q, A) \rightarrow Q$.

Tree automata

- Trees can be read bottom-up or top-down
- Not the same class for top-down deterministic ((Q, A) → Qⁿ not isomorphic to (Qⁿ, A) → Q)
- Complexity: $A_1 \equiv A_2$ is EXPTIME
- Expressivity: cannot express $y \stackrel{i}{\searrow}_{x \xrightarrow{x}}$ and infinite trees.

Tree Automata in Practice

Efficient Representation of δ

Representation of the decision process using compressed tables [Börstler, Moncke and Wilhelm 1991] or BDDs: each $A \rightarrow Q$ is represented by BDD [MONA, par Klarlund].

Guided Automata (MONA)

- Idea: Top-down deterministic automata are less complicated
- ⇒ Divide the tree space using a deterministic top-down automaton, then in each space, use bottom-up automata.
 - Automaton is run in 2 steps: first marking top-down, then finer automata.
 - Minimisation complex.

Extensions of Tree Automata

Infinite Trees

- Diversity of automata (Rabin, Büchi, Streett)
- For each of them, heavy complexity: ∅ is PSPACE, determinisation doubly exponential .
- \Rightarrow Not used in practice.

Automata with constraints between subtrees

- Add constraints (= and \neq) to production rules;
- Ø undecidable
- \emptyset decidable if constraint between brothers only
- o practical application?

- Decision Trees
- BDD approximation
- 2 Cartesian Approximation
 - Classic Logic
 - Kleene's Logic
- 3 More Interpretations to Logical Formulæ
 - Satisfiability Modulo Theory
 - First Order Logic as Abstract Domains

Graphs and Trees

Classic Representations

Example of Representation Designed for AI

Finding a Good Data Structure for Symbolic Properties In the unbounded case

• Most general structures for symbolic properties:

- Trees, graphs
- Sets of trees or even sets of graphs?
- Classical representations
 - Expressions, using variables, seem a bad idea
 - Automata are not well tailored to static analysis

New Representation for Sets of Trees

- Expressive enough
- Efficient for incremental computations
- Can take advantage of approximations

Sharing and Incrementality

Sharing

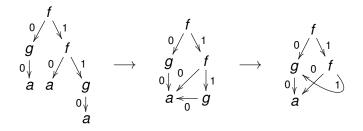
- Objects are represented by a data structure
- This data structure is stored at a given memory address
- Representation shared iff no two memory address contain data structures representing semantically equal objects

Gain in memory

- Constant time equality \Rightarrow easy memoization
- But hidden cost: when computing a new object
 - must be compared with all other represented objects
 - can be made efficient with hash-like techniques
 - but what is the interest compared with on-demand equality testing?
- Only interesting if highly incremental

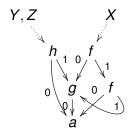
The Easy Case

The most classical representation with sharing is hash-consing of trees:



- Bottom-up process
- Incremental: not need to compute everything again at each tree modification

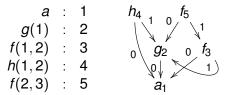
Uniqueness



Laurent Mauborgne (IMDEA)

Dictionary + key

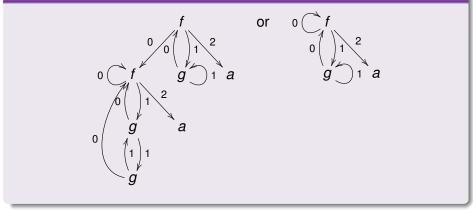
Key = label + sub-trees id



Regular Trees

Regular = *finite* number of distinct sub-trees

Example



Same complexity as oriented labeled multigraphsQuestion: how to extend hash-consing to graphs?

Laurent Mauborgne (IMDEA)

Symbolic Abstract Domains

Equivalent Graphs

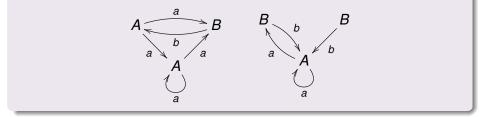
- First determine the semantic equality
- Idea: all what we can observe of a graph is
 - Node labels
 - Follow edges by specifying labels (=paths)

Equivalent graphs

- Two nodes can be distinguished iff there is a path starting from one of the nodes, such that there is no path starting from the other with same edge labels and leading to nodes with same labels
- Two edges can be distinguished iff different label or link distinguishable nodes.
- Two graphs are equivalent iff each node of each graph is undistinguishable from a node of the other graph.

Example of equivalent graphs

Example



Laurent Mauborgne (IMDEA)

Minimal graph

Definition

A graph is minimal iff all its nodes are distinguishable.

- If we store all the graphs encountered in an analysis
- Then it forms a big graph
- If it is minimal, then no redundancy
- ⇒ We can easily reuse previous computations
 - To recognize if a graph argument has already been encountered, just compare the nodes (= memory locations).
 - Notion of maximal sharing.
 - But systematic sharing might not be profitable

How to compute a minimal graph?

- Finding the minimal graph amounts to a graph partitioning problem
- \Rightarrow Can be done in $O(n \log n)$.
 - Algorithm similar to Hopcroft for automata (refine a partition)
 - But not incremental at all.

The Incremental Minimality Problem

- Suppose a minimal graph \mathcal{U} (i.e. uniquely represented graphs)
- Let \mathcal{G} be a graph containing \mathcal{U} .
- Extend U in a minimal graph U' such that all nodes of G is equivalent to a node of U'.
- Classical hash-consing algorithm?
- cannot be used: there is no bottom in a graph

Extending a minimal graph

- What we can observe of a graph is what is reachable
- \Rightarrow we have a notion of *bottom-up*

Definition

- A graph $\mathcal{G} = (V, I, E)$ contains a graph $\mathcal{G}' = (V', I', E')$ iff
 - $V' \subseteq V$

• and
$$\forall v \in V', \ l'(v) = l(v)$$

- and *E*′ ⊆ *E*
- and no edge in *E* starts in *V'* and ends in $V \setminus V'$ $(\forall (v_1, v_2, a) \in E, v_1 \in V' \Rightarrow v_2 \in V')$
- A graph U' extends a graph U means that U' contains U, so that no outgoing edge is added

Strongly Connected Components à la Hopcroft Minimisation Algorithm

- A new strongly connected component is either entirely in U or outside it.
- There does not seem to be any better algorithm than partition refinement for such graphs...

A Partition Refinement Algorithm

- Start with a set of blocks (corresponding to a coarse partition)
- Le W be the set of (B, I), with B a block and I an edge label
- while W is not empty, take (B, I) out of W
 - Compute for each node the number of I-labeled edges leading to B
 - Split each block according to that number
 - if a block was not in W, only add the smallest split blocks in W

• Complexity: $O(n \ln(n))$

Recognizing Strongly Connected Components

Problem

- Minimizing a new strongly connected component does not share it
- Too costly to minimize \mathcal{U} !
- Better way to recognize a strongly connected component?
- Want to compare with as few as possible sub-graphs (limited-depth hashing?)
- Want to avoid costly equality testing
- \Rightarrow find a characteristic key?

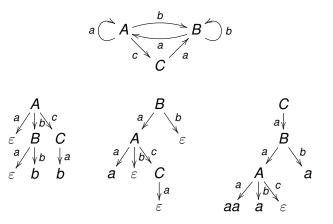
Characteristic property

Isomorphic cycles have the same set of labeled paths

Graphs and Trees Example of Representation Designed for Al

Characteristic Set of Trees for a Strongly Connected Graph

The set of all paths can be described by a finite set of trees

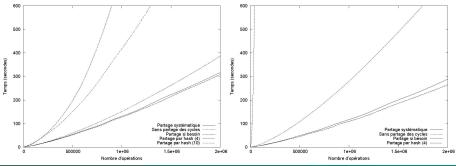


Graphs and Trees Example of Representation Designed for Al

Comparison with Finite Height Hash-Consing

Experimental results on random graph incremental manipulations and equality testing show that

- Sharing is always faster than no sharing
- Finite height hash-consing is far less efficient than cycle hash-consing
- Sharing on demand is slightly more efficient than systematic sharing



Application to Word Automata

- As a graph, word automata have the same equivalence notion as defined earlier, if
 - deterministic
 - and complete (no forbidden transition) or useful (all states can lead to a final state)

Static Analysis Application

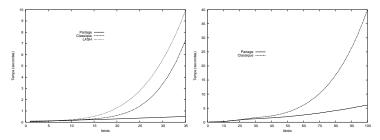
Approximate the messages on channels between parallel processes

Approximation

Using Q-automata: encodes a sequence of languages by a regular language

Experimental Results for Message Analysis

- Fixpoint computation
- Without minimisation, automata grow very quickly ⇒ inclusion algorithms become very costly
- Full minimisation at each step too costly
- ⇒ substantial speed-up with shared automata



Widenings for Graph based Representations

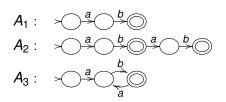
Widening

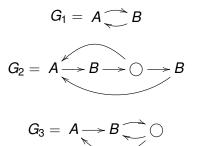
Widening is an approximation of unions used to speed-up convergence of iterations

- Essential to yield precise analysis (which demand infinite domains)
- Tries to extrapolate on successive iterates
- Graph folding
 - Try to replace a new node by an old one with the same label
 - Only if this old one represents more values
- Path extrapolation
 - Repeat infinitely a newly added edge (or path).
 - Approximates $\{ a^n b^n \mid n \in \mathbb{N} \}$ by $a^k a^* b^k b^*$
- Size limiting
 - After a pre-defined size of the graph reached, replace new nodes by ⊤.
 - Enforces termination.

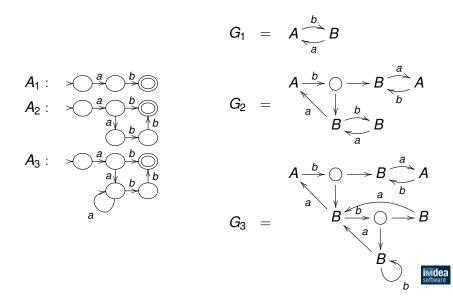
Laurent Mauborgne (IMDEA)

Examples of Graph Folding

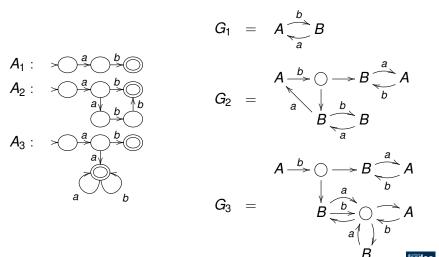




Examples of Path Extrapolation



Examples of Size Limiting



ftware

Sets of Trees

Sharing Tree Automata?

- A tree automaton is not a graph
- Hypergraph = set of nodes
 + set of tuples of nodes

Using a Graph + Interpreted (union) Label?

- Equivalence is not the equality of paths
- Unless normal form?
- Potential problem of cartesian approximation

Introduction of a choice node

Set of trees = tree

Just add a root with special label, and children the elements of the set.

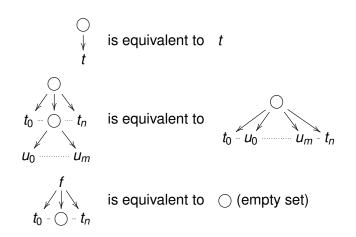
Efficient representation of trees \Rightarrow Efficient representation of sets of trees (?)

Uniqueness of the Skeleton

To have a maximal sharing representation:

- we must obtain uniqueness of the skeleton;
- Valid skeleton = regular tree and restrictions;
- \Rightarrow not all sets of trees can be represented by a skeleton.

Obvious Restrictions



Conventional Restriction

Last problem: ordering the children of a choice node

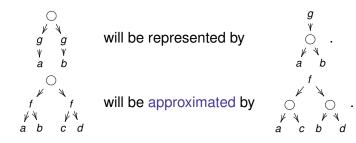
- Solution: total ordering on trees
- Too expensive \Rightarrow partial ordering = ordering over labels

So ordering of the children of a choice node = ordering on the labels of their roots.

Simplifications

- Skeleton = first approximation;
- We want efficient;
- Simplification: share common prefixes
- \Rightarrow All subtrees of a choice node have a different root label.
- \Rightarrow the uniqueness problem is solved!

Simplification Examples

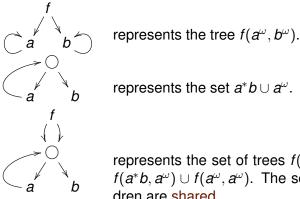


Laurent Mauborgne (IMDEA)

Expressive Power of Tree Skeletons

- Represent infinite trees too ⇒ greatest fixpoint semantics;
- *i.e.* a tree skeleton represents the set of all finite and infinite trees we can form by going through the skeleton.
- If we limited to finite trees, same expressive power as deterministic top down tree automata;
- Advantage: incremental sharing.

Examples of Skeletons



represents the set of trees $f(a^*b, a^*b) \cup f(a^{\omega}, a^*b) \cup f(a^*b, a^{\omega}) \cup f(a^{\omega}, a^{\omega})$. The sets of left and right children are shared.

Usage of Tree Skeletons

- Tree skeletons are simple and efficient;
- Can be used as an abstract domain to over-approximate sets of trees;
- Intersection of 2 skeletons is representable by a skeleton, but not union;
- There exists a best approximation for finite union, and a widening for infinite union;
- First approximation for more expressive tree schemata.

Bibliography

- R. E. Bryant. Graph Based Algorithms for Boolean Function Manipulation. *IEEE Transactions on Computers C-35*, 1986.
- L. Mauborgne. An Incremental Unique Representation for Regular Trees. Nordic Journal of Computing 7(4), 2000.
- N. Kettle, A. King and T. Strzemecki. Widening ROBDDs with Prime Implicants. *TACAS*, 2006.
- A. R. Bradley and Z. Manna. The Calculus of Computation, Decision procedures with Applications to Verification. *Springer*, 2007.
- H. Comon et al. Tree Automata Techniques and Applications. 2007.
- P. Cousot, R. Cousot and L. Mauborgne. Logical Abstract Domains and Interpretations. *The Future of Software Engineering*, 2010.
- P. Cousot, R. Cousot and L. Mauborgne. The Reduced Product of Abstract Domains and the Combination of Decision Procedures. *FoSSaCS*, 2011.

