Approximations

MPRI 2–6: Abstract Interpretation, application to verification and static analysis

Antoine Miné

year 2013-2014

course 02-A 27 September 2013

Abstractions in the concretization framework

Given a concrete (C, \leq) and an abstract (A, \sqsubseteq) posets and a monotonic concretization $\gamma : A \rightarrow C$

 $(\gamma(a) \text{ is the "meaning" of } a \text{ in } C; \text{ we use intervals in our examples})$

- a ∈ A is a sound abstraction of c ∈ C if c ≤ γ(a).
 (e.g.: [0, 10] is a sound abstraction of {0, 1, 2, 5} in the integer interval domain)
- g: A → A is a sound abstraction of f : C → C if ∀a ∈ A: (f ∘ γ)(a) ≤ (γ ∘ g)(a). (e.g.: λ([a, b].[-∞, +∞] is a sound abstraction of

 $\lambda X \{ x + 1 | x \in X \}$ in the interval domain)

 g: A → A is an exact abstraction of f: C → C if f ∘ γ = γ ∘ g.
 (e.g.: λ([a, b].[a + 1, b + 1] is an exact abstraction of

 $\lambda X.\{x+1 \mid x \in X\}$ in the interval domain)

Abstractions in the Galois connection framework

Assume now that
$$(C, \leq) \xrightarrow[\alpha]{\gamma} (A, \sqsubseteq)$$
.

sound abstractions

- $c \leq \gamma(a)$ is equivalent to $\alpha(c) \sqsubseteq a$.
- $(f \circ \gamma)(a) \leq (\gamma \circ g)(a)$ is equivalent to $(\alpha \circ f \circ \gamma)(a) \sqsubseteq g(a)$.
- Given $c \in C$, its best abstraction is $\alpha(c)$.

(proof: recall that $\alpha(c) = \sqcap \{ a \mid c \leq \gamma(a) \}$, so, $\alpha(c)$ is the smallest sound abstraction of c)

(e.g.: $\alpha(\{0,1,2,5\}) = [0,5]$ in the interval domain)

• Given $f: C \to C$, its best abstraction is $\alpha \circ f \circ \gamma$

(proof: g sound $\iff \forall a, (\alpha \circ f \circ \gamma)(a) \sqsubseteq g(a)$, so $\alpha \circ f \circ \gamma$ is the smallest sound abstraction of f)

(e.g.: g([a, b]) = [2a, 2b] is the best abstraction in the interval domain of $f(X) = \{ 2x | x \in X \}$; it is not an exact abstraction as $\gamma(g([0, 1])) = \{0, 1, 2\} \supseteq \{0, 2\} = f(\gamma([0, 1]))$

Composition of sound, best, and exact abstractions

If g and g' soundly abstract respectively f and f' then:

- if f is monotonic, then g ∘ g' is a sound abstraction of f ∘ f',
 (proof: ∀a, (f ∘ f' ∘ γ)(a) ≤ (f ∘ γ ∘ g')(a) ≤ (γ ∘ g ∘ g')(a))
- if g, g' are exact abstractions of f and f', then g ∘ g' is an exact abstraction,
 (proof: f ∘ f' ∘ γ = f ∘ γ ∘ g' = γ ∘ g ∘ g')
- if g and g' are the best abstractions of f and f', then g ∘ g' is not always the best abstraction!
 (e.g.: g([a, b]) = [a, min(b, 1)] and g'([a, b]) = [2a, 2b] are the best abstractions of f(X) = { x ∈ X | x ≤ 1 } and f'(X) = { 2x | x ∈ X } in the interval domain, but g ∘ g' is not the best abstraction of f ∘ f' as (g ∘ g')([0, 1]) = [0, 1] while (α ∘ f ∘ f' ∘ γ)([0, 1]) = [0, 0])

If we have:

- a Galois connection $(C, \leq) \xrightarrow[]{\alpha}{\alpha} (A, \sqsubseteq)$ between CPOs
- monotonic concrete and abstract functions $f: C \to C, f^{\sharp}: A \to A$
- a commutation condition $\alpha \circ f = f^{\sharp} \circ \alpha$
- an element *a* and its abstraction $a^{\sharp} = \alpha(a)$

then $\alpha(\operatorname{lfp}_a f) = \operatorname{lfp}_{a^{\sharp}} f^{\sharp}$.

(proof on next slide)

Fixpoint transfer (proof)

Proof:

By the constructive Tarksi theorem, $\operatorname{lfp}_a f$ is the limit of transfinite iterations: $a_0 \stackrel{\text{def}}{=} a$, $a_{n+1} \stackrel{\text{def}}{=} f(a_n)$, and $a_n \stackrel{\text{def}}{=} \bigvee \{a_m \mid m < n\}$ for limit ordinals n.

Likewise, $f_{a^{\sharp}} f^{\sharp}$ is the limit of a transfinite iteration a_{n}^{\sharp} .

We prove by transfinite induction that $a_n^{\sharp} = \alpha(a_n)$ for all ordinals *n*:

•
$$a_0^{\sharp} = \alpha(a_0)$$
, by definition;

a[#]_{n+1} = f[#](a[#]_n) = f[#](α(a_n)) = α(f(a_n)) = α(a_{n+1}) for successor ordinals, by commutation;

a[#]_n = ∐ { a[#]_m | m < n } = ∐ { α(a_m) | m < n } = α(∨ { a_m | m < n }) = α(a_n) for limit ordinals, by commutation and the fact that α is always continuous in Galois connections.

Hence, $\operatorname{lfp}_{a^{\sharp}} f^{\sharp} = \alpha(\operatorname{lfp}_{a} f).$

Fixpoint approximation

If we have:

- a complete lattice $(C, \leq, \lor, \land, \bot, \top)$
- a monotonic concrete function f
- a sound abstraction f[#]: A → A of f
 (∀x[#]: (f ∘ γ)(x[#]) ≤ (γ ∘ f[#])(x[#]))
- a post-fixpoint a^{\sharp} of f^{\sharp} $(f^{\sharp}(a^{\sharp}) \sqsubseteq a^{\sharp})$

then a^{\sharp} is a sound abstraction of lfp f: lfp $f \leq \gamma(a^{\sharp})$.

Proof:

By definition,
$$f^{\sharp}(a^{\sharp}) \sqsubseteq a^{\sharp}$$
.
By monotony, $\gamma(f^{\sharp}(a^{\sharp})) \leq \gamma(a^{\sharp})$.
By soundness, $f(\gamma(a^{\sharp})) \leq \gamma(a^{\sharp})$.
By Tarski's theorem Ifp $f = \wedge \{x \mid f(x) \leq x\}$.
Hence, Ifp $f \leq \gamma(a^{\sharp})$.