Program Semantics

MPRI 2–6: Abstract Interpretation, application to verification and static analysis

Antoine Miné

year 2013-2014

course 02-B 27 September & 4 October 2013 Discuss several flavors of concrete semantics:

- independently from programming languages
- defined in a constructive way (fixpoint)
- compare their expressive power
- link them through abstractions

Plan:

- introduction: classic examples of program semantics
- transition systems
- state semantics
- trace semantics (finite and infinite)
- relational semantics

Small-step operational semantics of the λ -calculus

Example: λ -calcul

Small-step operational semantics: (call-by-value)

$$\frac{M \rightsquigarrow M'}{(\lambda x.M)N \rightsquigarrow M[x/N]} \qquad \frac{M \rightsquigarrow M'}{M N \rightsquigarrow M' N} \qquad \frac{N \rightsquigarrow N'}{M N \rightsquigarrow M N'}$$

Models program execution as a sequence of term-rewriting \rightsquigarrow exposing each transition (low level).

course 02-B

Program Semantics

Antoine Miné

Big-step operational semantics of the λ -calculus

Big-step operational semantics: (call-by-value)

$$\frac{M \Downarrow \lambda x.L \quad N \Downarrow V_2 \quad L[x/V_2] \Downarrow V_1}{M \ N \Downarrow V_1}$$

 $t \Downarrow u$ associates to a term t its full evaluation u, abstracting away intermediate steps (higher level).

Denotational semantics of λ -calculus

Denotational semantics:

$$\begin{bmatrix} x \end{bmatrix}_{\rho} & \stackrel{\text{def}}{=} & \rho(x) \\ \begin{bmatrix} t \ u \end{bmatrix}_{\rho} & \stackrel{\text{def}}{=} & \llbracket t \rrbracket_{\rho}(\llbracket u \rrbracket_{\rho}) \\ \begin{bmatrix} \lambda x.t \rrbracket_{\rho} & \stackrel{\text{def}}{=} & \lambda v.\llbracket t \rrbracket_{\rho[x \mapsto v]}$$

The semantics $\llbracket t \rrbracket_{\rho}$ of a term *t* in an environment ρ is given as an element of a Scott-domain \mathcal{D} .

- \mathcal{D} should satisfy the domain equation: $\mathcal{D} \simeq \mathcal{D} \xrightarrow{c} \mathcal{D}$.
- The semantics of a function is a function. (very high level)

Abstract machine semantics of the λ -calculus

Krivine abstract machine: (call-by-value)

- variables in λ−terms are replaced with De Bruijn indices
 (x → number of nested λ to reach λx)
- λ -terms are compiled into sequences of instructions:

$$\begin{bmatrix} n \end{bmatrix} \stackrel{\text{def}}{=} Access(n)$$
$$\begin{bmatrix} \lambda N \end{bmatrix} \stackrel{\text{def}}{=} Grab; \begin{bmatrix} N \end{bmatrix}$$
$$\begin{bmatrix} N M \end{bmatrix} \stackrel{\text{def}}{=} Push(\llbracket M \rrbracket); \llbracket N \rrbracket$$

Abstract machine semantics of the λ -calculus

• instructions are executed over configurations (C, e, s)

- C: sequence of instructions to execute
- e: environment

s: stack list of pairs of (C, e) (closures)

with transitions:

- $\langle Access(0) \cdot C, (C_0, e_0) \cdot e, s \rangle \rightarrow \langle C_0, e_0, s \rangle$
- $\langle Access(n+1) \cdot C, (C_0, e_0) \cdot e, s \rangle \rightarrow \langle Access(n), e, s \rangle$
- $\langle Push(C') \cdot C, e, s \rangle \rightarrow \langle C, e, (C', e) \cdot s \rangle$
- $\langle \text{Grab} \cdot C, e, (C_0, e_0) \cdot s \rangle \rightarrow \langle C, (s_0, e_0) \cdot e, s \rangle$

 \implies very low level. (but very efficient)

Transition systems

Transition systems

Transition system: (Σ, τ)

• set of states Σ ,

(memory states, λ -terms, configurations, etc., generally infinite)

• transition relation $\tau \subseteq \Sigma \times \Sigma$.

 (Σ, τ) is a general form of small-step operational semantics.

 $(\sigma, \sigma') \in \tau$ is noted $\sigma \rightarrow_{\tau} \sigma'$:

starting in state σ , after an execution step, we can go to state σ' .

Transition systems

Transition system example

From programs to transition systems

Example: on a simple imperative language.

- $X \in \mathbb{V}$, where \mathbb{V} is a finite set of program variables,
- $\ell \in \mathcal{L}$ is a finite set of control labels,
- $\bowtie \in \{=, \leq, \ldots\}$, the syntax of *expr* is left undefined (for now).

Program states: $\Sigma \stackrel{\text{def}}{=} \mathcal{L} \times \mathcal{E}$ are composed of:

- a control state in \mathcal{L} ,
- a memory state in $\mathcal{E} \stackrel{\text{def}}{=} \mathbb{V} \to \mathbb{R}$.

From programs to transition systems

 $\underline{\text{Transitions:}} \quad \tau[^{\ell} stat^{\ell'}] \subseteq \Sigma \times \Sigma \text{ is defined by induction on the syntax.}$

Assuming that expression semantics is given as $\mathsf{E}[\![e]\!]: \mathcal{E} \to \mathcal{P}(\mathbb{R})$.

$$\tau[{}^{\ell 1}X \leftarrow e^{\ell 2}] \stackrel{\text{def}}{=} \{ (\ell 1, \rho) \rightarrow (\ell 2, \rho[X \mapsto v]) \mid \rho \in \mathcal{E}, v \in \mathsf{E}[\![e]\!] \rho \}$$

$$\tau[{}^{\ell 1} \text{if } e \text{ then } {}^{\ell 2} s^{\ell 3}] \stackrel{\text{def}}{=} \{ (\ell 1, \rho) \rightarrow (\ell 2, \rho) \mid \rho \in \mathcal{E}, \exists v \in \mathsf{E}[\![e]\!] \rho: v \not\bowtie 0 \} \cup \{ (\ell 1, \rho) \rightarrow (\ell 3, \rho) \mid \rho \in \mathcal{E}, \exists v \in \mathsf{E}[\![e]\!] \rho: v \bowtie 0 \} \cup \tau[{}^{\ell 2} s^{\ell 3}]$$

$$\begin{aligned} \tau[{}^{\ell 1} \text{while} {}^{\ell 2} e \text{ do} {}^{\ell 3} s^{\ell 4}] &\stackrel{\text{def}}{=} \\ & \left\{ (\ell 1, \rho) \to (\ell 2, \rho) \mid \rho \in \mathcal{E} \right\} \cup \\ & \left\{ (\ell 2, \rho) \to (\ell 3, \rho) \mid \rho \in \mathcal{E}, \exists v \in \mathsf{E}[\![e]\!] \rho : v \bowtie 0 \right\} \cup \\ & \left\{ (\ell 2, \rho) \to (\ell 4, \rho) \mid \rho \in \mathcal{E}, \exists v \in \mathsf{E}[\![e]\!] \rho : v \bowtie 0 \right\} \cup \tau[{}^{\ell 3} {}^{\ell 2}] \\ & \tau[{}^{\ell 1} s_1; {}^{\ell 2} s_2 {}^{\ell 3}] \stackrel{\text{def}}{=} \tau[{}^{\ell 1} s_1 {}^{\ell 2}] \cup \tau[{}^{\ell 2} s_2 {}^{\ell 3}] \end{aligned}$$

Initial, final, blocking states

Transition systems (Σ , τ) are often enriched with:

- $\mathcal{I} \subseteq \Sigma$ a set of distinguished initial states,
- $\mathcal{F} \subseteq \Sigma$ a set of distinguished final states.

(e.g., limit observation to executions starting in an initial state and ending in a final state) $% \left({{\left[{{{\rm{s}}_{\rm{s}}} \right]}_{\rm{s}}}} \right)$

Blocking states \mathcal{B} :

- states with no successor $\mathcal{B} \stackrel{\text{def}}{=} \{ \sigma \, | \, \forall \sigma' \in \Sigma : \sigma \not\to_{\tau} \sigma' \},$
- model correct program termination and program errors, (program stuck, unhandled exception, etc.)
- often include (or equal) final states \mathcal{F} .

If needed, we can remove blocking states by completing τ : $\tau' \stackrel{\text{def}}{=} \tau \cup \{ (\sigma, \sigma) \, | \, \sigma \in \mathcal{B} \}.$ (add self-loops)

Post-image, pre-image

Forward and backward images, in $\mathcal{P}(\Sigma) \rightarrow \mathcal{P}(\Sigma)$:

• successors: (forward, post-image)

$$\operatorname{post}_{\tau}(S) \stackrel{\text{def}}{=} \{ \sigma' \mid \exists \sigma \in S : \sigma \to_{\tau} \sigma' \}$$

• predecessors: (backward, pre-image)
pre_{$$\tau$$}(S) $\stackrel{\text{def}}{=}$ { $\sigma \mid \exists \sigma' \in S: \sigma \rightarrow_{\tau} \sigma'$ }

post_{τ} and pre_{τ} are complete \cup -morphisms in ($\mathcal{P}(\Sigma), \subseteq, \cup, \cap, \emptyset, \Sigma$). (post_{τ}($\cup_{i \in I} S_i$) = $\cup_{i \in I} \text{ post}_{\tau}(S_i)$, pre_{τ}($\cup_{i \in I} S_i$) = $\cup_{i \in I} \text{ pre}_{\tau}(S_i)$)

 $\mathsf{post}_{\tau} \text{ and } \mathsf{pre}_{\tau} \text{ are strict.} \quad (\mathsf{post}_{\tau}(\emptyset) = \mathsf{pre}_{\tau}(\emptyset) = \emptyset)$

Dual images

Dual post-images and pre-images:

•
$$\widetilde{\mathsf{post}}_{\tau}(S) \stackrel{\text{def}}{=} \{ \sigma' \, | \, \forall \sigma : \sigma \to_{\tau} \sigma' \implies \sigma \in S \}$$

(states such that all predecessors satisfy S)

 $\widetilde{\text{pre}}_{\tau}$ and $\widetilde{\text{post}}_{\tau}$ are complete \cap -morphisms and not strict.

Correspondences

$$\begin{array}{lll} \operatorname{post}_{\tau}(S) & \stackrel{\operatorname{def}}{=} & \{ \sigma' \, | \, \exists \sigma \in S \colon \sigma \to_{\tau} \sigma' \, \} \\ \operatorname{pre}_{\tau}(S) & \stackrel{\operatorname{def}}{=} & \{ \sigma \, | \, \exists \sigma' \in S \colon \sigma \to_{\tau} \sigma' \, \} \\ \widetilde{\operatorname{pre}}_{\tau}(S) & \stackrel{\operatorname{def}}{=} & \{ \sigma \, | \, \forall \sigma' \colon \sigma \to_{\tau} \sigma' \implies \sigma' \in S \, \} \\ \widetilde{\operatorname{post}}_{\tau}(S) & \stackrel{\operatorname{def}}{=} & \{ \sigma' \, | \, \forall \sigma \colon \sigma \to_{\tau} \sigma' \implies \sigma \in S \, \} \end{array}$$

We have the following correspondences:

Correspondences

$$\begin{array}{lll} \operatorname{post}_{\tau}(S) & \stackrel{\operatorname{def}}{=} & \{ \sigma' \, | \, \exists \sigma \in S \colon \sigma \to_{\tau} \sigma' \, \} \\ \operatorname{pre}_{\tau}(S) & \stackrel{\operatorname{def}}{=} & \{ \sigma \, | \, \exists \sigma' \in S \colon \sigma \to_{\tau} \sigma' \, \} \\ \widetilde{\operatorname{pre}}_{\tau}(S) & \stackrel{\operatorname{def}}{=} & \{ \sigma \, | \, \forall \sigma' \colon \sigma \to_{\tau} \sigma' \implies \sigma' \in S \, \} \\ \widetilde{\operatorname{post}}_{\tau}(S) & \stackrel{\operatorname{def}}{=} & \{ \sigma' \, | \, \forall \sigma \colon \sigma \to_{\tau} \sigma' \implies \sigma \in S \, \} \end{array}$$

We have the following correspondences:

• Galois connections

$$(\mathcal{P}(\Sigma), \subseteq) \xrightarrow{\widetilde{\text{pre}}_{\tau}} (\mathcal{P}(\Sigma), \subseteq) \text{ and}$$

$$(\mathcal{P}(\Sigma), \subseteq) \xrightarrow{\widetilde{\text{post}}_{\tau}} (\mathcal{P}(\Sigma), \subseteq).$$

$$\xrightarrow{\text{proof:}} \text{post}_{\tau}(A) \subseteq B \iff \{\sigma' \mid \exists \sigma \in A: \sigma \to_{\tau} \sigma'\} \subseteq B \iff (\forall \sigma \in A: \sigma \to_{\tau} \sigma' \Rightarrow \sigma' \in B) \iff (A \subseteq \{\sigma \mid \forall \sigma': \sigma \to_{\tau} \sigma' \Rightarrow \sigma' \in B\}) \iff A \subseteq \widetilde{\text{pre}}_{\tau}(B); \text{ other directions are similar}$$

Correspondences

Determinism:

- (Σ, τ) is deterministic if ∀σ ∈ Σ: | post_τ({σ})| = 1, (every state has a single successor, no blocking state)
- most transition systems are non-deterministic.
 (e.g., effect of input X ← [0, 10], termination)

We have the following correspondences:

• If τ is deterministic, then $pre_{\tau} = \widetilde{pre}_{\tau}$ and $post_{\tau} = \widetilde{post}_{\tau}$.

•
$$\forall S: \mathcal{B} \subseteq \widetilde{\text{pre}}_{\tau}(S) \subseteq \text{pre}_{\tau}(S) \cup \mathcal{B}.$$

When $\mathcal{B} = \emptyset$, then $\widetilde{\text{pre}}_{\tau}(S) \subseteq \text{pre}_{\tau}(S).$

Forward reachability

 $\mathcal{R}(\mathcal{I}){:}$ states reachable from $\mathcal I$ in the transition system

$$\begin{aligned} \mathcal{R}(\mathcal{I}) \stackrel{\text{def}}{=} \{ \sigma \, | \, \exists n \ge 0, \sigma_0, \dots, \sigma_n : \sigma_0 \in \mathcal{I}, \sigma = \sigma_n, \forall i : \sigma_i \to_{\tau} \sigma_{i+1} \} \\ = \bigcup_{n \ge 0} \text{post}_{\tau}^n(\mathcal{I}) \end{aligned}$$

(reachable \iff reachable from \mathcal{I} in *n* steps of τ for some $n \ge 0$)

 $\mathcal{R}(\mathcal{I})$ can be expressed in fixpoint form:

$$\mathcal{R}(\mathcal{I}) = \mathsf{lfp} \, F_\mathcal{R} \, \mathsf{where} \, F_\mathcal{R}(S) \stackrel{\mathrm{def}}{=} \mathcal{I} \cup \mathsf{post}_ au(S)$$

 $(F_{\mathcal{R}} \text{ shifts } S \text{ and adds back } \mathcal{I})$

<u>Alternate characterization</u>: $\mathcal{R} = \mathsf{lfp}_{\mathcal{I}} \ G_{\mathcal{R}}$ where $G_{\mathcal{R}}(S) \stackrel{\text{def}}{=} S \cup \mathsf{post}_{\tau}(S)$. ($G_{\mathcal{R}}$ shifts S by τ and accumulates the result with S)

(proofs on next slide)

Antoine Miné

Forward reachability: proof

proof: of
$$\mathcal{R}(\mathcal{I}) = \mathsf{lfp} F_{\mathcal{R}}$$
 where $F_{\mathcal{R}}(S) \stackrel{\text{def}}{=} \mathcal{I} \cup \mathsf{post}_{\tau}(S)$

 $(\mathcal{P}(\Sigma), \subseteq)$ is a CPO and post_{τ} is continuous, hence $F_{\mathcal{R}}$ is continuous: $F_{\mathcal{R}}(\cup_{i \in I} A_i) = \bigcup_{i \in I} F_{\mathcal{R}}(A_i).$

By Kleene's theorem, Ifp $F_{\mathcal{R}} = \cup_{n \in \mathbb{N}} F_{\mathcal{R}}^n(\emptyset)$.

We prove by recurrence on *n* that: $\forall n: F_{\mathcal{R}}^n(\emptyset) = \bigcup_{i < n} \text{post}_{\tau}^i(\mathcal{I}).$ (states reachable in less than *n* steps)

•
$$F^0_{\mathcal{R}}(\emptyset) = \emptyset$$

• assuming the property at n,

$$F_{\mathcal{R}}^{n+1}(\emptyset) = \mathcal{I} \cup \text{post}_{\tau}(\bigcup_{i < n} \text{post}_{\tau}^{i}(\mathcal{I}))$$

$$= \mathcal{I} \cup \bigcup_{i < n} \text{post}_{\tau}(\text{post}_{\tau}^{i}(\mathcal{I}))$$

$$= \mathcal{I} \cup \bigcup_{1 \leq i < n+1} \text{post}_{\tau}^{i}(\mathcal{I})$$

$$= \bigcup_{i < n+1} \text{post}_{\tau}^{i}(\mathcal{I})$$

Hence: Ifp $F_{\mathcal{R}} = \bigcup_{n \in \mathbb{N}} F_{\mathcal{R}}^n(\emptyset) = \bigcup_{i \in \mathbb{N}} \text{post}_{\tau}^i(\mathcal{I}) = \mathcal{R}(\mathcal{I}).$

The proof is similar for the alternate form, given that $lfp_{\mathcal{I}} \ G_{\mathcal{R}} = \cup_{n \in \mathbb{N}} G_{\mathcal{R}}^{n}(\mathcal{I}) \text{ and } G_{\mathcal{R}}^{n}(\mathcal{I}) = F_{\mathcal{R}}^{n+1}(\emptyset) = \cup_{i \leq n} \text{ post}_{\tau}^{i}(\mathcal{I}).$

Forward reachability: graphical illustration

Transition system.

course 02-B

Forward reachability: graphical illustration

Initial states \mathcal{I} .

course 02-B

Forward reachability: graphical illustration

Iterate $F^1_{\mathcal{R}}(\mathcal{I})$.

Forward reachability: graphical illustration

Iterate $F_{\mathcal{R}}^2(\mathcal{I})$.

course 02-B

Forward reachability: graphical illustration

Iterate $F^3_{\mathcal{R}}(\mathcal{I})$.

Forward reachability: graphical illustration

States reachable from \mathcal{I} : $\mathcal{R}(\mathcal{I}) = F^{5}_{\mathcal{R}}(\mathcal{I})$.

Forward reachability: applications

• Infer the set of possible states at program end: $\mathcal{R}(\mathcal{I}) \cap \mathcal{F}$.

- initial states \mathcal{I} : $j \in [0, 10]$ at control state •,
- final states \mathcal{F} : any memory state at control state •,

• $\Longrightarrow \mathcal{R}(\mathcal{I}) \cap \mathcal{F}$: control at •, i = 100, and $j \in [0, 110]$.

Prove the absence of run-time error: R(I) ∩ B ⊆ F.
 (do not block except when reaching the end of the program)

Multiple forward fixpoints

Recall: $\mathcal{R}(\mathcal{I}) = \operatorname{lfp} F_{\mathcal{R}}$ where $F_{\mathcal{R}}(S) \stackrel{\text{def}}{=} \mathcal{I} \cup \operatorname{post}_{\tau}(S)$. Note that $F_{\mathcal{R}}$ may have several fixpoints.

Example:

Exercise:

Compute all the fixpoints of $G_{\mathcal{R}}(S) \stackrel{\text{def}}{=} S \cup \text{post}_{\tau}(S)$ on this example.

Forward reachability equation system

By partitioning forward reachability wrt. control states, we retrieve the equation system form of program semantics.

Control state partitioning

We assume $\Sigma \stackrel{\text{def}}{=} \mathcal{L} \times \mathcal{E}$; note that: $\mathcal{P}(\Sigma) \simeq \mathcal{L} \to \mathcal{P}(\mathcal{E})$. We have a Galois isomorphism:

$$(\mathcal{P}(\Sigma),\subseteq) \xrightarrow{\gamma_{\mathcal{L}}} (\mathcal{L} \to \mathcal{P}(\mathcal{E}), \subseteq)$$

- $X \subseteq Y \iff \forall \ell \in \mathcal{L}: X(\ell) \subseteq Y(\ell)$
- $\alpha_{\mathcal{L}}(S) \stackrel{\text{def}}{=} \lambda \ell \{ \rho \mid (\ell, \rho) \in S \}$
- $\gamma_{\mathcal{L}}(X) \stackrel{\text{def}}{=} \{ (\ell, \rho) | \ell \in \mathcal{L}, \rho \in X(\ell) \}$

Note that: $\alpha_{\mathcal{L}} \circ \gamma_{\mathcal{L}} = \gamma_{\mathcal{L}} \circ \alpha_{\mathcal{L}} = id.$ (no abstraction)

Forward reachability equation system: example

Idea: compute $\alpha_{\mathcal{L}}(\mathcal{R}(\mathcal{I})) : \mathcal{L} \to \mathcal{P}(\mathcal{E})$

- introduce variables: $\mathcal{X}_{\ell} = (\alpha_{\mathcal{L}}(\mathcal{R}(\mathcal{I})))(\ell) \in \mathcal{P}(\mathcal{E}),$
- decompose the fixpoint equation $F_{\mathcal{R}}(S) = \mathcal{I} \cup \text{post}_{\tau}(S)$ on \mathcal{L} : $\alpha_{\mathcal{L}} \circ F_{\mathcal{R}} \circ \gamma_{\mathcal{L}}$ gives an equation system on $(\mathcal{X}_{\ell})_{\ell \in \mathcal{L}}$.

Example:

$$\begin{array}{ll} \mathcal{L}_{1}^{\ell 1} i \leftarrow 2; \\ \mathcal{L}_{2}^{\ell 2} n \leftarrow [-\infty, +\infty]; \\ \mathcal{L}_{3}^{\ell 3} \text{ while } \mathcal{L}_{4}^{\ell 4} i < n \operatorname{do} \\ & \overset{\ell 5}{\overset{\ell 5}{\text{ if }}} \begin{bmatrix} 0,1 \end{bmatrix} = 0 \operatorname{then} \\ \mathcal{L}_{6}^{\ell 5} i \leftarrow i + 1 \\ \mathcal{L}_{7}^{\ell 7} \end{array} \qquad \begin{array}{ll} \mathcal{X}_{1} = \mathcal{I}_{1} \\ \mathcal{X}_{2} = \mathbb{C} \llbracket i \leftarrow 2 \rrbracket \mathcal{X}_{1} \\ \mathcal{X}_{3} = \mathbb{C} \llbracket i \leftarrow 2 \rrbracket \mathcal{X}_{1} \\ \mathcal{X}_{3} = \mathbb{C} \llbracket i \leftarrow 2 \rrbracket \mathcal{X}_{1} \\ \mathcal{X}_{3} = \mathbb{C} \llbracket i \leftarrow 2 \rrbracket \mathcal{X}_{1} \\ \mathcal{X}_{3} = \mathbb{C} \llbracket i \leftarrow 2 \rrbracket \mathcal{X}_{1} \\ \mathcal{X}_{3} = \mathbb{C} \llbracket i \leftarrow 2 \rrbracket \mathcal{X}_{1} \\ \mathcal{X}_{3} = \mathbb{C} \llbracket i \leftarrow 2 \rrbracket \mathcal{X}_{1} \\ \mathcal{X}_{4} = \mathcal{X}_{3} \cup \mathcal{X}_{7} \\ \mathcal{X}_{5} = \mathbb{C} \llbracket i < n \rrbracket \mathcal{X}_{4} \\ \mathcal{X}_{6} = \mathcal{X}_{5} \\ \mathcal{X}_{7} = \mathcal{X}_{5} \cup \mathbb{C} \llbracket i \leftarrow i + 1 \rrbracket \mathcal{X}_{6} \\ \mathcal{X}_{8} = \mathbb{C} \llbracket i \geq n \rrbracket \mathcal{X}_{4} \end{array}$$

• initial states $\mathcal{I} \stackrel{\text{def}}{=} \{ (\ell 1, \rho) | \rho \in \mathcal{I}_1 \}$ for some $\mathcal{I}_1 \subseteq \mathcal{E}$,

• $C[\![\cdot]\!] : \mathcal{P}(\mathcal{E}) \to \mathcal{P}(\mathcal{E})$ model assignments and tests (see next slide).

Forward reachability equation system: construction

We derive the equation system $eq(^{\ell}stat^{\ell'})$ from the program syntax $^{\ell}stat^{\ell'}$ by induction:

$$eq({}^{\ell 1}X \leftarrow e^{\ell 2}) \stackrel{\text{def}}{=} \{ \mathcal{X}_{\ell 2} = \mathbb{C}[\![X \leftarrow e]\!] \mathcal{X}_{\ell 1} \}$$

$$eq({}^{\ell 1}\text{if } e \bowtie 0 \text{ then } {}^{\ell 2}s^{\ell 3}) \stackrel{\text{def}}{=} \{ \mathcal{X}_{\ell 2} = \mathbb{C}[\![e \bowtie 0]\!] \mathcal{X}_{\ell 1}, \mathcal{X}_{\ell 3} = \mathcal{X}_{\ell 3'} \cup \mathbb{C}[\![e \bowtie 0]\!] \mathcal{X}_{\ell 1} \} \cup eq({}^{\ell 2}s^{\ell 3'})$$

$$eq({}^{\ell 1}\text{while } {}^{\ell 2}e \bowtie 0 \text{ do } {}^{\ell 3}s^{\ell 4}) \stackrel{\text{def}}{=} \{ \mathcal{X}_{\ell 2} = \mathcal{X}_{\ell 1} \cup \mathcal{X}_{\ell 4'}, \mathcal{X}_{\ell 3} = \mathbb{C}[\![e \bowtie 0]\!] \mathcal{X}_{\ell 2}, \mathcal{X}_{\ell 4} = \mathbb{C}[\![e \bowtie 0]\!] \mathcal{X}_{\ell 2} \} \cup eq({}^{\ell 3}s^{\ell 4'})$$

$$eq({}^{\ell 1}s_{1}; {}^{\ell 2}s_{2}{}^{\ell 3}) \stackrel{\text{def}}{=} eq({}^{\ell 1}s_{1}{}^{\ell 2}) \cup ({}^{\ell 2}s_{2}{}^{\ell 3})$$

where:

• $\mathcal{X}^{\ell 3'}$, $\mathcal{X}^{\ell 4'}$ are fresh variables storing intermediate results

•
$$C[X \leftarrow e] \mathcal{X} \stackrel{\text{def}}{=} \{ \rho[X \mapsto v] \mid \rho \in \mathcal{X}, v \in E[[e]] \rho \}$$

 $C[[e \bowtie 0]] \mathcal{X} \stackrel{\text{def}}{=} \{ \rho \in \mathcal{X} \mid \exists v \in E[[\rho]] \rho : v \bowtie 0 \}$

Backward reachability

 $\mathcal{C}(\mathcal{F}){:}$ states co-reachable from \mathcal{F} in the transition system:

$$\mathcal{C}(\mathcal{F}) \stackrel{\text{def}}{=} \{ \sigma \,|\, \exists n \ge 0, \sigma_0, \dots, \sigma_n : \sigma = \sigma_0, \sigma_n \in \mathcal{F}, \forall i : \sigma_i \to_{\tau} \sigma_{i+1} \} \\ = \bigcup_{n \ge 0} \operatorname{pre}_{\tau}^n(\mathcal{F})$$

 $\mathcal{C}(\mathcal{F})$ can also be expressed in fixpoint form:

$$\mathcal{C}(\mathcal{F}) = \mathsf{lfp} \, F_{\mathcal{C}} \; \mathsf{where} \; F_{\mathcal{C}}(S) \stackrel{\text{def}}{=} \mathcal{F} \cup \mathsf{pre}_{\tau}(S)$$

<u>Alternate characterization</u>: $C(\mathcal{F}) = \mathsf{lfp}_{\mathcal{I}} \ G_{\mathcal{C}}$ where $G_{\mathcal{C}}(S) = G_{\mathcal{C}} \cup \mathsf{pre}_{\tau}(S)$

<u>Justification:</u> $C(\mathcal{F})$ in τ is exactly $\mathcal{R}(\mathcal{F})$ in τ^{-1} .

Backward reachability: graphical illustration

Transition system.

course 02-B

Backward reachability: graphical illustration

Final states \mathcal{F} .
Backward reachability: graphical illustration

States co-reachable from \mathcal{F} .

Backward reachability: applications

• $\mathcal{I} \cap \mathcal{C}(\mathcal{B} \setminus \mathcal{F})$

Initial states that have at least one erroneous execution.

- initial states \mathcal{I} : $i \in [0, 100]$ at •
- final states \mathcal{F} : any memory state at •
- blocking states \mathcal{B} : final, or j > 200 at any location
- $\mathcal{I} \cap \mathcal{C}(\mathcal{B} \setminus \mathcal{F})$: at •, i > 20

I ∩ (Σ \ C(B))
 Initial states that necessarily cause the program to loop.

Iterate forward and backward analyses interactively
 ⇒ abstract debugging [Bour93].

Backward reachability equation system: example

Principle:

Use $(\mathcal{P}(\Sigma), \subseteq) \xrightarrow[\alpha_{\mathcal{L}}]{\gamma_{\mathcal{L}}} (\mathcal{L} \to \mathcal{P}(\mathcal{E}), \subseteq)$ on $F_{\mathcal{C}}(S) \stackrel{\text{def}}{=} \mathcal{F} \cup \operatorname{pre}_{\tau}(S)$ to derive an equation system $\alpha_{\mathcal{L}} \circ F_{\mathcal{C}} \circ \gamma_{\mathcal{L}}$.

Example:

• final states $\mathcal{F} \stackrel{\text{def}}{=} \{ (\ell 8, \rho) | \rho \in \mathcal{F}_8 \}$ for some $\mathcal{F}_8 \subseteq \mathcal{E}$,

• $C[X \to e] \mathcal{X} \stackrel{\text{def}}{=} \{ \rho \mid \exists v \in E[[e]] \rho : \rho[X \mapsto v] \in X \}.$

Sufficient preconditions

 $\mathcal{S}(\mathcal{Y})$: states with executions staying in \mathcal{Y} .

$$\begin{aligned} \mathcal{S}(\mathcal{Y}) \stackrel{\text{def}}{=} \{ \sigma \, | \, \forall n \ge 0, \sigma_0, \dots, \sigma_n : (\sigma = \sigma_0 \land \forall i : \sigma_i \to_{\tau} \sigma_{i+1}) \implies \sigma_n \in \mathcal{Y} \} \\ &= \bigcap_{n \ge 0} \, \widetilde{\mathsf{pre}}_{\tau}^n(\mathcal{Y}) \end{aligned}$$

$\mathcal{S}(\mathcal{Y})$ can be expressed in fixpoint form:

$$\mathcal{S}(\mathcal{Y}) = \mathsf{gfp} \, F_{\mathcal{S}} \,$$
 where $F_{\mathcal{S}}(S) \stackrel{\text{\tiny def}}{=} \mathcal{Y} \cap \widetilde{\mathsf{pre}}_{\tau}(S)$

proof sketch: similar to that of $\mathcal{R}(\mathcal{I})$, in the dual.

$$\begin{split} F_{\mathcal{S}} & \text{ is continuous in the dual CPO } (\mathcal{P}(\Sigma), \supseteq), \text{ because } \widetilde{\text{pre}}_{\tau} \text{ is:} \\ F_{\mathcal{S}}(\cap_{i \in I} A_i) &= \cap_{i \in I} F_{\mathcal{S}}(A_i). \\ \text{By Kleene's theorem in the dual, gfp } F_{\mathcal{S}} &= \cap_{n \in \mathbb{N}} F_{\mathcal{S}}^n(\Sigma). \\ \text{We would prove by recurrence that } F_{\mathcal{S}}^n(\Sigma) &= \cap_{i < n} \widetilde{\text{pre}}_{\tau}^i(\mathcal{Y}). \end{split}$$

course 02-B

Sufficient preconditions and reachability

Correspondence with reachability:

We have a Galois connection:

$$(\mathcal{P}(\Sigma),\subseteq) \xrightarrow[\mathcal{R}]{\mathcal{S}} (\mathcal{P}(\Sigma),\subseteq)$$

•
$$\mathcal{R}(\mathcal{I}) \subseteq \mathcal{Y} \iff \mathcal{I} \subseteq \mathcal{S}(\mathcal{Y})$$

• so $\mathcal{S}(\mathcal{Y}) = \bigcup \{ X \mid \mathcal{R}(X) \subseteq \mathcal{Y} \}$

 $(\mathcal{S}(\mathcal{Y})$ is the largest initial set whose reachability is in $\mathcal{Y})$

We retrieve Dijkstra's weakest liberal preconditions.

(proof sketch on next slide)

Sufficient preconditions and reachability (proof)

proof sketch:

Recall that
$$\mathcal{R}(\mathcal{I}) = \operatorname{lfp}_{\mathcal{I}} G_{\mathcal{R}}$$
 where $G_{\mathcal{R}}(S) = S \cup \operatorname{post}_{\tau}(S)$.
Likewise, $\mathcal{S}(\mathcal{Y}) = \operatorname{gfp}_{\mathcal{Y}} G_{\mathcal{S}}$ where $G_{\mathcal{S}}(S) = S \cap \widetilde{\operatorname{pre}}_{\tau}(S)$.
Recall the Galois connection $(\mathcal{P}(\Sigma), \subseteq) \xleftarrow{\widetilde{\operatorname{post}}_{\tau}} (\mathcal{P}(\Sigma), \subseteq)$.
As a consequence $(\mathcal{P}(\Sigma), \subseteq) \xleftarrow{G_{\mathcal{S}}} (\mathcal{P}(\Sigma), \subseteq)$.
The Galois connection can be lifted to fixpoint operators:
 $x \mapsto \operatorname{gfp}_{\mathcal{V}} G_{\mathcal{S}}$

$$(\mathcal{P}(\Sigma),\subseteq) \xrightarrow[x\mapsto]{\text{sgrp}_x \ \mathsf{G}_{\mathcal{R}}} (\mathcal{P}(\Sigma),\subseteq).$$

Exercise: complete the proof sketch.

Sufficient preconditions: application

Initial states such that all executions are correct: $\mathcal{I} \cap \mathcal{S}(\mathcal{F} \cup (\Sigma \setminus \mathcal{B})).$

(the only blocking states reachable from initial states are final states)

program

• $i \leftarrow 0$: while i < 100 do $i \leftarrow i + 1$: $i \leftarrow j + [0, 1]$ done •

- initial states \mathcal{I} : $i \in [0, 10]$ at •
- final states *F*: any memory state at
- blocking states \mathcal{B} : final, or i > 105 at any location
- $\mathcal{I} \cap \mathcal{S}(\mathcal{F} \cup (\Sigma \setminus \mathcal{B}))$: at •, $i \in [0, 5]$ (note that $\mathcal{I} \cap \mathcal{C}(\mathcal{F} \cup (\Sigma \setminus \mathcal{B}))$ gives \mathcal{I})

Applications: infer contracts; optimize (hoist) tests; dually, infer counter-examples.

Sufficient preconditions: graphical illustration

Final states \mathcal{F} .

Sufficient preconditions: graphical illustration

Set of final or non-blocking states $\mathcal{Y} = \mathcal{F} \cup (\Sigma \setminus \mathcal{B}).$

Sufficient preconditions: graphical illustration

Sufficient preconditions $\mathcal{S}(\mathcal{Y})$.

 $\mathcal{C}(\mathcal{F})$

 $\mathcal{S}(\mathcal{Y}) \subsetneq \mathcal{C}(\mathcal{F})$

Sufficient precondition equation system: example

Principle:

use
$$(\mathcal{P}(\Sigma), \subseteq) \xrightarrow{\gamma_{\mathcal{L}}} (\mathcal{L} \to \mathcal{P}(\mathcal{E}), \subseteq)$$
 on $F_{\mathcal{S}}(S) \stackrel{\text{def}}{=} \mathcal{Y} \cap \widetilde{\text{pre}}_{\tau}(S)$
to derive an equation system $\alpha_{\mathcal{L}} \circ F_{\mathcal{S}} \circ \gamma_{\mathcal{L}}$

Example:

$$\begin{array}{l} {}^{\ell 1} i \leftarrow 2; \\ {}^{\ell 2} n \leftarrow [-\infty, +\infty]; \\ {}^{\ell 3} \text{ while } {}^{\ell 4} i < n \text{ do} \\ {}^{\ell 5} \text{ if } [0,1] = 0 \text{ then} \\ {}^{\ell 6} i \leftarrow i+1 \\ {}^{\ell 7} \end{array} \qquad \begin{array}{l} {}^{\mathcal{X}_1 = \overleftarrow{C} \llbracket i \leftarrow 2 \rrbracket \mathcal{X}_2 \\ \mathcal{X}_2 = \overleftarrow{C} \llbracket n \leftarrow [-\infty, +\infty] \rrbracket \mathcal{X}_3 \\ \mathcal{X}_3 = \mathcal{X}_4 \\ \mathcal{X}_4 = \overleftarrow{C} \llbracket i < n \rrbracket \mathcal{X}_5 \cap \overleftarrow{C} \llbracket i \le n \rrbracket \mathcal{X}_8 \\ \mathcal{X}_5 = \mathcal{X}_6 \cap \mathcal{X}_7 \\ \mathcal{X}_6 = \overleftarrow{C} \llbracket i \leftarrow i+1 \rrbracket \mathcal{X}_7 \\ \mathcal{X}_8 = \mathcal{F}_8 \end{array}$$

"stay in" states 𝔅 ^{def} = { (ℓ, ρ) | ℓ ≠ ℓ8 ∨ ρ ∈ 𝔅₈ } for some 𝔅₈ ⊆ 𝔅,
[←] C [[·]] is the Galois adjoint of C [[·]].

Sequences, traces

<u>Trace</u>: sequence of elements from Σ

- *ϵ*: empty trace (unique)
- σ : trace of length 1 (assimilated to a state)
- $\sigma_0, \ldots, \sigma_{n-1}$: trace of length n
- $\sigma_0, \ldots, \sigma_n, \ldots$: infinite trace (length ω)

Trace sets:

- Σ^n : the set of traces of length *n*
- $\Sigma^{\leq n} \stackrel{\text{def}}{=} \cup_{i \leq n} \Sigma^i$: the set of traces of length at most *n*
- $\Sigma^* \stackrel{\text{def}}{=} \cup_{i \in \mathbb{N}} \Sigma^i$: the set of finite traces
- Σ^{ω} : the set of infinite traces
- $\Sigma^{\infty} \stackrel{\text{def}}{=} \Sigma^* \cup \Sigma^{\omega}$: the set of all traces

Trace operations

Operations on traces:

- length: $|t| \in \mathbb{N} \cup \{\omega\}$ of a trace $t \in \Sigma^{\infty}$
- concatenation ·
 - $(\sigma_0, \ldots, \sigma_n) \cdot (\sigma'_0, \ldots) \stackrel{\text{def}}{=} \sigma_0, \ldots, \sigma_n, \sigma'_0, \ldots$ (append to a finite trace)
 - $t \cdot t' \stackrel{\text{def}}{=} t$ if $t \in \Sigma^{\omega}$ (append to an infinite trace)

•
$$\epsilon \cdot t \stackrel{\text{def}}{=} t \cdot \epsilon \stackrel{\text{def}}{=} t$$
 (ϵ is neutral)

- junction \frown
 - $(\sigma_0, \ldots, \sigma_n)^{\frown}(\sigma'_0, \sigma'_1 \ldots) \stackrel{\text{def}}{=} \sigma_0, \ldots, \sigma_n, \sigma'_1, \ldots$ when $\sigma_n = \sigma'_0$ undefined if $\sigma_n \neq \sigma'_0$
 - $\epsilon^{-}t$ and $t^{-}\epsilon$ are undefined
 - $t^{-}t' \stackrel{\text{def}}{=} t$, if $t \in \Sigma^{\omega}$

Trace operations (cont.)

Extension to sets of traces:

•
$$A \cdot B \stackrel{\text{def}}{=} \{a \cdot b \mid a \in A, b \in B\}$$

• $A^{\frown}B \stackrel{\text{def}}{=} \{a^{\frown}b \mid a \in A, b \in B, a^{\frown}b \text{ defined}\}$
• $A^{0} = \{\epsilon\}$ (neutral element for \cdot)
 $A^{n+1} \stackrel{\text{def}}{=} A \cdot A^{n},$
 $A^{\omega} \stackrel{\text{def}}{=} A \cdot A \cdots$
 $A^{*} \stackrel{\text{def}}{=} \bigcup_{n \leq \omega} A^{n},$
 $A^{\infty} \stackrel{\text{def}}{=} \bigcup_{n \leq \omega} A^{n}$
• $A^{-0} = \Sigma$ (neutral element for \frown)
 $A^{-n+1} \stackrel{\text{def}}{=} A^{-}A^{-n},$
 $A^{-\omega} \stackrel{\text{def}}{=} \bigcup_{n < \omega} A^{-n},$
 $A^{-\infty} \stackrel{\text{def}}{=} \bigcup_{n < \omega} A^{-n},$

Note:
$$A^n \neq \{ a^n | a \in A \}, A^{n} \neq \{ a^{n} | a \in A \}$$
 when $|A| > 1$

Distributivity of junction

• \frown distributes finite and infinite \cup : $A^{\frown}(\cup_{i \in I} B_i) = \cup_{i \in I} (A^{\frown} B_i)$ and $(\cup_{i \in I} A_i)^{\frown} B = \bigcup_{i \in I} (A_i^{\frown} B)$ where I can be finite an infinite

where I can be finite or infinite.

$$\{a^{\omega}\}^{\frown} (\cap_{n \in \mathbb{N}} \{a^{m} \mid n \ge m\}) = \{a^{\omega}\}^{\frown} \emptyset = \emptyset \text{ but} \cap_{n \in \mathbb{N}} (\{a^{\omega}\}^{\frown} \{a^{m} \mid n \ge m\}) = \cap_{n \in \mathbb{N}} \{a^{\omega}\} = \{a^{\omega}\}$$

• but, if $A \subseteq \Sigma^*$, then $A^{\frown}(\bigcap_{i \in I} B_i) = \bigcup_{i \in I} (A^{\frown} B_i)$ even for infinite I

<u>Note</u>: \cdot distributes infinite \cap and \cup .

course 02-B

Traces of a transition system

Execution traces:

Non-empty sequences of states linked by the transition relation τ .

- can be finite (in $\mathcal{P}(\Sigma^*)$) or infinite (in $\mathcal{P}(\Sigma^{\omega})$)
- can be anchored at initial states, or final states, or none

Atomic traces:

- \mathcal{I} : initial states \simeq set of traces of length 1
- \mathcal{F} : final states \simeq set of traces of length 1
- τ : transition relation \simeq set of traces of length 2 ({ $\sigma, \sigma' \mid \sigma \to_{\tau} \sigma'$ })

(as $\Sigma\simeq\Sigma^1$ and $\Sigma\times\Sigma\simeq\Sigma^2)$

Prefix trace semantics

 $\mathcal{T}_{\rho}(\mathcal{I})$: partial, finite execution traces starting in \mathcal{I} .

$$\begin{aligned} \mathcal{T}_{p}(\mathcal{I}) &\stackrel{\text{def}}{=} \{ \sigma_{0}, \dots, \sigma_{n} \mid n \geq 0, \sigma_{0} \in \mathcal{I}, \forall i: \sigma_{i} \rightarrow_{\tau} \sigma_{i+1} \} \\ &= \bigcup_{n \geq 0} \mathcal{I}^{\frown}(\tau^{\frown n}) \end{aligned}$$

(traces of length *n*, for any *n*, starting in \mathcal{I} and following τ)

 $\mathcal{T}_p(\mathcal{I})$ can be expressed in fixpoint form:

$$\mathcal{T}_p(\mathcal{I}) = \mathsf{lfp} \, F_p$$
 where $F_p(\mathcal{T}) \stackrel{\text{def}}{=} \mathcal{I} \cup \mathcal{T}^{\frown} \tau$

(F_p appends a transition to each trace, and adds back \mathcal{I})

(proof on next slide)

Prefix trace semantics: proof

proof of:
$$\mathcal{T}_p(\mathcal{I}) = \operatorname{lfp} F_p$$
 where $F_p(T) = \mathcal{I} \cup T^{\frown} \tau$

Similar to the proof of $\mathcal{R}(\mathcal{I}) = \operatorname{lfp} F_{\mathcal{R}}$ where $F_{\mathcal{R}}(S) \stackrel{\text{def}}{=} \mathcal{I} \cup \operatorname{post}_{\tau}(S)$.

$$\begin{split} F_p \text{ is continuous in a CPO } (\mathcal{P}(\Sigma^*), \subseteq): \\ F_p(\cup_{i \in I} T_i) = \mathcal{I} \cup (\cup_{i \in I} T_i)^\frown \tau = \mathcal{I} \cup (\cup_{i \in I} T_i^\frown \tau) = \cup_{i \in I} (\mathcal{I} \cup T_i^\frown \tau), \\ \text{hence (Kleene), Ifp} F_p = \cup_{n \geq 0} F_p^i(\emptyset) \end{split}$$

We prove by recurrence on *n* that $\forall n: F_p^n(\emptyset) = \bigcup_{i < n} \mathcal{I}^{\frown} \tau^{\frown i}$:

•
$$F^0_p(\emptyset) = \emptyset$$
,

•
$$F_p^{n+1}(\emptyset) = \mathcal{I} \cup F_p^n(\emptyset)^\frown \tau = \mathcal{I} \cup (\cup_{i < n} \mathcal{I}^\frown \tau^\frown)^\frown \tau = \mathcal{I} \cup \cup_{i < n} (\mathcal{I}^\frown \tau^\frown)^\frown \tau = \mathcal{I}^\frown \tau^\frown^0 \cup \cup_{i < n} (\mathcal{I}^\frown \tau^\frown^{i+1}) = \cup_{i < n+1} \mathcal{I}^\frown \tau^\frown^i.$$

Thus, Ifp $F_p = \bigcup_{n \in \mathbb{N}} F_p^n(\emptyset) = \bigcup_{n \in \mathbb{N}} \bigcup_{i < n} \mathcal{I}^{\frown} \tau^{\frown i} = \bigcup_{i \in \mathbb{N}} \mathcal{I}^{\frown} \tau^{\frown i}$.

Note: we also have $\mathcal{T}_{\rho}(\mathcal{I}) = \mathsf{lfp}_{\mathcal{I}} G_{\rho}$ where $G_{\rho}(T) = T \cup T^{\frown} \tau$.

Prefix trace semantics: graphical illustration

$$a \rightarrow b \rightarrow c$$

$$\mathcal{I} \stackrel{\text{def}}{=} \{a\}$$

$$\tau \stackrel{\text{def}}{=} \{(a, b), (b, b), (b, c)\}$$

<u>Iterates:</u> $\mathcal{T}_p(\mathcal{I}) = \mathsf{lfp} \ F_p$ where $F_p(\mathcal{T}) \stackrel{\text{def}}{=} \mathcal{I} \cup \mathcal{T}^{\frown} \tau$.

•
$$F_{p}^{0}(\emptyset) = \emptyset$$

• $F_{p}^{1}(\emptyset) = \mathcal{I} = \{a\}$
• $F_{p}^{2}(\emptyset) = \{a, ab\}$
• $F_{p}^{3}(\emptyset) = \{a, ab, abb, abc\}$
• $F_{p}^{n}(\emptyset) = \{a, ab^{i}, ab^{j}c \mid i \in [1, n-1], j \in [1, n-2]\}$
• $\mathcal{T}_{p}(\mathcal{I}) = \bigcup_{n \geq 0} F_{p}^{n}(\emptyset) = \{a, ab^{i}, ab^{i}c \mid i \geq 1\}$

Prefix trace semantics: expressive power

Prefix traces is the collection of finite observations of program executions/

 \implies Semantics of testing.

Limitations:

- no information on infinite executions, (we will add infinite traces later)
- can bound maximal execution time: T_p(I) ⊆ Σ^{≤n} but cannot bound minimal execution time. (we will consider maximal traces later)

Abstracting traces into states

Idea: view state semantics as abstractions of traces semantics.

We have a Galois embedding between finite traces and states:

$$(\mathcal{P}(\Sigma^*),\subseteq) \xrightarrow{\gamma_{\mathcal{P}}} (\mathcal{P}(\Sigma),\subseteq)$$

- $\alpha_p(T) \stackrel{\text{def}}{=} \{ \sigma \in \Sigma \mid \exists \sigma_0, \dots, \sigma_n \in T : \sigma = \sigma_n \}$ (last state in traces in T)
- $\gamma_p(S) \stackrel{\text{def}}{=} \{ \sigma_0, \dots, \sigma_n \in \Sigma^* \mid \sigma_n \in S \}$ (traces ending in a state in S)

(proof on next slide)

Abstracting traces into states (proof)

proof of: (α_p, γ_p) forms a Galois embedding.

Instead of the definition $\alpha(c) \subseteq a \iff c \subseteq \gamma(a)$, we use the alternate characterization of Galois connections: α and γ are monotonic, $\gamma \circ \alpha$ is extensive, and $\alpha \circ \gamma$ is reductive.

Embedding means that, additionally, $\alpha \circ \gamma = id$.

• α_p , γ_p are \cup -morphisms, hence monotonic

•
$$(\gamma_p \circ \alpha_p)(T)$$

= { $\sigma_0, \ldots, \sigma_n \mid \sigma_n \in \alpha_p(T)$ }
= { $\sigma_0, \ldots, \sigma_n \mid \exists \sigma'_0, \ldots, \sigma'_m \in T: \sigma_n = \sigma'_m$ }
 $\supseteq T$

•
$$(\alpha_p \circ \gamma_p)(S)$$

= { $\sigma \mid \exists \sigma_0, \dots, \sigma_n \in \gamma_p(S) : \sigma = \sigma_n$ }
= { $\sigma \mid \exists \sigma_0, \dots, \sigma_n : \sigma_n \in S, \sigma = \sigma_n$ }
= S

Abstracting prefix traces into reachability

Recall that:

- $\mathcal{T}_{p}(\mathcal{I}) = \operatorname{lfp} F_{p}$ where $F_{p}(T) \stackrel{\text{def}}{=} \mathcal{I} \cup T^{\frown} \tau$,
- $\mathcal{R}(\mathcal{I}) = \operatorname{lfp} F_{\mathcal{R}}$ where $F_{\mathcal{R}}(S) \stackrel{\text{def}}{=} \mathcal{I} \cup \operatorname{post}_{\tau}(S)$,

•
$$(\mathcal{P}(\Sigma^*), \subseteq) \xrightarrow{\gamma_p} (\mathcal{P}(\Sigma), \subseteq).$$

We have: $\alpha_p \circ F_p = F_R \circ \alpha_p$;

by fixpoint transfer, we get: $\alpha_p(\mathcal{T}_p(\mathcal{I})) = \mathcal{R}(\mathcal{I})$.

(proof on next slide)

Abstracting prefix traces into reachability (proof)

Abstracting traces into states (example)

• prefix trace semantics:

i and *j* are increasing and $0 \le j \le i \le 100$

• forward reachable state semantics:

 $0 \le j \le i \le 100$

\implies the abstraction forgets the ordering of states.

Prefix closure

 $\begin{array}{ll} \underline{\operatorname{Prefix partial order:}} & \preceq \text{ on } \Sigma^{\infty} \\ \hline x \preceq y & \stackrel{\mathrm{def}}{\longleftrightarrow} & \exists u \in \Sigma^{\infty} : x \cdot u = y \\ (\Sigma^{\infty}, \preceq) \text{ is a CPO, while } (\Sigma^{*}, \preceq) \text{ is not complete.} \\ \\ \underline{\operatorname{Prefix closure:}} & \rho_{p} : \mathcal{P}(\Sigma^{\infty}) \to \mathcal{P}(\Sigma^{\infty}) \end{array}$

 $\rho_{p}(T) \stackrel{\text{def}}{=} \{ u \, | \, \exists t \in T : u \leq t, \, u \neq \epsilon \}$

 ρ_p is an upper closure operator on $\mathcal{P}(\Sigma^{\infty} \setminus \{\epsilon\})$. (monotonic, extensive $T \subseteq \rho_p(T)$, idempotent $\rho_p \circ \rho_p = \rho_p$)

The prefix trace semantics is closed by prefix: $\rho_p(\mathcal{T}_p(\mathcal{I})) = \mathcal{T}_p(\mathcal{I}).$

(note that $\epsilon \notin \mathcal{T}_p(\mathcal{I})$, which is why we disallowed ϵ in ρ_p)

Ordering abstraction

Another Galois embedding between finite traces and states:

$$(\mathcal{P}(\Sigma^*),\subseteq) \xrightarrow[\alpha_o]{\alpha_o} (\mathcal{P}(\Sigma),\subseteq)$$

- α_o(T) ^{def} { σ | ∃σ₀,..., σ_n ∈ T, i ≤ n: σ = σ_i } (set of all states appearing in some trace in T)
- $\gamma_o(S) \stackrel{\text{def}}{=} \{ \sigma_0, \dots, \sigma_n \mid n \ge 0, \forall i \le n; \sigma_i \in S \}$ (traces composed of elements from S)

proof sketch:

$$\alpha_o$$
 and γ_o are monotonic, and $\alpha_o \circ \gamma_o = id$.
 $(\gamma_o \circ \alpha_o)(T) = \{ \sigma_0, \dots, \sigma_n | \forall i \le n : \exists \sigma'_0, \dots, \sigma'_m \in T, j \le m : \sigma_i = \sigma'_j \}$
 $\supseteq T$.

Ordering abstraction

We have: $\alpha_o(\mathcal{T}_p(\mathcal{I})) = \mathcal{R}(\mathcal{I}).$

proof:

We have $\alpha_o = \alpha_p \circ \rho_p$ (i.e.: a state is in a trace if it is the last state of one of its prefix).

Recall the prefix trace abstraction into states: $\mathcal{R}(\mathcal{I}) = \alpha_p(\mathcal{T}_p(\mathcal{I}))$ and the fact that the prefix trace semantics is closed by prefix: $\rho_p(\mathcal{T}_p(\mathcal{I})) = \mathcal{T}_p(\mathcal{I}).$ $\mathcal{L}(\mathcal{T}_p(\mathcal{I})) = \mathcal{L}(\mathcal{T}_p(\mathcal{I})) = \mathcal{L}(\mathcal{T}_p(\mathcal{I}))$

We get $\alpha_o(\mathcal{T}_p(\mathcal{I})) = \alpha_p(\rho_p(\mathcal{T}_p(\mathcal{I}))) = \alpha_p(\mathcal{T}_p(\mathcal{I})) = \mathcal{R}(\mathcal{I}).$

alternate proof: generalized fixpoint transfer

Recall that $\mathcal{T}_p(\mathcal{I}) = \operatorname{lfp} F_p$ where $F_p(\mathcal{T}) \stackrel{\text{def}}{=} \mathcal{I} \cup \mathcal{T} \cap \tau$ and $\mathcal{R}(\mathcal{I}) = \operatorname{lfp} F_{\mathcal{R}}$ where $F_{\mathcal{R}}(S) \stackrel{\text{def}}{=} \mathcal{I} \cup \operatorname{post}_{\tau}(S)$, but $\alpha_o \circ F_p = F_{\mathcal{R}} \circ \alpha_o$ does not hold in general, so, fixpoint transfer theorems do not apply directly. However, $\alpha_o \circ F_p = F_{\mathcal{R}} \circ \alpha_o$ holds for sets of traces closed by prefix. By

induction, the Kleene iterates a_p^n and $a_{\mathcal{R}}^n$ involved in the computation of lfp F_p and lfp $F_{\mathcal{R}}$ satisfy $\forall n: \alpha_o(a_p^n) = a_{\mathcal{R}}^n$, and so $\alpha_o(\text{lfp } F_p) = \text{lfp } F_{\mathcal{R}}$.

Suffix trace semantics

Similar results on the suffix trace semantics:

• $\mathcal{T}_{s}(\mathcal{F}) \stackrel{\text{def}}{=} \{ \sigma_{0}, \dots, \sigma_{n} \mid n \geq 0, \sigma_{n} \in \mathcal{F}, \forall i: \sigma_{i} \rightarrow_{\tau} \sigma_{i+1} \}$ (traces following τ and ending in a state in \mathcal{F})

•
$$\mathcal{T}_s(\mathcal{F}) = \bigcup_{n \ge 0} \tau^n \mathcal{F}$$

- $\mathcal{T}_{s}(\mathcal{F}) = \text{lfp } F_{s} \text{ where } F_{s}(T) \stackrel{\text{def}}{=} \mathcal{F} \cup \tau^{\frown} T$ (F_{s} prepends a transition to each trace, and adds back \mathcal{F})
- $\alpha_{s}(\mathcal{T}_{s}(\mathcal{F})) = \frac{\mathcal{C}(\mathcal{F})}{\overset{\text{def}}{=}} \{ \sigma \mid \exists \sigma_{0}, \dots, \sigma_{n} \in \mathcal{T} : \sigma = \sigma_{0} \}$
- $\rho_{s}(\mathcal{T}_{s}(\mathcal{F})) = \mathcal{T}_{s}(\mathcal{F})$ where $\rho_{s}(\mathcal{T}) \stackrel{\text{def}}{=} \{ u \mid \exists t \in \Sigma^{\infty} : t \cdot u \in \mathcal{T}, u \neq \epsilon \}$ (closed by suffix)
- $\alpha_o(\mathcal{T}_s(\mathcal{F})) = \mathcal{C}(\mathcal{F})$

Suffix trace semantics: graphical illustration

$$\begin{array}{c} \begin{array}{c} & & \mathcal{F} \stackrel{\text{def}}{=} \{c\} \\ \tau \stackrel{\text{def}}{=} \{(a, b), (b, b), (b, c)\} \end{array} \end{array}$$

Iterates:
$$\mathcal{T}_{s}(\mathcal{F}) = \mathsf{lfp} \, \mathsf{F}_{s} \text{ where } \mathsf{F}_{s}(\mathsf{T}) \stackrel{\text{def}}{=} \mathcal{F} \cup \tau^{\frown} \mathsf{T}.$$

•
$$F_s^0(\emptyset) = \emptyset$$

• $F_s^1(\emptyset) = \mathcal{F} = \{c\}$
• $F_s^2(\emptyset) = \{c, bc\}$
• $F_s^3(\emptyset) = \{c, bc, bbc, abc\}$
• $F_s^n(\emptyset) = \{c, b^i c, ab^j c \mid i \in [1, n-1], j \in [1, n-2]\}$
• $\mathcal{T}_s(\mathcal{F}) = \bigcup_{n \ge 0} F_s^n(\emptyset) = \{c, b^i c, ab^i c \mid i \ge 1\}$

Partial trace semantics

 \mathcal{T} : all partial finite execution traces. (not necessarily starting in \mathcal{I} or ending in \mathcal{F})

$$\begin{aligned} \mathcal{T} &\stackrel{\text{def}}{=} \{ \sigma_0, \dots, \sigma_n \, | \, n \ge 0, \forall i : \sigma_i \to_{\tau} \sigma_{i+1} \} \\ &= \bigcup_{n \ge 0} \Sigma^{\frown} \tau^{\frown n} \\ &= \bigcup_{n \ge 0} \tau^{\frown n \frown} \Sigma \end{aligned}$$

- *T* = *T_p*(Σ), hence *T* = lfp *F_{p*}* where *F_{p*}*(*T*) ^{def} = Σ ∪ *T*[¬]τ (prefix partial traces from any initial state)
- $\mathcal{T} = \mathcal{T}_{s}(\Sigma)$, hence $\mathcal{T} = \text{lfp } F_{s*}$ where $F_{s*}(T) \stackrel{\text{def}}{=} \Sigma \cup \tau \cap T$ (suffix partial traces to any final state)

•
$$F_{p*}^n(\emptyset) = F_{s*}^n(\emptyset) = \bigcup_{i < n} \Sigma^{\frown} \tau^{\frown i} = \bigcup_{i < n} \tau^{\frown i} \Sigma = \mathcal{T} \cap \Sigma^{< n}$$

- $\mathcal{T}_p(\mathcal{I}) = \mathcal{T} \cap (\mathcal{I} \cdot \Sigma^*)$ (constrain initial states)
- $\mathcal{T}_{s}(\mathcal{F}) = \mathcal{T} \cap (\Sigma^{*} \cdot \mathcal{F})$ (constrain final states)

Partial trace semantics: graphical illustration

$$\tau \stackrel{\text{def}}{=} \{(a, b), (b, b), (b, c)\}$$

<u>Iterates:</u> $\mathcal{T}(\Sigma) = \mathsf{lfp} \ F_{p*} \text{ where } F_{p*}(T) \stackrel{\text{def}}{=} \Sigma \cup T^{\frown} \tau.$

• $F^0_{p*}(\emptyset) = \emptyset$

•
$$F^{1}_{p*}(\emptyset) = \Sigma = \{a, b, c\}$$

•
$$F_{p*}^2(\emptyset) = \{a, b, c, ab, bb, bc\}$$

- $F^{3}_{p*}(\emptyset) = \{a, b, c, ab, bb, bc, abb, abc, bbb, bbc\}$
- $F_{p*}^n(\emptyset) = \{ ab^i, ab^jc, b^ic, b^k \mid i \in [0, n-1], j \in [1, n-2], k \in [1, n] \}$
- $\mathcal{T} = \bigcup_{n \ge 0} F_{p*}^n(\emptyset) = \{ ab^i, ab^j c, b^i c, b^j \mid i \ge 0, j > 1 \}$

(using $F_{s*}(T) \stackrel{\text{def}}{=} \Sigma \cup \tau^{\frown} T$, we get the exact same iterates)

Abstracting partial traces to prefix traces

Idea: anchor partial traces at initial states \mathcal{I} .

We have a Galois connection:

$$(\mathcal{P}(\Sigma^*),\subseteq) \xrightarrow[\alpha_{\mathcal{I}}]{\gamma_{\mathcal{I}}} (\mathcal{P}(\Sigma^*),\subseteq)$$

- $\alpha_{\mathcal{I}}(\mathcal{T}) \stackrel{\text{def}}{=} \mathcal{T} \cap (\mathcal{I} \cdot \Sigma^*)$ (keep only traces starting in \mathcal{I})
- $\gamma_{\mathcal{I}}(\mathcal{T}) \stackrel{\text{def}}{=} \mathcal{T} \cup ((\Sigma \setminus \mathcal{I}) \cdot \Sigma^*)$

(add all traces not starting in $\mathcal{I})$

We then have: $\mathcal{T}_p(\mathcal{I}) = \alpha_{\mathcal{I}}(\mathcal{T}).$

(similarly $\mathcal{T}_{s}(\mathcal{F}) = \alpha_{\mathcal{F}}(\mathcal{T})$ where $\alpha_{\mathcal{F}}(\mathcal{T}) \stackrel{\text{def}}{=} \mathcal{T} \cap (\Sigma^{*} \cdot \mathcal{F}))$

(proof on next slide)

Abstracting partial traces to prefix traces (proof)

proof

 $\begin{array}{l} \alpha_{\mathcal{I}} \text{ and } \gamma_{\mathcal{I}} \text{ are monotonic.} \\ (\alpha_{\mathcal{I}} \circ \gamma_{\mathcal{I}})(\mathcal{T}) = (\mathcal{T} \cup (\Sigma \setminus \mathcal{I}) \cdot \Sigma^*) \cap \mathcal{I} \cdot \Sigma^*) = \mathcal{T} \cap \mathcal{I} \cdot \Sigma^* \subseteq \mathcal{T}. \\ (\gamma_{\mathcal{I}} \circ \alpha_{\mathcal{I}})(\mathcal{T}) = (\mathcal{T} \cap \mathcal{I} \cdot \Sigma^*) \cup (\Sigma \setminus \mathcal{I}) \cdot \Sigma^* = \mathcal{T} \cup (\Sigma \setminus \mathcal{I}) \cdot \Sigma^* \supseteq \mathcal{T}. \\ \text{So, we have a Galois connection.} \end{array}$

A direct proof of $\mathcal{T}_p(\mathcal{I}) = \alpha_{\mathcal{I}}(\mathcal{T})$ is straightforward, by definition of \mathcal{T}_p , $\alpha_{\mathcal{I}}$, and \mathcal{T} .

We can also retrieve the result by fixpoint transfer.

$$\mathcal{T} = \operatorname{lfp} F_{p*} \text{ where } F_{p*}(T) \stackrel{\text{def}}{=} \Sigma \cup T^{\frown} \tau.$$

$$\mathcal{T}_{p} = \operatorname{lfp} F_{p} \text{ where } F_{p}(T) \stackrel{\text{def}}{=} \mathcal{I} \cup T^{\frown} \tau.$$

We have: $(\alpha_{\mathcal{I}} \circ F_{p*})(T) = (\Sigma \cup T^{\frown} \tau) \cap (\mathcal{I} \cdot \Sigma^{*}) =$

$$\mathcal{I} \cup ((T^{\frown} \tau) \cap (\mathcal{I} \cdot \Sigma^{*}) = \mathcal{I} \cup ((T \cap (\mathcal{I} \cdot \Sigma^{*}))^{\frown} \tau) = (F_{p} \circ \alpha_{\mathcal{I}})(T).$$
Maximal traces

<u>Maximal traces:</u> $\mathcal{M}_{\infty} \in \mathcal{P}(\Sigma^{\infty})$

- \bullet sequences of states linked by the transition relation $\tau,$
- start in any state ($\mathcal{I} = \Sigma$),
- either finite and stop in a blocking state ($\mathcal{F} = \mathcal{B}$),
- or infinite.

(maximal traces cannot be "extended" by adding a new transition in τ at their end)

$$\mathcal{M}_{\infty} \stackrel{\text{def}}{=} \{ \sigma_{0}, \dots, \sigma_{n} \in \Sigma^{*} \mid \sigma_{n} \in \mathcal{B}, \forall i < n: \sigma_{i} \to_{\tau} \sigma_{i+1} \} \cup \\ \{ \sigma_{0}, \dots, \sigma_{n}, \dots \in \Sigma^{\omega} \mid \forall i < \omega: \sigma_{i} \to_{\tau} \sigma_{i+1} \}$$

(can be anchored at \mathcal{I} and \mathcal{F} as: $\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \cap ((\Sigma^* \cdot \mathcal{F}) \cup \Sigma^{\omega}))$

Partitioned fixpoint formulation of maximal traces

<u>Goal</u>: we look for a fixpoint characterization of \mathcal{M}_{∞} .

We consider separately finite and infinite maximal traces.

Finite traces:

From the suffix partial trace semantics, recall: $\mathcal{M}_{\infty} \cap \Sigma^{*} = \mathcal{T}_{s}(\mathcal{B}) = \mathsf{lfp} \, F_{s}$ where $F_{s}(\mathcal{T}) \stackrel{\text{def}}{=} \mathcal{B} \cup \tau^{\frown} \mathcal{T}$ in $(\mathcal{P}(\Sigma^{*}), \subseteq)$.

Infinite traces:

Additionally, we will prove: $\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \mathsf{gfp} \ G_{\mathsf{s}}$ where $G_{\mathsf{s}}(\mathcal{T}) \stackrel{\text{def}}{=} \tau^{\frown} \mathcal{T}$ in $(\mathcal{P}(\Sigma^{\omega}), \subseteq)$.

(proof on next slide)

Partitioned fixpoint formulation of maximal traces (proof)

<u>proof:</u> of $\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \operatorname{gfp} G_s$ where $G_s(T) \stackrel{\text{def}}{=} \tau^{\frown} T$ in $(\mathcal{P}(\Sigma^{\omega}), \subseteq)$. G_s is continuous in $(\mathcal{P}(\Sigma^{\omega}), \supseteq)$: $G_s(\cap_{i \in I} T_i) = \cap_{i \in I} G_s(T_i)$. By Kleene's theorem in the dual: $\operatorname{gfp} G_s = \cap_{n \in \mathbb{N}} G_s^n(\Sigma^{\omega})$. We prove by recurrence on n that $\forall n: G_s^n(\Sigma^{\omega}) = \tau^{\frown} n^{\frown} \Sigma^{\omega}$:

•
$$G_s^0(\Sigma^\omega) = \Sigma^\omega = \tau^{-0} - \Sigma^\omega$$
,
• $G_s^{n+1}(\Sigma^\omega) = \tau^- G_s^n(\Sigma^\omega) = \tau^- (\tau^{-n} - \Sigma^\omega) = \tau^{-n+1} - \Sigma^\omega$.
gfp $G_s = \cap_{n \in \mathbb{N}} \tau^{-n} - \Sigma^\omega$
 $= \{\sigma_0, \ldots \in \Sigma^\omega \mid \forall n \ge 0 : \sigma_0, \ldots, \sigma_{n-1} \in \tau^{-n}\}$
 $= \{\sigma_0, \ldots \in \Sigma^\omega \mid \forall n \ge 0 : \forall i < n : \sigma_i \to_\tau \sigma_{i+1}\}$
 $= \mathcal{M}_\infty \cap \Sigma^\omega$

Infinite trace semantics: graphical illustration

<u>Iterates:</u> $\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \operatorname{gfp} G_{s}$ where $G_{s}(T) \stackrel{\text{def}}{=} \tau^{\frown} T$.

•
$$G^0_s(\Sigma^\omega)=\Sigma^\omega$$

•
$$G^1_s(\Sigma^\omega) = ab\Sigma^\omega \cup bb\Sigma^\omega \cup bc\Sigma^\omega$$

- $G_s^2(\Sigma^\omega) = abb\Sigma^\omega \cup bbb\Sigma^\omega \cup abc\Sigma^\omega \cup bbc\Sigma^\omega$
- $G_s^3(\Sigma^\omega) = abbb\Sigma^\omega \cup bbbb\Sigma^\omega \cup abbc\Sigma^\omega \cup bbbc\Sigma^\omega$
- $G_{s}^{n}(\Sigma^{\omega}) = \{ ab^{n}t, b^{n+1}t, ab^{n-1}ct, b^{n}ct \mid t \in \Sigma^{\omega} \}$
- $\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \cap_{n \geq 0} G_s^n(\Sigma^{\omega}) = \{ab^{\omega}, b^{\omega}\}$

Least fixpoint formulation of maximal traces

Fixpoint fusion

$$\begin{split} \mathcal{M}_{\infty} \cap \Sigma^* \text{ is best defined on } (\Sigma^*, \subseteq, \cup, \cap, \emptyset, \Sigma^*). \\ \mathcal{M}_{\infty} \cap \Sigma^{\omega} \text{ is best defined on } (\Sigma^{\omega}, \supseteq, \cap, \cup, \Sigma^{\omega}, \emptyset). \end{split}$$

We mix them into a new complete lattice $(\Sigma^{\infty}, \subseteq, \sqcup, \sqcap, \bot, \top)$:

- $A \sqsubseteq B \stackrel{\text{def}}{\Longrightarrow} (A \cap \Sigma^*) \subseteq (B \cap \Sigma^*) \land (A \cap \Sigma^{\omega}) \supseteq (B \cap \Sigma^{\omega})$ • $A \sqcup B \stackrel{\text{def}}{=} ((A \cap \Sigma^*) \cup (B \cap \Sigma^*)) \cup ((A \cap \Sigma^{\omega}) \cap (B \cap \Sigma^{\omega}))$ • $A \sqcap B \stackrel{\text{def}}{=} ((A \cap \Sigma^*) \cap (B \cap \Sigma^*)) \cup ((A \cap \Sigma^{\omega}) \cup (B \cap \Sigma^{\omega}))$
- $A \cap B = ((A \cap Z)) \cap (B \cap Z)) \cap ((A \cap Z)) \cap (B \cap Z))$ • $\bot \stackrel{\text{def}}{=} \Sigma^{\omega}$ • $\top \stackrel{\text{def}}{=} \Sigma^*$

In this lattice, $\mathcal{M}_{\infty} = \mathsf{lfp} \ F_s$ where $F_s(T) \stackrel{\text{def}}{=} \mathcal{B} \cup \tau^{\frown} T$.

(proof on next slides)

Fixpoint fusion theorem

Theorem: fixpoint fusion

If $X_1 = \operatorname{lfp} F_1$ in $(\mathcal{P}(\mathcal{D}_1), \sqsubseteq_1)$ and $X_2 = \operatorname{lfp} F_2$ in $(\mathcal{P}(\mathcal{D}_2), \sqsubseteq_2)$ and $\mathcal{D}_1 \cap \mathcal{D}_2 = \emptyset$,

then $X_1 \cup X_2 = \text{lfp } F$ in $(\mathcal{P}(\mathcal{D}_1 \cup \mathcal{D}_2), \sqsubseteq)$ where:

- $F(X) \stackrel{\text{def}}{=} F_1(X \cap \mathcal{D}_1) \cup F_2(X \cap \mathcal{D}_2),$
- $A \sqsubseteq B \iff (A \cap \mathcal{D}_1) \sqsubseteq_1 (B \cap \mathcal{D}_1) \land (A \cap \mathcal{D}_2) \sqsubseteq_2 (B \cap \mathcal{D}_2).$

proof:

We have: $F(X_1 \cup X_2) = F_1((X_1 \cup X_2) \cap D_1) \cup F_2((X_1 \cup X_2) \cap D_2) = F_1(X_1) \cup F_2(X_2) = X_1 \cup X_2$, hence $X_1 \cup X_2$ is a fixpoint of F. Let Y be a fixpoint. Then $Y = F(Y) = F_1(Y \cap D_1) \cup F_2(Y \cap D_2)$, hence, $Y \cap D_1 = F_1(Y \cap D_1)$ and $Y \cap D_1$ is a fixpoint of F_1 . Thus, $X_1 \sqsubseteq_1 Y \cap D_1$. Likewise, $X_2 \sqsubseteq_2 Y \cap D_2$. We deduce that $X = X_1 \cup X_2 \sqsubseteq (Y \cap D_1) \cup (Y \cap D_2) = Y$, and so, X is F's least fixpoint.

$$\underline{\mathsf{note:}} \quad \text{we also have gfp } F = \mathsf{gfp} \, F_1 \cup \mathsf{gfp} \, F_2.$$

course 02-B

Least fixpoint formulation of maximal traces (proof)

proof: of
$$\mathcal{M}_{\infty} = \text{lfp } F_s$$
 where $F_s(T) \stackrel{\text{def}}{=} \mathcal{B} \cup \tau^{\frown} T$.

We have:

•
$$\mathcal{M}_{\infty} \cap \Sigma^* = \mathsf{lfp} \, F_s \, \mathsf{in} \, (\mathcal{P}(\Sigma^*), \subseteq),$$

•
$$\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \mathsf{lfp} \ G_s \ \mathsf{in} \ (\mathcal{P}(\Sigma^{\omega}), \supseteq) \ \mathsf{where} \ G_s(\mathcal{T}) \stackrel{\mathrm{def}}{=} \tau^{\frown} \mathcal{T},$$

• in
$$\mathcal{P}(\Sigma^{\infty})$$
, we have
 $F_s(A) = (F_s(A) \cap \Sigma^*) \cup (F_s(A) \cap \Sigma^{\omega}) = F_s(A \cap \Sigma^*) \cup G_s(A \cap \Sigma^{\omega}).$

So, by fixpoint fusion in $(\mathcal{P}(\Sigma^\infty),\sqsubseteq),$ we have:

 $\mathcal{M}_{\infty} = (\mathcal{M}_{\infty} \cap \Sigma^*) \cup (\mathcal{M}_{\infty} \cap \Sigma^{\omega}) = \mathsf{lfp} \, F_{s}.$

Greatest fixpoint formulation of finite maximal traces

Actually, a fixpoint formulation in $(\Sigma^{\infty}, \subseteq)$ also exists.

Alternate fixpoint for finite maximal traces:

We saw that $\mathcal{M}_{\infty} \cap \Sigma^* = \operatorname{lfp} F_s$ where $F_s(T) \stackrel{\text{def}}{=} \mathcal{B} \cup \tau \cap T$ in $(\mathcal{P}(\Sigma^*), \subseteq)$.

Additionally, we have $\mathcal{M}_{\infty} \cap \Sigma^* = \operatorname{gfp} F_s$ in $(\mathcal{P}(\Sigma^*), \subseteq)$.

 $(F_s \text{ has a unique fixpoint in } (\mathcal{P}(\Sigma^*), \subseteq).)$

(proof on next slide)

Greatest fixpoint formulation of finite maximal traces

<u>proof:</u> of $\mathcal{M}_{\infty} \cap \Sigma^* = \operatorname{gfp} F_s$ where $F_s(T) \stackrel{\text{def}}{=} \mathcal{B} \cup \tau^{\frown} T$.

 F_s is continuous in the dual $(\mathcal{P}(\Sigma^*), \supseteq)$: $F_s(\cap_{i \in I} A_i) = \cap_{i \in I} F_s(A_i)$. By Kleene's theorem in the dual $(\mathcal{P}(\Sigma^*), \supseteq)$, we get: gfp $F_s = \cap_{n \in \mathbb{N}} F_s^n(\Sigma^*)$.

We prove by recurrence on *n* that $\forall n: F_s^n(\Sigma^*) = (\bigcup_{i < n} \tau^{-i} \cap \mathcal{B}) \cup (\tau^{-n} \cap \Sigma^*)$: i.e., $F_s^n(\Sigma^*)$ are the maximal finite traces of length at most n - 1, and the partial traces of length exactly *n* followed by any sequence of states:

•
$$F_s^0(\Sigma^*) = \Sigma^* = \tau^{-0} \Sigma^*$$

•
$$F_s(F_s^n(\Sigma^*)) = \mathcal{B} \cup (\tau^{\frown}F_s^n(\Sigma^*))$$

 $= \mathcal{B} \cup \tau^{\frown}((\cup_{i < n} \tau^{\frown i} \cap \mathcal{B}) \cup (\tau^{\frown n} \cap \Sigma^*))$
 $= \mathcal{B} \cup (\cup_{i < n} \tau^{\frown i} \cap \mathcal{B}) \cup (\tau^{\frown n} \tau^{\frown n} \Sigma^*)$
 $= \mathcal{B} \cup (\cup_{1 < i < n+1} \tau^{\frown i} \cap \mathcal{B}) \cup (\tau^{\frown n+1} \cap \Sigma^*)$
 $= (\cup_{i < n+1} \tau^{\frown i} \cap \mathcal{B}) \cup (\tau^{\frown n+1} \cap \Sigma^*)$

We get:
$$\bigcap_{n \in \mathbb{N}} F_s^n(\Sigma^*) = \bigcap_{n \in \mathbb{N}} (\bigcup_{i < n} \tau^{-i} \mathcal{B}) \cup (\tau^{-n} \Sigma^*) = \bigcup_{n \in \mathbb{N}} \tau^{-n} \mathcal{B} = \mathcal{M}_{\infty} \cap \Sigma^*.$$

course 02-B

Program Semantics

Greatest fixpoint of finite traces: graphical illustration

$$\begin{array}{c} \bullet \\ a \\ b \\ c \\ \end{array} \begin{array}{c} \mathcal{B} \\ \stackrel{\text{def}}{=} \{c\} \\ \tau \\ \stackrel{\text{def}}{=} \{(a, b), (b, b), (b, c)\} \end{array}$$

<u>Iterates:</u> $\mathcal{M}_{\infty} \cap \Sigma^* = \operatorname{gfp} F_s$ where $F_s(T) \stackrel{\text{def}}{=} \mathcal{B} \cup \tau^{\frown} T$.

•
$$F_s^0(\Sigma^*) = \Sigma^*$$

• $F_s^1(\Sigma^*) = \{c\} \cup ab\Sigma^* \cup bb\Sigma^* \cup bc\Sigma^*$
• $F_s^2(\Sigma^*) = \{bc, c\} \cup abb\Sigma^* \cup bbb\Sigma^* \cup abc\Sigma^* \cup bbc\Sigma^*$
• $F_s^3(\Sigma^*) = \{abc, bbc, bc, c\} \cup abbb\Sigma^* \cup bbbb\Sigma^* \cup abbc\Sigma^* \cup bbbc\Sigma^*$
• $F_s^n(\Sigma^*) = \{ab^ic, b^jc \mid i \in [1, n-2], j \in [0, n-1]\} \cup \{ab^nt, b^{n+1}t, ab^{n-1}ct, b^nct \mid t \in \Sigma^*\}$

•
$$\mathcal{M}_{\infty} \cap \Sigma^* = \bigcap_{n \geq 0} F_s^n(\Sigma^*) == \{ ab^i c, b^j c \mid i \geq 1, j \geq 0 \}$$

Greatest fixpoint formulation of maximal traces

From:

- $\mathcal{M}_{\infty} \cap \Sigma^* = \operatorname{gfp} F_s$ in $(\mathcal{P}(\Sigma^*), \subseteq)$ where $F_s(T) \stackrel{\text{def}}{=} \mathcal{B} \cup \tau^{\frown} T$
- $\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \mathsf{gfp} \ \mathsf{G}_{\mathsf{s}} \text{ in } (\mathcal{P}(\Sigma^{\omega}), \subseteq) \text{ where } \mathcal{G}_{\mathsf{s}}(\mathcal{T}) \stackrel{\text{def}}{=} \tau^{\frown} \mathcal{T}$

we deduce: $\mathcal{M}_{\infty} = \operatorname{gfp} F_s$ in $(\mathcal{P}(\Sigma^{\infty}), \subseteq)$.

proof: similar to $\mathcal{M}_{\infty} = \operatorname{lfp} F_s$ in $(\mathcal{P}(\Sigma^{\infty}), \sqsubseteq)$, by fixpoint fusion.

Finite and infinite partial trace semantics

Idea: complete partial traces \mathcal{T} with infinite traces.

 \mathcal{T}_{∞} : all finite and infinite sequences of states linked by the transition relation τ :

$$\mathcal{T}_{\infty} \stackrel{\text{def}}{=} \{ \sigma_0, \dots, \sigma_n \in \Sigma^* \mid \forall i < n: \sigma_i \to_{\tau} \sigma_{i+1} \} \cup \\ \{ \sigma_0, \dots, \sigma_n, \dots \in \Sigma^{\omega} \mid \forall i < \omega: \sigma_i \to_{\tau} \sigma_{i+1} \}$$

(partial finite traces do not necessarily end in a blocking state)

Fixpoint form similar to \mathcal{M}_{∞} :

•
$$\mathcal{T}_{\infty} = \operatorname{lfp} F_{s*}$$
 in $(\mathcal{P}(\Sigma^{\infty}), \sqsubseteq)$ where $F_{s*}(T) \stackrel{\text{def}}{=} \Sigma \cup \tau^{\frown} T$,
• $\mathcal{T}_{\infty} = \operatorname{gfp} F_{s*}$ in $(\mathcal{P}(\Sigma^{\infty}), \subseteq)$.

 $\underline{\text{proof:}} \quad \text{similar to the proofs of } \mathcal{M}_{\infty} = \text{gfp} \, F_s \text{ and } \mathcal{M}_{\infty} = \text{lfp} \, F_s.$

Finite trace abstraction

Finite partial traces \mathcal{T} are an abstraction of all partial traces \mathcal{T}_{∞} .

We have a Galois embedding:

$$(\mathcal{P}(\Sigma^{\infty}),\sqsubseteq) \xleftarrow{\gamma_{*}}{\alpha_{*}} (\mathcal{P}(\Sigma^{*}),\subseteq)$$

- \sqsubseteq is the fused ordering on $\Sigma^* \cup \Sigma^{\omega}$: $A \sqsubseteq B \iff (A \cap \Sigma^*) \subseteq (B \cap \Sigma^*) \land (A \cap \Sigma^{\omega}) \supseteq (B \cap \Sigma^{\omega})$
- $\alpha_*(T) \stackrel{\text{def}}{=} T \cap \Sigma^*$ (remove infinite traces)
- $\gamma_*(T) \stackrel{\text{def}}{=} T$ (embedding)
- $\mathcal{T} = \alpha_*(\mathcal{T}_\infty)$

(proof on next slide)

Finite trace abstraction (proof)

proof:

We have Galois embedding because:

• α_* and γ_* are monotonic,

• given
$$T \subseteq \Sigma^*$$
, we have $(\alpha_* \circ \gamma_*)(T) = T \cap \Sigma^* = T$,

• $(\gamma_* \circ \alpha_*)(T) = T \cap \Sigma^* \sqsupseteq T$, as we only remove infinite traces.

Recall that $\mathcal{T}_{\infty} = \operatorname{lfp} F_{s*}$ in $(\mathcal{P}(\Sigma^{\infty}), \sqsubseteq)$ and $\mathcal{T} = \operatorname{lfp} F_{s*}$ in $(\mathcal{P}(\Sigma^{*}), \subseteq)$, where $F_{s*}(\mathcal{T}) \stackrel{\text{def}}{=} \Sigma \cup \mathcal{T}^{\frown} \tau$. As $\alpha_{*} \circ F_{s*} = F_{s*} \circ \alpha_{*}$ and $\alpha_{*}(\emptyset) = \emptyset$, we can apply the fixpoint transfer theorem to get $\alpha_{*}(\mathcal{T}_{\infty}) = \mathcal{T}$.

Finite trace abstraction (proof)

alternate proof:

It is also possible to use the characterizations $\mathcal{T}_{\infty} = \operatorname{gfp} F_{s*}$ in $(\mathcal{P}(\Sigma^{\infty}), \subseteq)$ and $\mathcal{T} = \operatorname{gfp} F_{s*}$ in $(\mathcal{P}(\Sigma^*), \subseteq)$, and use a fixpoint transfer theorem for greatest fixpoints. Similarly to the fixpoint transfer for least fixpoints, this theorem uses the constructive version of Tarski's theorem, but in the dual: \mathcal{T}_{∞} is the limit of transfinite iterations $a_0 = \Sigma^{\infty}$, $a_{n+1} = F_{s*}(a_n)$, and $a_n = \cap \{a_m \mid m < n\}$ for transfinite ordinals, while \mathcal{T} is the limit of a similar iteration from $a'_0 = \Sigma^*$. We conclude by noting that $a'_0 = \alpha_*(a_0)$, $\alpha_* \circ F_{s*} = F_{s*} \circ \alpha_*$, and α_* is co-continuous: $\alpha_*(\cap_{i \in I} \mathcal{T}_i) = \cap_{i \in I} \alpha_*(\mathcal{T}_i)$. Note that while the adjoint of α_* for \Box was $\alpha_*(\mathcal{T}) \stackrel{\text{def}}{=} \mathcal{T}$ the adjoint for

Note that, while the adjoint of α_* for \sqsubseteq was $\gamma_*(T) \stackrel{\text{def}}{=} T$, the adjoint for \subseteq is $\gamma'_*(T) \stackrel{\text{def}}{=} T \cup \Sigma^{\omega}$.

Prefix abstraction

Idea: maximal traces by adding (non-empty) prefixes. We have a Galois connection:

$$(\mathcal{P}(\Sigma^{\infty} \setminus \{\epsilon\}), \subseteq) \xrightarrow{\overset{\boldsymbol{\gamma}_{\preceq}}{ \alpha_{\preceq}}} (\mathcal{P}(\Sigma^{\infty} \setminus \{\epsilon\}), \subseteq)$$

 α_≤(T) ^{def} = { t ∈ Σ[∞] \ {ε} | ∃u ∈ T: t ≤ u } (set of all non-empty prefixes of traces in T)

• $\gamma_{\preceq}(T) \stackrel{\text{def}}{=} \{ t \in \Sigma^{\infty} \setminus \{\epsilon\} | \forall u \in \Sigma^{\infty} \setminus \{\epsilon\} \colon u \preceq t \implies u \in T \}$ (traces with non-empty prefixes in T)

proof:

 $\begin{array}{l} \alpha_{\preceq} \text{ and } \gamma_{\preceq} \text{ are monotonic.} \\ (\alpha_{\preceq} \circ \gamma_{\preceq})(T) = \{ t \in T \mid \rho_p(t) \subseteq T \} \subseteq T \quad (\text{prefix-closed trace sets}). \\ (\gamma_{\preceq} \circ \alpha_{\preceq})(T) = \rho_p(T) \supseteq T. \end{array}$

course 02-B

Program Semantics

Antoine Miné

Abstraction from maximal traces to partial traces

Finite and infinite partial traces \mathcal{T}_{∞} are an abstraction of maximal traces \mathcal{M}_{∞} : $\mathcal{T}_{\infty} = \alpha_{\preceq}(\mathcal{M}_{\infty})$.

proof:

Firstly, \mathcal{T}_{∞} and $\alpha_{\preceq}(\mathcal{M}_{\infty})$ coincide on infinite traces. Indeed, $\mathcal{T}_{\infty} \cap \Sigma^{\omega} = \mathcal{M}_{\infty} \cap \Sigma^{\omega}$ and α_{\preceq} does not add infinite traces, so: $\mathcal{T}_{\infty} \cap \Sigma^{\omega} = \alpha_{\preceq}(\mathcal{M}_{\infty}) \cap \Sigma^{\omega}$.

We now prove that they also coincide on finite traces. Assume $\sigma_0, \ldots, \sigma_n \in \alpha_{\preceq}(\mathcal{M}_{\infty})$, then $\forall i < n: \sigma_i \to_{\tau} \sigma_{i+1}$, so, $\sigma_0, \ldots, \sigma_n \in \mathcal{T}_{\infty}$. Assume $\sigma_0, \ldots, \sigma_n \in \mathcal{T}_{\infty}$, then it can be completed into a maximal trace, either finite or infinite, and so, $\sigma_0, \ldots, \sigma_n \in \alpha_{\preceq}(\mathcal{M}_{\infty})$.

Note: no fixpoint transfer applies here.

Finite prefix abstraction

We can abstract directly from maximal traces \mathcal{M}_{∞} to finite partial traces \mathcal{T} .

Consider the following Galois connection:

$$(\mathcal{P}(\Sigma^{\infty} \setminus \{\epsilon\}), \subseteq) \xrightarrow[\alpha_{*\preceq}]{\gamma_{*\preceq}} (\mathcal{P}(\Sigma^{*} \setminus \{\epsilon\}), \subseteq)$$

- α_{*} (T) ^{def} { t ∈ Σ* \ {ε} | ∃u ∈ T: t ≤ u } (set of all non-empty prefixes of traces T)
- $\gamma_{*\preceq}(T) \stackrel{\text{def}}{=} \{ t \in \Sigma^{\infty} \setminus \{\epsilon\} | \forall u \in \Sigma^* \setminus \{\epsilon\} : u \preceq t \implies u \in T \}$ (traces with non-empty prefixes in T)

We have $\mathcal{T} = \alpha_{*\preceq}(\mathcal{M}_{\infty})$.

(proof on next slide)

Program Semantics	Antoine Miné
-------------------	--------------

Finite prefix abstraction (proof)

proof:

and $\gamma_{*\preceq}$ and $\gamma_{*\preceq}$ are monotonic. $(\alpha_{*\preceq} \circ \gamma_{*\preceq})(T) = \{ t \in T \mid \rho_p(t) \subseteq T \} \subseteq T$ (prefix-closed trace sets). $(\gamma_{*\preceq} \circ \alpha_{*\preceq})(T) = \rho_p(T) \cup \{ t \in \Sigma^{\omega} \mid \forall u \in \Sigma^* : u \preceq t \implies u \in \rho_p(T) \} \supseteq T.$

As
$$\alpha_{*\preceq} = \alpha_* \circ \alpha_{\preceq}$$
,
we have: $\alpha_{*\preceq}(\mathcal{M}_{\infty}) = \alpha_*(\alpha_{\preceq}(\mathcal{M}_{\infty})) = \alpha_*(\mathcal{T}_{\infty}) = \mathcal{T}$.

Remarks:

• $\gamma_{*\preceq} \circ \alpha_{*\preceq} \neq id$

it closes trace sets by limits of finite traces.

• $\gamma_{*\preceq} \neq \gamma_{\preceq} \circ \gamma_{*}$

this is because $\gamma_*(T) \stackrel{\text{def}}{=} T$ is the adjoint of α_* in $(\mathcal{P}(\Sigma^{\infty}), \sqsubseteq)$, while we need to compose α_{\preceq} with the adjoint of α_* in $(\mathcal{P}(\Sigma^{\infty}), \subseteq)$, which is $\gamma'_*(T) \stackrel{\text{def}}{=} T \cup \Sigma^{\omega}$.

(Partial) hierarchy of semantics

Finite big-step semantics

Pairs of states linked by a sequence of transitions in τ .

$$\mathcal{BS} \stackrel{\text{def}}{=} \{ (\sigma_0, \sigma_n) \in \Sigma \times \Sigma \mid n \ge 0, \exists \sigma_1, \dots, \sigma_{n-1} : \forall i < n : \sigma_i \to_{\tau} \sigma_{i+1} \} \}$$

(symmetric and transitive closure of τ)

Fixpoint form:

 $\mathcal{BS} = \mathsf{lfp} \, \mathcal{F}_{\mathcal{B}}$ where $\mathcal{F}_{\mathcal{B}}(\mathcal{R}) \stackrel{\text{def}}{=} id \cup \{ (\sigma, \sigma'') \, | \, \exists \sigma' : (\sigma, \sigma') \in \mathcal{R}, \sigma' \to_{\tau} \sigma'' \}.$

Relational abstraction

Relational abstraction: allows skipping intermediate steps. We have a Galois embedding:

$$(\mathcal{P}(\Sigma^*),\subseteq) \xrightarrow{\gamma_{io}} (\mathcal{P}(\Sigma \times \Sigma),\subseteq)$$

- $\alpha_{io}(T) \stackrel{\text{def}}{=} \{ (\sigma, \sigma') \mid \exists \sigma_0, \dots, \sigma_n \in T : \sigma = \sigma_0, \sigma' = \sigma_n \}$ (first and last state of a trace in T)
- $\gamma_{io}(R) \stackrel{\text{def}}{=} \{ \sigma_0, \dots, \sigma_n \in \Sigma^* \mid \exists (\sigma, \sigma') \in R : \sigma = \sigma_0, \sigma' = \sigma_n \}$ (traces respecting the first and last states from R)

proof sketch:

 γ_{io} and α_{io} are monotonic. $(\gamma_{io} \circ \alpha_{io})(T) = \{\sigma_0, \dots, \sigma_n \mid \exists \sigma'_0, \dots, \sigma'_m \in T : \sigma_0 = \sigma'_0, \sigma_n = \sigma'_m\}.$ $(\alpha_{io} \circ \gamma_{io})(R) = R.$

Finite big-step semantics as an abstraction

The finite big-step semantics is an abstraction of the finite trace semantics: $\mathcal{BS} = \alpha_{io}(\mathcal{T})$.

<u>proof sketch:</u> by fixpoint transfer. We have $\mathcal{T} = \operatorname{lfp} F_{p*}$ where $F_{p*}(T) \stackrel{\text{def}}{=} \Sigma \cup T^{\frown} \tau$. Moreover, $F_B(R) \stackrel{\text{def}}{=} id \cup \{ (\sigma, \sigma'') | \exists \sigma' : (\sigma, \sigma') \in R, \sigma' \to_{\tau} \sigma'' \}$. Then, $\alpha_{io} \circ F_{p*} = F_B \circ \alpha_{io}$ because $\alpha_{io}(\Sigma) = id$ and $\alpha_{io}(T^{\frown} \tau) = \{ (\sigma, \sigma'') | \exists \sigma' : (\sigma, \sigma') \in \alpha_{io}(T) \land \sigma' \to_{\tau} \sigma'' \}$. By fixpoint transfer: $\alpha_{io}(\mathcal{T}) = \operatorname{lfp} F_B$.

We have a similar result using $F_{s*}(T) \stackrel{\text{def}}{=} \Sigma \cup \tau^{\frown} T$ and $F'_B(R) \stackrel{\text{def}}{=} id \cup \{ (\sigma, \sigma'') | \exists \sigma' : (\sigma', \sigma'') \in R \land \sigma \to_{\tau} \sigma' \}.$

Finite big-step semantics (example)

Finite big-step semantics \mathcal{BS} : { $(\rho, \rho') | \mathbf{0} \le \rho'(i) \le \rho(i)$ }.

Denotational semantics (relation form)

In the denotational semantics, we forget all the intermediate steps and only keep the input / output relation:

- $(\sigma, \sigma') \in \Sigma \times \mathcal{B}$: finite execution starting in σ , stopping in σ' ,
- (σ, \blacklozenge) : non-terminating execution starting in σ .

Construction by abstraction: of the maximal trace semantics \mathcal{M}_{∞} .

$$(\mathcal{P}(\Sigma^{\infty}),\subseteq) \xrightarrow{\gamma_d}_{\alpha_d} (\mathcal{P}(\Sigma \times (\Sigma \cup \{ \blacklozenge \})),\subseteq)$$

- $\alpha_d(T) \stackrel{\text{def}}{=} \alpha_{io}(T \cap \Sigma^*) \cup \{ (\sigma, \bigstar) \, | \, \exists t \in \Sigma^\omega : \sigma \cdot t \in T \}$
- $\gamma_d(R) \stackrel{\text{def}}{=} \gamma_{io}(R \cap (\Sigma \times \Sigma)) \cup \{ \sigma \cdot t \mid (\sigma, \bigstar) \in R, t \in \Sigma^{\omega} \}$ (extension of $(\alpha_{io}, \gamma_{io})$ to infinite traces)

The denotational semantics is $\mathcal{DS} \stackrel{\text{def}}{=} \alpha_d(\mathcal{M}_\infty)$.

Denotational fixpoint semantics

Idea: as \mathcal{M}_{∞} , separate terminating and non-terminating behaviors, and use a fixpoint fusion theorem.

We have: $\mathcal{DS} = \mathsf{lfp} F_d$ in $(\mathcal{P}(\Sigma \times (\Sigma \cup \{ \blacklozenge \})), \sqsubseteq^*, \sqcup^*, \sqcap^*, \bot^*, \top^*)$, where • $\perp^* \stackrel{\text{def}}{=} \{ (\sigma, \blacklozenge) \mid \sigma \in \Sigma \}$ • $\top^* \stackrel{\text{def}}{=} \{ (\sigma, \sigma') | \sigma, \sigma' \in \Sigma \}$ • $A \sqsubset^* B \iff ((A \cap \top^*) \subset (B \cap \top^*)) \land ((A \cap \bot^*) \supset (B \cap \bot^*))$ • $A \sqcup^* B \stackrel{\text{def}}{=} ((A \cap \top^*) \cup (B \cap \top^*)) \cup ((A \cap \bot^*) \cap (B \cap \bot^*))$ • $A \sqcap^* B \stackrel{\text{def}}{=} ((A \cap \top^*) \cap (B \cap \top^*)) \cup ((A \cap \bot^*) \cup (B \cap \bot^*))$ • $F_d(R) \stackrel{\text{def}}{=} \{(\sigma, \sigma) \mid \sigma \in \mathcal{B}\} \cup$ $\{(\sigma, \sigma'') \mid \exists \sigma': \sigma \to_{\tau} \sigma' \land (\sigma', \sigma'') \in R \}$

Denotational fixpoint semantics (proof)

proof:

We cannot use directly a fixpoint transfer on $\mathcal{M}_{\infty} = \operatorname{lfp} F_s$ in $(\mathcal{P}(\Sigma^{\infty}), \sqsubseteq)$ because our Galois connection (α_d, γ_d) uses the \subseteq order, not \sqsubset .

Instead, we use fixpoint transfer separately on finite and infinite executions, and then apply fixpoint fusion.

Recall that $\mathcal{M}_{\infty} \cap \Sigma^* = \operatorname{lfp} F_s$ in $(\mathcal{P}(\Sigma^*), \subseteq)$ where $F_s(T) \stackrel{\text{def}}{=} \mathcal{B} \cup \tau \cap T$ and $\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \operatorname{gfp} G_s$ in $(\mathcal{P}(\Sigma^{\omega}), \subseteq)$ where $G_s(T) \stackrel{\text{def}}{=} \cup \tau \cap T$. For finite execution, we have $\alpha_d \circ F_s = F_d \circ \alpha_d$ in $\mathcal{P}(\Sigma^*) \to \mathcal{P}(\Sigma \times \Sigma)$. We can apply directly fixpoint transfer and get that: $\mathcal{DS} \cap (\Sigma \times \Sigma) = \operatorname{lfp} F_d$.

Denotational fixpoint semantics (proof cont.)

proof sketch: for infinite executions

We have
$$\alpha_d \circ G_s = G_d \circ \alpha_d$$
 in $\mathcal{P}(\Sigma^{\omega}) \to \mathcal{P}(\Sigma \times \{\clubsuit\})$, where $G_d(R) \stackrel{\text{def}}{=} \{(\sigma, \sigma'') | \exists \sigma' : \sigma \to_{\tau} \sigma' \land (\sigma', \sigma'') \in R\}.$

The fixpoint theorem for gfp we used in the alternate proof of $\mathcal{T} = \alpha_*(\mathcal{T}_{\infty})$ does not apply here because α_d is not co-continuous: $\alpha_d(\bigcap_{i \in I} S_i) = \bigcap_{\in I} \alpha_d(S_i)$ does not hold; consider for example: $I = \mathbb{N}$ and $S_i = \{a^n b^{\omega} \mid n > i\}$: $\bigcap_{i \in \mathbb{N}} S_i = \emptyset$, but $\forall i : \alpha_d(S_i) = \{(a, \blacklozenge)\}$.

We use instead a fixpoint transfer based on Tarksi's theorem. We have gfp $G_s = \bigcup \{X \mid X \subseteq G_s(X)\}$. Thus, $\alpha_d(\text{gfp } G_s) = \alpha_d(\bigcup \{X \mid X \subseteq G_s(X)\}) = \bigcup \{\alpha_d(X) \mid X \subseteq G_s(X)\}$ as α_d is a complete \cup morphism. The proof is finished by noting that the commutation $\alpha_d \circ G_s = G_d \circ \alpha_d$ and the Galois embedding (α_d, γ_d) imply that $\{\alpha_d(X) \mid X \subseteq G_s(X)\} = \{\alpha_d(X) \mid \alpha_d(X) \subseteq G_d(\alpha_d(X))\} = \{Y \mid Y \subseteq G_d(Y)\}$.

(the complete proof can be found in [Cous02])

Denotational semantics (example)

Denotational semantics \mathcal{DS} : { $(\rho, \rho') | \rho(i) \ge 0 \land \rho'(i) = 0$ } \cup { $(\rho, \bigstar) | \rho(i) \ge 0$ }.

(quite different from the big-step semantics)

Denotational semantics (functional form)

Note: denotational semantics are often presented as functions, not relations

This is possible using the following Galois isomorphism:

$$(\mathcal{P}(\Sigma \times (\Sigma \cup \{ \blacklozenge \})), \sqsubseteq^*) \xrightarrow{\gamma_{df}} (\Sigma \to \mathcal{P}(\Sigma \cup \{ \blacklozenge \}), \sqsubseteq^*)$$

•
$$\alpha_{df}(R) \stackrel{\text{def}}{=} \lambda \sigma. \{ \sigma' \mid (\sigma, \sigma') \in R \}$$

• $\gamma_{df}(f) \stackrel{\text{def}}{=} \{ (\sigma, \sigma') \mid \sigma' \in f(\sigma) \}$
• $f \stackrel{\cdot}{\sqsubseteq} * f \iff \forall \sigma: (f(\sigma) \cap \Sigma \subseteq g(\sigma) \cap \Sigma) \land (\mathbf{A} \in g(\sigma) \implies \mathbf{A} \in f(\sigma))$

We get that: $\alpha_{df}(\mathcal{DS}) = \operatorname{lfp} F'_d$ where $F'_d(f) \stackrel{\text{def}}{=} (\alpha_{df} \circ F_d \circ \gamma_{df})(f) = (\lambda \sigma. \{\sigma \mid \sigma \in \mathcal{B}\}) \dot{\cup} (f \circ \operatorname{post}_{\tau}).$ (proof by fixpoint transfer, as $F'_d \circ \alpha_{df} = F_d \circ \alpha_{df}$)

From traces to transition systems

We saw the partial traces as a semantics of transition systems. We can also see transition systems as an abstraction of partial traces:

$$(\mathcal{P}(\Sigma^{\infty}),\subseteq) \xleftarrow{\gamma_t}{\alpha_t} (\mathcal{P}(\Sigma \times \Sigma),\subseteq)$$

- $\alpha_t(T) \stackrel{\text{def}}{=} \{ (\sigma, \sigma') \mid \exists \sigma_0, \ldots \in T : \exists n \ge 0 : \sigma = \sigma_n, \sigma' = \sigma_{n+1} \}$ (any transition appearing in a trace in T)
- $\gamma_t(\tau) \stackrel{\text{def}}{=} \mathcal{T}_{\infty}$ (partial traces for τ)

Generally $(\gamma_t \circ \alpha_t)(T) \supseteq T$

 \implies not all trace sets are generated by transition systems.

(e.g.: $T = \{ a^n b \mid n \in \mathbb{N} \}$, we get $(\gamma_t \circ \alpha_t)(T) = \{ a^n b \mid n \in \mathbb{N} \} \cup \{ a^{\omega} \}$.)

Another part of the hierarchy of semantics

See [Cou82] for more semantics in this diagram.

Bibliography

[Bour93] **F. Bourdoncle**. Abstract debugging of higher-order imperative languages. In PLDI, 46-55, ACM Press, 1993.

[Cous02] **P. Cousot**. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. In Theoretical Comp. Sc., 277(1–2):47–103.

[Plot81] **G. Plotkin**. *The origins of structural operational semantics*. In J. of Logic and Algebraic Prog., 60:60-61, 1981.