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Goal

Discuss several flavors of concrete semantics:
@ independently from programming languages
o defined in a constructive way (fixpoint)
@ compare their expressive power
°

link them through abstractions

Plan:

introduction: classic examples of program semantics

@ transition systems

@ state semantics

@ trace semantics (finite and infinite)
°

relational semantics
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Flavors of program semantics
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Flavors of program semantics

Small-step operational semantics of the A\—calculus

Example: A—calcul

t = x (variable)
| Ax.t (abstraction)
| tu (application)

Small-step operational semantics:  (call-by-value)

M ~s M’ N ~~ N’
(Ax.M)N ~~ M[x/N] M N~ M N M N ~~ MN

Models program execution as a sequence of term-rewriting ~~
exposing each transition (low level).

course 02-B Program Semantics Antoine Miné p.4/98



Flavors of program semantics

Big-step operational semantics of the A—calculus

Big-step operational semantics:  (call-by-value)

MU Ix.L Ny V, Lx/Vo] I Vs
Ax.M |} Ax.M MNI]| W

t || u associates to a term t its full evaluation wu,
abstracting away intermediate steps (higher level).

course 02-B Program Semantics Antoine Miné p.5/98



Flavors of program semantics

Denotational semantics of A—calculus

Denotational semantics:

[x], = p(x)
[tul, = [t],([ul,)
[Metl, = Avlt] e

The semantics [t ], of a term ¢ in an environment p
is given as an element of a Scott-domain D.

@ D should satisfy the domain equation: D ~ D 5 D.

@ The semantics of a function is a function.
(very high level)
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Flavors of program semantics

Abstract machine semantics of the A\—calculus

Krivine abstract machine:  (call-by-value)

@ variables in A—terms are replaced with De Bruijn indices
(x = number of nested A\ to reach Ax)

@ \—terms are compiled into sequences of instructions:
[n] & Access(n)
[AN] < Grab;[N]
[NM] = Push([M]);[N]
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Flavors of program semantics

Abstract machine semantics of the A\—calculus

@ instructions are executed over configurations (C, e, s)
e C: sequence of instructions to execute
e e: environment
s: stack
list of pairs of (C,e) (closures)

with transitions:

(Access(0) - C, (Co, &) - €, s) — (Co, €9, S)
(Access(n+1) - C, (Co, &) - €, sy — (Access(n), e, s)
(Push(C')-C, e, s) = (C, e, (C' e)-s)

(Grab- C, e, (Cy, &) -s) = (C, (s, ) - €, 5)

= very low level.  (but very efficient)
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Transition systems

Transition systems

Transition system: (X, 7)

@ set of states ¥,
(memory states, A\—terms, configurations, etc., generally infinite)

@ transition relation 7 C ¥~ x .

(X, 7) is a general form of small-step operational semantics.

(0,0") € Tis noted 0 —, o’

starting in state o, after an execution step, we can go to state o’.
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Transition systems

Transition system example

n
>0 ~0—»o
e—»>0 o
| 2;
n <+ [—oo, +o0];
while /i < ndo
if ? then
i+—i+1
i
s S {in) -2 ~—
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Transition systems

From programs to transition systems

Example: on a simple imperative language.

= X <« expr’ (assignment)
| fif expr < 0 then ‘stat’ (conditional)
| ‘while ‘expr i 0 do stat’ (loop)
| ‘stat;‘stat’ (sequence)

@ X €V, where V is a finite set of program variables,
e / € L is a finite set of control labels,
e 1€ {=,<,...}, the syntax of expr is left undefined (for now).

Program states: % L L% E are composed of:

@ a control state in L,
@ a memory state in £ = V — R.
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Transition systems

From programs to transition systems

Transitions: T[é'stat‘/] C ¥ x X is defined by induction on the syntax.

Assuming that expression semantics is given as E[e] : &€ = P(R).

T[AX ] € {(11,p) = (12, p[X — V])|pE &, vEE[e]p}

7['Lif e then 2s%3] &

{(1,p) = (€2,p)|p €&, v €E[e] pivia0} U ,
{(11,p) = (43,p) | p€ &, v EE[e] p:vx0}UT[?s"]

7['while e do *s"] =
{(1,p) = (€2,p) | p €&}V
{(22,p) = (13,p)|p €&, IveE[e] pvikO} U
{(02,p) = (t4,p)|pe & IveE[e] pvx0}UT[3s?]

T[“sl; 525253] def 7[515152] U T[€252£3]
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State semantics

Initial, final, blocking states

Transition systems (X, 7) are often enriched with:

@ 7 C ¥ a set of distinguished initial states,
@ F C ¥ a set of distinguished final states.

(e.g., limit observation to executions starting in an initial state and
ending in a final state)

Blocking states B:

o states with no successor B = {0 |Vo' € X:0 4, 0},

@ model correct program termination and program errors,
(program stuck, unhandled exception, etc.)

e often include (or equal) final states F.

If needed, we can remove blocking states by completing 7:
v € 7U{(0,0)|c € B}. (add self-loops)
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State semantics

Post-image, pre-image

Forward and backward images, in P(X) — P(X):

@ successors: (forward, post-image)
post (S) & {o'|Fo € S:0 —, 0"}

@ predecessors: (backward, pre-image)
pre (S) € {o]|30’ € Sio =, 0"}

post. and pre_ are complete U—morphisms in

(P(X),C.u,N,0,%).
(post, (Uier Si) = Uies post.(Si), pre,(Uier Si) = Uies pre.(Si))

post. and pre. are strict.  (post.(0)) = pre, () = 0)
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State semantics

Dual images

Dual post-images and pre-images:
o pre (S) € {o|Voio =,0 = o' €5}
(states such that all successors satisfy S)

def

e post (S) = {d'|Voi0 =, 0 = o€S}
(states such that all predecessors satisfy S)

pre, and post, are complete N—morphisms and not strict.
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State semantics

Correspondences

post (S) ¥ {o/'|Fo€Sioc—, 0}
pre.(S) L (0| eSo—,0}
(

eT

S) L {o|Voio =, 0 = o' €5}
post (S) ¥ {o/|Voio—,0 = oS}

We have the following correspondences:

@ inverse
pre. = post(,-1y post, = pre(,-1y
IS‘r_éT = F;(;s/t(T*I) [;5?[7_ = F/)Fé(T*I)

(where 771 & {(o,0")|(c',0) € T})
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State semantics

Correspondences

post (S) ¥ {o/'|Fo€Sioc—, 0}
pre.(S) L (0| eSo—,0}

pre_(S) L (o|Vo'io =, 0 = o' €S}
post_(S) {o'|Vo:0 5,0 = oc€85}

We have the following correspondences:

o Galois connecﬂons
(P(),C) === (P(¥). <) and

(P(X), C) s (P(X), C).

pre,

proof:

post (A)C B < {o'|FJo € Ao =, 0"} CB < (Vo e
Aic—,0 = o' €B) < (AC{o|Vo'i0 =,0 =
o' € B}) <= A C pre_ (B); other directions are similar
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State semantics

Correspondences

Determinism:

e (X, 7) is deterministic if Vo € X:|post,({c})| =1,
(every state has a single successor, no blocking state)

@ most transition systems are non-deterministic.
(e.g., effect of input X <« [0, 10], termination)
We have the following correspondences:
o If 7 is deterministic, then pre_ = pre, and post, = post..

e VS:B C pre (S) Cpre.(S)UB.
When B = (), then pre_(S) C pre,(S).
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State semantics

Forward reachability

R(Z): states reachable from Z in the transition system

R(Z) o {o|3n>0,00,...,0000 €Z,0 =0,,Vi:0; = 0j41}
= Un>o post?(Z)

(reachable <= reachable from Z in n steps of T for some n > 0)

R(Z) can be expressed in fixpoint form:

R(Z) = Ifp Fr where Fr(S) L TU post._(S) J

(Fgr shifts S and adds back 7)

Alternate characterization: R = Ifp; Gr where Gr(S) < S U post_(S).

(Gg shifts S by 7 and accumulates the result with S)

(proofs on next slide)
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State semantics

Forward reachability: proof

proof: of R(Z) = Ifp Fr where F(S) 71U post..(S)

(P(X),<) is a CPO and post, is continuous, hence Fg is continuous:
Fr(Uier A7) = Uier FR(A)).

By Kleene's theorem, Ifp Fr = Unen FA ().

We prove by recurrence on n that: Vn: FA(0) = U;<, post’ (Z).
(states reachable in less than n steps)

o F3(0)=1
@ assuming the property at n, '
Fa(0) = ZUpost, (U, post:(Z))

= ZUU;., post,(post,(Z))
= ZUUi<icnnt post! (Z)
= Ujcny1 postr(Z)

Hence: Ifp Fr = Unen FR(0) = Ujen post.(Z) = R(Z).

The proof is similar for the alternate form, given that
Ifp; Gr = UpenGR(Z) and GR(T) = FTH (D) = Uj<, post.(Z).
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State semantics

Forward reachability: graphical illustration

_wO—>0—>0
\A

O—>»0O0—>»0

oO—»O

0O—0—>0—>0—>0
o—»o—»o—»o\o

O—»O0—">0—>»>0—>»O0

Transition system.
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State semantics

Forward reachability: graphical illustration

_wO—>0—0
\A

O—>»O0—»0

o-1»o0

O—>»0—>0—>0—>»0

o——»o—»o—»o\o

O—>»0—>0—>0—>»0

Initial states 7.
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State semantics

Forward reachability: graphical illustration

O—»O0—»0
>O/

S

O—»O0—»0O

>»O—>»O0—>0—>»0

g

>O—>O—>O\O
N

O—»0—>0—>0—>0

Iterate F% ().
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State semantics

Forward reachability: graphical illustration

/O—>O—>O

A 0_—»0-—0

e >0——>0—>0—>0

o——»o——»o—»o\o

O—»0—>0—>0—>0

lterate F3(T).
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State semantics

Forward reachability: graphical illustration

@7 >0—>0
o »>eo
\

e —>»>O0—»0O

e >0—>0-—>0—>0

o——»o—»o——»o\o

oO—»O0 e —>»>0—»0

lterate F3 ().

course 02-B Program Semantics Antoine Miné p.22 /98



State semantics

Forward reachability: graphical illustration

ne—re—>e
\A

eo—>0—>0

oo

oO—>0 >0 >0 —>0

o——»o—»o—»o\o

oO—»O0 eo—>0—>0

States reachable from Z: R(Z) = F3(Z).
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State semantics

Forward reachability: applications

@ Infer the set of possible states at program end: R(Z) N F.

o i+ 0
while / < 100 do
i+ i+1;
jj+0.1]
done o

v

e initial states Z: j € [0, 10] at control state e,
o final states F: any memory state at control state o,
o = R(Z)N F: control at e, i = 100, and j € [0,110].

@ Prove the absence of run-time error: R(Z)NB C F.
(do not block except when reaching the end of the program)
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State semantics

Multiple forward fixpoints

Recall: R(Z) = Ifp Fr where Fr(S) & Z U post, (S).

Note that Fi may have several fixpoints.

Example:
]
e—+»0
oO—» 0O e—>0 *
@—'O< o e
~a
o—»0 e—> @
oO—» 0 e—>0
o—0i»0—0 o—0Z>»0—>0
O0<«—O0 0«0
Initial state 7 R(Z) = Ifp Fr gfp Fr
Exercise:

Compute all the fixpoints of Gr(S) sy post,(S) on this example.
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State semantics

Forward reachability equation system

By partitioning forward reachability wrt. control states,
we retrieve the equation system form of program semantics.

Control state partitioning

We assume ¥ & £ x &; note that: P(X) ~ L — P(&).

We have a Galois isomorphism:

(P(2),C) == (£ = P(£),€)

o XCY &L wieL:X(0)C YW
o as(S) ¥ M{p[(tp) €S}
o 1e(X) = {(tp)|teL,peX()}
Note that: az oy, =7 0ars =1id. (no abstraction)
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State semantics

Forward reachability equation system: example

Idea: compute a,(R(Z)): L — P(E)
e introduce variables: X; = (az(R(Z)))(¥) € P(E),

@ decompose the fixpoint equation Fg(S) =Z U post.(S) on L:
ar o Fr o7y, gives an equation system on (Xy)scr-

Example:

X1=1;

Xz =C[n < [—o0, 4] ] A2
Xy =AU X

A2

2 n ¢+ [~o0, +oo];

3 while i < n do
>if [0,1] = 0 then

O j41 5
o7 Xo = X5
8 X7:X5UC[[IFI+1]]X6

XgIC[[iZn]]X4

o initial states T = {({1,p)|p € Ty } for some Ty C &,
@ C[-] : P(€) = P(E) model assignments and tests (see next slide).
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State semantics

Forward reachability equation system: construction

We derive the equation system eq(‘stat’")
from the program syntax ‘stat’" by induction:

eq(""X « ) L (X =C[ X+ e] X}

eq("1if e > 0 then 2573) '
{Xio=Clex0] X1, Xy = Xz UC[esa 0] Xix } U eq(?s”)

eq("*while e 1 0 do 3s"4) &
{X@ = X UXpy, X3 = C[[e > OHXQ, Xy = C[[e l}él 0]] XQ} U
eq(3s™)

eq("sy; 25,"3) def eq(s,?) U (25,"3)

where:

! U . . . .
o X' X' are fresh variables storing intermediate results
def

° C[[X%e]]Xdef— {p[X = v]|pe X, veE[e]p}

Clex<0]X = {peX|IveE[p]pv=x0}
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State semantics

Backward reachability

C(F): states co-reachable from F in the transition system:

C(F) ot {o|3In>0,00,...,00:0 =00,0, € F,Vi:0; =+ 0i11}
= UnZO pre?(F)

C(F) can also be expressed in fixpoint form:

C(F) = Ifp Fe where Fo(S) £ FuU Prer(S)J

Alternate characterization: C(F) = Ifp; Ge where G¢(S) = Ge U pre(S)

Justification: ~ C(F) in 7 is exactly R(F) in 771
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State semantics

Backward reachability: graphical illustration

_wO—>0—>0
\A

O—>»0O0—>»0

oO—»O

0O—0—>0—>0—>0
o—»o—»o—»o\o

O—»O0—">0—>»>0—>»O0

Transition system.
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State semantics

Backward reachability: graphical illustration

O—»O0—»O0O
o—»o/v
\ Ve N
O—>»O0O—]»0
O—rO0O—>0—">0O0—]»0
N
O—> O —>0—>»O0O (@)

O—>»0—>0—>0—1»0

Final states F.
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State semantics

Backward reachability: graphical illustration

IS ARG
oo —

eo—>0 >0

o—>0 >0 —>0——>0

N

oe—>0 >0 >0 e

o—>0 >0 —>0—>0

States co-reachable from F.
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State semantics

Backward reachability: applications

e INC(B\ F)
Initial states that have at least one erroneous execution.

FEEEN . o e 00w

o j+0; o final states /: any memory state at o
while / > 0 do ) ) .
I e blocking states 3: final, or j > 200 at any
. . ' location
Jj < J+10,10]
done o o ZNC(B\ F): ate, i>20

e IN(X\C(B))
Initial states that necessarily cause the program to loop.

o lterate forward and backward analyses interactively
—> abstract debugging [Bour93|.
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State semantics

Backward reachability equation system: example

Principle:

Use (P(X), C) &= (£ = P(£), &) on Fe(S) = FUpre.(S)
to derive an equation system az o Fg oyp.

Example:

[11.(_2. X1:C[[I—>2]]X2
02 N [70074»00]; Xz = C[[n — [—OO,+OO]]]X3
‘3 while “ i < n do =2

/5 = X4:C[[i<n]]X5UC[[i§nﬂXg

if [0,1] = 0 then
67 11 Xs =X UAy

o7 Xe=Cli—i+1]A7

8 X7:X4
Xg = Fg

o final states F < {(£8,p)|p € Fg } for some Fg C &,

def

o C[X —e]X = {p|lIveE[e]pp[X—>v]e X}
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State semantics

Sufficient preconditions

S()): states with executions staying in ).

S(Y) et {o|¥n>0,00,...,0n (0 =09 AViic; >+ 0i+1) = 0, €YV}
= ﬂnzo pTeQ()))

S(Y) can be expressed in fixpoint form:

S(Y) = gfp Fs where Fs(S) = Ynpre.(S) |

proof sketch:  similar to that of R(Z), in the dual.

Fs is continuous in the dual CPO (P(X), D), because pre, is:
Fs(Nier A7) = Nier Fs(Ai).
By Kleene's theorem in the dual, gfp Fs = Npen FE(X).

We would prove by recurrence that F2(X) = N;<, pre,()).
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State semantics

Sufficient preconditions and reachability

Correspondence with reachability:

We have a Galois connection:

(P(T).©) == (P(¥), ©)

e R(Z)CY <« ITCS()

0 s0S(YV)=U{X|R(X)CV}
(S(Y) is the largest initial set whose reachability is in )

We retrieve Dijkstra's weakest liberal preconditions.

(proof sketch on next slide)
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State semantics

Sufficient preconditions and reachability (proof)

proof sketch:

Recall that R(Z) = Ifp; Gr where Gr(S) = S U post.(S).
Likewise, S()) = gfpy, Gs where Gs(S) = S N pre(S).
Recall the Galois connection (P(X), ©) % (P(X%), 9).
post._
As a consequence (P(X), Q) % (P(X),9).
R
The Galois connection can be lifted to fixpoint operators:
x—gfp, Gs

(P(X),9) ﬁ (P(X), Q).

X

Exercise: complete the proof sketch.
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State semantics

Sufficient preconditions: application

Initial states such that all executions are correct:
INS(FU(X\B)).

(the only blocking states reachable from initial states are final states)

— e initial states Z: j € [0,10] at o

o i+ 0 o final states F: any memory state at e
while / < 100 do @ blocking states B: final, or j > 105 at
i< i+1; any location
j«Ji+[0,1] e TNS(FU(Z\B)): ate,ic[0,5]
done o ) (note that Z N C(F U (L \ B)) gives T)

Applications: infer contracts; optimize (hoist) tests;
dually, infer counter-examples.
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State semantics

Sufficient preconditions: graphical illustration

0—»0—»0
Pl
\A

O—>»O0—/>»0

oO—»O

O—»O0—>0—>0—1—»0

0—>0—>0—>0 | 0
Y

O—»O0—>»0—>»0—1»0
~

Final states F.
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State semantics

Sufficient preconditions: graphical illustration

> <O—>O—>O
oO—»0O

N

O—>»O0—>»0

0O—0—>0—>0—>0
o—»o—»o—»o\o

O—»O0—>»0—>»>0—>»0

Set of final or non-blocking states Y = F U (X \ B).
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State semantics

Sufficient preconditions: graphical illustration

w000
— : o—>0 >0
eo—>0 >0 >0 >0
N
e—>0 >0 >0 ]
Y
e—>0—>0—>0— >0
~
Sufficient preconditions S().
S ¢ C(F)
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State semantics

Sufficient precondition equation system: example

Principle:
use (P(X),C) & (£ — P(£),C) on F5(S) = Y npre,(S)
to derive an equatlon system a0 Fs oy,
Example:
1 - Xl—C[[I<—2]]X2
L2 Xo = C[[n(—[ 00, +00] | A3
02 _ ) 2=
n + [—o0, +o0]; X3 X4

3 while “ i < ndo

<.
‘5if[0,1]:0then —C[[/<n]]X5ﬂC[[l§nﬂXg

6 41 stzzﬁﬁ)ﬁ
o Xg = C[[I(—I+1HX7
8 X7:X4
Xg = Fs

o “stay in” states = {(£,p)| L £ (8V p € Fg} for some Fg C £,
° %[[ -] is the Galois adjoint of C[-].
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Traces

Sequences, traces

Trace: sequence of elements from X

@ e: empty trace (unique)

@ o: trace of length 1 (assimilated to a state)

@ 0p,...,0,—_1: trace of length n

® 00,...,0n,.... infinite trace (length w)
Trace sets:

@ 2 the set of traces of length n

o Y= = ., ¥': the set of traces of length at most n

o Tr & Ujen I': the set of finite traces

Y “: the set of infinite traces
0 Y® ¥ 5 ¥ the set of all traces
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Traces

Trace operations

Operations on traces:

o length: |t| e NU{w} of a trace t € X°

@ concatenation -
def
o (00y...,00) (0y...) = 00ye-eyOnyThy- ..
(append to a finite trace)

ot-t ¥tiftexr¥ (append to an infinite trace)

def def :
oc-t=t-e =t (cisneutral)
@ junction
~( ) def / /
o (00y...,00) " (04,01...) = 00y...,0n,0%,... when o, =}

undefined if o, # o},

e ¢t and t"e are undefined

o t7t Yt iftexv
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Traces

Trace operations (cont.)

Extension to sets of traces:

def

A-B={a-blacA beB}
e A"B ¥ {a~b|lac A be B, a~b defined }

o AV — {e}  (neutral element for -)
AL AL AR
A d:°f A-A---.
A* d:ef L—Jn<w An,
def

A® Yo, A

@ A°0 =% (neutral element for ™)
A—n+l def A"ATN,
Amw EATAT .
AT E Unpcw AT,

def

Ao A

Note: A" # {a"|ac A}, A-"#{a""|ac A} when |A| > 1
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Traces

Distributivity of junction

@ " distributes finite and infinite U:
AA(U;G/ B,) = Ujey (AAB,) and
(Uier Ai) " B = Uie/ (A" B)

where | can be finite or infinite.

@ " distributes finite N but not infinite N

example:

{a*} " (Nnen{a™|n>m}) = {a*} 0 =0 but
Nnen ({2*} 7 {a" [n>m}) = Npen {a¥} = {a*}

@ but, if AC X*, then AA(Q;G/ B,’) = Ujgy (AAB,')
even for infinite /

Note: - distributes infinite N and U.
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Traces

Traces of a transition system

Execution traces:

Non-empty sequences of states linked by the transition relation 7.
@ can be finite (in P(X*)) or infinite (in P(X%))

@ can be anchored at initial states, or final states, or none

Atomic traces:

@ 7: initial states ~ set of traces of length 1

e F: final states ~ set of traces of length 1

@ 7: transition relation ~ set of traces of length 2
({o,0|oc—:0"})

(asX~%'and ¥ x ¥ ~¥?)
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Finite trace semantics

Prefix trace semantics

To(Z): partial, finite execution traces starting in Z.

77,(.'[) S {Uo,...,o‘n|n > 0,00 € L,Viio;] —, O','+1}
= UnZO IA(TAH)

(traces of length n, for any n, starting in Z and following 7)

Tp(Z) can be expressed in fixpoint form:

To(Z) = Ifp F,, where Fp(T) = ZUT 7 J

(Fp appends a transition to each trace, and adds back Z)

(proof on next slide)
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Finite trace semantics

Prefix trace semantics: proof

proof of:  T,(Z) = Ifp F, where Fp,(T) =ZU T 1

Similar to the proof of R(Z) = Ifp Fx where Fr(S) &' T U post, (S).

F, is continuous in a CPO (P(X*),C):
Fo(Uier T)) =T U (Uiet Ti) 7 =T U (Uig) T 7) = Ui/ (ZU T 7),
hence (Kleene), Ifp F, = Up>o Fi(0)

We prove by recurrence on n that Vn: F;’((Z)) =Ujcpn I8
° FI(0) =0,

o FIY0)=TUFI(0)"T=ZU(Ujcy 77y 7=1TU
Uicn (T 7= 700U (T 7)) = Uiy T

Thus, |fp F, = UneN F;(@) = UpeN Ui<n T = UieN T,

Note: we also have T,(Z) = Ifp; G, where G,(T) =T U T 7.
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Finite trace semantics

Prefix trace semantics: graphical illustration

T = {a)
O—»O—>» 0O T d:ef {(a, b),(ba b)a(b7 C)}
c

def

Iterates:  Tp(Z) = Ifp Fp where Fo(T) = ZUT 7

{ ab’ abfclle[ln 1,j€[l,n—2]}
® Tp(Z) = Unxo FJ(0) = {a,ab’,ab’c|i>1}
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Finite trace semantics

Prefix trace semantics: expressive power

Prefix traces is the collection of finite observations
of program executions/

= Semantics of testing.

Limitations:

@ no information on infinite executions,
(we will add infinite traces later)

@ can bound maximal execution time: T,(Z) C £="
but cannot bound minimal execution time.
(we will consider maximal traces later)
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Finite trace semantics

Abstracting traces into states

Idea: view state semantics as abstractions of traces semantics.

We have a Galois embedding between finite traces and states:

(P(£%),C) == (P(X), C)

Ap

def

 ap(T) = {oceX|dog,...,.one T:0c=0,}
(last state in traces in T)

o v5(S) & {00,...,0n€T* |0, € S}
(traces ending in a state in S)

(proof on next slide)
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Finite trace semantics

Abstracting traces into states (proof)

proof of:  (ap,7,) forms a Galois embedding.

Instead of the definition a(c) C a <= ¢ C y(a), we use the alternate
characterization of Galois connections: « and  are monotonic, v o « is
extensive, and « o +y is reductive.

Embedding means that, additionally, c o v = id.

® «p, ¥p are U—morphisms, hence monotonic

o (vpoap)(T)
= {00, 00|00 € ap(T)}

={o0,...,0n|30},...,omE Tiop =0, }
oT

® (aporp)(S)
={o|300,...,0n €Vp(S)c=0,}
={o|Jog,...,onn0, €S, 0 =04}
=S
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Finite trace semantics

Abstracting prefix traces into reachability

Recall that:
o T,(Z) = Ifp F, where Fp(T) = TU T7,
o R(I) = Ifp Fr where Fr(S) = T U post.(S),
,
° (P(Z*)v g) T:? (P(Z)a g)
We have: ap o0 Fp = Fr o ap;

by fixpoint transfer, we get: o, (7,(Z)) = R(Z).

(proof on next slide)
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Finite trace semantics

Abstracting prefix traces into reachability (proof)

proof: of ap o Fy = Fr o ap

(apo Fp)(T)

=ap(ZUT™T)

={o|Jog,..., 00 €ETUT T:0=0,}
=7ZU{o|3doo,...,on € T " T:0=0,}
=7U{o|3Joo,...,0n € T:0, >0}
=ZUpost ({o]|Jog,....,.on€ T:o=0,})
— T U post.(ap(T))

= (Froap)(T)
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Finite trace semantics

Abstracting traces into states (example)

Jj <+« 0;

i+ 0;

while /i < 100 do
I i+1;
Jj<Jj+[0,1]

done

@ prefix trace semantics:
i and j are increasing and 0 < </ <100

o forward reachable state semantics:
0<j<i<100
= the abstraction forgets the ordering of states.
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Finite trace semantics

Prefix closure

Prefix partial order: < on £

xjy<d28f>5|u€Z°°:x-u:y
(X%, =) is a CPO, while (X*, <) is not complete.
Prefix closure:  p, : P(X°) — P(X>)

pp(T) = {u]|3teTiu=<t ute}

pp is an upper closure operator on P(X> \ {e}).
(monotonic, extensive T C p,(T), idempotent pp, 0 pp = pp)

The prefix trace semantics is closed by prefix:

pp(To(Z)) = Tp(Z).
(note that € ¢ T,(Z), which is why we disallowed € in pp)
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Finite trace semantics

Ordering abstraction

Another Galois embedding between finite traces and states:

(P(X*), €) &= (P(T), )

o ao(T) € {o|300,...,0neT,i<no=o}
(set of all states appearing in some trace in T)

def

® 7%(S) = {o0,...,on|n>0,Vi<no; €S}
(traces composed of elements from S)

proof sketch:
@, and 7, are monotonic, and @, 0, = id.

(Yoo ao)(T) ={00,...,04|Vi < n:3og,...,00, € T,j<mioi=0}}

oT.
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Finite trace semantics

Ordering abstraction

We have: ao(7,(Z)) = R(Z).

proof:

We have o, = ap 0 pp (i.e.: a state is in a trace if it is the last state of
one of its prefix).

Recall the prefix trace abstraction into states: R(Z) = ap(7,(Z)) and
the fact that the prefix trace semantics is closed by prefix:

pp(Tp(T)) = Tp(Z).
We get ao(T5(Z)) = ap(pp(Tp(1))) = ap(Tp(Z)) = R(T).

alternate proof: generalized fixpoint transfer
def

Recall that 7,(Z) = Ifp F, where F,(T) = ZU T 7 and R(Z) = Ifp Fr
where Fr(S) < Z U post, (S), but a, o Fp = Fr o a, does not hold in
general, so, fixpoint transfer theorems do not apply directly.

However, o, o Fp = Fr o o, holds for sets of traces closed by prefix. By
induction, the Kleene iterates ag and a% involved in the computation of
Ifp F and Ifp Fr satisfy Vn: a,(ap) = a%, and so a,(Ifp Fy) = Ifp Fr.
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Finite trace semantics

Suffix trace semantics

Similar results on the suffix trace semantics:
def .
e 7J(F) ={o0,...,0n|n>0,0, € F,Vi:o; =, 0i41}
(traces following 7 and ending in a state in F)

o Ts(F) = UnZO T"F
def

o To(F)=IfpFs where F,(T) = FUT™ T

(Fs prepends a transition to each trace, and adds back F)
° as(7s(F)) = C(F)

where as(T) & {o|Jog,...,0n€ T:0 =00}
° ps(Ts(F)) = Ts(F)

where ps(T) o {u|FteX>t-ueT,u#e}

(closed by suffix)

o ao(Ts(F)) = C(F)
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Finite trace semantics

Suffix trace semantics: graphical illustration

lterates:  T3(F) = Ifp Fs where Fy(T) = FU—T.

o FX(0)=10

o FY(0)=F ={c}

o F2(0) = {c, bc}

o F3(0) = {c, bc, bbc, abc}

o F(0) ={c,bic,abic|ic[l,n—1],j€[l,n—2]}
0 To(F) =Upnso FI(0) = {c,bic,abic|i>1}
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Finite trace semantics

Partial trace semantics

T all partial finite execution traces.
(not necessarily starting in Z or ending in F)

Td:ef {0’0,...,0’,,’!720,VI'20',' —r U;+1}

= Upso Z777°
= UnZO Ty

def

e T =T,(X), hence T = Ifp Fp. where Fpo(T) = TUT 7
(prefix partial traces from any initial state)
def

o 7 =7TsX), hence T = Ifp Fs. where Fo.(T) = XUT™T

(suffix partial traces to any final state)
° Flg*(@) = Fsrzk(Q) = Ui<n ZATA’. = Ui<n TAI.AZ =TnN ren
@ To(Z)=TN(Z-X*) (constrain initial states)
o To(F)=TnN(X*-F) (constrain final states)
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Finite trace semantics

Partial trace semantics: graphical illustration

O—»O—>» 0O T d:Cf {(37 b)a(bv b)v(b’ C)}

Iterates: T(Z) = Ifp Fp. where Fpu(T) & YU T 7

o F.(0) =

o Fl.(0)=Xx={ab,c}

o F2.(0) ={a,b,c,ab, bb, bc}

o F3(0)={a,b,c,ab,bb, bc,abb,abc, bbb, bbc}

o F1(0)={ab,abic,bic,b|ic[0,n—1],j€[l,n—2],ke[l,n]}

® T =Un>oF) ' (0) = {ab’,abic,bic,b/|i>0,j > 1}
def

(using Fs.(T) =
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Finite trace semantics

Abstracting partial traces to prefix traces

Idea: anchor partial traces at initial states 7.

We have a Galois connection:

* Yz N
(P(E1),9) =5 (P(E7),9)
o az(T) TN (Z-X%) (keep only traces starting in Z)

0 yz(T) £ TU((X\Z)-X*) (add all traces not starting in Z)
We then have: 7,(Z) = az(T).
def

(similarly 75(F) = ax(T) where ax(T) = T N(X* - F))

(proof on next slide)
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Finite trace semantics

Abstracting partial traces to prefix traces (proof)

proof

a7 and yz are monotonic.
(azoyz)(T)=(TU(Z\Z)- X )NZ-X)=TNZ-X*CT.
(yzoar)(T)=(TNZ-XYU(Z\Z)-Z*=TU(Z\Z)-x* D T.
So, we have a Galois connection.

A direct proof of T,(Z) = az(T) is straightforward, by definition of 7,
az, and T.

We can also retrieve the result by fixpoint transfer.

T = Ifp Fp. where Fp(T) & T U T 7.

Tp = Ifp Fp where Fo(T) & TU T 7.

We have: (azo Fp)(T)=(XUT71)N(Z-X*)
)

ZTU(T n)NIZ -2)=2u(TnEZ -*)"7

= (Fpoaz)(T).

course 02-B Program Semantics Antoine Miné p. 62 /98



Infinite trace semantics




Infinite trace semantics

Maximal traces

Maximal traces: My, € P(X)
@ sequences of states linked by the transition relation T,
@ start in any state (Z = X),

e either finite and stop in a blocking state (F = B),
@ or infinite.

(maximal traces cannot be “extended”
by adding a new transition in 7 at their end)

My & {00,...,0n € X" |op € B,Vi<n:o;j —; 0j41} U

{00,...,0,,,...EZW|VI'<(UZO','—>TO','+1}

(can be anchored at Z and F as: Mo N(Z-X*°)N((X* - F)Ux¥))
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Infinite trace semantics

Partitioned fixpoint formulation of maximal traces

Goal: we look for a fixpoint characterization of M.
We consider separately finite and infinite maximal traces.

@ Finite traces:
From the suffix partial trace semantics, recall:
Mo NX* =To(B) = Ifp Fs
where Fo(T) = BUT™ T in (P(X*), Q).
@ Infinite traces:
Additionally, we will prove: My, NX¥ = gfp Gs

def

where G5(T) = 77T in (P(X¥), Q).

(proof on next slide)
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Infinite trace semantics

Partitioned fixpoint formulation of maximal traces (proof)

def

proof:  of M NXY = gfp Gs where G5(T) = 7T in (P(X¥), C).
Gs is continuous in (P(X%),2): Gs(Nies T7) = Nies Gs(T;).
By Kleene's theorem in the dual: gfp Gs = Nyen GI(Z¥).
We prove by recurrence on n that Vn: G/ (X%) = 77" X%:
o GYI¥)=¥¥ = 770"%¥,
o GIML(E¥) = 17 GI(E¥) = 77 (1" EY) = r oo T,

gfpGs = NMpent "7 L%
= {O’o,...Ezw|vn2020'0,...70'n_1ET’—\H}
= {o00,...€X¥Y|Vn>0:Vi< no; =, 041}
Mg N XY
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Infinite trace semantics

Infinite trace semantics: graphical illustration

o GO(X¥) = ¥

o GI(E¥) = abT® U bbT® U hcT¥

o G2(E¥) = abbT® U bbbE¥ U abcT® U bbcE¥

o G3(E¥) = abbbT® U bbbbT U abbcT® U bbbcE¥
o GI(x¥)={ab"t, b""'t, ab"Lct, bct|t € T}

0 Mo NEI¥ = Npxo GI(Z¥) = {ab*, b*}
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Infinite trace semantics

Least fixpoint formulation of maximal traces

Idea: To get a fixpoint formulation for whole M,
merge finite and infinite maximal trace fixpoint forms.

Fixpoint fusion

Moo NZ* is best defined on (X*, C,U, N, (0, £*).
Mo N XY is best defined on (X%, D,N,U, X%, 0).

We mix them into a new complete lattice (X°°, C, LI, M, L, T):
e ALB <5 (ANIT*)C(BNIHA(ANI¥)D(BNEIY)
o AUB = (ANTHU(BNI*))U(ANI¥)N(BNIY))
e AMIB = (ANT*)N(BNI*))U(ANI¥)U(BNI¥))
o | Eyw
o T &y

In this lattice, M., = Ifp Fs where Fs(T) & BUT—T.

(proof on next slides)
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Infinite trace semantics

Fixpoint fusion theorem

Theorem: fixpoint fusion
If X1 = |fp Fl in (P(Dl), El) and X2 = |fp F2 in (P(D2) Ez)
and D1 N'Dy = ),
then X1 U Xo =Ifp F in (P(D1 U D), C) where:

o F(X) = F(XND1)U F(XNDy),

e ALB <= (ANDy)Ci (BND1)A(AND,) Ty (BNDy).
proof:
We have: F(Xl UXQ) = Fl((X]_ @] X2) n Dl) @] F2((X]_ @] X2) n Dz) =
F1(X1) U Fo(X2) = X1 U X5, hence X; U X; is a fixpoint of F.
Let Y be a fixpoint. Then Y = F(Y) = F(Y ND1)U (Y ND,),
hence, Y N'Dy; = F(Y ND;) and Y NDy is a fixpoint of F;. Thus,
X1 C1 YNDy. Likewise, Xo Co Y ND,. We deduce that
X=XiUXo C(YND))U(YND,)=Y, and so, X is F's least
fixpoint.
note:  we also have gfp F = gfp F; U gfp F».
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Infinite trace semantics

Least fixpoint formulation of maximal traces (proof)

def

proof: of M, = Ifp Fs where F(T) = BUT™T.
We have:
o Mo, NI* =IfpF,in (P(X*),C),
@ Mo NX¥=IfpG, in (P(£¥),D) where G4(T) & 7~ T,

@ in P(X°), we have
Fs(A) = (Fs(A)NZ)U(F(A)NZEY) = F(ANT*) U G (AN X¥).

So, by fixpoint fusion in (P(X>°),C), we have:
Moo = (Mo NT*)U (Mo NZY) = Ifp Fs.
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Infinite trace semantics

Greatest fixpoint formulation of finite maximal traces

Actually, a fixpoint formulation in (X, C) also exists.

Alternate fixpoint for finite maximal traces:

We saw that M, NX* = Ifp F
where Fo(T) & BUT™ T in (P(T*), Q).

Additionally, we have M, N¥X* = gfp Fs in (P(X*), ).
(Fs has a unique fixpoint in (P(X*), C).)

(proof on next slide)
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Infinite trace semantics

Greatest fixpoint formulation of finite maximal traces

def

proof: of M, NX* = gfp F; where F(T) = BUTT.

Fs is continuous in the dual (P(X*),2): Fs(Nics Ai) = Nier Fs(A)).

By Kleene's theorem in the dual (P(X*), D), we get:

gfp Fs = Npen FJ(X7).

We prove by recurrence on n that

Vn: FI(E*) = (Uicn 77/ T B) U (77" X%): ie., FJ(X*) are the maximal
finite traces of length at most n — 1, and the partial traces of length
exactly n followed by any sequence of states:

@ FA(X*)=x*=7"0"%*

o F(F)(X7)) =BU(rF](X))
= BUT (Uen "B U (r~"~5%)
=BU(Uic, 71 TB)U (7T EY)
=BU (U1<,'<n+1 TAiAB) U (TA”+1AZ*)
= Uiena 7 B U ()

We get: mneN FS"(Z*) = mneN (U,‘<n TA’IAB) U (TA"AZ*) =
UpenT "B =My NZ*.
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Infinite trace semantics

Greatest fixpoint of finite traces: graphical illustration

O B = {c}

O—»?—bO — {(a, b), (b, b), (b, )}

lterates: Moo N X* = gfp Fs where Fo(T) & BUT™T.

o FO(X*)=x*

o F1(T*) = {c}UabX* UbbT* U bcx*

@ F2(X*) = {bc,c}Uabb™* U bbbL* U abcY* U bbc¥*

@ F3(X*) = {abc, bbc, bc, c} U abbb¥* U bbbb%™* U abbc¥* U bbbcY *
e FI(X*)={abc,biclie[l,n—2],j€[0,n—1]} U

{ab"t ,b”+1t7 ab"lct,bct|t € T*}
@ Mo NEZ* =Nyso FM(X*) == {abic,blic|i>1,j>0}
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Infinite trace semantics

Greatest fixpoint formulation of maximal traces

From:
0 Mo NX* =gfpF,in (P(X*),C) where Fo(T) = BUT™T
0 Mo NE¥ = gfp G, in (P(X¥),C) where Go(T) & 77T

we deduce: M, = gfp Fs in (P(X*), Q).

proof:  similar to My, = Ifp Fs in (P(X>°),C), by fixpoint fusion.
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Infinite trace semantics

Finite and infinite partial trace semantics

Idea: complete partial traces 7 with infinite traces.

Too: all finite and infinite sequences of states
linked by the transition relation 7:

Too = {00,...,0n €X*|Vi<noj—;0i41}U
{0'07...,0,,,...GZW‘VI'<L<JZU,'—>TU,'+1}

(partial finite traces do not necessarily end in a blocking state)

Fixpoint form similar to M:
def

o 7o = Ifp Feu in (P(X%°),C) where Fo. (T) = XUTTT,
o Too = gfp Fsx in (P(X), Q).

proof:  similar to the proofs of M., = gfp Fs and M, = Ifp Fs.
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Infinite trace semantics

Finite trace abstraction

Finite partial traces 7 are an abstraction of all partial traces 7.

We have a Galois embedding:
Y
(P(E%),C) == (P(X"),C)

@ L is the fused ordering on X* U X“:

ACB <5 (ANT*)C(BNI)A(ANI¥) D (BNXY)
o a(T) ¥ TNX*

(remove infinite traces)

def

e v(T)=T
(embedding)

o 7 = a.(Tx)

(proof on next slide)
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Infinite trace semantics

Finite trace abstraction (proof)

proof:
We have Galois embedding because:
@ «, and v, are monotonic,
@ given T CX* we have (07, )(T)=TNX* =T,

@ (yxoa)(T)=TnNX*JT, as we only remove infinite traces.

Recall that 7o = Ifp Fs. in (P(X*°),C) and T = Ifp Fs, in (P(X*), C),
where Fo, (T) € LU T 7.
As . 0 Fg, = Fgy 0 v and () = 0, we can apply the fixpoint transfer

theorem to get . (7o) =T .
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Infinite trace semantics

Finite trace abstraction (proof)

alternate proof:

It is also possible to use the characterizations 7., = gfp Fs. in
(P(x%°),<C) and T = gfp Fs. in (P(X*),C), and use a fixpoint transfer
theorem for greatest fixpoints.

Similarly to the fixpoint transfer for least fixpoints, this theorem uses the
constructive version of Tarski's theorem, but in the dual: T is the limit
of transfinite iterations ag = X°°, a,11 = Fs«(an), and

ap =N{am|m < n} for transfinite ordinals, while 7 is the limit of a
similar iteration from a() = Y *. We conclude by noting that a() = a.(ap),
a0 Fo = Fs 0, and ay, is co-continuous: . (Nies T;) = Nier a(T;).

Note that, while the adjoint of . for C was ~,(T) def T, the adjoint for
def

Cis~/(T) % Tuze.

course 02-B Program Semantics Antoine Miné p. 78 / 98



Infinite trace semantics

Prefix abstraction

Idea: maximal traces by adding (non-empty) prefixes.

We have a Galois connection:

(P(E*\{e}), ©) == (P(E=\ {e}), )

o ax(T) € {tex>®\{e}|FueT:t=<u}

(set of all non-empty prefixes of traces in T)

y<(T) E {tex™®\{e}|Vuer®\{e:u=<t = vueT}

(traces with non-empty prefixes in T)

proof:
a< and y< are monotonic.
(a<ovx(T)={teT|pp(t) S T} C T (prefix-closed trace sets).

(vzoax)(T)=pp(T) 2 T.
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Infinite trace semantics

Abstraction from maximal traces to partial traces

Finite and infinite partial traces 7., are an abstraction
of maximal traces Moo: Too = a<(Mxo).

proof:

Firstly, 7o and a< (M) coincide on infinite traces. Indeed,
Too NX¥ = Mo NX® and a< does not add infinite traces, so:
Too NZY = ax(Ms) NZY.

We now prove that they also coincide on finite traces. Assume

00,y---,0n € a<(Mx), then Vi < n:oj —; dit1, S0, 0o, ...,05 € Too.
Assume oy, ...,0, € To, then it can be completed into a maximal trace,
either finite or infinite, and so, 0o, ...,0, € a<(Mco).

Note: no fixpoint transfer applies here.
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Infinite trace semantics

Finite prefix abstraction

We can abstract directly from maximal traces M,
to finite partial traces 7.

Consider the following Galois connection:
(P(E=\{e}),C) & —> (P(X"\{€}), ©)

def

o a,.<(T) ={teX\{e}|FueT:t=<u}

(set of all non-empty prefixes of traces T)
def

0 1.<(T) = {tex>®\{e}|Vue X \{e}u=xt = ueT}

(traces with non-empty prefixes in T)

We have 7 = a.<(Mo).

(proof on next slide)
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Infinite trace semantics

Finite prefix abstraction (proof)

proof:

a=< and 7,< are monotonic.

(sux 0y (T)={t e T|pp(t) ST} C T (prefix-closed trace sets).
(a=z o) (T)=pp(MU{teX¥|VueX u<t = ve
pe(T)}2T.

As o< = a0 <,

we have: a,<(Mu) = au(ax(Mx)) = au(Tx) = T.

Remarks:

@ Vi< 0= #id
it closes trace sets by limits of finite traces.

® Vi< F V=<0
this is because 7,(T) &' T is the adjoint of a, in (P(X>),C),
while we need to compose a< with the adjoint of «, in

def

(P(X),Q), whichis v,(T) = TUZX¥.
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Infinite trace semantics

(Partial) hierarchy of semantics

R(Z) C(F) (states)
To(Z) Ts(F) (anchored traces)
T (partial finite traces)
Teo (partial traces)
Moo (maximal traces)
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Relational semantics

Finite big-step semantics

Pairs of states linked by a sequence of transitions in 7.

BS < {(00,00) €L xX|n>0,301,...,00-1:Vi < n:0; —>TU,-+1}J

(symmetric and transitive closure of 7)
Fixpoint form:

BS = Ifp Fg
where Fg(R) = id U{(0,0")|30":(0,0") € R,0" =, 0" }.
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Relational semantics

Relational abstraction

Relational abstraction: allows skipping intermediate steps.

We have a Galois embedding:

(P(X"),C) & (P(X x ¥),<)

o aio(T) £ {(0,0")|300,...,0n€ T:0 =09,0 =05}
(first and last state of a trace in T)

def

® Vio(R) = {00,...,0n€X*|3(0,0") € Rioc = 00,0 =0,}
(traces respecting the first and last states from R)

proof sketch:

Yio and aj, are monotonic.
(Vio 0 io)(T) ={00,...,0n]300,...,00 € Tiog = 04,00 =0, }.
(cio ©7i0)(R) = R.
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Relational semantics

Finite big-step semantics as an abstraction

The finite big-step semantics is an abstraction
of the finite trace semantics: BS = (7).

proof sketch: by fixpoint transfer.

We have T = Ifp Fp. where F,o(T) & T U T77.

Moreover, Fg(R) &' id U{(c,0")|30": (0,0") € R0’ —, o' }.
Then, ajo © Fp. = Fg 0 aijp because (X)) = id and

aio(TT1) ={(0,0")|30":(0,0") € ajo(T)No" =, 0" }.

By fixpoint transfer: «;o(7) = Ifp Fp.

We have a similar result using Fg.(T) ' YUrTand

FL(R) & id U{(0,0")|30": (0",0") E RAG —, 0" }.
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Finite big-step semant

i+ [0, 4o0];
while / > 0 do

i« i—[0,1];
done

Finite big-step semantics BS: {(p, ') |0 < p'(i) < p(i) }.
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Relational semantics

Denotational semantics (relation form)

In the denotational semantics, we forget all the intermediate steps
and only keep the input / output relation:

e (0,0') € ¥ x B: finite execution starting in o, stopping in o,

@ (0, a): non-terminating execution starting in o.

Construction by abstraction: of the maximal trace semantics M.

(P(£%),C) == (P(E x (ZU {a})),C)

[e%]

def

0 ay(T) = aip(TNEX)U{(0,a)|Ttex¥ 0 -t T}
def

@ 74(R) = 7io(RN(EXXE))U{o-t|(0,8) e Rt XY}

(extension of (o, Yio) to infinite traces)

The denotational semantics is DS = ag(Mxo).
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Relational semantics

Denotational fixpoint semantics

Idea: as M, separate terminating and non-terminating behaviors,
and use a fixpoint fusion theorem.

We have: DS = Ifp Fy
in (P(Xx (ZU{a})), T 1 1" L* T*), where

°o 1" = {(0,4)]ocX}

o T* ¥ {(0,0')]|0,0' €L}
AC*B <= ((ANT*) C(BNT*))A((ANL*) D (BNL*))
AUFB E (ANTHU(BNT*) ) U(AN LN (BN L)
AT B = (ANTHN(BNT*)U(ANL*)U (BN L*))

Fa(R) = {(0,0)|ceB}U
{(0,0")|30": 0 = 0" AN(0",0") € R}
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Relational semantics

Denotational fixpoint semantics (proof)

proof:

We cannot use directly a fixpoint transfer on M, = Ifp Fs in
(P(x°°),C) because our Galois connection (ayg,74) uses the C order,
not C.

Instead, we use fixpoint transfer separately on finite and infinite

executions, and then apply fixpoint fusion.

Recall that Mo, NE* = Ifp F, in (P(X*),C) where Fo(T) & BUT—T
and Mo NE¥ = gfp G, in (P(£¥),C) where Go(T) & U~ T.

For finite execution, we have ag o Fs = Fyoayg in P(X*) — P(X x ¥).
We can apply directly fixpoint transfer and get that:

DS N (T x ¥) = Ifp Fy.
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Relational semantics

Denotational fixpoint semantics (proof cont.)

proof sketch: for infinite executions

We have aig o Gs = Gg o ag in P(X¥) — P(X x {a}), where

Gy(R) & {(5,0")|30":0 =, 0’ A(c’,0") € R}.

The fixpoint theorem for gfp we used in the alternate proof of

T = a.(T~) does not apply here because ay is not co-continuous:
aq(Nier Si) = Nej aq(S;) does not hold; consider for example: / = N and
S = {a”b“’ | n> i}: Nien Si = 0, but Vi: ad(S,-) = {(a,g)}.

We use instead a fixpoint transfer based on Tarksi's theorem.

We have gfp Gs = U { X | X C G4(X) }.

Thus, aqg(gfp Gs) = ag(U { X | X C Gs(X) }) = U {aq(X)| X C Gs(X) }
as ayg is a complete U morphism. The proof is finished by noting that the
commutation ag 0 Gs = Gy o oy and the Galois embedding (cvg, V4)
imply that { ag(X) | X C Gs(X) } = { aa(X)|ad(X) € Gi(aq(X))} =
{YIY<Ga(Y)}

(the complete proof can be found in [Cous02])
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Relational semantics

Denotational semantics (example)

i+ [0, 4o0];
while i > 0 do

i+ i—][0,1];
done

Denotational semantics DS:
{(p: ) p(i) 20N p'(i) =0} U{(p,8)|p(i) = 0}

(quite different from the big-step semantics)
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Relational semantics

Denotational semantics (functional form)

Note: denotational semantics are often presented as functions,
not relations

This is possible using the following Galois isomorphism:

(P(Z x (U {a})), ) 4= (X - P(Z U{a}),C)
o agr(R) € Xo.{d'|(0,0') € R}
o vgr(f) & {(0,0")| 0" € (o) }

o FC*f <= Vo (f(o)NZ Cglo)NI) A
(a€glo) = acf(o))

We get that: agr(DS) = Ifp F); where

Fa(f) L (augr 0 Fgoyae)(f) = (Ao{c|o € B}) U (f o post.).

(proof by fixpoint transfer, as F) o agr = Fg © agr)

course 02-B Program Semantics Antoine Miné

p. 94 / 98



Relational semantics

From traces to transition systems

We saw the partial traces as a semantics of transition systems.

We can also see transition systems as
an abstraction of partial traces:

(P(x®),C) == (P(Z x T), C)

o a(T) et {(0,0")|3o0,...€ T:In>0:0 = 0p, 0 = 0pt1}
(any transition appearing in a trace in T)

° 7:(7) = Too

(partial traces for )
Generally (o )(T)2 T
= not all trace sets are generated by transition systems.
(e.g: T={a"b|ne N}, weget (vroa)(T)={a"b|neN}uU{a“}.)
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Relational semantics

Another part of the hierarchy of semantics

BS (big-step semantics)
Xjo

(partial finite traces) T T (transition systems)

a*T /
at
(partial traces) Too DS (denotational semantics)

OH] /
= -

(maximal traces) M

See [Cou82] for more semantics in this diagram.
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