
Program Semantics
MPRI 2–6: Abstract Interpretation,

application to verification and static analysis

Antoine Miné

year 2013–2014

course 02-B
27 September & 4 October 2013

course 02-B Program Semantics Antoine Miné p. 1 / 98

Goal

Discuss several flavors of concrete semantics:

independently from programming languages

defined in a constructive way (fixpoint)

compare their expressive power

link them through abstractions

Plan:

introduction: classic examples of program semantics

transition systems

state semantics

trace semantics (finite and infinite)

relational semantics

course 02-B Program Semantics Antoine Miné p. 2 / 98

Flavors of program semantics

Flavors of program semantics

course 02-B Program Semantics Antoine Miné p. 3 / 98

Flavors of program semantics

Small-step operational semantics of the λ−calculus

Example: λ−calcul

syntax: λ−terms

t ::= x (variable)
| λx .t (abstraction)
| t u (application)

Small-step operational semantics: (call-by-value)

(λx .M)N M[x/N]

M M ′

M N M ′ N

N N ′

M N M N ′

Models program execution as a sequence of term-rewriting
exposing each transition (low level).

course 02-B Program Semantics Antoine Miné p. 4 / 98

Flavors of program semantics

Big-step operational semantics of the λ−calculus

Big-step operational semantics: (call-by-value)

λx .M ⇓ λx .M
M ⇓ λx .L N ⇓ V2 L[x/V2] ⇓ V1

M N ⇓ V1

t ⇓ u associates to a term t its full evaluation u,
abstracting away intermediate steps (higher level).

course 02-B Program Semantics Antoine Miné p. 5 / 98

Flavors of program semantics

Denotational semantics of λ−calculus

Denotational semantics:

J x K ρ
def
= ρ(x)

J t u K ρ
def
= J t K ρ(J u K ρ)

Jλx .t K ρ
def
= λv .J t K ρ[x 7→v]

The semantics J t K ρ of a term t in an environment ρ
is given as an element of a Scott-domain D.

D should satisfy the domain equation: D ' D c→ D.

The semantics of a function is a function.
(very high level)

course 02-B Program Semantics Antoine Miné p. 6 / 98

Flavors of program semantics

Abstract machine semantics of the λ−calculus

Krivine abstract machine: (call-by-value)

variables in λ−terms are replaced with De Bruijn indices
(x 7→ number of nested λ to reach λx)

λ−terms are compiled into sequences of instructions:

J n K def
= Access(n)

JλN K def
= Grab; JN K

JN M K def
= Push(JM K); JN K

course 02-B Program Semantics Antoine Miné p. 7 / 98

Flavors of program semantics

Abstract machine semantics of the λ−calculus

instructions are executed over configurations (C , e, s)

C : sequence of instructions to execute
e: environment
s: stack
list of pairs of (C , e) (closures)

with transitions:

〈Access(0) · C , (C0, e0) · e, s〉 → 〈C0, e0, s〉
〈Access(n + 1) · C , (C0, e0) · e, s〉 → 〈Access(n), e, s〉
〈Push(C ′) · C , e, s〉 → 〈C , e, (C ′, e) · s〉
〈Grab · C , e, (C0, e0) · s〉 → 〈C , (s0, e0) · e, s〉

=⇒ very low level. (but very efficient)

course 02-B Program Semantics Antoine Miné p. 8 / 98

Transition systems

Transition systems

course 02-B Program Semantics Antoine Miné p. 9 / 98

Transition systems

Transition systems

Transition system: (Σ, τ)

set of states Σ,
(memory states, λ−terms, configurations, etc., generally infinite)

transition relation τ ⊆ Σ× Σ.

(Σ, τ) is a general form of small-step operational semantics.

(σ, σ′) ∈ τ is noted σ →τ σ
′:

starting in state σ, after an execution step, we can go to state σ′.

course 02-B Program Semantics Antoine Miné p. 10 / 98

Transition systems

Transition system example

i ← 2;
n← [−∞,+∞];
while i < n do

if ? then
i ← i + 1

Σ
def
= {i , n} → Z

n

i

...

course 02-B Program Semantics Antoine Miné p. 11 / 98

Transition systems

From programs to transition systems

Example: on a simple imperative language.

Language syntax

`stat` ::= `X ← expr ` (assignment)
| `if expr ./ 0 then `stat` (conditional)
| `while `expr ./ 0 do `stat` (loop)
| `stat; `stat` (sequence)

X ∈ V, where V is a finite set of program variables,

` ∈ L is a finite set of control labels,

./ ∈ {=,≤, . . .}, the syntax of expr is left undefined (for now).

Program states: Σ
def
= L × E are composed of:

a control state in L,

a memory state in E def
= V→ R.

course 02-B Program Semantics Antoine Miné p. 12 / 98

Transition systems

From programs to transition systems

Transitions: τ [`stat`
′
] ⊆ Σ× Σ is defined by induction on the syntax.

Assuming that expression semantics is given as EJ e K : E → P(R).

τ [`1X ← e`2]
def
= { (`1, ρ)→ (`2, ρ[X 7→ v]) | ρ ∈ E , v ∈ EJ e K ρ }

τ [`1if e then `2s`3]
def
=

{ (`1, ρ)→ (`2, ρ) | ρ ∈ E , ∃v ∈ EJ e K ρ: v 6./ 0 } ∪
{ (`1, ρ)→ (`3, ρ) | ρ ∈ E , ∃v ∈ EJ e K ρ: v ./ 0 } ∪ τ [`2s`3]

τ [`1while `2e do `3s`4]
def
=

{ (`1, ρ)→ (`2, ρ) | ρ ∈ E } ∪
{ (`2, ρ)→ (`3, ρ) | ρ ∈ E , ∃v ∈ EJ e K ρ: v 6./ 0 } ∪
{ (`2, ρ)→ (`4, ρ) | ρ ∈ E , ∃v ∈ EJ e K ρ: v ./ 0 } ∪ τ [`3s`2]

τ [`1s1; `2s2
`3]

def
= τ [`1s1

`2] ∪ τ [`2s2
`3]

course 02-B Program Semantics Antoine Miné p. 13 / 98

State semantics

State semantics

course 02-B Program Semantics Antoine Miné p. 14 / 98

State semantics

Initial, final, blocking states

Transition systems (Σ, τ) are often enriched with:

I ⊆ Σ a set of distinguished initial states,

F ⊆ Σ a set of distinguished final states.

(e.g., limit observation to executions starting in an initial state and

ending in a final state)

Blocking states B:

states with no successor B def
= {σ | ∀σ′ ∈ Σ:σ 6→τ σ

′ },
model correct program termination and program errors,
(program stuck, unhandled exception, etc.)

often include (or equal) final states F .

If needed, we can remove blocking states by completing τ :

τ ′
def
= τ ∪ { (σ, σ) |σ ∈ B }. (add self-loops)

course 02-B Program Semantics Antoine Miné p. 15 / 98

State semantics

Post-image, pre-image

Forward and backward images, in P(Σ)→ P(Σ):

successors: (forward, post-image)

postτ (S)
def
= {σ′ | ∃σ ∈ S :σ →τ σ

′ }

predecessors: (backward, pre-image)

preτ (S)
def
= {σ | ∃σ′ ∈ S :σ →τ σ

′ }

postτ and preτ are complete ∪−morphisms in
(P(Σ),⊆,∪,∩, ∅,Σ).
(postτ (∪i∈I Si) = ∪i∈I postτ (Si), preτ (∪i∈I Si) = ∪i∈I preτ (Si))

postτ and preτ are strict. (postτ (∅) = preτ (∅) = ∅)

course 02-B Program Semantics Antoine Miné p. 16 / 98

State semantics

Dual images

Dual post-images and pre-images:

p̃reτ (S)
def
= {σ | ∀σ′:σ →τ σ

′ =⇒ σ′ ∈ S }
(states such that all successors satisfy S)

p̃ostτ (S)
def
= {σ′ | ∀σ:σ →τ σ

′ =⇒ σ ∈ S }
(states such that all predecessors satisfy S)

p̃reτ and p̃ostτ are complete ∩−morphisms and not strict.

course 02-B Program Semantics Antoine Miné p. 17 / 98

State semantics

Correspondences

postτ (S)
def
= {σ′ | ∃σ ∈ S :σ →τ σ

′ }
preτ (S)

def
= {σ | ∃σ′ ∈ S :σ →τ σ

′ }
p̃reτ (S)

def
= {σ | ∀σ′:σ →τ σ

′ =⇒ σ′ ∈ S }
p̃ostτ (S)

def
= {σ′ | ∀σ:σ →τ σ

′ =⇒ σ ∈ S }

We have the following correspondences:

inverse
preτ = post(τ−1) postτ = pre(τ−1)

p̃reτ = p̃ost(τ−1) p̃ostτ = p̃re(τ−1)

(where τ−1 def
= { (σ, σ′) | (σ′, σ) ∈ τ })

course 02-B Program Semantics Antoine Miné p. 18 / 98

State semantics

Correspondences

postτ (S)
def
= {σ′ | ∃σ ∈ S :σ →τ σ

′ }
preτ (S)

def
= {σ | ∃σ′ ∈ S :σ →τ σ

′ }
p̃reτ (S)

def
= {σ | ∀σ′:σ →τ σ

′ =⇒ σ′ ∈ S }
p̃ostτ (S)

def
= {σ′ | ∀σ:σ →τ σ

′ =⇒ σ ∈ S }

We have the following correspondences:

Galois connections

(P(Σ),⊆) −−−−−→←−−−−−
postτ

p̃reτ
(P(Σ),⊆) and

(P(Σ),⊆) −−−−−→←−−−−−
preτ

p̃ostτ
(P(Σ),⊆).

proof:

postτ (A) ⊆ B ⇐⇒ {σ′ | ∃σ ∈ A:σ →τ σ
′ } ⊆ B ⇐⇒ (∀σ ∈

A:σ →τ σ
′ =⇒ σ′ ∈ B) ⇐⇒ (A ⊆ {σ | ∀σ′:σ →τ σ

′ =⇒
σ′ ∈ B }) ⇐⇒ A ⊆ p̃reτ (B); other directions are similar

course 02-B Program Semantics Antoine Miné p. 18 / 98

State semantics

Correspondences

Determinism:

(Σ, τ) is deterministic if ∀σ ∈ Σ: | postτ ({σ})| = 1,
(every state has a single successor, no blocking state)

most transition systems are non-deterministic.
(e.g., effect of input X ← [0, 10], termination)

We have the following correspondences:

If τ is deterministic, then preτ = p̃reτ and postτ = p̃ostτ .

∀S :B ⊆ p̃reτ (S) ⊆ preτ (S) ∪ B.

When B = ∅, then p̃reτ (S) ⊆ preτ (S).

course 02-B Program Semantics Antoine Miné p. 19 / 98

State semantics

Forward reachability

R(I): states reachable from I in the transition system

R(I)
def
= {σ | ∃n ≥ 0, σ0, . . . , σn:σ0 ∈ I, σ = σn, ∀i :σi →τ σi+1 }
=

⋃
n≥0 postnτ (I)

(reachable ⇐⇒ reachable from I in n steps of τ for some n ≥ 0)

R(I) can be expressed in fixpoint form:

R(I) = lfpFR where FR(S)
def
= I ∪ postτ (S)

(FR shifts S and adds back I)

Alternate characterization: R = lfpI GR where GR(S)
def
= S ∪ postτ (S).

(GR shifts S by τ and accumulates the result with S)

(proofs on next slide)

course 02-B Program Semantics Antoine Miné p. 20 / 98

State semantics

Forward reachability: proof

proof: of R(I) = lfpFR where FR(S)
def
= I ∪ postτ (S)

(P(Σ),⊆) is a CPO and postτ is continuous, hence FR is continuous:
FR(∪i∈I Ai) = ∪i∈I FR(Ai).

By Kleene’s theorem, lfpFR = ∪n∈N F n
R(∅).

We prove by recurrence on n that: ∀n:F n
R(∅) = ∪i<n postiτ (I).

(states reachable in less than n steps)

F 0
R(∅) = ∅

assuming the property at n,
F n+1
R (∅) = I ∪ postτ (

⋃
i<n postiτ (I))

= I ∪
⋃

i<n postτ (postiτ (I))
= I ∪

⋃
1≤i<n+1 postiτ (I)

=
⋃

i<n+1 postiτ (I)

Hence: lfpFR = ∪n∈N F n
R(∅) = ∪i∈N postiτ (I) = R(I).

The proof is similar for the alternate form, given that

lfpI GR = ∪n∈NG
n
R(I) and G n

R(I) = F n+1
R (∅) = ∪i≤n postiτ (I).

course 02-B Program Semantics Antoine Miné p. 21 / 98

State semantics

Forward reachability: graphical illustration

Transition system.

course 02-B Program Semantics Antoine Miné p. 22 / 98

State semantics

Forward reachability: graphical illustration

Initial states I.

course 02-B Program Semantics Antoine Miné p. 22 / 98

State semantics

Forward reachability: graphical illustration

Iterate F 1
R(I).

course 02-B Program Semantics Antoine Miné p. 22 / 98

State semantics

Forward reachability: graphical illustration

Iterate F 2
R(I).

course 02-B Program Semantics Antoine Miné p. 22 / 98

State semantics

Forward reachability: graphical illustration

Iterate F 3
R(I).

course 02-B Program Semantics Antoine Miné p. 22 / 98

State semantics

Forward reachability: graphical illustration

States reachable from I: R(I) = F 5
R(I).

course 02-B Program Semantics Antoine Miné p. 22 / 98

State semantics

Forward reachability: applications

Infer the set of possible states at program end: R(I) ∩ F .

example

• i ← 0;
while i < 100 do
i ← i + 1;
j ← j + [0, 1]

done •

initial states I: j ∈ [0, 10] at control state •,
final states F : any memory state at control state •,
=⇒ R(I) ∩ F : control at •, i = 100, and j ∈ [0, 110].

Prove the absence of run-time error: R(I) ∩ B ⊆ F .
(do not block except when reaching the end of the program)

course 02-B Program Semantics Antoine Miné p. 23 / 98

State semantics

Multiple forward fixpoints

Recall: R(I) = lfpFR where FR(S)
def
= I ∪ postτ (S).

Note that FR may have several fixpoints.

Example:

Initial state I R(I) = lfpFR gfpFR

Exercise:

Compute all the fixpoints of GR(S)
def
= S ∪ postτ (S) on this example.

course 02-B Program Semantics Antoine Miné p. 24 / 98

State semantics

Forward reachability equation system

By partitioning forward reachability wrt. control states,
we retrieve the equation system form of program semantics.

Control state partitioning

We assume Σ
def
= L × E ; note that: P(Σ) ' L → P(E).

We have a Galois isomorphism:

(P(Σ),⊆) −−−−→−→←←−−−−−
αL

γL
(L → P(E), ⊆̇)

X ⊆̇Y
def⇐⇒ ∀` ∈ L:X (`) ⊆ Y (`)

αL(S)
def
= λ`.{ ρ | (`, ρ) ∈ S }

γL(X)
def
= { (`, ρ) | ` ∈ L, ρ ∈ X (`) }

Note that: αL ◦ γL = γL ◦ αL = id . (no abstraction)

course 02-B Program Semantics Antoine Miné p. 25 / 98

State semantics

Forward reachability equation system: example

Idea: compute αL(R(I)) : L → P(E)

introduce variables: X` = (αL(R(I)))(`) ∈ P(E),

decompose the fixpoint equation FR(S) = I ∪ postτ (S) on L:
αL ◦ FR ◦ γL gives an equation system on (X`)`∈L.

Example:

`1 i ← 2;
`2 n← [−∞,+∞];
`3 while `4 i < n do

`5 if [0, 1] = 0 then
`6 i ← i + 1

`7

`8

X1 = I1

X2 = CJ i ← 2 KX1

X3 = CJ n← [−∞,+∞] KX2

X4 = X3 ∪ X7

X5 = CJ i < n KX4

X6 = X5

X7 = X5 ∪ CJ i ← i + 1 KX6

X8 = CJ i ≥ n KX4

initial states I def
= { (`1, ρ) | ρ ∈ I1 } for some I1 ⊆ E ,

CJ · K : P(E)→ P(E) model assignments and tests (see next slide).

course 02-B Program Semantics Antoine Miné p. 26 / 98

State semantics

Forward reachability equation system: construction

We derive the equation system eq(`stat`
′
)

from the program syntax `stat`
′

by induction:

eq(`1X ← e`2)
def
= {X`2 = CJX ← e KX`1 }

eq(`1if e ./ 0 then `2s`3)
def
=

{X`2 = CJ e ./ 0 KX`1, X`3 = X`3′ ∪ CJ e 6./ 0 KX`1 } ∪ eq(`2s`3
′
)

eq(`1while `2e ./ 0 do `3s`4)
def
=

{X`2 = X`1 ∪ X`4′ , X`3 = CJ e ./ 0 KX`2, X`4 = CJ e 6./ 0 KX`2 } ∪
eq(`3s`4

′
)

eq(`1s1; `2s2
`3)

def
= eq(`1s1

`2) ∪ (`2s2
`3)

where:

X `3′ , X `4′ are fresh variables storing intermediate results

CJX ← e KX def
= { ρ[X 7→ v] | ρ ∈ X , v ∈ EJ e K ρ }

CJ e ./ 0 KX def
= { ρ ∈ X | ∃v ∈ EJ ρ K ρ: v ./ 0 }

course 02-B Program Semantics Antoine Miné p. 27 / 98

State semantics

Backward reachability

C(F): states co-reachable from F in the transition system:

C(F)
def
= {σ | ∃n ≥ 0, σ0, . . . , σn:σ = σ0, σn ∈ F , ∀i :σi →τ σi+1 }
=

⋃
n≥0 prenτ (F)

C(F) can also be expressed in fixpoint form:

C(F) = lfpFC where FC(S)
def
= F ∪ preτ (S)

Alternate characterization: C(F) = lfpI GC where GC(S) = GC ∪ preτ (S)

Justification: C(F) in τ is exactly R(F) in τ−1.

course 02-B Program Semantics Antoine Miné p. 28 / 98

State semantics

Backward reachability: graphical illustration

Transition system.

course 02-B Program Semantics Antoine Miné p. 29 / 98

State semantics

Backward reachability: graphical illustration

Final states F .

course 02-B Program Semantics Antoine Miné p. 29 / 98

State semantics

Backward reachability: graphical illustration

States co-reachable from F .

course 02-B Program Semantics Antoine Miné p. 29 / 98

State semantics

Backward reachability: applications

I ∩ C(B \ F)
Initial states that have at least one erroneous execution.

program

• j ← 0;
while i > 0 do
i ← i − 1;
j ← j + [0, 10]

done •

initial states I: i ∈ [0, 100] at •

final states F : any memory state at •

blocking states B: final, or j > 200 at any
location

I ∩ C(B \ F): at •, i > 20

I ∩ (Σ \ C(B))
Initial states that necessarily cause the program to loop.

Iterate forward and backward analyses interactively
=⇒ abstract debugging [Bour93].

course 02-B Program Semantics Antoine Miné p. 30 / 98

State semantics

Backward reachability equation system: example

Principle:

Use (P(Σ),⊆) −−−−→←−−−−
αL

γL
(L → P(E), ⊆̇) on FC(S)

def
= F ∪ preτ (S)

to derive an equation system αL ◦ FC ◦ γL.

Example:

`1 i ← 2;
`2 n← [−∞,+∞];
`3 while `4 i < n do

`5 if [0, 1] = 0 then
`6 i ← i + 1

`7

`8

X1 = CJ i → 2 KX2

X2 = CJ n→ [−∞,+∞] KX3

X3 = X4

X4 = CJ i < n KX5 ∪ CJ i ≤ n KX8

X5 = X6 ∪ X7

X6 = CJ i → i + 1 KX7

X7 = X4

X8 = F8

final states F def
= { (`8, ρ) | ρ ∈ F8 } for some F8 ⊆ E ,

CJX → e KX def
= { ρ | ∃v ∈ EJ e K ρ: ρ[X 7→ v] ∈ X }.

course 02-B Program Semantics Antoine Miné p. 31 / 98

State semantics

Sufficient preconditions

S(Y): states with executions staying in Y.

S(Y)
def
= {σ | ∀n ≥ 0, σ0, . . . , σn: (σ = σ0 ∧ ∀i :σi →τ σi+1) =⇒ σn ∈ Y }
=

⋂
n≥0 p̃renτ (Y)

S(Y) can be expressed in fixpoint form:

S(Y) = gfpFS where FS(S)
def
= Y ∩ p̃reτ (S)

proof sketch: similar to that of R(I), in the dual.

FS is continuous in the dual CPO (P(Σ),⊇), because p̃reτ is:
FS(∩i∈I Ai) = ∩i∈I FS(Ai).
By Kleene’s theorem in the dual, gfpFS = ∩n∈N F n

S(Σ).

We would prove by recurrence that F n
S(Σ) = ∩i<n p̃re

i
τ (Y).

course 02-B Program Semantics Antoine Miné p. 32 / 98

State semantics

Sufficient preconditions and reachability

Correspondence with reachability:

We have a Galois connection:

(P(Σ),⊆) −−−→←−−−R
S

(P(Σ),⊆)

R(I) ⊆ Y ⇐⇒ I ⊆ S(Y)

so S(Y) =
⋃
{X |R(X) ⊆ Y }

(S(Y) is the largest initial set whose reachability is in Y)

We retrieve Dijkstra’s weakest liberal preconditions.

(proof sketch on next slide)

course 02-B Program Semantics Antoine Miné p. 33 / 98

State semantics

Sufficient preconditions and reachability (proof)

proof sketch:

Recall that R(I) = lfpI GR where GR(S) = S ∪ postτ (S).

Likewise, S(Y) = gfpY GS where GS(S) = S ∩ p̃reτ (S).

Recall the Galois connection (P(Σ),⊆) −−−−−→←−−−−−
postτ

p̃reτ
(P(Σ),⊆).

As a consequence (P(Σ),⊆) −−−−→←−−−−
GR

GS
(P(Σ),⊆).

The Galois connection can be lifted to fixpoint operators:

(P(Σ),⊆) −−−−−−−−→←−−−−−−−−
x 7→lfpx GR

x 7→gfpx GS
(P(Σ),⊆).

Exercise: complete the proof sketch.

course 02-B Program Semantics Antoine Miné p. 34 / 98

State semantics

Sufficient preconditions: application

Initial states such that all executions are correct:
I ∩ S(F ∪ (Σ \ B)).
(the only blocking states reachable from initial states are final states)

program

• i ← 0;
while i < 100 do
i ← i + 1;
j ← j + [0, 1]

done •

initial states I: j ∈ [0, 10] at •
final states F : any memory state at •
blocking states B: final, or j > 105 at
any location

I ∩ S(F ∪ (Σ \ B)): at •, i ∈ [0, 5]
(note that I ∩ C(F ∪ (Σ \ B)) gives I)

Applications: infer contracts; optimize (hoist) tests;
dually, infer counter-examples.

course 02-B Program Semantics Antoine Miné p. 35 / 98

State semantics

Sufficient preconditions: graphical illustration

Final states F .

course 02-B Program Semantics Antoine Miné p. 36 / 98

State semantics

Sufficient preconditions: graphical illustration

Set of final or non-blocking states Y = F ∪ (Σ \ B).

course 02-B Program Semantics Antoine Miné p. 36 / 98

State semantics

Sufficient preconditions: graphical illustration

Sufficient preconditions S(Y). C(F)

S(Y) (C(F)

course 02-B Program Semantics Antoine Miné p. 36 / 98

State semantics

Sufficient precondition equation system: example

Principle:

use (P(Σ),⊆) −−−−→←−−−−
αL

γL
(L → P(E), ⊆̇) on FS(S)

def
= Y ∩ p̃reτ (S)

to derive an equation system αL ◦ FS ◦ γL
Example:

`1 i ← 2;
`2 n← [−∞,+∞];
`3 while `4 i < n do

`5 if [0, 1] = 0 then
`6 i ← i + 1

`7

`8

X1 =
←−
C J i ← 2 KX2

X2 =
←−
C J n← [−∞,+∞] KX3

X3 = X4

X4 =
←−
C J i < n KX5 ∩

←−
C J i ≤ n KX8

X5 = X6 ∩ X7

X6 =
←−
C J i ← i + 1 KX7

X7 = X4

X8 = F8

“stay in” states Y def
= { (`, ρ) | ` 6= `8 ∨ ρ ∈ F8 } for some F8 ⊆ E ,

←−
C J · K is the Galois adjoint of CJ · K .

course 02-B Program Semantics Antoine Miné p. 37 / 98

Traces

Traces

course 02-B Program Semantics Antoine Miné p. 38 / 98

Traces

Sequences, traces

Trace: sequence of elements from Σ

ε: empty trace (unique)

σ: trace of length 1 (assimilated to a state)

σ0, . . . , σn−1: trace of length n

σ0, . . . , σn, . . .: infinite trace (length ω)

Trace sets:

Σn: the set of traces of length n

Σ≤n
def
= ∪i≤n Σi : the set of traces of length at most n

Σ∗
def
= ∪i∈N Σi : the set of finite traces

Σω: the set of infinite traces

Σ∞
def
= Σ∗ ∪ Σω: the set of all traces

course 02-B Program Semantics Antoine Miné p. 39 / 98

Traces

Trace operations

Operations on traces:

length: |t| ∈ N ∪ {ω} of a trace t ∈ Σ∞

concatenation ·
(σ0, . . . , σn) · (σ′0, . . .)

def
= σ0, . . . , σn, σ

′
0, . . .

(append to a finite trace)

t · t ′ def
= t if t ∈ Σω (append to an infinite trace)

ε · t def
= t · ε def

= t (ε is neutral)

junction _

(σ0, . . . , σn)_(σ′0,σ
′
1 . . .)

def
= σ0, . . . , σn,σ

′
1, . . . when σn = σ′0

undefined if σn 6= σ′0
ε_t and t_ε are undefined

t_t ′
def
= t, if t ∈ Σω

course 02-B Program Semantics Antoine Miné p. 40 / 98

Traces

Trace operations (cont.)

Extension to sets of traces:

A · B def
= { a · b | a ∈ A, b ∈ B }

A_B
def
= { a_b | a ∈ A, b ∈ B, a_b defined }

A0 = {ε} (neutral element for ·)
An+1 def

= A · An,
Aω

def
= A · A · · · ·

A∗
def
= ∪n<ω An,

A∞
def
= ∪n≤ω An

A_0 = Σ (neutral element for _)

A_n+1 def
= A_A_n,

A_ω def
= A_A_ · · ·

A_∗
def
= ∪n<ω A_n,

A_∞
def
= ∪n≤ω A_n

Note: An 6= { an | a ∈ A }, A_n 6= { a_n | a ∈ A } when |A| > 1

course 02-B Program Semantics Antoine Miné p. 41 / 98

Traces

Distributivity of junction

_ distributes finite and infinite ∪:

A_(∪i∈I Bi) = ∪i∈I (A_Bi) and

(∪i∈I Ai)
_B = ∪i∈I (Ai

_B)

where I can be finite or infinite.

_ distributes finite ∩ but not infinite ∩
example:

{aω}_(∩n∈N { am | n ≥ m }) = {aω}_∅ = ∅ but

∩n∈N ({aω}_{ am | n ≥ m }) = ∩n∈N {aω} = {aω}

but, if A ⊆ Σ∗, then A_(∩i∈I Bi) = ∪i∈I (A_Bi)
even for infinite I

Note: · distributes infinite ∩ and ∪.

course 02-B Program Semantics Antoine Miné p. 42 / 98

Traces

Traces of a transition system

Execution traces:

Non-empty sequences of states linked by the transition relation τ .

can be finite (in P(Σ∗)) or infinite (in P(Σω))

can be anchored at initial states, or final states, or none

Atomic traces:

I: initial states ' set of traces of length 1

F : final states ' set of traces of length 1

τ : transition relation ' set of traces of length 2
({σ, σ′ |σ →τ σ

′ })

(as Σ ' Σ1 and Σ× Σ ' Σ2)

course 02-B Program Semantics Antoine Miné p. 43 / 98

Finite trace semantics

Finite trace semantics

course 02-B Program Semantics Antoine Miné p. 44 / 98

Finite trace semantics

Prefix trace semantics

Tp(I): partial, finite execution traces starting in I.

Tp(I)
def
= {σ0, . . . , σn | n ≥ 0, σ0 ∈ I,∀i :σi →τ σi+1 }
=

⋃
n≥0 I_(τ_n)

(traces of length n, for any n, starting in I and following τ)

Tp(I) can be expressed in fixpoint form:

Tp(I) = lfpFp where Fp(T)
def
= I ∪ T_τ

(Fp appends a transition to each trace, and adds back I)

(proof on next slide)

course 02-B Program Semantics Antoine Miné p. 45 / 98

Finite trace semantics

Prefix trace semantics: proof

proof of: Tp(I) = lfpFp where Fp(T) = I ∪ T_τ

Similar to the proof of R(I) = lfpFR where FR(S)
def
= I ∪ postτ (S).

Fp is continuous in a CPO (P(Σ∗),⊆):
Fp(∪i∈I Ti) = I ∪ (∪i∈I Ti)

_τ = I ∪ (∪i∈I Ti
_τ) = ∪i∈I (I ∪ Ti

_τ),
hence (Kleene), lfpFp = ∪n≥0 F

i
p(∅)

We prove by recurrence on n that ∀n:F n
p (∅) = ∪i<n I_τ_i :

F 0
p (∅) = ∅,

F n+1
p (∅) = I ∪ F n

p (∅)_τ = I ∪ (∪i<n I_τ_i)_τ = I ∪
∪i<n (I_τ_i)_τ = I_τ_0 ∪ ∪i<n (I_τ_i+1) = ∪i<n+1 I_τ_i .

Thus, lfpFp = ∪n∈N F n
p (∅) = ∪n∈N ∪i<n I_τ_i = ∪i∈N I_τ_i .

Note: we also have Tp(I) = lfpI Gp where Gp(T) = T ∪ T_τ .

course 02-B Program Semantics Antoine Miné p. 46 / 98

Finite trace semantics

Prefix trace semantics: graphical illustration

cba

I def
= {a}

τ
def
= {(a, b), (b, b), (b, c)}

Iterates: Tp(I) = lfpFp where Fp(T)
def
= I ∪ T_τ .

F 0
p (∅) = ∅

F 1
p (∅) = I = {a}

F 2
p (∅) = {a, ab}

F 3
p (∅) = {a, ab, abb, abc}

F n
p (∅) = { a, abi , ab jc | i ∈ [1, n − 1], j ∈ [1, n − 2] }
Tp(I) = ∪n≥0 F

n
p (∅) = { a, abi , abic | i ≥ 1 }

course 02-B Program Semantics Antoine Miné p. 47 / 98

Finite trace semantics

Prefix trace semantics: expressive power

Prefix traces is the collection of finite observations
of program executions/

=⇒ Semantics of testing.

Limitations:

no information on infinite executions,
(we will add infinite traces later)

can bound maximal execution time: Tp(I) ⊆ Σ≤n

but cannot bound minimal execution time.
(we will consider maximal traces later)

course 02-B Program Semantics Antoine Miné p. 48 / 98

Finite trace semantics

Abstracting traces into states

Idea: view state semantics as abstractions of traces semantics.

We have a Galois embedding between finite traces and states:

(P(Σ∗),⊆) −−−→−→←−−−−
αp

γp
(P(Σ),⊆)

αp(T)
def
= {σ ∈ Σ | ∃σ0, . . . , σn ∈ T :σ = σn }

(last state in traces in T)

γp(S)
def
= {σ0, . . . , σn ∈ Σ∗ |σn ∈ S }

(traces ending in a state in S)

(proof on next slide)

course 02-B Program Semantics Antoine Miné p. 49 / 98

Finite trace semantics

Abstracting traces into states (proof)

proof of: (αp, γp) forms a Galois embedding.

Instead of the definition α(c) ⊆ a ⇐⇒ c ⊆ γ(a), we use the alternate
characterization of Galois connections: α and γ are monotonic, γ ◦ α is
extensive, and α ◦ γ is reductive.
Embedding means that, additionally, α ◦ γ = id .

αp, γp are ∪−morphisms, hence monotonic

(γp ◦ αp)(T)
= {σ0, . . . , σn |σn ∈ αp(T) }
= {σ0, . . . , σn | ∃σ′0, . . . , σ′m ∈ T :σn = σ′m }
⊇ T

(αp ◦ γp)(S)
= {σ | ∃σ0, . . . , σn ∈ γp(S):σ = σn }
= {σ | ∃σ0, . . . , σn:σn ∈ S , σ = σn }
= S

course 02-B Program Semantics Antoine Miné p. 50 / 98

Finite trace semantics

Abstracting prefix traces into reachability

Recall that:

Tp(I) = lfpFp where Fp(T)
def
= I ∪ T_τ ,

R(I) = lfpFR where FR(S)
def
= I ∪ postτ (S),

(P(Σ∗),⊆) −−−→−→←−−−−
αp

γp
(P(Σ),⊆).

We have: αp ◦ Fp = FR ◦ αp;

by fixpoint transfer, we get: αp(Tp(I)) = R(I).

(proof on next slide)

course 02-B Program Semantics Antoine Miné p. 51 / 98

Finite trace semantics

Abstracting prefix traces into reachability (proof)

proof: of αp ◦ Fp = FR ◦ αp

(αp ◦ Fp)(T)
= αp(I ∪ T_τ)
= {σ | ∃σ0, . . . , σn ∈ I ∪ T_τ :σ = σn }
= I ∪ {σ | ∃σ0, . . . , σn ∈ T_τ :σ = σn }
= I ∪ {σ | ∃σ0, . . . , σn ∈ T :σn →τ σ }
= I ∪ postτ ({σ | ∃σ0, . . . , σn ∈ T :σ = σn })
= I ∪ postτ (αp(T))
= (FR ◦ αp)(T)

course 02-B Program Semantics Antoine Miné p. 52 / 98

Finite trace semantics

Abstracting traces into states (example)

program

j ← 0;
i ← 0;
while i < 100 do
i ← i + 1;
j ← j + [0, 1]

done

prefix trace semantics:
i and j are increasing and 0 ≤ j ≤ i ≤ 100

forward reachable state semantics:
0 ≤ j ≤ i ≤ 100

=⇒ the abstraction forgets the ordering of states.

course 02-B Program Semantics Antoine Miné p. 53 / 98

Finite trace semantics

Prefix closure

Prefix partial order: � on Σ∞

x � y
def⇐⇒ ∃u ∈ Σ∞: x · u = y

(Σ∞,�) is a CPO, while (Σ∗,�) is not complete.

Prefix closure: ρp : P(Σ∞)→ P(Σ∞)

ρp(T)
def
= { u | ∃t ∈ T : u � t, u 6= ε }

ρp is an upper closure operator on P(Σ∞ \ {ε}).
(monotonic, extensive T ⊆ ρp(T), idempotent ρp ◦ ρp = ρp)

The prefix trace semantics is closed by prefix:

ρp(Tp(I)) = Tp(I).

(note that ε /∈ Tp(I), which is why we disallowed ε in ρp)

course 02-B Program Semantics Antoine Miné p. 54 / 98

Finite trace semantics

Ordering abstraction

Another Galois embedding between finite traces and states:

(P(Σ∗),⊆) −−−→−→←−−−−
αo

γo
(P(Σ),⊆)

αo(T)
def
= {σ | ∃σ0, . . . , σn ∈ T , i ≤ n:σ = σi }

(set of all states appearing in some trace in T)

γo(S)
def
= {σ0, . . . , σn | n ≥ 0, ∀i ≤ n:σi ∈ S }

(traces composed of elements from S)

proof sketch:

αo and γo are monotonic, and αo ◦ γo = id .
(γo ◦ αo)(T) = {σ0, . . . , σn | ∀i ≤ n:∃σ′0, . . . , σ′m ∈ T , j ≤ m:σi = σ′j }
⊇ T .

course 02-B Program Semantics Antoine Miné p. 55 / 98

Finite trace semantics

Ordering abstraction

We have: αo(Tp(I)) = R(I).

proof:

We have αo = αp ◦ ρp (i.e.: a state is in a trace if it is the last state of
one of its prefix).
Recall the prefix trace abstraction into states: R(I) = αp(Tp(I)) and
the fact that the prefix trace semantics is closed by prefix:
ρp(Tp(I)) = Tp(I).
We get αo(Tp(I)) = αp(ρp(Tp(I))) = αp(Tp(I)) = R(I).

alternate proof: generalized fixpoint transfer

Recall that Tp(I) = lfpFp where Fp(T)
def
= I ∪ T_τ and R(I) = lfpFR

where FR(S)
def
= I ∪ postτ (S), but αo ◦ Fp = FR ◦ αo does not hold in

general, so, fixpoint transfer theorems do not apply directly.

However, αo ◦ Fp = FR ◦ αo holds for sets of traces closed by prefix. By

induction, the Kleene iterates anp and anR involved in the computation of

lfpFp and lfpFR satisfy ∀n:αo(anp) = anR, and so αo(lfpFp) = lfpFR.

course 02-B Program Semantics Antoine Miné p. 56 / 98

Finite trace semantics

Suffix trace semantics

Similar results on the suffix trace semantics:

Ts(F)
def
= {σ0, . . . , σn | n ≥ 0, σn ∈ F ,∀i :σi →τ σi+1 }

(traces following τ and ending in a state in F)

Ts(F) =
⋃

n≥0 τ
_n_F

Ts(F) = lfpFs where Fs(T)
def
= F ∪ τ_T

(Fs prepends a transition to each trace, and adds back F)

αs(Ts(F)) = C(F)

where αs(T)
def
= {σ | ∃σ0, . . . , σn ∈ T :σ = σ0 }

ρs(Ts(F)) = Ts(F)

where ρs(T)
def
= { u | ∃t ∈ Σ∞: t · u ∈ T , u 6= ε }

(closed by suffix)

αo(Ts(F)) = C(F)

course 02-B Program Semantics Antoine Miné p. 57 / 98

Finite trace semantics

Suffix trace semantics: graphical illustration

cba

F def
= {c}

τ
def
= {(a, b), (b, b), (b, c)}

Iterates: Ts(F) = lfpFs where Fs(T)
def
= F ∪ τ_T .

F 0
s (∅) = ∅

F 1
s (∅) = F = {c}

F 2
s (∅) = {c , bc}

F 3
s (∅) = {c , bc, bbc, abc}

F n
s (∅) = { c, bic , ab jc | i ∈ [1, n − 1], j ∈ [1, n − 2] }
Ts(F) = ∪n≥0 F

n
s (∅) = { c , bic, abic | i ≥ 1 }

course 02-B Program Semantics Antoine Miné p. 58 / 98

Finite trace semantics

Partial trace semantics

T : all partial finite execution traces.
(not necessarily starting in I or ending in F)

T def
= {σ0, . . . , σn | n ≥ 0,∀i :σi →τ σi+1 }
=

⋃
n≥0 Σ_τ_n

=
⋃

n≥0 τ
_n_Σ

T = Tp(Σ), hence T = lfpFp∗ where Fp∗(T)
def
= Σ ∪ T_τ

(prefix partial traces from any initial state)

T = Ts(Σ), hence T = lfpFs∗ where Fs∗(T)
def
= Σ ∪ τ_T

(suffix partial traces to any final state)

F n
p∗(∅) = F n

s∗(∅) =
⋃

i<n Σ_τ_i =
⋃

i<n τ
_i_Σ = T ∩ Σ<n

Tp(I) = T ∩ (I · Σ∗) (constrain initial states)

Ts(F) = T ∩ (Σ∗ · F) (constrain final states)

course 02-B Program Semantics Antoine Miné p. 59 / 98

Finite trace semantics

Partial trace semantics: graphical illustration

cba

τ
def
= {(a, b), (b, b), (b, c)}

Iterates: T (Σ) = lfpFp∗ where Fp∗(T)
def
= Σ ∪ T_τ .

F 0
p∗(∅) = ∅

F 1
p∗(∅) = Σ = {a, b, c}

F 2
p∗(∅) = {a, b, c , ab, bb, bc}

F 3
p∗(∅) = {a, b, c , ab, bb, bc, abb, abc, bbb, bbc}

F n
p∗(∅) = { abi , ab jc , bic , bk | i ∈ [0, n − 1], j ∈ [1, n − 2], k ∈ [1, n] }

T = ∪n≥0 F
n
p∗(∅) = { abi , ab jc , bic , b j | i ≥ 0, j > 1 }

(using Fs∗(T)
def
= Σ ∪ τ_T , we get the exact same iterates)

course 02-B Program Semantics Antoine Miné p. 60 / 98

Finite trace semantics

Abstracting partial traces to prefix traces

Idea: anchor partial traces at initial states I.

We have a Galois connection:

(P(Σ∗),⊆) −−−→←−−−
αI

γI
(P(Σ∗),⊆)

αI(T)
def
= T ∩ (I · Σ∗) (keep only traces starting in I)

γI(T)
def
= T ∪ ((Σ \ I) · Σ∗) (add all traces not starting in I)

We then have: Tp(I) = αI(T).

(similarly Ts(F) = αF (T) where αF (T)
def
= T ∩ (Σ∗ · F))

(proof on next slide)

course 02-B Program Semantics Antoine Miné p. 61 / 98

Finite trace semantics

Abstracting partial traces to prefix traces (proof)

proof

αI and γI are monotonic.
(αI ◦ γI)(T) = (T ∪ (Σ \ I) · Σ∗) ∩ I · Σ∗) = T ∩ I · Σ∗ ⊆ T .
(γI ◦ αI)(T) = (T ∩ I · Σ∗) ∪ (Σ \ I) · Σ∗ = T ∪ (Σ \ I) · Σ∗ ⊇ T .
So, we have a Galois connection.

A direct proof of Tp(I) = αI(T) is straightforward, by definition of Tp,
αI , and T .

We can also retrieve the result by fixpoint transfer.

T = lfpFp∗ where Fp∗(T)
def
= Σ ∪ T_τ .

Tp = lfpFp where Fp(T)
def
= I ∪ T_τ .

We have: (αI ◦ Fp∗)(T) = (Σ ∪ T_τ) ∩ (I · Σ∗) =

I ∪ ((T_τ) ∩ (I · Σ∗) = I ∪ ((T ∩ (I · Σ∗))_τ) = (Fp ◦ αI)(T).

course 02-B Program Semantics Antoine Miné p. 62 / 98

Infinite trace semantics

Infinite trace semantics

course 02-B Program Semantics Antoine Miné p. 63 / 98

Infinite trace semantics

Maximal traces

Maximal traces: M∞ ∈ P(Σ∞)

sequences of states linked by the transition relation τ ,

start in any state (I = Σ),

either finite and stop in a blocking state (F = B),

or infinite.

(maximal traces cannot be “extended”

by adding a new transition in τ at their end)

M∞
def
= {σ0, . . . , σn ∈ Σ∗ |σn ∈ B, ∀i < n:σi →τ σi+1 } ∪
{σ0, . . . , σn, . . . ∈ Σω | ∀i < ω:σi →τ σi+1 }

(can be anchored at I and F as: M∞ ∩ (I · Σ∞) ∩ ((Σ∗ · F) ∪ Σω))

course 02-B Program Semantics Antoine Miné p. 64 / 98

Infinite trace semantics

Partitioned fixpoint formulation of maximal traces

Goal: we look for a fixpoint characterization of M∞.

We consider separately finite and infinite maximal traces.

Finite traces:

From the suffix partial trace semantics, recall:

M∞ ∩ Σ∗ = Ts(B) = lfpFs

where Fs(T)
def
= B ∪ τ_T in (P(Σ∗),⊆).

Infinite traces:

Additionally, we will prove: M∞ ∩ Σω = gfpGs

where Gs(T)
def
= τ_T in (P(Σω),⊆).

(proof on next slide)

course 02-B Program Semantics Antoine Miné p. 65 / 98

Infinite trace semantics

Partitioned fixpoint formulation of maximal traces (proof)

proof: of M∞ ∩ Σω = gfpGs where Gs(T)
def
= τ_T in (P(Σω),⊆).

Gs is continuous in (P(Σω),⊇): Gs(∩i∈I Ti) = ∩i∈I Gs(Ti).

By Kleene’s theorem in the dual: gfpGs = ∩n∈N G n
s (Σω).

We prove by recurrence on n that ∀n:G n
s (Σω) = τ_n_Σω:

G 0
s (Σω) = Σω = τ_0_Σω,

G n+1
s (Σω) = τ_G n

s (Σω) = τ_(τ_n_Σω) = τ_n+1_Σω.

gfpGs = ∩n∈N τ
_n_Σω

= {σ0, . . . ∈ Σω | ∀n ≥ 0:σ0, . . . , σn−1 ∈ τ_n }
= {σ0, . . . ∈ Σω | ∀n ≥ 0:∀i < n:σi →τ σi+1 }
= M∞ ∩ Σω

course 02-B Program Semantics Antoine Miné p. 66 / 98

Infinite trace semantics

Infinite trace semantics: graphical illustration

cba

B def
= {c}

τ
def
= {(a, b), (b, b), (b, c)}

Iterates: M∞ ∩ Σω = gfpGs where Gs(T)
def
= τ_T .

G 0
s (Σω) = Σω

G 1
s (Σω) = abΣω ∪ bbΣω ∪ bcΣω

G 2
s (Σω) = abbΣω ∪ bbbΣω ∪ abcΣω ∪ bbcΣω

G 3
s (Σω) = abbbΣω ∪ bbbbΣω ∪ abbcΣω ∪ bbbcΣω

Gn
s (Σω) = { abnt, bn+1t, abn−1ct, bnct | t ∈ Σω }
M∞ ∩ Σω = ∩n≥0 G

n
s (Σω) = {abω, bω}

course 02-B Program Semantics Antoine Miné p. 67 / 98

Infinite trace semantics

Least fixpoint formulation of maximal traces

Idea: To get a fixpoint formulation for whole M∞,
merge finite and infinite maximal trace fixpoint forms.

Fixpoint fusion

M∞ ∩ Σ∗ is best defined on (Σ∗,⊆,∪,∩, ∅,Σ∗).
M∞ ∩ Σω is best defined on (Σω,⊇,∩,∪,Σω, ∅).

We mix them into a new complete lattice (Σ∞,v,t,u,⊥,>):

AvB
def⇐⇒ (A ∩ Σ∗)⊆ (B ∩ Σ∗) ∧ (A ∩ Σω)⊇ (B ∩ Σω)

AtB def
= ((A ∩ Σ∗)∪ (B ∩ Σ∗)) ∪ ((A ∩ Σω)∩ (B ∩ Σω))

AuB def
= ((A ∩ Σ∗)∩ (B ∩ Σ∗)) ∪ ((A ∩ Σω)∪ (B ∩ Σω))

⊥ def
= Σω

> def
= Σ∗

In this lattice, M∞ = lfp Fs where Fs(T)
def
= B ∪ τ_T .

(proof on next slides)

course 02-B Program Semantics Antoine Miné p. 68 / 98

Infinite trace semantics

Fixpoint fusion theorem

Theorem: fixpoint fusion

If X1 = lfpF1 in (P(D1),v1) and X2 = lfpF2 in (P(D2),v2)

and D1 ∩ D2 = ∅,
then X1 ∪ X2 = lfpF in (P(D1 ∪ D2),v) where:

F (X)
def
= F1(X ∩ D1) ∪ F2(X ∩ D2),

A v B
def⇐⇒ (A ∩ D1) v1 (B ∩ D1)∧ (A ∩ D2) v2 (B ∩ D2).

proof:

We have: F (X1 ∪ X2) = F1((X1 ∪ X2) ∩ D1) ∪ F2((X1 ∪ X2) ∩ D2) =
F1(X1) ∪ F2(X2) = X1 ∪ X2, hence X1 ∪ X2 is a fixpoint of F .

Let Y be a fixpoint. Then Y = F (Y) = F1(Y ∩ D1) ∪ F2(Y ∩ D2),
hence, Y ∩ D1 = F1(Y ∩ D1) and Y ∩ D1 is a fixpoint of F1. Thus,
X1 v1 Y ∩ D1. Likewise, X2 v2 Y ∩ D2. We deduce that
X = X1 ∪ X2 v (Y ∩ D1) ∪ (Y ∩ D2) = Y , and so, X is F ’s least
fixpoint.

note: we also have gfpF = gfpF1 ∪ gfpF2.

course 02-B Program Semantics Antoine Miné p. 69 / 98

Infinite trace semantics

Least fixpoint formulation of maximal traces (proof)

proof: of M∞ = lfp Fs where Fs(T)
def
= B ∪ τ_T .

We have:

M∞ ∩ Σ∗ = lfpFs in (P(Σ∗),⊆),

M∞ ∩ Σω = lfpGs in (P(Σω),⊇) where Gs(T)
def
= τ_T ,

in P(Σ∞), we have
Fs(A) = (Fs(A) ∩ Σ∗) ∪ (Fs(A) ∩ Σω) = Fs(A ∩ Σ∗) ∪ Gs(A ∩ Σω).

So, by fixpoint fusion in (P(Σ∞),v), we have:

M∞ = (M∞ ∩ Σ∗) ∪ (M∞ ∩ Σω) = lfpFs .

course 02-B Program Semantics Antoine Miné p. 70 / 98

Infinite trace semantics

Greatest fixpoint formulation of finite maximal traces

Actually, a fixpoint formulation in (Σ∞,⊆) also exists.

Alternate fixpoint for finite maximal traces:

We saw that M∞ ∩ Σ∗ = lfpFs
where Fs(T)

def
= B ∪ τ_T in (P(Σ∗),⊆).

Additionally, we have M∞ ∩ Σ∗ = gfpFs in (P(Σ∗),⊆).

(Fs has a unique fixpoint in (P(Σ∗),⊆).)

(proof on next slide)

course 02-B Program Semantics Antoine Miné p. 71 / 98

Infinite trace semantics

Greatest fixpoint formulation of finite maximal traces

proof: of M∞ ∩ Σ∗ = gfpFs where Fs(T)
def
= B ∪ τ_T .

Fs is continuous in the dual (P(Σ∗),⊇): Fs(∩i∈I Ai) = ∩i∈I Fs(Ai).
By Kleene’s theorem in the dual (P(Σ∗),⊇), we get:
gfpFs = ∩n∈N F n

s (Σ∗).

We prove by recurrence on n that
∀n:F n

s (Σ∗) = (∪i<n τ
_i_B) ∪ (τ_n_Σ∗): i.e., F n

s (Σ∗) are the maximal
finite traces of length at most n − 1, and the partial traces of length
exactly n followed by any sequence of states:

F 0
s (Σ∗) = Σ∗ = τ_0_Σ∗

Fs(F n
s (Σ∗)) = B ∪ (τ_F n

s (Σ∗))
= B ∪ τ_((∪i<n τ

_i_B) ∪ (τ_n_Σ∗))
= B ∪ (∪i<n τ

_τ_i_B) ∪ (τ_τ_n_Σ∗)
= B ∪ (∪1<i<n+1 τ

_i_B) ∪ (τ_n+1_Σ∗)
= (∪i<n+1 τ

_i_B) ∪ (τ_n+1_Σ∗)

We get: ∩n∈N F n
s (Σ∗) = ∩n∈N (∪i<n τ

_i_B) ∪ (τ_n_Σ∗) =

∪n∈N τ
_n_B =M∞ ∩ Σ∗.

course 02-B Program Semantics Antoine Miné p. 72 / 98

Infinite trace semantics

Greatest fixpoint of finite traces: graphical illustration

cba

B def
= {c}

τ
def
= {(a, b), (b, b), (b, c)}

Iterates: M∞ ∩ Σ∗ = gfpFs where Fs(T)
def
= B ∪ τ_T .

F 0
s (Σ∗) = Σ∗

F 1
s (Σ∗) = {c} ∪ abΣ∗ ∪ bbΣ∗ ∪ bcΣ∗

F 2
s (Σ∗) = {bc, c} ∪ abbΣ∗ ∪ bbbΣ∗ ∪ abcΣ∗ ∪ bbcΣ∗

F 3
s (Σ∗) = {abc, bbc, bc, c}∪ abbbΣ∗ ∪ bbbbΣ∗ ∪ abbcΣ∗ ∪ bbbcΣ∗

F n
s (Σ∗) = { abic , b jc | i ∈ [1, n − 2], j ∈ [0, n − 1] } ∪

{ abnt, bn+1t, abn−1ct, bnct | t ∈ Σ∗ }

M∞ ∩ Σ∗ = ∩n≥0 F
n
s (Σ∗) == { abic , b jc | i ≥ 1, j ≥ 0 }

course 02-B Program Semantics Antoine Miné p. 73 / 98

Infinite trace semantics

Greatest fixpoint formulation of maximal traces

From:

M∞ ∩ Σ∗ = gfpFs in (P(Σ∗),⊆) where Fs(T)
def
= B ∪ τ_T

M∞ ∩ Σω = gfpGs in (P(Σω),⊆) where Gs(T)
def
= τ_T

we deduce: M∞ = gfpFs in (P(Σ∞),⊆).

proof: similar to M∞ = lfpFs in (P(Σ∞),v), by fixpoint fusion.

course 02-B Program Semantics Antoine Miné p. 74 / 98

Infinite trace semantics

Finite and infinite partial trace semantics

Idea: complete partial traces T with infinite traces.

T∞: all finite and infinite sequences of states
linked by the transition relation τ :

T∞
def
= {σ0, . . . , σn ∈ Σ∗ | ∀i < n:σi →τ σi+1 } ∪
{σ0, . . . , σn, . . . ∈ Σω | ∀i < ω:σi →τ σi+1 }

(partial finite traces do not necessarily end in a blocking state)

Fixpoint form similar to M∞:

T∞ = lfpFs∗ in (P(Σ∞),v) where Fs∗(T)
def
= Σ ∪ τ_T ,

T∞ = gfpFs∗ in (P(Σ∞),⊆).

proof: similar to the proofs of M∞ = gfpFs and M∞ = lfpFs .

course 02-B Program Semantics Antoine Miné p. 75 / 98

Infinite trace semantics

Finite trace abstraction

Finite partial traces T are an abstraction of all partial traces T∞.

We have a Galois embedding:

(P(Σ∞),v) −−−→−→←−−−−
α∗

γ∗
(P(Σ∗),⊆)

v is the fused ordering on Σ∗ ∪ Σω:

A v B
def⇐⇒ (A ∩ Σ∗) ⊆ (B ∩ Σ∗) ∧ (A ∩ Σω) ⊇ (B ∩ Σω)

α∗(T)
def
= T ∩ Σ∗

(remove infinite traces)

γ∗(T)
def
= T

(embedding)

T = α∗(T∞)

(proof on next slide)

course 02-B Program Semantics Antoine Miné p. 76 / 98

Infinite trace semantics

Finite trace abstraction (proof)

proof:

We have Galois embedding because:

α∗ and γ∗ are monotonic,

given T ⊆ Σ∗, we have (α∗ ◦ γ∗)(T) = T ∩ Σ∗ = T ,

(γ∗ ◦ α∗)(T) = T ∩ Σ∗ w T , as we only remove infinite traces.

Recall that T∞ = lfpFs∗ in (P(Σ∞),v) and T = lfpFs∗ in (P(Σ∗),⊆),

where Fs∗(T)
def
= Σ ∪ T_τ .

As α∗ ◦ Fs∗ = Fs∗ ◦ α∗ and α∗(∅) = ∅, we can apply the fixpoint transfer

theorem to get α∗(T∞) = T .

course 02-B Program Semantics Antoine Miné p. 77 / 98

Infinite trace semantics

Finite trace abstraction (proof)

alternate proof:

It is also possible to use the characterizations T∞ = gfpFs∗ in
(P(Σ∞),⊆) and T = gfpFs∗ in (P(Σ∗),⊆), and use a fixpoint transfer
theorem for greatest fixpoints.
Similarly to the fixpoint transfer for least fixpoints, this theorem uses the
constructive version of Tarski’s theorem, but in the dual: T∞ is the limit
of transfinite iterations a0 = Σ∞, an+1 = Fs∗(an), and
an = ∩{ am |m < n } for transfinite ordinals, while T is the limit of a
similar iteration from a′0 = Σ∗. We conclude by noting that a′0 = α∗(a0),
α∗ ◦Fs∗ = Fs∗ ◦α∗, and α∗ is co-continuous: α∗(∩i∈I Ti) = ∩i∈I α∗(Ti).

Note that, while the adjoint of α∗ for v was γ∗(T)
def
= T , the adjoint for

⊆ is γ′∗(T)
def
= T ∪ Σω.

course 02-B Program Semantics Antoine Miné p. 78 / 98

Infinite trace semantics

Prefix abstraction

Idea: maximal traces by adding (non-empty) prefixes.

We have a Galois connection:

(P(Σ∞ \ {ε}),⊆) −−−−→←−−−−
α�

γ�
(P(Σ∞ \ {ε}),⊆)

α�(T)
def
= { t ∈ Σ∞ \ {ε} | ∃u ∈ T : t � u }

(set of all non-empty prefixes of traces in T)

γ�(T)
def
= { t ∈ Σ∞ \ {ε} | ∀u ∈ Σ∞ \ {ε}: u � t =⇒ u ∈ T }

(traces with non-empty prefixes in T)

proof:

α� and γ� are monotonic.

(α� ◦ γ�)(T) = { t ∈ T | ρp(t) ⊆ T } ⊆ T (prefix-closed trace sets).

(γ� ◦ α�)(T) = ρp(T) ⊇ T .

course 02-B Program Semantics Antoine Miné p. 79 / 98

Infinite trace semantics

Abstraction from maximal traces to partial traces

Finite and infinite partial traces T∞ are an abstraction
of maximal traces M∞: T∞ = α�(M∞).

proof:

Firstly, T∞ and α�(M∞) coincide on infinite traces. Indeed,
T∞ ∩ Σω =M∞ ∩ Σω and α� does not add infinite traces, so:
T∞ ∩ Σω = α�(M∞) ∩ Σω.

We now prove that they also coincide on finite traces. Assume
σ0, . . . , σn ∈ α�(M∞), then ∀i < n:σi →τ σi+1, so, σ0, . . . , σn ∈ T∞.
Assume σ0, . . . , σn ∈ T∞, then it can be completed into a maximal trace,
either finite or infinite, and so, σ0, . . . , σn ∈ α�(M∞).

Note: no fixpoint transfer applies here.

course 02-B Program Semantics Antoine Miné p. 80 / 98

Infinite trace semantics

Finite prefix abstraction

We can abstract directly from maximal traces M∞
to finite partial traces T .

Consider the following Galois connection:

(P(Σ∞ \ {ε}),⊆) −−−−→←−−−−
α∗�

γ∗�
(P(Σ∗ \ {ε}),⊆)

α∗�(T)
def
= { t ∈ Σ∗ \ {ε} | ∃u ∈ T : t � u }

(set of all non-empty prefixes of traces T)

γ∗�(T)
def
= { t ∈ Σ∞ \ {ε} | ∀u ∈ Σ∗ \ {ε}: u � t =⇒ u ∈ T }

(traces with non-empty prefixes in T)

We have T = α∗�(M∞).

(proof on next slide)

course 02-B Program Semantics Antoine Miné p. 81 / 98

Infinite trace semantics

Finite prefix abstraction (proof)

proof:

α∗� and γ∗� are monotonic.

(α∗� ◦ γ∗�)(T) = { t ∈ T | ρp(t) ⊆ T } ⊆ T (prefix-closed trace sets).

(γ∗� ◦ α∗�)(T) = ρp(T) ∪ { t ∈ Σω | ∀u ∈ Σ∗: u � t =⇒ u ∈
ρp(T) } ⊇ T .

As α∗� = α∗ ◦ α�,

we have: α∗�(M∞) = α∗(α�(M∞)) = α∗(T∞) = T .

Remarks:

γ∗� ◦ α∗� 6= id

it closes trace sets by limits of finite traces.

γ∗� 6= γ� ◦ γ∗
this is because γ∗(T)

def
= T is the adjoint of α∗ in (P(Σ∞),v),

while we need to compose α� with the adjoint of α∗ in

(P(Σ∞),⊆), which is γ′∗(T)
def
= T ∪ Σω.

course 02-B Program Semantics Antoine Miné p. 82 / 98

Infinite trace semantics

(Partial) hierarchy of semantics

R(I) C(F) (states)

Tp(I)

αo

OO

Ts(F)

αo

OO

(anchored traces)

T

αI

cc

αF

;;

(partial finite traces)

T∞

α∗

OO

(partial traces)

M∞

α�

OO

(maximal traces)

course 02-B Program Semantics Antoine Miné p. 83 / 98

Relational semantics

Relational semantics

course 02-B Program Semantics Antoine Miné p. 84 / 98

Relational semantics

Finite big-step semantics

Pairs of states linked by a sequence of transitions in τ .

BS def
= { (σ0, σn) ∈ Σ× Σ | n ≥ 0, ∃σ1, . . . , σn−1: ∀i < n:σi →τ σi+1 }

(symmetric and transitive closure of τ)

Fixpoint form:

BS = lfpFB
where FB(R)

def
= id ∪ { (σ, σ′′) | ∃σ′: (σ, σ′) ∈ R, σ′ →τ σ

′′ }.

course 02-B Program Semantics Antoine Miné p. 85 / 98

Relational semantics

Relational abstraction

Relational abstraction: allows skipping intermediate steps.

We have a Galois embedding:

(P(Σ∗),⊆) −−−−→−→←−−−−−
αio

γio
(P(Σ× Σ),⊆)

αio(T)
def
= { (σ, σ′) | ∃σ0, . . . , σn ∈ T :σ = σ0, σ

′ = σn }
(first and last state of a trace in T)

γio(R)
def
= {σ0, . . . , σn ∈ Σ∗ | ∃(σ, σ′) ∈ R:σ = σ0, σ

′ = σn }
(traces respecting the first and last states from R)

proof sketch:

γio and αio are monotonic.
(γio ◦ αio)(T) = {σ0, . . . , σn | ∃σ′0, . . . , σ′m ∈ T :σ0 = σ′0, σn = σ′m }.
(αio ◦ γio)(R) = R.

course 02-B Program Semantics Antoine Miné p. 86 / 98

Relational semantics

Finite big-step semantics as an abstraction

The finite big-step semantics is an abstraction
of the finite trace semantics: BS = αio(T).

proof sketch: by fixpoint transfer.

We have T = lfpFp∗ where Fp∗(T)
def
= Σ ∪ T_τ .

Moreover, FB(R)
def
= id ∪ { (σ, σ′′) | ∃σ′: (σ, σ′) ∈ R, σ′ →τ σ

′′ }.
Then, αio ◦ Fp∗ = FB ◦ αio because αio(Σ) = id and
αio(T_τ) = { (σ, σ′′) | ∃σ′: (σ, σ′) ∈ αio(T) ∧ σ′ →τ σ

′′ }.
By fixpoint transfer: αio(T) = lfpFB .

We have a similar result using Fs∗(T)
def
= Σ ∪ τ_T and

F ′B(R)
def
= id ∪ { (σ, σ′′) | ∃σ′: (σ′, σ′′) ∈ R ∧ σ →τ σ

′ }.

course 02-B Program Semantics Antoine Miné p. 87 / 98

Relational semantics

Finite big-step semantics (example)

program

i ← [0,+∞];
while i > 0 do
i ← i − [0, 1];

done

Finite big-step semantics BS: { (ρ, ρ′) | 0 ≤ ρ′(i) ≤ ρ(i) }.

course 02-B Program Semantics Antoine Miné p. 88 / 98

Relational semantics

Denotational semantics (relation form)

In the denotational semantics, we forget all the intermediate steps
and only keep the input / output relation:

(σ, σ′) ∈ Σ× B: finite execution starting in σ, stopping in σ′,

(σ,♠): non-terminating execution starting in σ.

Construction by abstraction: of the maximal trace semantics M∞.

(P(Σ∞),⊆) −−−→−→←−−−−
αd

γd
(P(Σ× (Σ ∪ {♠})),⊆)

αd(T)
def
= αio(T ∩ Σ∗) ∪ { (σ,♠) | ∃t ∈ Σω:σ · t ∈ T }

γd(R)
def
= γio(R ∩ (Σ× Σ)) ∪ {σ · t | (σ,♠) ∈ R, t ∈ Σω }

(extension of (αio , γio) to infinite traces)

The denotational semantics is DS def
= αd(M∞).

course 02-B Program Semantics Antoine Miné p. 89 / 98

Relational semantics

Denotational fixpoint semantics

Idea: as M∞, separate terminating and non-terminating behaviors,
and use a fixpoint fusion theorem.

We have: DS = lfpFd

in (P(Σ× (Σ ∪ {♠})),v∗,t∗,u∗,⊥∗,>∗), where

⊥∗ def
= { (σ,♠) |σ ∈ Σ }

>∗ def
= { (σ, σ′) |σ, σ′ ∈ Σ }

A v∗ B ⇐⇒ ((A∩>∗) ⊆ (B ∩>∗))∧ ((A∩⊥∗) ⊇ (B ∩⊥∗))

A t∗ B def
= ((A ∩ >∗) ∪ (B ∩ >∗)) ∪ ((A ∩ ⊥∗) ∩ (B ∩ ⊥∗))

A u∗ B def
= ((A ∩ >∗) ∩ (B ∩ >∗)) ∪ ((A ∩ ⊥∗) ∪ (B ∩ ⊥∗))

Fd(R)
def
= { (σ, σ) |σ ∈ B } ∪
{ (σ, σ′′) | ∃σ′:σ →τ σ

′ ∧ (σ′, σ′′) ∈ R }

course 02-B Program Semantics Antoine Miné p. 90 / 98

Relational semantics

Denotational fixpoint semantics (proof)

proof:

We cannot use directly a fixpoint transfer on M∞ = lfpFs in
(P(Σ∞),v) because our Galois connection (αd , γd) uses the ⊆ order,
not v.
Instead, we use fixpoint transfer separately on finite and infinite
executions, and then apply fixpoint fusion.

Recall that M∞ ∩ Σ∗ = lfpFs in (P(Σ∗),⊆) where Fs(T)
def
= B ∪ τ_T

and M∞ ∩ Σω = gfpGs in (P(Σω),⊆) where Gs(T)
def
= ∪ τ_T .

For finite execution, we have αd ◦ Fs = Fd ◦ αd in P(Σ∗)→ P(Σ× Σ).

We can apply directly fixpoint transfer and get that:

DS ∩ (Σ× Σ) = lfpFd .

course 02-B Program Semantics Antoine Miné p. 91 / 98

Relational semantics

Denotational fixpoint semantics (proof cont.)

proof sketch: for infinite executions

We have αd ◦ Gs = Gd ◦ αd in P(Σω)→ P(Σ× {♠}), where

Gd(R)
def
= { (σ, σ′′) | ∃σ′:σ →τ σ

′ ∧ (σ′, σ′′) ∈ R }.
The fixpoint theorem for gfp we used in the alternate proof of
T = α∗(T∞) does not apply here because αd is not co-continuous:
αd(∩i∈I Si) = ∩∈I αd(Si) does not hold; consider for example: I = N and
Si = { anbω | n > i }: ∩i∈N Si = ∅, but ∀i :αd(Si) = {(a,♠)}.
We use instead a fixpoint transfer based on Tarksi’s theorem.
We have gfpGs = ∪ {X |X ⊆ Gs(X) }.
Thus, αd(gfpGs) = αd(∪ {X |X ⊆ Gs(X) }) = ∪ {αd(X) |X ⊆ Gs(X) }
as αd is a complete ∪ morphism. The proof is finished by noting that the
commutation αd ◦ Gs = Gd ◦ αd and the Galois embedding (αd , γd)
imply that {αd(X) |X ⊆ Gs(X) } = {αd(X) |αd(X) ⊆ Gd(αd(X)) } =
{Y |Y ⊆ Gd(Y) }.

(the complete proof can be found in [Cous02])

course 02-B Program Semantics Antoine Miné p. 92 / 98

Relational semantics

Denotational semantics (example)

program

i ← [0,+∞];
while i > 0 do
i ← i − [0, 1];

done

Denotational semantics DS:

{ (ρ, ρ′) | ρ(i) ≥ 0 ∧ ρ′(i) = 0 } ∪ { (ρ,♠) | ρ(i) ≥ 0 }.

(quite different from the big-step semantics)

course 02-B Program Semantics Antoine Miné p. 93 / 98

Relational semantics

Denotational semantics (functional form)

Note: denotational semantics are often presented as functions,
not relations

This is possible using the following Galois isomorphism:

(P(Σ× (Σ ∪ {♠})),v∗) −−−−→−→←←−−−−−
αdf

γdf
(Σ→ P(Σ ∪ {♠}), v̇∗)

αdf (R)
def
= λσ.{σ′ | (σ, σ′) ∈ R }

γdf (f)
def
= { (σ, σ′) |σ′ ∈ f (σ) }

f v̇∗ f def⇐⇒ ∀σ: (f (σ) ∩ Σ ⊆ g(σ) ∩ Σ) ∧
(♠ ∈ g(σ) =⇒ ♠ ∈ f (σ))

We get that: αdf (DS) = lfpF ′d where

F ′d(f)
def
= (αdf ◦ Fd ◦ γdf)(f) = (λσ.{σ |σ ∈ B }) ∪̇ (f ◦ postτ).

(proof by fixpoint transfer, as F ′d ◦ αdf = Fd ◦ αdf)

course 02-B Program Semantics Antoine Miné p. 94 / 98

Relational semantics

From traces to transition systems

We saw the partial traces as a semantics of transition systems.

We can also see transition systems as
an abstraction of partial traces:

(P(Σ∞),⊆) −−−→−→←−−−−
αt

γt
(P(Σ× Σ),⊆)

αt(T)
def
= { (σ, σ′) | ∃σ0, . . . ∈ T :∃n ≥ 0:σ = σn, σ

′ = σn+1 }
(any transition appearing in a trace in T)

γt(τ)
def
= T∞

(partial traces for τ)

Generally (γt ◦ αt)(T)) T

=⇒ not all trace sets are generated by transition systems.

(e.g.: T = { anb | n ∈ N }, we get (γt ◦ αt)(T) = { anb | n ∈ N } ∪ {aω}.)

course 02-B Program Semantics Antoine Miné p. 95 / 98

Relational semantics

Another part of the hierarchy of semantics

BS (big-step semantics)

(partial finite traces) T

αio

<<

τ (transition systems)

(partial traces) T∞

α∗

OO

αt

<<

DS (denotational semantics)

(maximal traces) M∞

α�

OO

αd

<<

See [Cou82] for more semantics in this diagram.

course 02-B Program Semantics Antoine Miné p. 96 / 98

Bibliography

Bibliography

course 02-B Program Semantics Antoine Miné p. 97 / 98

Bibliography

Bibliography

[Bour93] F. Bourdoncle. Abstract debugging of higher-order imperative

languages. In PLDI, 46-55, ACM Press, 1993.

[Cous02] P. Cousot. Constructive design of a hierarchy of semantics of a

transition system by abstract interpretation. In Theoretical Comp. Sc.,

277(1–2):47–103.

[Plot81] G. Plotkin. The origins of structural operational semantics. In

J. of Logic and Algebraic Prog., 60:60-61, 1981.

course 02-B Program Semantics Antoine Miné p. 98 / 98

	Flavors of program semantics
	Transition systems
	State semantics
	Traces
	Finite trace semantics
	Infinite trace semantics
	Relational semantics
	Bibliography

