
Properties
MPRI 2–6: Abstract Interpretation,

application to verification and static analysis

Antoine Miné

year 2013–2014

course 03-A
4 October 2013

course 03-A Properties Antoine Miné p. 1 / 26



State properties

State properties

course 03-A Properties Antoine Miné p. 2 / 26



State properties

State properties

State property: P ∈ P(Σ).

Verification problem: R(I) ⊆ P.

(all the states reachable from I are in P)

Examples:

absence of blocking: P
def
= Σ \ B,

the variables remain in a safe range,

dangerous program locations cannot be reached.

course 03-A Properties Antoine Miné p. 3 / 26



State properties

Invariance proof method

Invariance proof method: find an inductive invariant I ⊆ Σ

I ⊆ I
(contains initial states)

∀σ ∈ I :σ →τ σ
′ =⇒ σ′ ∈ I

(invariant by program transition)

that implies the desired property: I ⊆ P.

Link with the state semantics R(I):

Given FR(S)
def
= I ∪ postτ (S), we have FR(I ) ⊆ I

=⇒ I is a post-fixpoint of FR.

Recall that R(I) = lfpFR
=⇒ R(I) is the tightest inductive invariant.

course 03-A Properties Antoine Miné p. 4 / 26



State properties

Hoare logic proof method

Idea:

annotate program points with local sate invariants in P(Σ)

use logic rules to prove their correctness

{P[e/X ]}X ← e {P}
{P} stat1 {R} {R} stat2 {Q}

{P} stat1; stat2 {Q}

{P ∧ b} stat {Q} P ∧ ¬b ⇒ Q

{P} if b then stat {Q}
{P ∧ b} stat {P}

{P}while b do stat {P ∧ ¬b}

{P} stat {Q} P ′ ⇒ P Q ⇒ Q ′

{P ′} stat {Q ′}

Link with the state semantics R(I):

Equivalent to an invariant proof, partitioned by program location.
Any post-fixpoint of αL ◦ FR ◦ γL gives valid Hoare triples.
αL(R(I)) = lfp(αL ◦ FR ◦ γL) gives the tightest Hoare triples.

course 03-A Properties Antoine Miné p. 5 / 26



State properties

Weakest liberal precondition proof methods

Idea: Start with a postcondition F ∈ P(Σ)
and compute preconditions backwards P ⇒ wlp(stat,Q)

wlp(X ← e,Q)
def
= Q[e/X ]

wlp((stat1; stat2),Q)
def
= wlp(stat1,wlp(stat2,Q))

wlp(if b then stat,Q)
def
= (b ⇒ wlp(stat,Q)) ∧ (¬b ⇒ Q)

wlp(while b do stat,Q)
def
=

I ∧ ((I ∧ b)⇒ wlp(stat, I )) ∧ ((I ∧ ¬b)⇒ Q)
(where the loop invariant I is generally provided by the user)

(P ⇒ wlp(stat,Q) is equivalent to {P} stat {Q})

Link with the state semantics S(Y):

(recall S(Y) = gfp FS where FS(S)
def
= Y ∩ p̃reτ (S))

Equivalent to sufficient preconditions, partitioned by location:
any pre-fixpoint of αL ◦ FS ◦ γL gives valid liberal preconditions;
αL(S(F)) = gfp(αL ◦ FR ◦ γL) gives the weakest liberal
preconditions while inferring loop invariants!

course 03-A Properties Antoine Miné p. 6 / 26



Trace properties

Trace properties

course 03-A Properties Antoine Miné p. 7 / 26



Trace properties

Trace properties

Trace property: P ∈ P(Σ∞)

Verification problem: M∞ ∩ (I · Σ∞) ⊆ P

Examples:

termination:P
def
= Σ∗,

non-termination: P
def
= Σω,

any state property S ⊆ Σ: P
def
= S∞,

maximal execution time: P
def
= Σ≤k ,

minimal execution time: P
def
= Σ≥k ,

ordering, e.g.: P
def
= (Σ \ {b})∗ · a · Σ∗ · b · Σ∞.

(a and b occur, and a occurs before b)

course 03-A Properties Antoine Miné p. 8 / 26



Trace properties

Safety properties

Idea: a safety property P models that “nothing bad ever occurs”

P is provable by exhaustive testing;
(observe the prefix trace semantics: Tp(I) ⊆ P)

P is disprovable by finding a single finite execution not in P.

Examples:

any state property: P
def
= S∞ for S ⊆ Σ,

ordering: P
def
= Σ∞ \ ((Σ \ {a})∗ · b · Σ∞),

(no b can appear without an a before,
but we can have only a, or neither a nor b)

(not a state property)

but termination P
def
= Σ∗ is not a safety property.

(disproving requires exhibiting an infinite execution)

course 03-A Properties Antoine Miné p. 9 / 26



Trace properties

Definition of safety properties

Reminder: finite prefix abstraction (simplified to allow ε)

(P(Σ∞),⊆) −−−−→←−−−−
α∗�

γ∗�
(P(Σ∗),⊆)

α∗�(T )
def
= { t ∈ Σ∗ | ∃u ∈ T : t � u }

γ∗�(T )
def
= { t ∈ Σ∞ | ∀u ∈ Σ∗: u � t =⇒ u ∈ T }

The associated upper closure ρ∗�
def
= γ� ◦ α� is:

ρ∗� = lim ◦ρp where:

ρp(T )
def
= { u ∈ Σ∞ | ∃t ∈ T : u � t },

lim(T )
def
= T ∪ { t ∈ Σω | ∀u ∈ Σ∗: u � t =⇒ u ∈ T }.

Definition: P ∈ P(Σ∞) is a safety property if P = ρ∗�(P).

course 03-A Properties Antoine Miné p. 10 / 26



Trace properties

Definition of safety properties (examples)

Definition: P ⊆ P(Σ∞) is a safety property if P = ρ∗�(P).

Examples and counter-examples:

state property P
def
= S∞ for S ⊆ Σ:

ρp(S∞) = lim(S∞) = S∞ =⇒ safety;

termination P
def
= Σ∗:

ρp(Σ∗) = Σ∗, but lim(Σ∗) = Σ∞ 6= Σ∗ =⇒ not safety;

even number of steps P
def
= (Σ2)∞:

ρp((Σ2)∞) = Σ∞ 6= (Σ2)∞ =⇒ not safety.

course 03-A Properties Antoine Miné p. 11 / 26



Trace properties

Proving safety properties

Invariance proof method: find an inductive invariant I

set of finite traces I ⊆ Σ∗

I ⊆ I
(contains traces reduced to an initial state)

∀σ0, . . . , σn ∈ I :σn →τ σn+1 =⇒ σ0, . . . , σn, σn+1 ∈ I
(invariant by program transition)

and implies the desired property: I ⊆ P.

Link with the finite prefix trace semantics Tp(I):

An inductive invariant is a post-fixpoint of Fp: Fp(I ) ⊆ I

where Fp(T )
def
= I ∪ T_τ .

Tp(I) = lfpFp is the tightest inductive invariant.

course 03-A Properties Antoine Miné p. 12 / 26



Trace properties

Correctness of the invariant method for safety

Soundness:

if P is a safety property and an inductive invariant I exists
then: M∞ ∩ (I · Σ∞) ⊆ P

proof:

Using the Galois connection between M∞ and T , we get:
M∞ ∩ (I ·Σ∞) ⊆ ρ∗�(M∞ ∩ (I ·Σ∞)) = γ∗�(α∗�(M∞ ∩ (I ·Σ∞))) =
γ∗�(α∗�(M∞) ∩ (I · Σ∗)) = γ∗�(T ∩ (I · Σ∗)) = γ∗�(Tp(I)).
Using the link between invariants and the finite prefix trace semantics, we
have: Tp(I) ⊆ I ⊆ P.

As P is a safety property, P = γ∗�(P), so, γ∗�(Tp(I)) ⊆ γ∗�(P) = P,

and so, M∞ ∩ (I · Σ∞) ⊆ P.

Completeness: an inductive invariant always exists

proof: Tp(I) provides an inductive invariant.

course 03-A Properties Antoine Miné p. 13 / 26



Trace properties

Disproving safety properties

Proof method:

A safety property P can be disproved by constructing a finite prefix
of execution that does not satisfy the property:

M∞ ∩ (I · Σ∞) 6⊆ P =⇒ ∃t ∈ Tp(I): t /∈ P

proof:

By contradiction, assume that no such trace exists, i.e., Tp(I) ⊆ P.

We proved in the previous slide that this implies M∞ ∩ (I · Σ∞) ⊆ P.

Examples:

disproving a state property P
def
= S∞:

⇒ find a partial execution containing a state in Σ \ S ;

disproving an order property P
def
= Σ∞ \ ((Σ \ {a})∗ · b · Σ∞)

⇒ find a partial execution where b appears and not a.

course 03-A Properties Antoine Miné p. 14 / 26



Trace properties

Liveness properties

Idea: liveness property P ∈ P(Σ∞)

Liveness properties model that“something good eventually occurs”

P cannot be proved by testing
(if nothing good happens in a prefix execution,

it can still happen in the rest of the execution)

disproving P requires exhibiting an infinite execution not in P

Examples:

termination: P
def
= Σ∗,

inevitability: P
def
= Σ∗ · a · Σ∞,

(a eventually occurs in all executions)

state properties are not liveness properties.

course 03-A Properties Antoine Miné p. 15 / 26



Trace properties

Definition of liveness properties

Definition: P ∈ P(Σ∞) is a liveness property if ρ∗�(P) = Σ∞.

Examples and counter-examples:

termination P
def
= Σ∗:

ρp(Σ∗) = Σ∗ and lim(Σ∗) = Σ∞ =⇒ liveness;

inevitability: P
def
= Σ∗ · a · Σ∞

ρp(P) = P ∪ Σ∗ and lim(P ∪ Σ∗) = Σ∞ =⇒ liveness;

state property P
def
= S∞ for S ⊆ Σ:

ρp(S∞) = lim(S∞) = S∞ 6= Σ∞ if S 6= Σ =⇒ not liveness;

maximal execution time P
def
= Σ≤k :

ρp(Σ≤k) = lim(Σ≤k) = Σ≤k 6= Σ∞ =⇒ not liveness;

the only property which is both safety and liveness is Σ∞.

course 03-A Properties Antoine Miné p. 16 / 26



Trace properties

Proving liveness properties

Variance proof method: (informal definition)

Find a decreasing quantity until something good happens.

Example: termination proof

find f : Σ→ S where (S,v) is well-ordered;

(f is called a “ranking function”)

σ ∈ B =⇒ f = min S;

σ →τ σ
′ =⇒ f (σ′) @ f (σ).

(f counts the number of steps remaining before termination)

course 03-A Properties Antoine Miné p. 17 / 26



Trace properties

Disproving liveness properties

Property:

If P is a liveness property, then ∀t ∈ Σ∗: ∃u ∈ P: t � u.

proof:

By definition of liveness, ρ∗�(P) = Σ∞, so t ∈ ρ∗�(P) = lim(αp(P)).
As t ∈ Σ∗ and lim only adds infinite traces, t ∈ αp(P).

By definition of αp, ∃u ∈ P: t � u.

Consequence:

liveness cannot be disproved by testing.

course 03-A Properties Antoine Miné p. 18 / 26



Trace properties

Trace topology

Topology on X , defined by

a family C ⊆ P(X ) of closed sets

c , c ′ ∈ C =⇒ c ∪ c ′ ∈ C (closed by finite unions)
C ⊆ C =⇒ ∩{ c | c ∈ C } ∈ C (closed by intersections)

open sets O are derived from closed sets:

O def
= {X \ c | c ∈ C }

(closed by unions and finite intersections)

(we can alternatively define a topology by O, and derive C from O)

Definition: we define a topology on traces by setting:

X
def
= Σ∞

C def
= {P ∈ P(Σ∞) |P is a safety property }

course 03-A Properties Antoine Miné p. 19 / 26



Trace properties

Closure and density

Topological closure: ρ : P(X )→ P(X )

ρ(x)
def
= ∩ { c ∈ C | x ⊆ c };

(ρ is an upper closure operator in (P(X ),⊆))

(ρ(x) = x ⇐⇒ x ∈ C)

on our trace topology, ρ = ρ∗�.

Dense sets:

x ⊆ X is dense if ρ(x) = X ;

on our trace topology, dense sets are liveness properties.

course 03-A Properties Antoine Miné p. 20 / 26



Trace properties

Decomposition theorem

Theorem: decomposition on a topological space

Any set x ⊆ X is the intersection of a closed set and a dense set.

proof:

We have x = ρ(x) ∩ (x ∪ (X \ ρ(x))). Indeed:
ρ(x)∩ (x ∪ (X \ ρ(x))) = (ρ(x)∩ x)∪ (ρ(x)∩ (X \ ρ(x))) = ρ(x)∩ x = x
as x ⊆ ρ(x).

ρ(x) is closed

x ∪ (X \ ρ(x)) is dense because:
ρ(x ∪ (X \ ρ(x))) ⊇ ρ(x) ∪ ρ(X \ ρ(x))

⊇ ρ(x) ∪ (X \ ρ(x))
= X

Consequence: on trace properties

Every trace property is the conjunction of
a safety property and a liveness property.
(proving a trace property can be decomposed into

a soundness proof and a liveness proof)
course 03-A Properties Antoine Miné p. 21 / 26



Program properties

Program properties

course 03-A Properties Antoine Miné p. 22 / 26



Program properties

Properties

We generalize the notion of properties and program verification.

General setting:

programs: prog ∈ Prog

semantics: J · K : Prog → D in some semantic domain D

property: the set of allowed program semantics P ∈ P(D)

⊆ gives an information order on properties

P ⊆ P ′ means that P ′ is weaker than P (allows more semantics)

verification problem: J prog K ∈ P

course 03-A Properties Antoine Miné p. 23 / 26



Program properties

Collecting semantics

Collecting semantics: Col : Prog → P(D)

Col(prog)
def
= {J prog K }

Col(prog) is the strongest property of a program in P(D)
(relative to the choice of the semantic domain D and function J · K )

we can interpret program verification as property inclusion:
Col(prog) ⊆ P
P is weaker than Col(prog) in the information order of properties

generally, the collecting semantics cannot be computed;
we settle for a weaker property S ] that

is sound: Col(prog) ⊆ S]

implies the desired property: S] ⊆ P

course 03-A Properties Antoine Miné p. 24 / 26



Program properties

Retrieving state and trace properties

Reachability state semantics:

D def
= P(Σ)

J · K def
= R(I)

Trace semantics:

D def
= P(Σ∞)

J · K def
= M∞ ∩ (I · Σ∞)

State and trace properties: interpreted in P(D)

ρ↓(x) for some x ∈ D
where ρ↓(x)

def
= { y ∈ D | y ⊆ x } ∈ P(D)

(proof: A ⊆ B ⇐⇒ A ∈ ρ↓(B))

course 03-A Properties Antoine Miné p. 25 / 26



Program properties

Non-trace properties

Note: expressing properties in P(D)
is more general than expressing properties in D

Example: non-interference for variable X

P
def
= {T ∈ P(Σ∗) | ∀σ0, . . . , σn ∈ T : ∀σ′0:σ0 ≡ σ′0 =⇒

∃σ′0, . . . , σ′m ∈ T :σ′m ≡ σm }

where (`, ρ) ≡ (`′, ρ′) ⇐⇒ ` = `′ ∧ ∀V 6= X : ρ(V ) = ρ′(V )

(changing the initial value of X does not affect the set of final

environments up to the value of X )

There is no Q ⊆ Σ∞ such that P = ρ↓(Q).
=⇒ non-interference is not a trace property in P(Σ∞).

course 03-A Properties Antoine Miné p. 26 / 26


	State properties
	Trace properties
	Program properties

