Properties

MPRI 2–6: Abstract Interpretation, application to verification and static analysis

Antoine Miné

year 2013-2014

course 03-A 4 October 2013

State properties

State properties

State property: $P \in \mathcal{P}(\Sigma)$.

Verification problem: $\mathcal{R}(\mathcal{I}) \subseteq P$.

(all the states reachable from \mathcal{I} are in P)

Examples:

- absence of blocking: $P \stackrel{\text{def}}{=} \Sigma \setminus \mathcal{B}$,
- the variables remain in a safe range,
- dangerous program locations cannot be reached.

Invariance proof method

Invariance proof method: find an inductive invariant $I \subseteq \Sigma$

I ⊆ *I* (contains initial states)

• $\forall \sigma \in I: \sigma \rightarrow_{\tau} \sigma' \implies \sigma' \in I$ (invariant by program transition)

that implies the desired property: $I \subseteq P$.

Link with the state semantics $\mathcal{R}(\mathcal{I})$:

Given $F_{\mathcal{R}}(S) \stackrel{\text{def}}{=} \mathcal{I} \cup \text{post}_{\tau}(S)$, we have $F_{\mathcal{R}}(I) \subseteq I$ $\implies I$ is a post-fixpoint of $F_{\mathcal{R}}$.

Recall that
$$\mathcal{R}(\mathcal{I}) = \operatorname{lfp} F_{\mathcal{R}}$$

 $\implies \mathcal{R}(\mathcal{I})$ is the tightest inductive invariant

State properties

Hoare logic proof method

Idea:

- annotate program points with local sate invariants in $\mathcal{P}(\Sigma)$
- use logic rules to prove their correctness

 $\frac{\{P\}\operatorname{stat}_{1}\{R\} \quad \{R\} \operatorname{stat}_{2}\{Q\}}{\{P[e/X]\} X \leftarrow e\{P\}} \quad \frac{\{P\}\operatorname{stat}_{1}\{R\} \quad \{R\} \operatorname{stat}_{2}\{Q\}}{\{P\}\operatorname{stat}_{1};\operatorname{stat}_{2}\{Q\}}$ $\frac{\{P \land b\}\operatorname{stat}\{Q\} \quad P \land \neg b \Rightarrow Q}{\{P\}\operatorname{if} b \operatorname{then} \operatorname{stat}\{Q\}} \quad \frac{\{P \land b\}\operatorname{stat}\{P\}}{\{P\}\operatorname{while} b \operatorname{do} \operatorname{stat}\{P \land \neg b\}}$ $\frac{\{P\}\operatorname{stat}\{Q\} \quad P' \Rightarrow P \quad Q \Rightarrow Q'}{\{P'\}\operatorname{stat}\{Q'\}}$

Link with the state semantics $\mathcal{R}(\mathcal{I})$:

Equivalent to an invariant proof, partitioned by program location. Any post-fixpoint of $\alpha_{\mathcal{L}} \circ F_{\mathcal{R}} \circ \gamma_{\mathcal{L}}$ gives valid Hoare triples. $\alpha_{\mathcal{L}}(\mathcal{R}(\mathcal{I})) = lfp(\alpha_{\mathcal{L}} \circ F_{\mathcal{R}} \circ \gamma_{\mathcal{L}})$ gives the tightest Hoare triples.

State properties

Weakest liberal precondition proof methods

- **Idea:** Start with a postcondition $\mathcal{F} \in \mathcal{P}(\Sigma)$ and compute preconditions backwards $P \Rightarrow wlp(stat, Q)$
 - $wlp(X \leftarrow e, Q) \stackrel{\text{def}}{=} Q[e/X]$
 - $wlp((stat_1; stat_2), Q) \stackrel{\text{def}}{=} wlp(stat_1, wlp(stat_2, Q))$
 - $wlp(if \ b \ then \ stat, Q) \stackrel{\text{def}}{=} (b \Rightarrow wlp(stat, Q)) \land (\neg b \Rightarrow Q)$
 - wlp(while b do stat, Q) $\stackrel{\text{def}}{=}$

 $I \land ((I \land b) \Rightarrow wlp(stat, I)) \land ((I \land \neg b) \Rightarrow Q)$

(where the loop invariant I is generally provided by the user) $(P \Rightarrow wlp(stat, Q) \text{ is equivalent to } \{P\} stat \{Q\})$

Link with the state semantics $S(\mathcal{Y})$: (recall $S(\mathcal{Y}) = \text{gfp } F_S$ where $F_S(S) \stackrel{\text{def}}{=} \mathcal{Y} \cap \widetilde{\text{pre}}_{\tau}(S)$) Equivalent to sufficient preconditions, partitioned by location: any pre-fixpoint of $\alpha_{\mathcal{L}} \circ F_S \circ \gamma_{\mathcal{L}}$ gives valid liberal preconditions; $\alpha_{\mathcal{L}}(S(\mathcal{F})) = \text{gfp}(\alpha_{\mathcal{L}} \circ F_R \circ \gamma_{\mathcal{L}})$ gives the weakest liberal preconditions while inferring loop invariants!

course 03-A

Trace properties

Trace properties

 $\underline{\text{Trace property:}} \quad P \in \mathcal{P}(\Sigma^{\infty})$

 $\underline{\text{Verification problem:}} \quad \mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \subseteq P$

Examples:

- termination: $P \stackrel{\text{def}}{=} \Sigma^*$,
- non-termination: $P \stackrel{\text{def}}{=} \Sigma^{\omega}$,
- any state property $S \subseteq \Sigma$: $P \stackrel{\text{def}}{=} S^{\infty}$,
- maximal execution time: $P \stackrel{\text{def}}{=} \Sigma^{\leq k}$,
- minimal execution time: $P \stackrel{\text{def}}{=} \Sigma^{\geq k}$,
- ordering, e.g.: $P \stackrel{\text{def}}{=} (\Sigma \setminus \{b\})^* \cdot a \cdot \Sigma^* \cdot b \cdot \Sigma^\infty$. (*a* and *b* occur, and *a* occurs before *b*)

Safety properties

- **Idea:** a safety property *P* models that "nothing bad ever occurs"
 - P is provable by exhaustive testing; (observe the prefix trace semantics: T_P(I) ⊆ P)
 - *P* is disprovable by finding a single finite execution not in *P*.

Examples:

- any state property: $P \stackrel{\text{def}}{=} S^{\infty}$ for $S \subseteq \Sigma$,
- ordering: P ^{def} = Σ[∞] \ ((Σ \ {a})* ⋅ b ⋅ Σ[∞]), (no b can appear without an a before, but we can have only a, or neither a nor b) (not a state property)
- but termination P ^{def} = Σ* is not a safety property. (disproving requires exhibiting an *infinite* execution)

Trace properties

Definition of safety properties

<u>Reminder</u>: finite prefix abstraction (simplified to allow ϵ) $(\mathcal{P}(\Sigma^{\infty}), \subseteq) \xrightarrow{\gamma_{*\preceq}} (\mathcal{P}(\Sigma^{*}), \subseteq)$ • $\alpha_{*\preceq}(T) \stackrel{\text{def}}{=} \{ t \in \Sigma^{*} | \exists u \in T : t \preceq u \}$ • $\gamma_{*\preceq}(T) \stackrel{\text{def}}{=} \{ t \in \Sigma^{\infty} | \forall u \in \Sigma^{*} : u \preceq t \implies u \in T \}$

The associated upper closure $\rho_{*\preceq} \stackrel{\text{def}}{=} \gamma_{\preceq} \circ \alpha_{\preceq}$ is: $\rho_{*\preceq} = \lim \circ \rho_p$ where:

- $\rho_p(T) \stackrel{\text{def}}{=} \{ u \in \Sigma^{\infty} \mid \exists t \in T : u \leq t \},$
- $\lim(T) \stackrel{\text{def}}{=} T \cup \{ t \in \Sigma^{\omega} \mid \forall u \in \Sigma^* \colon u \leq t \implies u \in T \}.$

Definition: $P \in \mathcal{P}(\Sigma^{\infty})$ is a safety property if $P = \rho_{*\preceq}(P)$.

Definition of safety properties (examples)

Definition: $P \subseteq \mathcal{P}(\Sigma^{\infty})$ is a safety property if $P = \rho_{*\preceq}(P)$.

Examples and counter-examples:

• state property $P \stackrel{\text{def}}{=} S^{\infty}$ for $S \subseteq \Sigma$:

 $\rho_p(S^\infty) = \lim(S^\infty) = S^\infty \Longrightarrow \text{ safety};$

• termination $P \stackrel{\text{def}}{=} \Sigma^*$:

 $\rho_{\rho}(\Sigma^{*}) = \Sigma^{*}, \text{ but } \lim(\Sigma^{*}) = \Sigma^{\infty} \neq \Sigma^{*} \Longrightarrow \text{ not safety;}$

• even number of steps $P \stackrel{\text{def}}{=} (\Sigma^2)^{\infty}$: $\rho_p((\Sigma^2)^{\infty}) = \Sigma^{\infty} \neq (\Sigma^2)^{\infty} \implies \text{not safety.}$

Proving safety properties

Invariance proof method: find an inductive invariant I

- set of finite traces $I \subseteq \Sigma^*$
- $\bullet \ \mathcal{I} \subseteq \textit{I}$

(contains traces reduced to an initial state)

• $\forall \sigma_0, \dots, \sigma_n \in I: \sigma_n \to_{\tau} \sigma_{n+1} \implies \sigma_0, \dots, \sigma_n, \sigma_{n+1} \in I$ (invariant by program transition)

and implies the desired property: $I \subseteq P$.

Link with the finite prefix trace semantics $\mathcal{T}_p(\mathcal{I})$:

An inductive invariant is a post-fixpoint of F_p : $F_p(I) \subseteq I$ where $F_p(T) \stackrel{\text{def}}{=} \mathcal{I} \cup T \frown \tau$. $\mathcal{T}_p(\mathcal{I}) = \text{lfp } F_p$ is the tightest inductive invariant.

Correctness of the invariant method for safety

Soundness:

if P is a safety property and an inductive invariant I exists then: $\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \subseteq P$

proof:

Using the Galois connection between \mathcal{M}_{∞} and \mathcal{T} , we get: $\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \subseteq \rho_{* \preceq} (\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty})) = \gamma_{* \preceq} (\alpha_{* \preceq} (\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}))) = \gamma_{* \preceq} (\alpha_{* \preceq} (\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}))) = \gamma_{* \preceq} (\mathcal{T} \cap (\mathcal{I} \cdot \Sigma^{*})) = \gamma_{* \preceq} (\mathcal{T}_{p}(\mathcal{I})).$ Using the link between invariants and the finite prefix trace semantics, we have: $\mathcal{T}_{p}(\mathcal{I}) \subseteq \mathcal{I} \subseteq \mathcal{P}$. As P is a safety property, $P = \gamma_{* \preceq}(\mathcal{P})$, so, $\gamma_{* \preceq}(\mathcal{T}_{p}(\mathcal{I})) \subseteq \gamma_{* \preceq}(\mathcal{P}) = \mathcal{P}$, and so, $\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \subseteq \mathcal{P}$.

Completeness: an inductive invariant always exists

proof: $\mathcal{T}_p(\mathcal{I})$ provides an inductive invariant.

Disproving safety properties

Proof method:

A safety property P can be disproved by constructing a finite prefix of execution that does not satisfy the property:

$$\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \not\subseteq P \implies \exists t \in \mathcal{T}_{p}(\mathcal{I}): t \notin P$$

proof:

By contradiction, assume that no such trace exists, i.e., $\mathcal{T}_p(\mathcal{I}) \subseteq P$. We proved in the previous slide that this implies $\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \subseteq P$.

Examples:

• disproving a state property $P \stackrel{\text{def}}{=} S^{\infty}$:

 \Rightarrow find a partial execution containing a state in $\Sigma \setminus S$;

• disproving an order property $P \stackrel{\text{def}}{=} \Sigma^{\infty} \setminus ((\Sigma \setminus \{a\})^* \cdot b \cdot \Sigma^{\infty})$ \Rightarrow find a partial execution where *b* appears and not *a*.

Liveness properties

<u>Idea</u>: liveness property $P \in \mathcal{P}(\Sigma^{\infty})$

Liveness properties model that "something good eventually occurs"

- *P* cannot be proved by testing (if nothing good happens in a prefix execution, it can still happen in the rest of the execution)
- disproving P requires exhibiting an infinite execution not in P

Examples:

- termination: $P \stackrel{\text{def}}{=} \Sigma^*$,
- inevitability: $P \stackrel{\text{def}}{=} \Sigma^* \cdot a \cdot \Sigma^\infty$,

(a eventually occurs in all executions)

• state properties are not liveness properties.

Definition of liveness properties

Definition: $P \in \mathcal{P}(\Sigma^{\infty})$ is a liveness property if $\rho_{*\preceq}(P) = \Sigma^{\infty}$.

Examples and counter-examples:

• termination $P \stackrel{\text{def}}{=} \Sigma^*$:

 $ho_{
ho}(\Sigma^*) = \Sigma^*$ and $\lim(\Sigma^*) = \Sigma^{\infty} \Longrightarrow$ liveness;

• inevitability:
$$P \stackrel{\text{def}}{=} \Sigma^* \cdot a \cdot \Sigma^{\infty}$$

 $\rho_{\rho}(P) = P \cup \Sigma^* \text{ and } \lim(P \cup \Sigma^*) = \Sigma^{\infty} \implies \text{liveness};$

• state property
$$P \stackrel{\text{def}}{=} S^{\infty}$$
 for $S \subseteq \Sigma$:

 $\rho_p(S^\infty) = \lim(S^\infty) = S^\infty \neq \Sigma^\infty$ if $S \neq \Sigma \Longrightarrow$ not liveness;

• maximal execution time $P \stackrel{\text{def}}{=} \Sigma^{\leq k}$:

 $\rho_{\rho}(\Sigma^{\leq k}) = \lim(\Sigma^{\leq k}) = \Sigma^{\leq k} \neq \Sigma^{\infty} \Longrightarrow \text{ not liveness;}$

• the only property which is both safety and liveness is $\Sigma^\infty.$

Proving liveness properties

Variance proof method: (informal definition)

Find a decreasing quantity until something good happens.

Example: termination proof

• find $f : \Sigma \to S$ where (S, \sqsubseteq) is well-ordered;

(f is called a "ranking function")

•
$$\sigma \in \mathcal{B} \implies \mathbf{f} = \min \mathcal{S};$$

•
$$\sigma \to_{\tau} \sigma' \implies f(\sigma') \sqsubset f(\sigma).$$

(f counts the number of steps remaining before termination)

Disproving liveness properties

Property:

If *P* is a liveness property, then $\forall t \in \Sigma^* : \exists u \in P : t \leq u$.

proof:

By definition of liveness, $\rho_{*\preceq}(P) = \Sigma^{\infty}$, so $t \in \rho_{*\preceq}(P) = \lim(\alpha_p(P))$. As $t \in \Sigma^*$ and lim only adds infinite traces, $t \in \alpha_p(P)$. By definition of α_p , $\exists u \in P : t \preceq u$.

Consequence:

• liveness cannot be disproved by testing.

Trace topology

Topology on X, defined by

• open sets \mathcal{O} are derived from closed sets: $\mathcal{O} \stackrel{\text{def}}{=} \{ X \setminus c \, | \, c \in \mathcal{C} \}$

(closed by unions and finite intersections)

(we can alternatively define a topology by \mathcal{O} , and derive \mathcal{C} from \mathcal{O})

Definition: we define a topology on traces by setting:

Closure and density

Topological closure: $\rho : \mathcal{P}(X) \to \mathcal{P}(X)$

•
$$\rho(x) \stackrel{\text{def}}{=} \cap \{ c \in \mathcal{C} | x \subseteq c \};$$

(ρ is an upper closure operator in ($\mathcal{P}(X), \subseteq$))
($\rho(x) = x \iff x \in \mathcal{C}$)

• on our trace topology,
$$\rho = \rho_{* \preceq}$$
.

Dense sets:

•
$$x \subseteq X$$
 is dense if $\rho(x) = X$;

• on our trace topology, dense sets are liveness properties.

Decomposition theorem

Theorem: decomposition on a topological space

Any set $x \subseteq X$ is the intersection of a closed set and a dense set.

proof:

We have $x = \rho(x) \cap (x \cup (X \setminus \rho(x)))$. Indeed: $\rho(x) \cap (x \cup (X \setminus \rho(x))) = (\rho(x) \cap x) \cup (\rho(x) \cap (X \setminus \rho(x))) = \rho(x) \cap x = x$ as $x \subseteq \rho(x)$.

• $\rho(x)$ is closed

•
$$x \cup (X \setminus \rho(x))$$
 is dense because:
 $\rho(x \cup (X \setminus \rho(x))) \supseteq \rho(x) \cup \rho(X \setminus \rho(x))$
 $\supseteq \rho(x) \cup (X \setminus \rho(x))$
 $= X$

Consequence: on trace properties

Every trace property is the conjunction of

a safety property and a liveness property.

(proving a trace property can be decomposed into

a soundness proof and a liveness proof)

Program properties

Properties

We generalize the notion of properties and program verification.

General setting:

- programs: $prog \in Prog$
- semantics: $[\![\cdot]\!] : Prog \to \mathcal{D}$ in some semantic domain \mathcal{D}
- property: the set of allowed program semantics $P \in \mathcal{P}(\mathcal{D})$

 \subseteq gives an information order on properties

 $P \subseteq P'$ means that P' is weaker than P (allows more semantics)

• verification problem: $[prog] \in P$

Collecting semantics

- $Col(prog) \stackrel{\text{def}}{=} \{ \llbracket prog \rrbracket \}$
- Col(prog) is the strongest property of a program in P(D) (relative to the choice of the semantic domain D and function [[·]])
- we can interpret program verification as property inclusion: $Col(prog) \subseteq P$

P is weaker than Col(prog) in the information order of properties

- generally, the collecting semantics cannot be computed; we settle for a weaker property S[♯] that
 - is sound: $Col(prog) \subseteq S^{\sharp}$
 - implies the desired property: $S^{\sharp} \subseteq P$

Program properties

Retrieving state and trace properties

Reachability state semantics:

- $\mathcal{D} \stackrel{\text{def}}{=} \mathcal{P}(\Sigma)$
- $\llbracket \cdot \rrbracket \stackrel{\text{def}}{=} \mathcal{R}(\mathcal{I})$

Trace semantics:

•
$$\mathcal{D} \stackrel{\text{def}}{=} \mathcal{P}(\Sigma^{\infty})$$

$$lacksquare$$
 $\llbracket \cdot
rbracket \stackrel{ ext{def}}{=} \mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty})$

State and trace properties: interpreted in $\mathcal{P}(\mathcal{D})$

 $\rho_{\downarrow}(x)$ for some $x \in \mathcal{D}$ where $\rho_{\downarrow}(x) \stackrel{\text{def}}{=} \{ y \in \mathcal{D} \mid y \subseteq x \} \in \mathcal{P}(\mathcal{D})$

 $(\underline{\text{proof:}} \ A \subseteq B \iff A \in \rho_{\downarrow}(B))$

Non-trace properties

 $\frac{\text{Note:}}{\text{is more general than expressing properties in } \mathcal{P}(\mathcal{D})}$

Example: non-interference for variable X

$$P \stackrel{\text{def}}{=} \{ T \in \mathcal{P}(\Sigma^*) \mid \forall \sigma_0, \dots, \sigma_n \in T \colon \forall \sigma'_0 \colon \sigma_0 \equiv \sigma'_0 \implies \exists \sigma'_0, \dots, \sigma'_m \in T \colon \sigma'_m \equiv \sigma_m \}$$

where $(\ell, \rho) \equiv (\ell', \rho') \iff \ell = \ell' \land \forall V \neq X : \rho(V) = \rho'(V)$

(changing the initial value of X does not affect the set of final environments up to the value of X)

There is no $Q \subseteq \Sigma^{\infty}$ such that $P = \rho_{\downarrow}(Q)$. \implies non-interference is not a trace property in $\mathcal{P}(\Sigma^{\infty})$.