Properties

MPRI 2-6: Abstract Interpretation,
application to verification and static analysis

course 03-A

Antoine Miné

year 2013-2014

course 03-A
4 October 2013

Properties Antoine Miné

p.1/26

State properties

State properties

State properties

State property: P € P(X).

Verification problem: R(Z) C P.

(all the states reachable from Z are in P)
Examples:

e absence of blocking: P & ¥\ B,
@ the variables remain in a safe range,

@ dangerous program locations cannot be reached.

course 03-A Properties Antoine Miné p.-3/26

State properties

Invariance proof method

Invariance proof method: find an inductive invariant | C &

e 1C|
(contains initial states)

eVoclo—=,0 = o €l
(invariant by program transition)

that implies the desired property: | C P.

Link with the state semantics R(Z):

Given Fr(S) & Z U post.(S), we have Fg(l) C I
= | is a post-fixpoint of Fp.

Recall that R(Z) = Ifp Fr
= R(Z) is the tightest inductive invariant.

course 03-A Properties Antoine Miné p.-4/26

State properties

Hoare logic proof method

Idea:
@ annotate program points with local sate invariants in P(X)

@ use logic rules to prove their correctness

{P} stat; {R} {R}stat,{Q}

{Ple/X]} X «+ e{P} {P} staty; stat, {Q}
{PAb}stat{Q} PA-b=Q {P A b} stat {P}
{P}if b then stat {Q} {P} while b do stat {P A —b}

{P}stat{Q} P'=P Q=Q
{P'} stat {Q"}

Link with the state semantics R(Z):

Equivalent to an invariant proof, partitioned by program location.
Any post-fixpoint of az o Fr o v, gives valid Hoare triples.
ar(R(Z)) = Ifp(ag o Fr o yr) gives the tightest Hoare triples.

course 03-A Properties Antoine Miné p.5/26

State properties

Weakest liberal precondition proof methods

Idea: Start with a postcondition F € P(X)
and compute preconditions backwards P = wip(stat, Q)
wip(X + e, Q) & Q[e/X]
wip((staty; staty), Q) = wip(stat1, wip(statz, Q))
wip(if b then stat, Q) < (b = wip(stat, Q)) A (—b = Q)
wip(while b do stat, Q) &
I'A((I A b) = wip(stat, 1)) A((I A—=b) = Q)

(where the loop invariant / is generally provided by the user)
(P = wip(stat, Q) is equivalent to {P} stat {Q})

e 6 o6 o

Link with the state semantics S()):
(recall S()) = gfp Fs where F5(S) < Y npre.(S))

Equivalent to sufficient preconditions, partitioned by location:
any pre-fixpoint of a o Fs o~y gives valid liberal preconditions;
ar(S(F)) = gfp(ag o Fr ov.) gives the weakest liberal

preconditions while inferring loop invariants!
course 03-A Properties Antoine Miné p.6 /26

Trace properties

Trace properties

Trace properties

Trace property: P € P(X)

Verification problem: M N (Z-X*) C

Examples:

termination:P & Z*
non-termination: P & v,
any state property S C ¥: P & §°°,

def
maximal execution time: P & Y=<k

def
minimal execution time: P = Y2k,

ordering, e.g.: P & (Z\ {b})*-a-X*

(a and b occur, and a occurs before b)

course 03-A Properties

-b- X

Antoine Miné

p.8/26

Trace properties

Safety properties

Idea: a safety property P models that “nothing bad ever occurs”

@ P is provable by exhaustive testing;
(observe the prefix trace semantics: 7,(Z) C P)

@ P is disprovable by finding a single finite execution not in P.

Examples:
@ any state property: P L sofrsScy,
o ordering: P & ¥\ ((£\ {a})* - b- L),

(no b can appear without an a before,
but we can have only a, or neither a nor b)

(not a state property)

e but termination P & ¥* is not a safety property.
(disproving requires exhibiting an infinite execution)

course 03-A Properties Antoine Miné p-9/26

Trace properties

Definition of safety properties

Reminder: finite prefix abstraction (simplified to allow ¢)
V=< «
(P(ZOO)7 g) T (’P(z)? g)

def

o a,<(T) ={teX|JueT:t<u}
0 7.<(T) = {teX®|VueTu<t = uecT}

H def .
The associated upper closure p.< = <o a< is:
p«=< = limop, where:
def

° pp(T) = {ueX>|3teTiu=t}
o lim(T) = TU{teX¥|VueX u=<t — uvecT}

Definition: P € P(X*°) is a safety property if P = p.<(P).

course 03-A Properties Antoine Miné p. 10 / 26

Trace properties

Definition of safety properties (examples)

Definition: P C P(X*°) is a safety property if P = p.<(P).

Examples and counter-examples:

@ state property P & S® for SC X
pp(5%°) = 1im(5%°) = 5° = safety;

e termination P & ¥*:
pp(X*) = X%, but lim(X*) = £ # ¥* = not safety;

e even number of steps P = (£2)°:
pp((£2)%°) = T # (¥£?)°>° = not safety.

course 03-A Properties Antoine Miné

p. 11 / 26

Trace properties

Proving safety properties

Invariance proof method: find an inductive invariant /

@ set of finite traces | C >*

e 7C|

(contains traces reduced to an initial state)

e Vog,...,on€liop =+ 0py1 = 00,...,0n,0n+1 € 1
(invariant by program transition)

and implies the desired property: | C P.

Link with the finite prefix trace semantics 7,(Z):

An inductive invariant is a post-fixpoint of Fp: Fy(/) C |
def

where Fp(T) = ZU T 7.
To(Z) = Ifp Fp is the tightest inductive invariant.

course 03-A Properties Antoine Miné

p. 12 / 26

Trace properties

Correctness of the invariant method for safety

Soundness:

if P is a safety property and an inductive invariant / exists
then: Moo N(Z-X*®)CP

proof:

Using the Galois connection between M, and T, we get:

Moo N(Z-E%) C pux (Moo N(Z-X%)) = Yux(ux (Mo N(I-X%))) =
Yoz (@e(Mo) A (T -2)) = 7e<(T 01 (T - £9)) = 70x(To(T).

Using the link between invariants and the finite prefix trace semantics, we
have: T,(Z) C I C P.

As P is a safety property, P = v.<(P), 50, v.<(75(Z)) C v.<(P) = P,
and so, M, N(Z-X*>®°)CP.

Completeness: an inductive invariant always exists

proof: T,(Z) provides an inductive invariant.

course 03-A Properties Antoine Miné p.13 /26

Trace properties

Disproving safety properties

Proof method:

A safety property P can be disproved by constructing a finite prefix
of execution that does not satisfy the property:

MoNZ-EX)ZP = FteTH(I):t¢P

proof:
By contradiction, assume that no such trace exists, i.e., T,(Z) C P.
We proved in the previous slide that this implies M., N (Z - X*>°) C P.

Examples:

@ disproving a state property P & goo,
= find a partial execution containing a state in X \ S;

def

e disproving an order property P = £\ ((X\ {a})" - b-)
= find a partial execution where b appears and not a.

course 03-A Properties Antoine Miné p. 14 / 26

Trace properties

Liveness properties

Idea: liveness property P € P(¥X)

Liveness properties model that “something good eventually occurs’

@ P cannot be proved by testing
(if nothing good happens in a prefix execution,

it can still happen in the rest of the execution)

@ disproving P requires exhibiting an infinite execution not in P

Examples:

o termination: P & 2

. . . def
@ inevitability: P = ¥*-a-X*>,
(a eventually occurs in all executions)

@ state properties are not liveness properties.

course 03-A Properties Antoine Miné p. 15/ 26

Trace properties

Definition of liveness properties

Definition: P € P(X*°) is a liveness property if p.<(P) = .

Examples and counter-examples:

e termination P & ¥*:
pp(X*) =X* and lim(X*) = X = liveness;

e inevitability: P & ¥*.a. ¥
pp(P) = PUZX" and lim(P UX*) = ¥>° = liveness;

@ state property P 5% for SC X
pp(5°) =1im(5>°) = 5% # X if S # ¥ = not liveness;

@ maximal execution time P & ¥ <k.
pp(Z5F) = lim(E=K) = £k £ $°° — not liveness;

@ the only property which is both safety and liveness is >°°.

course 03-A Properties Antoine Miné

p. 16 / 26

Trace properties

Proving liveness properties

Variance proof method: (informal definition)

Find a decreasing quantity until something good happens.

Example: termination proof
o find f : ¥ — S where (S,C) is well-ordered;
(f is called a “ranking function”)

eceB — f=minS;
e 0 —,0 = f(d)C (o).

(f counts the number of steps remaining before termination)

course 03-A Properties Antoine Miné

p. 17 / 26

Trace properties

Disproving liveness properties

Property:
If P is a liveness property, then Vt € X*:Ju € P:t < u.

proof:

By definition of liveness, p.<(P) =X, so t € p.<(P) = lim(a,(P)).
As t € * and lim only adds infinite traces, t € ap(P).

By definition of ap, Ju € P:t < u.

Consequence:

@ liveness cannot be disproved by testing.

course 03-A Properties Antoine Miné p. 18 / 26

Trace properties

Trace topology

Topology on X, defined by

e a family C C P(X) of closed sets

e c,d/eC = cUcdecC (closed by finite unions)
e CCC = n{clcecC}ecC (closed by intersections)

@ open sets O are derived from closed sets:
O = {X\c|lcecC}
(closed by unions and finite intersections)
(we can alternatively define a topology by O, and derive C from O)

Definition: we define a topology on traces by setting:
def

e X = X

def

o C = {PeP(X®)|Pis a safety property }

course 03-A Properties Antoine Miné p.19 /26

Trace properties

Closure and density

Topological closure: p: P(X) — P(X)

def

o p(x) = N{celC|xCc}
(p is an upper closure operator in (P(X), C))
(p(x) =x <= x€()

@ on our trace topology, p = p.<.

Dense sets:

e x C X is dense if p(x) = X;

@ on our trace topology, dense sets are liveness properties.

course 03-A Properties Antoine Miné

p. 20 / 26

Trace properties

Decomposition theorem

Theorem: decomposition on a topological space
Any set x C X is the intersection of a closed set and a dense set.
proof:

We have x = p(x) N (x
p(x) N (x U (X \ p(x)))

as x C p(x).

U (X \ p(x))). Indeed:
= (p(x)Nx) U (p(x) N (X \ p(x))) = p(x) N x = x

@ p(x) is closed
@ xU (X \ p(x)) is dense because:

p(x U (X\ p(x))) 2 p(x) U p(X \ p(x))

2 p(x) U (X\ p(x))
=X

Consequence: on trace properties

Every trace property is the conjunction of
a safety property and a liveness property.
(proving a trace property can be decomposed into
a soundness proof and a liveness proof)
course 03-A Properties Antoine Miné p.21/26

Program properties

Program properties

Properties

We generalize the notion of properties and program verification.

General setting:

@ programs: prog € Prog
e semantics: [-] : Prog — D in some semantic domain D

@ property: the set of allowed program semantics P € P(D)

C gives an information order on properties
P C P’ means that P’ is weaker than P (allows more semantics)

e verification problem: [prog] € P

course 03-A Properties Antoine Miné p.-23 /26

Program properties

Collecting semantics

Collecting semantics: Col : Prog — P(D)

e Col(prog) = {lprog]}

e Col(prog) is the strongest property of a program in P(D)
(relative to the choice of the semantic domain D and function [[-])

@ we can interpret program verification as property inclusion:
Col(prog) C P

P is weaker than Col(prog) in the information order of properties

o generally, the collecting semantics cannot be computed;
we settle for a weaker property S* that

e is sound: Col(prog) C S*
o implies the desired property: S* C P

course 03-A Properties Antoine Miné p. 24 /26

Program properties

Retrieving state and trace properties

Reachability state semantics:

o D= P(Y)
o [[] = R(T)

Trace semantics:

def

e D = P(X™)
o [[] & Mun(Z-T%)

State and trace properties: interpreted in P(D)

p1(x) for some x € D
where p|(x) £ {yeD|yCx}ePD)
(proof: AC B <= A€ py(B))

course 03-A Properties Antoine Miné p.25 /26

Program properties

Non-trace properties

Note: expressing properties in P(D)
is more general than expressing properties in D

Example: non-interference for variable X
P={TeP(*)| Voo,...,on € T:Vol:00 =0 =
Jog,...,omE€ Ti0, =0m}
where (£,p) = (0',p)) < L =0 AVV £ X:p(V) = p/(V)
(changing the initial value of X does not affect the set of final
environments up to the value of X)

There is no Q@ C X such that P = p (Q).
= non-interference is not a trace property in P(X*°).

course 03-A Properties Antoine Miné p. 26 / 26

	State properties
	Trace properties
	Program properties

