Relational Numerical Abstract Domains

MPRI 2-6: Abstract Interpretation, application to verification and static analysis

Antoine Miné
year 2013-2014
course 05-A
18 October 2013

Outline

- The need for relational domains
- Presentation of a few relational numerical abstract domains
- linear equality domains
- polyhedra domain
- weakly relational domains: zones, octagons
- Bibliography

Shortcomings of non-relational domains

Accumulated loss of precision

Non-relation domains cannot represent variable relationships.

Rate limiter

$$
\begin{aligned}
& \mathrm{Y}:=0 ; \text { while } 1=1 \text { do } \\
& \mathrm{X}:=[-128,128] ; \mathrm{D}:=[0,16] ; \\
& \mathrm{S}:=\mathrm{Y} ; \mathrm{Y}:=\mathrm{X} ; \mathrm{R}:=\mathrm{X}-\mathrm{S} ; \\
& \text { if } \mathrm{R}<=-\mathrm{D} \text { then } \mathrm{Y}:=\mathrm{S}-\mathrm{D} \text { fi; } \\
& \text { if } \mathrm{R}>=\mathrm{D} \text { then } \mathrm{Y}:=\mathrm{S}+\mathrm{D} \text { fi } \\
& \text { done }
\end{aligned}
$$

X: input signal
Y: output signal
S: last output
R: delta Y-S
D: max. allowed for $|R|$

Iterations in the interval domain (without widening):

$\mathcal{X}_{0}^{\sharp 0}$	$\mathcal{X}_{0}^{\sharp 1}$	$\mathcal{X}_{0}^{\sharp 2}$	\ldots	$\mathcal{X}_{0}^{\sharp n}$
$\mathrm{Y}=0$	$\|\mathrm{Y}\| \leq 144$	$\|\mathrm{Y}\| \leq 160$	\ldots	$\|\mathrm{Y}\| \leq 128+16 n$

In fact, $\mathrm{Y} \in[-128,128]$ always holds.
To prove that, e.g. $\mathrm{Y} \geq-128$, we must be able to:

- represent the properties $R=X-S$ and $R \leq-D$,
- combine them to deduce $\mathrm{S}-\mathrm{X} \geq \mathrm{D}$, and then $\mathrm{Y}=\mathrm{S}-\mathrm{D} \geq \mathrm{X}$.

The need for relational loop invariants

To prove some invariant after the end of a loop, we often need to find a loop invariant of a more complex form.

relational loop invariant

```
X:=0; I:=1;
while - I<5000 do
    if [0,1]=1 then X:=X+1 else X:=X-1 fi;
    I:=I+1
done
```

A non-relational analysis finds at that $\mathrm{I}=5000$ and $\mathrm{X} \in \mathbb{Z}$.
The best invariant is: $(\mathrm{I}=5000) \wedge(\mathrm{X} \in[-4999,4999]) \wedge(\mathrm{X} \equiv 0[2])$.
To find this non-relational invariant, we must find a relational loop invariant at $\bullet:(-\mathrm{I}<\mathrm{X}<\mathrm{I}) \wedge(\mathrm{X}+\mathrm{I} \equiv 1[2]) \wedge(\mathrm{I} \in[1,5000])$, and apply the loop exit condition $C^{\sharp} \llbracket I>=5000 \rrbracket$.

Modular analysis

```
store the maximum of X,Y,0 into Z
max}(X,Y,Z
    Z :=X ;
    if Y > Z then Z :=Y ;
    if Z < O then Z :=0;
```

Modular analysis:

- analyze a procedure once (procedure summary)
- reuse the summary at each call site (instantiation) \Longrightarrow improved efficiency

Modular analysis

store the maximum of $\mathrm{X}, \mathrm{Y}, 0$ into Z^{\prime}

$$
\begin{aligned}
& \frac{\max }{}(X, Y, Z) \\
& X^{\prime}:=X ; Y^{\prime}:=Y ; Z^{\prime}:=Z ; \\
& Z^{\prime}:=X^{\prime} ; \\
& \text { if } Y^{\prime}>Z^{\prime} \text { then } Z^{\prime}:=Y^{\prime} ; \\
& \text { if } Z^{\prime}<0 \text { then } Z^{\prime}:=0 ; \\
& \left(Z^{\prime} \geq X^{\prime} \wedge Z^{\prime} \geq Y \wedge Z^{\prime} \geq 0 \wedge X^{\prime}=X \wedge Y^{\prime}=Y\right)
\end{aligned}
$$

Modular analysis:

- analyze a procedure once (procedure summary)
- reuse the summary at each call site (instantiation)
\Longrightarrow improved efficiency
- infer a relation between input $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and output $\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}, \mathrm{Z}^{\prime}$ values $\mathcal{P}((\mathbb{V} \rightarrow \mathbb{R}) \times(\mathbb{V} \rightarrow \mathbb{R})) \equiv \mathcal{P}((\mathbb{V} \times \mathbb{V}) \rightarrow \mathbb{R})$
- requires inferring relational information
[Anco10], [Jean09]

Reminders

Syntax

Fixed finite set of variables \mathbb{V}, with value in $\mathbb{\square}, \mathbb{\square} \in\{\mathbb{Z}, \mathbb{Q}, \mathbb{R}\}$
arithmetic expressions:

\exp	$::=$	V	variable $\mathrm{V} \in \mathbb{V}$
	\mid	$-\exp$	negation
	$\exp \diamond \exp$	binary operation: $\diamond \in\{+,-, \times, /\}$	
	$\left[c, c^{\prime}\right]$	constant range, $c, c^{\prime} \in \mathbb{\square} \cup\{ \pm \infty\}$	
		c is a shorthand for $[c, c]$	

commands:

$$
\begin{array}{cccl}
c o m & ::= & V:=\exp & \\
& \text { assignment into } V \in \mathbb{V} \\
& \exp \bowtie 0 & \text { test, } \bowtie \in\{=,<,>,<=,>=,<>\}
\end{array}
$$

Concrete semantics

Semantics of expressions: $\quad \mathbb{E} e \rrbracket:(\mathbb{V} \rightarrow \mathbb{\square}) \rightarrow \mathcal{P}(\square)$

$$
\begin{array}{lll}
\mathrm{E} \llbracket\left[c, c^{\prime} \rrbracket \rrbracket \rho\right. & \stackrel{\text { def }}{=} & \left\{x \in \rrbracket \mid c \leq x \leq c^{\prime}\right\} \\
\mathrm{E} \llbracket \mathrm{~V} \rrbracket \rho & \stackrel{\text { def }}{ } & \{\rho(\mathrm{V})\} \\
\mathrm{E} \llbracket-e \rrbracket \rho & \xlongequal{\text { def }} & \{-v \mid v \in \mathrm{E} \llbracket e \rrbracket \rho\} \\
\mathrm{E} \llbracket e_{1}+e_{2} \rrbracket \rho & \stackrel{\text { def }}{=} & \left\{v_{1}+v_{2} \mid v_{1} \in \mathrm{E} \llbracket e_{1} \rrbracket \rho, v_{2} \in \mathrm{E} \llbracket e_{2} \rrbracket \rho\right\}
\end{array}
$$

Forward commands: $\quad \subset \llbracket c \rrbracket: \mathcal{P}(\mathbb{V} \rightarrow \mathbb{\square}) \rightarrow \mathcal{P}(\mathbb{V} \rightarrow \mathbb{\square})$

$$
\begin{array}{ll}
C \llbracket V:=e \rrbracket \mathcal{X} & \stackrel{\text { def }}{\text { Cef }} \\
\mathrm{C} \llbracket e \bowtie 0 \rrbracket \mathcal{X} & \stackrel{\text { def }}{=} \quad\{\rho \mid \rho \in \mathcal{X}, \exists v \in \mathrm{E} \llbracket e \rrbracket \rho, v \bowtie 0\}
\end{array}
$$

Backward commands: $\overleftarrow{C} \llbracket c \rrbracket: \mathcal{P}(\mathbb{V} \rightarrow \square) \rightarrow \mathcal{P}(\mathbb{V} \rightarrow \rrbracket)$

$$
\begin{array}{ll}
\overleftarrow{C} \llbracket \mathrm{~V}:=e \rrbracket \mathcal{X} & \stackrel{\text { def }}{=} \\
\overleftarrow{C} \llbracket e \bowtie 0 \rrbracket \mathcal{X} & \stackrel{\text { def }}{=} \\
C \llbracket e \bowtie 0 \rrbracket \mathcal{X}
\end{array}
$$

Abstract domain

- Abstract elements:
- \mathcal{D}^{\sharp}, a set of computer-representable elements
- $\gamma: \mathcal{D}^{\sharp} \rightarrow \mathcal{D}$ concretization
- \subseteq^{\sharp}, an approximation order: $\mathcal{X}^{\sharp} \subseteq \mathcal{Y}^{\sharp} \Longrightarrow \gamma\left(\mathcal{X}^{\sharp}\right) \subseteq \gamma\left(\mathcal{Y}^{\sharp}\right)$
- Abstract operators:
- $C^{\sharp} \llbracket c \rrbracket$ such that $\mathrm{C} \llbracket c \rrbracket \gamma\left(\mathcal{X}^{\sharp}\right) \subseteq \gamma\left(\mathrm{C}^{\sharp} \llbracket c \rrbracket \mathcal{X}^{\sharp}\right)$
- \cup^{\sharp} such that $\gamma\left(\mathcal{X}^{\sharp}\right) \cup \gamma\left(\mathcal{Y}^{\sharp}\right) \subseteq \gamma\left(\mathcal{X}^{\sharp} \cup^{\sharp} \mathcal{Y}^{\sharp}\right)$
- \cap^{\sharp} such that $\gamma\left(\mathcal{X}^{\sharp}\right) \cap \gamma\left(\mathcal{Y}^{\sharp}\right) \subseteq \gamma\left(\mathcal{X}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp}\right)$
- $C \sharp \llbracket \overleftarrow{c} \rrbracket$ such that

$$
\gamma\left(\mathcal{X}^{\sharp}\right) \cap \overleftarrow{C} \llbracket c \rrbracket \gamma\left(\mathcal{R}^{\sharp}\right) \subseteq \gamma\left(\mathrm{C}^{\sharp} \llbracket \overleftarrow{c} \rrbracket\left(\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp}\right)\right)
$$

- Fixpoint extrapolation:
- $\nabla:\left(\mathcal{D}^{\sharp} \times \mathcal{D}^{\sharp}\right) \rightarrow \mathcal{D}^{\sharp}$ widening
- $\Delta:\left(\mathcal{D}^{\sharp} \times \mathcal{D}^{\sharp}\right) \rightarrow \mathcal{D}^{\sharp}$ narrowing

Linear equality domains

The affine equality domain

Here $\mathbb{D} \in\{\mathbb{Q}, \mathbb{R}\}$.
We look for invariants of the form:

$$
\bigwedge_{j}\left(\sum_{i=1}^{n} \alpha_{i j} V_{i}=\beta_{j}\right), \alpha_{i j}, \beta_{j} \in \mathbb{0}
$$

where all the $\alpha_{i j}$ and β_{j} are inferred automatically.
We use a domain of affine spaces proposed by [Karr76]:

$$
\mathcal{D}^{\sharp} \stackrel{\text { def }}{=}\{\text { affine subspaces of } \mathbb{V} \rightarrow \mathbb{\square}\}
$$

Affine equality representation

Machine representation: an affine subspace is represented as

- either the constant \perp^{\sharp},
- or a pair $\langle\mathbf{M}, \vec{C}\rangle$ where
- $\mathbf{M} \in \mathbb{a}^{m \times n}$ is a $m \times n$ matrix, $n=|\mathbb{V}|$ and $m \leq n$,
- $\vec{C} \in \square^{m}$ is a row-vector with m rows.
$\langle\mathbf{M}, \vec{C}\rangle$ represents an equation system, with solutions:

$$
\gamma(\langle\mathbf{M}, \vec{C}\rangle) \stackrel{\text { def }}{=}\left\{\vec{V} \in 0^{n} \mid \mathbf{M} \times \vec{V}=\vec{C}\right\}
$$

M should be in row echelon form:

- $\forall i \leq m, \exists k_{i}$ such that $M_{i k_{i}}=1$ and $\forall c<k_{i}, M_{i c}=0, \forall I \neq i, M_{I k_{i}}=0$,
- if $i<i^{\prime}$ then $k_{i}<k_{i^{\prime}}$.

Remarks:

- the representation is unique,
- as $m \leq n=|\mathbb{V}|$, the memory cost is in $\mathcal{O}\left(n^{2}\right)$ at worst,
- T^{\sharp} is represented as the empty equation system: $m=0$.

Normalisation and emptiness testing

Let $\mathbf{M} \times \vec{V}=\vec{C}$ be a system, not necessarily in normal form. The Gaussian reduction tells in $\mathcal{O}\left(n^{3}\right)$ time:

- whether the system is satisfiable, and in that case
- gives an equivalent system in normal form.
i.e. returns an element in \mathcal{D}^{\sharp}.

Example:

$$
\begin{gathered}
\left\{\begin{aligned}
& 2 \mathrm{X}+\mathrm{Y}+\mathrm{Z}=19 \\
& 2 \mathrm{X}+\mathrm{Y}-\mathrm{Z}=9 \\
& \Downarrow \mathrm{Z}=15 \\
& \Downarrow
\end{aligned}\right. \\
\left\{\begin{aligned}
\mathrm{X}+0.5 \mathrm{Y} & =7 \\
\mathrm{Z} & =5
\end{aligned}\right.
\end{gathered}
$$

Normalisation and emptiness testing (cont.)

Gaussian reduction algorithm: $\quad \operatorname{Gauss}(\langle\mathbf{M}, \vec{C}\rangle)$

$$
\begin{aligned}
& \begin{array}{l}
r:=0 \text { (rank r) } \\
\text { for } c \text { from } 1 \text { to } n \quad \text { (column } c \text {) } \\
\text { if } \exists \ell>r, M_{\ell c} \neq 0 \quad \text { (pivot } \ell \text {) } \\
\quad r:=r+1
\end{array} \quad \begin{array}{l}
\text { swap }\left\langle\vec{M}_{\ell}, C_{\ell}\right\rangle \text { and }\left\langle\vec{M}_{r}, C_{r}\right\rangle \\
\quad \text { divide }\left\langle\vec{M}_{r}, C_{r}\right\rangle \text { by } M_{r c} \\
\quad \text { for } j \text { from } 1 \text { to n, } j \neq r \\
\quad \text { replace }\left\langle\vec{M}_{j}, C_{j}\right\rangle \text { with }\left\langle\vec{M}_{j}, C_{j}\right\rangle-M_{j c}\left\langle\vec{M}_{r}, C_{r}\right\rangle \\
\text { if } \exists \ell,\left\langle\vec{M}_{\ell}, C_{\ell}\right\rangle=\langle 0, \ldots, 0, c\rangle, c \neq 0 \\
\text { then return unsatisfiable }
\end{array} \\
& \text { remove all rows }\left\langle\vec{M}_{\ell}, C_{\ell}\right\rangle \text { that equal }\langle 0, \ldots, 0,0\rangle
\end{aligned}
$$

Affine equality operators

Applications

If $\mathcal{X}^{\sharp}, \mathcal{Y}^{\sharp} \neq \perp^{\sharp}$, we define:

$$
\begin{aligned}
& \mathcal{X}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text { def }}{=} \text { Gauss }\left(\left\langle\left[\begin{array}{l}
\mathbf{M}_{\mathcal{X}^{\sharp}} \\
\mathbf{M}_{\mathcal{Y}^{\sharp}}
\end{array}\right],\left[\begin{array}{c}
\vec{C}_{\mathcal{X}^{\sharp}} \\
\vec{C}_{\mathcal{X}^{\sharp}}
\end{array}\right]\right\rangle\right) \\
& \mathcal{X}^{\sharp}=\mathcal{Y}^{\sharp} \stackrel{\text { def }}{\Longleftrightarrow} \mathbf{M}_{\mathcal{X}^{\sharp}}=\mathbf{M}_{\mathcal{Y}^{\sharp}} \text { and } \vec{C}_{\mathcal{X}^{\sharp}}=\vec{C}_{\mathcal{Y}^{\sharp}} \\
& \mathcal{X}^{\sharp} \subseteq^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text { def }}{\Longleftrightarrow} \mathcal{X}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp}=\mathcal{X}^{\sharp}
\end{aligned}
$$

$$
\mathrm{C}^{\sharp} \llbracket \sum_{j} \alpha_{j} \mathrm{~V}_{j}-\beta=0 \rrbracket \mathcal{X} \sharp \stackrel{\text { def }}{=} \operatorname{Gauss}\left(\left\langle\left[\begin{array}{c}
\mathbf{M}_{\mathcal{X}^{\sharp}} \\
\alpha_{1} \cdots \alpha_{n}
\end{array}\right],\left[\begin{array}{c}
\vec{C}_{\mathcal{X}} \\
\beta
\end{array}\right]\right\rangle\right)
$$

$$
C^{\sharp} \llbracket e \bowtie 0 \rrbracket \mathcal{X} \sharp \stackrel{\text { def }}{=} \mathcal{X}^{\sharp} \quad \text { for other tests }
$$

Remark:

$$
\begin{aligned}
& \subseteq^{\sharp},==^{\sharp}, \cap^{\sharp},==^{\sharp} \text { and } C^{\sharp} \llbracket \sum_{j} \alpha_{j} V_{j}-\beta=0 \rrbracket \text { are exact: } \\
& \mathcal{X}^{\sharp} \subseteq \mathcal{Y}^{\sharp} \Longleftrightarrow \gamma\left(\mathcal{X}^{\sharp}\right) \subseteq \gamma\left(\mathcal{Y}^{\sharp}\right), \quad \gamma\left(\mathcal{X}^{\sharp} \cap \cap^{\sharp} \mathcal{Y}^{\sharp}\right)=\gamma\left(\mathcal{X}^{\sharp}\right) \cap \gamma\left(\mathcal{Y}^{\sharp}\right), \ldots
\end{aligned}
$$

Generator representation

Generator representation

An affine subspace can also be represented as a set of vector generators $\vec{G}_{1}, \ldots, \vec{G}_{m}$ and an origin point \vec{O}, denoted as $[\mathbf{G}, \vec{O}]$.

$$
\gamma([\mathbf{G}, \vec{O}]) \stackrel{\text { def }}{=}\left\{\mathbf{G} \times \vec{\lambda}+\vec{O} \mid \vec{\lambda} \in \mathbb{0}^{m}\right\} \quad\left(\mathbf{G} \in \square^{n \times m}, \vec{O} \in \mathbb{\square}^{n}\right)
$$

We can switch between a generator and a constraint representation:

- From generators to constraints: $\langle\mathbf{M}, \vec{C}\rangle=\operatorname{Cons}([\mathbf{G}, \vec{O}])$

Write the system $\vec{V}=\mathbf{G} \times \vec{\lambda}+\vec{O}$ with variables $\vec{V}, \vec{\lambda}$. Solve it in $\vec{\lambda}$ (by row operations).
Keep the constraints involving only \vec{V}.
e.g. $\left\{\begin{array}{l}\mathrm{X}=\lambda+2 \\ \mathrm{Y}=2 \lambda+\mu+3 \\ \mathrm{Z}=\mu\end{array} \Longrightarrow\left\{\begin{aligned} \mathrm{X}-2 & =\lambda \\ -2 \mathrm{X}+\mathrm{Y}+1 & =\mu \\ 2 \mathrm{X}-\mathrm{Y}+\mathrm{Z}-1 & =0\end{aligned}\right.\right.$

The result is: $2 \mathrm{X}-\mathrm{Y}+\mathrm{Z}=1$.

Generator representation (cont.)

- From constraints to generators: $[\mathbf{G}, \vec{O}] \stackrel{\text { def }}{=} \operatorname{Gen}(\langle\mathbf{M}, \vec{C}\rangle)$

Assume $\langle\mathbf{M}, \vec{C}\rangle$ is normalized.
For each non-leading variable V, assign a distinct λ_{V}, solve leading variables in terms of non-leading ones.

$$
\text { e.g. }\left\{\begin{array}{rl}
\mathrm{X}+0.5 \mathrm{Y} & =7 \\
\mathrm{Z} & =5
\end{array} \Longrightarrow\left[\begin{array}{c}
-0.5 \\
1 \\
0
\end{array}\right] \lambda_{\mathrm{Y}}+\left[\begin{array}{l}
7 \\
0 \\
5
\end{array}\right]\right.
$$

Affine equality operators (cont.)

Applications

Given $\mathcal{X}^{\sharp}, \mathcal{Y}^{\sharp} \neq \perp^{\sharp}$, we define:

$$
\begin{aligned}
& \left.\mathcal{X}^{\sharp} \cup^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text { def }}{=} \operatorname{Cons}\left(\operatorname{Gauss}\left(\left[\begin{array}{lll}
\mathbf{G}_{\mathcal{X}^{\sharp}} & \mathbf{G}_{\mathcal{Y}^{\sharp}} & \left(\vec{O}_{\mathcal{Y}^{\sharp}}-\vec{O}_{\mathcal{X}^{\sharp}}\right)
\end{array}\right], \vec{O}_{\mathcal{X}^{\sharp}}\right]\right)\right) \\
& \left.C^{\sharp} \llbracket \mathrm{V}_{j}:=\right]-\infty,+\infty\left[\rrbracket \mathcal{X}^{\sharp} \stackrel{\text { def }}{=} \operatorname{Cons}\left(\operatorname{Gauss}\left(\left[\begin{array}{lll}
\mathbf{G}_{\mathcal{X}^{\sharp}} & \vec{X}_{j}
\end{array}\right], \vec{O}_{\mathcal{X}^{\sharp}}\right]\right)\right) \\
& C \sharp \llbracket v_{j}:=\sum_{i} \alpha_{i} V_{i}+\beta \rrbracket \mathcal{X} \not{ }^{\sharp} \stackrel{\text { def }}{=} \\
& \text { if } \alpha_{j}=0,\left(\mathrm{C}^{\sharp} \llbracket \sum_{i} \alpha_{i} \mathrm{~V}_{i}-\mathrm{V}_{j}+\beta=0 \rrbracket \circ \mathrm{C}^{\sharp} \llbracket \mathrm{V}_{j}:=\right]-\infty,+\infty[\rrbracket) \mathcal{X}^{\sharp} \\
& \text { if } \alpha_{j} \neq 0, \mathcal{X}^{\sharp} \text { where } \mathrm{V}_{j} \text { is replaced with }\left(\mathrm{V}_{j}-\sum_{i \neq j} \alpha_{i} \mathrm{~V}_{i}-\beta\right) / \alpha_{j} \\
& \left.\mathrm{C}^{\sharp} \llbracket \mathrm{V}_{j}:=e \rrbracket \mathcal{X}^{\sharp} \stackrel{\text { def }}{=} C^{\sharp} \llbracket \mathrm{V}_{j}:=\right]-\infty,+\infty\left[\rrbracket \mathcal{X}^{\sharp}\right. \text { for other assignments }
\end{aligned}
$$

Remarks:

- U^{\sharp} is optimal, but not exact.
- $\mathrm{C}^{\sharp} \llbracket \mathrm{V}_{j}:=\sum_{i} \alpha_{i} \mathrm{~V}_{i}+\beta \rrbracket$ and $\left.\mathrm{C}^{\sharp} \llbracket \mathrm{V}_{j}:=\right]-\infty,+\infty[\rrbracket$ are exact.

Affine equality operators (cont.)

Backward assignments:

$$
\begin{aligned}
& \left.C^{\sharp} \llbracket \overleftarrow{v_{j}}:=\right]-\infty,+\infty\left[\rrbracket\left(\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp}\right) \stackrel{\text { def }}{=} \mathcal{X}^{\sharp} \cap^{\sharp}\left(C^{\sharp} \llbracket v_{j}:=\right]-\infty,+\infty\left[\rrbracket \mathcal{R}^{\sharp}\right)\right. \\
& C^{\sharp} \llbracket \overleftarrow{V_{j}}:=\sum_{i} \alpha_{i} V_{i}+\beta \rrbracket\left(\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp}\right) \stackrel{\text { def }}{=} \\
& \quad \mathcal{X}^{\sharp} \cap^{\sharp}\left(\mathcal{R}^{\sharp} \text { where } V_{j} \text { is replaced with }\left(\sum_{i} \alpha_{i} V_{i}+\beta\right)\right) \\
& C^{\sharp} \llbracket \overleftarrow{V_{j}:=e} \rrbracket\left(\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp}\right) \stackrel{\text { def }}{=} C^{\sharp} \llbracket \overleftarrow{\left.v_{j}:=\right]-\infty,+\infty} \rrbracket\left(\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp}\right) \\
& \quad \text { for other assignments }
\end{aligned}
$$

Remarks:

- $C^{\sharp} \llbracket \overleftarrow{\mathrm{V}_{j}}:=\sum_{i} \alpha_{i} \mathrm{~V}_{i}+\beta \rrbracket$ and $\left.\mathrm{C}^{\sharp} \llbracket \overleftarrow{\mathrm{V}_{j}}:=\right]-\infty,+\infty[\rrbracket$ are exact
- a backward assignment can be seen as a substitution wrt. constraints (similar to Dijkstra's weakest preconditions)

Analysis example

No infinite increasing chain: we can iterate without widening.
Forward analysis example:

$$
\begin{aligned}
& { }^{1} \mathrm{X}:=10 ; \mathrm{Y}:=100 ; \\
& \text { while }{ }^{2} \mathrm{X}<>0 \mathrm{do}^{3} \\
& \mathrm{X}:=\mathrm{X}-1 ; \\
& \mathrm{Y}:=\mathrm{Y}+10 \\
& \text { done }{ }^{4}
\end{aligned}
$$

Note in particular:

$$
\mathcal{X}_{2}^{\sharp 3}=\{(10,100)\} \cup^{\sharp}\{(9,110)\}=\{(\mathrm{X}, \mathrm{Y}) \mid 10 \mathrm{X}+\mathrm{Y}=200\}
$$

Constraint-only equality domain

In fact [Karr76] does not use the generator representation.
(rationale: few constraints but many generators in practice)
We need to redefine two operators: forgetting and union.

- $\left.\mathrm{C}^{\sharp} \llbracket \mathrm{V}_{j}:=\right]-\infty,+\infty[\rrbracket$

Pick the row $\left\langle\vec{M}_{i}, C_{i}\right\rangle$ such that $M_{i j} \neq 0$ and i maximal.
Use it to eliminate all non-0 occurrences of V_{j} in M .
Then remove the row $\left\langle\vec{M}_{i}, C_{i}\right\rangle$.
e.g. forgetting $Z:\left\{\begin{array}{r}X+Z=10 \\ Y+Z=7\end{array} \Longrightarrow\{X-Y=3\right.$

The operator is exact.

Constraint-only equality domain (cont.)

- $\langle\mathbf{M}, \vec{C}\rangle \cup^{\sharp}\langle\mathbf{N}, \vec{D}\rangle$

Idea: unify columns 1 to n in $\langle\mathbf{M}, \vec{C}\rangle$ and $\langle\mathbf{N}, \vec{D}\rangle$ using row operations.
e.g. unify columns ${ }^{t}(\overrightarrow{0} 1 \overrightarrow{0})$ and ${ }^{t}(\vec{\beta} 0 \overrightarrow{0})$.

$$
\left(\begin{array}{ccc}
\mathbf{R} & \overrightarrow{0} & \mathbf{M}_{1} \\
\overrightarrow{0} & 1 & \vec{M}_{2} \\
0 & \overrightarrow{0} & \mathbf{M}_{3}
\end{array}\right),\left(\begin{array}{ccc}
\mathbf{R} & \vec{\beta} & \mathbf{N}_{1} \\
\overrightarrow{0} & 0 & \mathbf{N}_{2} \\
0 & \overrightarrow{0} & \mathbf{N}_{3}
\end{array}\right) \Longrightarrow\left(\begin{array}{ccc}
\mathbf{R} & \vec{\beta} & \mathbf{M}_{1}^{\prime} \\
\overrightarrow{0} & 0 & \overrightarrow{0} \\
0 & \overrightarrow{0} & \mathbf{M}_{3}
\end{array}\right),\left(\begin{array}{ccc}
\mathbf{R} & \vec{\beta} & \mathbf{N}_{1} \\
\overrightarrow{0} & 0 & \overrightarrow{N_{2}} \\
\mathbf{0} & \overrightarrow{0} & \mathbf{N}_{3}
\end{array}\right)
$$

Use the row ($\overrightarrow{0} 1 \vec{M}_{2}$) to create β in the left argument.
Then remove the row $\left(\overrightarrow{0} 1 \vec{M}_{2}\right)$.
The right argument is unchanged.
Unifying ${ }^{t}(\vec{\alpha} 0 \overrightarrow{0})$ and ${ }^{t}(\vec{\beta} 0 \overrightarrow{0})$ is a bit more complicated...

A note on integers

Suppose now that $\mathbb{\square}=\mathbb{Z}$.

- \mathbb{Z} is not closed under affine operations: $(x / y) \times y \neq x$,
- Gaussian reduction implemented in \mathbb{Z} is unsound. (e.g. unsound normalization $2 \mathrm{X}+\mathrm{Y}=19 \nRightarrow \mathrm{X}=9$, by truncation)

One possible solution

- keep a representation using matrices with coefficients in \mathbb{Q},
- keep all abstract operators as in \mathbb{Q},
- change the concretization into: $\gamma_{\mathbb{Z}}\left(\mathcal{X}^{\sharp}\right) \stackrel{\text { def }}{=} \gamma\left(\mathcal{X}^{\sharp}\right) \cap \mathbb{Z}^{n}$.

With respect to $\gamma_{\mathbb{Z}}$, the operators are no longer best / exact.
Example: \quad where \mathcal{X}^{\sharp} is the equation $\mathrm{Y}=2 \mathrm{X}$

- $\gamma_{\mathbb{Z}}\left(\mathcal{X}^{\sharp}\right)=\{(\mathrm{X}, \mathrm{Y}) \mid \mathrm{X} \in \mathbb{Z}, \mathrm{Y}=2 \mathrm{X}\}$
- $\left(C \llbracket X:=0 \rrbracket \circ \gamma_{\mathbb{Z}}\right) \mathcal{X}^{\sharp}=\{(\mathrm{X}, \mathrm{Y}) \mid \mathrm{X}=0, \mathrm{Y}$ is even $\}$
- $\left(\gamma_{\mathbb{Z}} \circ \mathrm{C}^{\sharp} \llbracket \mathrm{X}:=0 \rrbracket\right) \mathcal{X}^{\sharp}=\{(\mathrm{X}, \mathrm{Y}) \mid \mathrm{X}=0, \mathrm{Y} \in \mathbb{Z}\}$

The analysis forgets the "intergerness" of variables.

The congruence equality domain

Now, $\mathbb{\square}=\mathbb{Z}$.
We look for invariants of the form: $\bigwedge_{j}\left(\sum_{i=1}^{n} m_{i j} \mathrm{~V}_{i} \equiv c_{j}\left[k_{j}\right]\right)$.
Algorithms:

- there exists minimal forms (but not unique), computed using an extension of Euclide's algorithm,
- there is a dual representation: $\left\{\mathbf{G} \times \vec{\lambda}+\vec{O} \mid \vec{\lambda} \in \mathbb{Z}^{m}\right\}$, and passage algorithms,
- see [Gran91].

Analysis example

Program example:

$$
\begin{aligned}
& \mathrm{X}:=0 ; \mathrm{Y}:=0 ; \\
& \text { while } \bullet[0,1]=0 \text { do } \\
& \text { if }[0,1]=0 \text { then } \mathrm{X}:=\mathrm{X}+4 \\
& \text { else } \mathrm{X}:=\mathrm{X}+12 \mathrm{fi} ; \\
& \mathrm{Y}:=\mathrm{Y}+4 \\
& \text { done }
\end{aligned}
$$

At \bullet, we find: $(X \equiv 0[4]) \wedge(Y \equiv 0[4]) \wedge(X \equiv Y[8])$.

Polyhedron domain

The polyhedron domain

Here again, $\mathbb{\square} \in\{\mathbb{Q}, \mathbb{R}\}$.
We look for invariants of the form: $\bigwedge_{j}\left(\sum_{i=1}^{n} \alpha_{i j} V_{i} \geq \beta_{j}\right)$.
We use the polyhedron domain proposed by [Cous78]: $\mathcal{D}^{\sharp} \stackrel{\text { def }}{=}\{$ closed convex polyhedra of $\mathbb{V} \rightarrow \mathbb{\square}\}$

Note: polyhedra need not be bounded (\neq polytopes).

Double description of polyhedra

Polyhedra have dual representations (Weyl-Minkowski Theorem). (see [Schr86])

Constraint representation
$\langle\mathbf{M}, \vec{C}\rangle$ with $\mathbf{M} \in \mathbb{a}^{m \times n}$ and $\vec{C} \in \square^{m}$ represents: $\quad \gamma(\langle\mathbf{M}, \vec{C}\rangle) \stackrel{\text { def }}{=}\{\vec{V} \mid \mathbf{M} \times \vec{V} \geq \vec{C}\}$
We will also often use a constraint set notation $\left\{\sum_{i} \alpha_{i j} \mathrm{~V}_{i} \geq \beta_{j}\right\}$.

Generator representation

$[\mathbf{P}, \mathbf{R}]$ where

- $\mathbf{P} \in \square^{n \times p}$ is a set of p points: $\vec{P}_{1}, \ldots, \vec{P}_{p}$
- $\mathbf{R} \in \square^{n \times r}$ is a set of r rays: $\vec{R}_{1}, \ldots, \vec{R}_{r}$
$\gamma([\mathbf{P}, \mathbf{R}]) \stackrel{\text { def }}{=}\left\{\left(\sum_{j=1}^{p} \alpha_{j} \vec{P}_{j}\right)+\left(\sum_{j=1}^{r} \beta_{j} \vec{R}_{j}\right) \mid \forall j, \alpha_{j}, \beta_{j} \geq 0, \sum_{j=1}^{p} \alpha_{j}=1\right\}$

Origin of duality

Dual $A^{*} \stackrel{\text { def }}{=}\left\{\vec{x} \in \mathbb{a}^{n} \mid \forall \vec{a} \in A, \vec{a} \cdot \vec{x} \leq 0\right\}$

- $\{\vec{a}\}^{*}$ and $\{\lambda \vec{r} \mid \lambda \geq 0\}^{*}$ are half-spaces,
- $(A \cup B)^{*}=A^{*} \cap B^{*}$,
- if A is convex, closed, and $\overrightarrow{0} \in A$, then $A^{* *}=A$.

Duality on polyhedral cones:

Cone: $C=\{\vec{V} \mid \mathbf{M} \times \vec{V} \geq \overrightarrow{0}\}$ or $C=\left\{\sum_{j=1}^{r} \beta_{j} \vec{R}_{j} \mid \forall j, \beta_{j} \geq 0\right\}$

- $C^{* *}=C$,
- C^{*} is also a polyhedral cone,
- a ray of C corresponds to a constraint of C^{*},
- a constraint of C corresponds to a ray of C^{*}.
extended to polyhedra by homogenisation to polyhedral codes:

$$
C(P) \stackrel{\text { def }}{=}\left\{\lambda \vec{V} \mid \lambda \geq 0,\left(V_{1}, \ldots, V_{n}\right) \in \gamma(P), V_{n+1}=1\right\} \subseteq \square^{n+1}
$$

Polyhedra representation (cont.)

Minimal representations

- A constraint system is minimal if no constraint can be omitted without changing the concretization.
- A generator system is minimal if no generator can be omitted without changing the concretization.

Remarks:

- most operators are easier on one representation;
- minimal representations are not unique;
- there is no memory bound on the representations (even minimal ones);
- equality constraints, as well as lines (pairs of opposed rays) may be handled separately and more efficiently.

Chernikova's algorithm

Switch from a constraint system to an equivalent generator system.
Algorithm introduced by [Cher68].

Notes:

- By duality, we can use the same algorithm to switch from generators to constraints.
- The minimal generator system can be exponential in the original constraint system. (e.g. a n-dimensional hyper-cube has $2 n$ constraints and 2^{n} vertices)

Algorithm: incrementally add constraints one by one
Start with:

$$
\left\{\begin{array}{l}
\mathbf{P}_{0}=\{(0, \ldots, 0)\} \\
\mathbf{R}_{0}=\left\{\vec{x}_{i},-\vec{x}_{i} \mid 1 \leq i \leq n\right\} \quad \text { (origin) }
\end{array}\right.
$$

Chernikova's algorithm (cont.)

Update $\left[\mathbf{P}_{k-1}, \mathbf{R}_{k-1}\right.$] to $\left[\mathbf{P}_{k}, \mathbf{R}_{k}\right]$
by adding one constraint $\vec{M}_{k} \cdot \vec{V} \geq C_{k} \in\langle\mathbf{M}, \vec{C}\rangle$:
start with $\mathbf{P}_{k}=\mathbf{R}_{k}=\emptyset$,

- for any $\vec{P} \in \mathbf{P}_{k-1}$ s.t. $\vec{M}_{k} \cdot \vec{P} \geq C_{k}$, add \vec{P} to \mathbf{P}_{k};
- for any $\vec{R} \in \mathbf{R}_{k-1}$ s.t. $\vec{M}_{k} \cdot \vec{R} \geq 0$, add \vec{R} to \mathbf{R}_{k};
- for any $\vec{P}, \vec{Q} \in \mathbf{P}_{k-1}$ s.t. $\vec{M}_{k} \cdot \vec{P}>C_{k}$ and $\vec{M}_{k} \cdot \vec{Q}<C_{k}$, add to \mathbf{P}_{k} :

$$
\frac{\hat{C}_{k}-\vec{M}_{k} \cdot \vec{Q}}{\vec{M}_{k} \cdot \vec{P}-\vec{M}_{k} \cdot \vec{Q}} \vec{P}-\frac{C_{k}-\vec{M}_{k} \cdot \vec{P}}{\vec{M}_{k} \cdot \vec{P}-\vec{M}_{k} \cdot \vec{Q}} \vec{Q}
$$

- for any $\vec{P} \in \mathbf{P}_{k-1}, \vec{R} \in \mathbf{R}_{k-1}$ s.t. either $\vec{M}_{k} \cdot \vec{P}>C_{k}$ and $\vec{M}_{k} \cdot \vec{R}<0$, or $\vec{M}_{k} \cdot \vec{P}<C_{k}$ and $\vec{M}_{k} \cdot \vec{R}>0$, add to \mathbf{P}_{k} :

$$
\vec{P}+\frac{C_{k}-\vec{M}_{k} \cdot \vec{P}}{\vec{M}_{k} \cdot \vec{R}} \vec{R}
$$

- for any $\vec{R}, \vec{S} \in \mathbf{R}_{k-1}$ s.t. $\vec{M}_{k} \cdot \vec{R}>0$ and $\vec{M}_{k} \cdot \vec{S}<0$, add to $\mathbf{R}_{k}:\left(\vec{M}_{k} \cdot \vec{S}\right) \vec{R}-\left(\vec{M}_{k} \cdot \vec{R}\right) \vec{S}$

Chernikova's algorithm (example)

Example:

(0)

(1)

(2)

(3)

$$
\begin{array}{lll}
& \mathbf{P}_{0}=\{(0,0)\} & \mathbf{R}_{0}=\{(1,0) ;(-1,0) ;(0,1) ;(0,-1)\} \\
\mathrm{Y} \geq 1 & \mathbf{P}_{1}=\{(0,1)\} & \mathbf{R}_{1}=\{(1,0) ;(-1,0) ;(0,1)\} \\
\mathrm{X}+\mathrm{Y} \geq 3 & \mathbf{P}_{2}=\{(2,1)\} & \mathbf{R}_{2}=\{(1,0) ;(-1,1) ;(0,1)\} \\
\mathrm{X}-\mathrm{Y} \leq 1 & \mathbf{P}_{3}=\{(2,1) ;(1,2)\} & \mathbf{R}_{3}=\{(0,1) ;(1,1)\}
\end{array}
$$

Redudancy removal

Goal: only introduce non-redundant points and rays during Chernikova's algorithm.

Definitions (for rays in polyhedral cones)
Given $C=\{\vec{V} \mid \mathbf{M} \times \vec{V} \geq \overrightarrow{0}\}=\{\mathbf{R} \times \vec{\beta} \mid \vec{\beta} \geq \overrightarrow{0}\}$.

$$
\begin{aligned}
& \vec{R} \text { saturates } \vec{M}_{k} \cdot \vec{V} \geq 0 \stackrel{\text { def }}{\Longleftrightarrow} \vec{M}_{k} \cdot \vec{R}=0 . \\
& S(\vec{R}, C) \stackrel{\text { def }}{=}\left\{k \mid \vec{M}_{k} \cdot \vec{R}=0\right\} .
\end{aligned}
$$

Theorem:

assume C has no line ($\nexists \vec{L} \neq \overrightarrow{0}$ s.t. $\forall \alpha, \alpha \vec{L} \in C)$ \vec{R} is non-redundant wrt. $\mathbf{R} \Longleftrightarrow \nexists \vec{R}_{i} \in \mathbf{R}, S(\vec{R}, C) \subseteq S\left(\vec{R}_{i}, C\right)$

- $S\left(\vec{R}_{i}, C\right), \vec{R}_{i} \in \mathbf{R}$ is maintained during Chernikova's algorithm in a saturation matrix,
- extension possible to polyhedra and lines,
- various improvements exist [LeVe92].

Operators on polyhedra

Given $\mathcal{X}^{\sharp}, \mathcal{Y}^{\sharp} \neq \perp^{\sharp}$, we define:

$$
\begin{aligned}
& \mathcal{X}^{\sharp} \subseteq^{\sharp} \mathcal{Y}^{\sharp} \quad \stackrel{\text { def }}{\Longleftrightarrow} \quad\left\{\begin{array}{l}
\forall \vec{P} \in \mathbf{P}_{\mathcal{X}^{\sharp}}, \mathbf{M}_{\mathcal{Y}^{\sharp}} \times \vec{P} \geq \vec{C}_{\mathcal{X}^{\sharp}} \\
\forall \vec{R} \in \mathbf{R}_{\mathcal{X}^{\sharp}}, \mathbf{M}_{\mathcal{Y}^{\sharp}} \times \vec{R} \geq \overrightarrow{0}
\end{array}\right. \\
& \mathcal{X}^{\sharp}=\mathcal{Y}^{\sharp} \quad \stackrel{\text { def }}{\Longleftrightarrow} \quad \mathcal{X}^{\sharp} \subseteq^{\sharp} \mathcal{Y}^{\sharp} \text { and } \mathcal{Y}^{\sharp} \subseteq \mathcal{X}^{\sharp} \\
& \mathcal{X}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp} \quad \stackrel{\text { def }}{=}\left\langle\left[\begin{array}{l}
\mathbf{M}_{\mathcal{X}^{\sharp}} \\
\mathbf{M}_{\mathcal{Y}^{\sharp}}
\end{array}\right],\left[\begin{array}{l}
\vec{C}_{\mathcal{X}^{\sharp}} \\
\vec{C}_{\mathcal{Y}^{\sharp}}
\end{array}\right]\right\rangle \quad \text { (join constraint sets) } \\
& \mathcal{X}^{\sharp} \cup^{\sharp} \mathcal{Y}^{\sharp} \quad \stackrel{\text { def }}{=} \quad\left[\left[\mathbf{P}_{\mathcal{X}^{\sharp}} \mathbf{P}_{\mathcal{Y}^{\sharp}}\right],\left[\mathbf{R}_{\mathcal{X}^{\sharp}} \mathbf{R}_{\mathcal{Y}^{\sharp}}\right]\right] \text { (join generator sets) }
\end{aligned}
$$

Remarks:

- $\subseteq C^{\sharp},=^{\sharp}$ and \cap^{\sharp} are exact.
- U^{\sharp} is optimal: we get the topological closure of the convex hull of $\gamma\left(\mathcal{X}^{\sharp}\right) \cup \gamma\left(\mathcal{Y}^{\sharp}\right)$.

Operators on polyhedra (cont.)

$$
\begin{aligned}
& \mathrm{C}^{\sharp} \llbracket \sum_{i} \alpha_{i} \mathrm{~V}_{i}+\beta \geq 0 \rrbracket \mathcal{X}^{\sharp} \stackrel{\text { def }}{=}\left\langle\left[\begin{array}{c}
\mathbf{M}_{\mathcal{X}^{\sharp}} \\
\alpha_{1} \cdots \alpha_{n}
\end{array}\right],\left[\begin{array}{c}
\vec{C}_{\mathcal{X}^{\sharp}} \\
-\beta
\end{array}\right]\right\rangle \\
& \mathrm{C}^{\sharp} \llbracket \sum_{i} \alpha_{i} \mathrm{~V}_{i}+\beta=0 \rrbracket \mathcal{X}^{\sharp} \stackrel{\text { def }}{=} \\
& \quad\left(\mathrm{C}^{\sharp} \llbracket \sum_{i} \alpha_{i} \mathrm{~V}_{i}+\beta \geq 0 \rrbracket \circ \mathrm{C}^{\sharp} \llbracket \sum_{i}\left(-\alpha_{i}\right) \mathrm{V}_{i}-\beta \geq 0 \rrbracket\right) \mathcal{X}^{\sharp} \\
& \left.\mathrm{C}^{\sharp} \llbracket \mathrm{V}_{j}:=\right]-\infty,+\infty\left[\rrbracket \mathcal{X}^{\sharp} \stackrel{\text { def }}{=}\left[\mathbf{P}_{\mathcal{X}^{\sharp}},\left[\mathbf{R}_{\mathcal{X}^{\sharp}} \vec{x}_{j}\left(-\vec{x}_{j}\right)\right]\right]\right. \\
& \mathrm{C}^{\sharp} \llbracket \mathrm{V}_{j}:=\sum_{i} \alpha_{i} \mathrm{~V}_{i}+\beta \rrbracket \mathcal{X}^{\sharp} \stackrel{\text { def }}{=} \\
& \quad \text { if } \alpha_{j}=0,\left(\mathrm{C}^{\sharp} \llbracket \sum_{i} \alpha_{i} \mathrm{~V}_{i}-\mathrm{V}_{j}+\beta=0 \rrbracket \circ \mathrm{C}^{\sharp} \llbracket \mathrm{V}_{j}:=\right]-\infty,+\infty[\rrbracket) \mathcal{X}^{\sharp} \\
& \quad \text { if } \alpha_{j} \neq 0,\langle\mathbf{M}, \vec{C}\rangle \text { where } \mathrm{V}_{j} \text { is replaced with } \frac{1}{\alpha_{j}}\left(\mathrm{~V}_{j}-\sum_{i \neq j} \alpha_{i} \mathrm{~V}_{i}-\beta\right)
\end{aligned}
$$

Remarks:

- $\mathrm{C}^{\sharp} \llbracket \sum_{i} \alpha_{i} \mathrm{~V}_{i}+\beta \geq 0 \rrbracket, \mathrm{C}^{\sharp} \llbracket \mathrm{V}_{j}:=\sum_{i} \alpha_{i} \mathrm{~V}_{i}+\beta \rrbracket \mathcal{X}$ and $\left.C^{\sharp} \llbracket \mathrm{V}_{j}:=\right]-\infty,+\infty[\rrbracket$ are exact.
- We can also define $\mathrm{C}^{\sharp} \llbracket \mathrm{V}_{j}:=\sum_{i} \alpha_{i} \mathrm{~V}_{i}+\beta \rrbracket$ on a generator system.

Operators on polyhedra (cont.)

Backward assignments:

$$
\begin{aligned}
& \left.C^{\sharp} \llbracket \overleftarrow{v_{j}}:=\right]-\infty,+\infty\left[\rrbracket\left(\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp}\right) \stackrel{\text { def }}{=} \mathcal{X}^{\sharp} \cap^{\sharp}\left(C^{\sharp} \llbracket v_{j}:=\right]-\infty,+\infty\left[\rrbracket \mathcal{R}^{\sharp}\right)\right. \\
& C^{\sharp} \llbracket \overleftarrow{V_{j}}:=\sum_{i} \alpha_{i} V_{i}+\beta \rrbracket\left(\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp}\right) \stackrel{\text { def }}{=} \\
& \quad \mathcal{X}^{\sharp} \cap^{\sharp}\left(\mathcal{R}^{\sharp} \text { where } V_{j} \text { is replaced with }\left(\sum_{i} \alpha_{i} V_{i}+\beta\right)\right) \\
& C^{\sharp} \llbracket \overleftarrow{V_{j}:=e} \rrbracket\left(\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp}\right) \stackrel{\text { def }}{=} C^{\sharp} \llbracket \overleftarrow{\left.v_{j}:=\right]-\infty,+\infty} \rrbracket\left(\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp}\right) \\
& \quad \text { for other assignments }
\end{aligned}
$$

Note: identical to the case of linear equalities.

Polyhedra widening

\mathcal{D}^{\sharp} has strictly increasing infinite chains \Longrightarrow we need a widening.

Definition:

Take \mathcal{X}^{\sharp} and \mathcal{Y}^{\sharp} in minimal constraint-set form.

$$
\begin{array}{rll}
\mathcal{X}^{\sharp} \nabla \mathcal{Y}^{\sharp} & \stackrel{\text { def }}{=} & \left\{c \in \mathcal{X}^{\sharp} \mid \mathcal{Y}^{\sharp} \subseteq^{\sharp}\{c\}\right\} \\
& \left.\cup c \in \mathcal{Y}^{\sharp} \mid \exists c^{\prime} \in \mathcal{X}^{\sharp}, \mathcal{X}^{\sharp}==^{\sharp}\left(\mathcal{X}^{\sharp} \backslash c^{\prime}\right) \cup\{c\}\right\} .
\end{array}
$$

We suppress any unstable constraint $c \in \mathcal{X}^{\sharp}$, i.e., $\mathcal{Y}^{\sharp} \not \mathbb{Z}^{\sharp}\{c\}$. However, we keep constraints $c \in \mathcal{Y}^{\sharp}$ equivalent to those in \mathcal{X}^{\sharp}, i.e., when $\exists c^{\prime} \in \mathcal{X}^{\sharp}, \mathcal{X}^{\sharp}=\sharp\left(\mathcal{X}^{\sharp} \backslash c^{\prime}\right) \cup\{c\}$.

Example:

Example analysis

Example program

```
X:=2; I:=0;
while - I<10 do
    if [0,1]=0 then X:=X+2 else X:=X-3 fi;
    I:=I+1
done
```

We use a finite number (one) of intersections \cap^{\sharp} as narrowing. Iterations with widening and narrowing at \bullet give:

$$
\begin{aligned}
\mathcal{X}_{\bullet}^{\sharp 1}= & \{X=2, I=0\} \\
\mathcal{X}_{\bullet}^{\sharp 2}= & \{X=2, I=0\} \nabla(\{X=2, I=0\} \cup \sharp\{X \in[-1,4], I=1\}) \\
= & \{X=2, I=0\} \nabla\{I \in[0,1], 2-3 I \leq X \leq 2 I+2\} \\
= & \{I \geq 0,2-3 I \leq X \leq 2 I+2\} \\
\mathcal{X}_{\bullet}^{\sharp 3}= & \{I \geq 0,2-3 I \leq X \leq 2 I+2\} \cap^{\sharp} \\
& (\{X=2, I=0\} \cup \sharp\{I \in[1,10], 2-3 I \leq X \leq 2 I+2\}) \\
= & \{I \in[0,10], 2-3 I \leq X \leq 2 I+2\}
\end{aligned}
$$

At we find eventually: $\mathrm{I}=10 \wedge \mathrm{X} \in[-28,22]$.

Other polyhedra widenings

Widening with thresholds:

Given a finite set T of constraints, we add to $\mathcal{X}^{\sharp} \nabla \mathcal{Y}^{\sharp}$ all the constraints from T satisfied by both \mathcal{X}^{\sharp} and \mathcal{Y}^{\sharp}.

Delayed widening:

We replace $\mathcal{X}^{\sharp} \nabla \mathcal{Y}^{\sharp}$ with $\mathcal{X}^{\sharp} \cup^{\sharp} \mathcal{Y}^{\sharp}$ a finite number of times
(this works for any widening and abstract domain).

See also [Bagn03].

Strict inequalities

The polyhedron domain can be extended to allow strict constraints: $\quad\left\{\vec{V} \mid \mathbf{M} \times \vec{V} \geq \vec{C}\right.$ and $\left.\mathbf{M}^{\prime} \times \vec{V}>\vec{C}^{\prime}\right\}$

Idea:

A non-closed polyhedron on \mathbb{V} is represented as a closed polyhedron P on $\mathbb{V}^{\prime} \stackrel{\text { def }}{=} \mathbb{V} \cup\left\{\mathrm{V}_{\epsilon}\right\}$.

$$
\begin{array}{lll}
\alpha_{1} \mathrm{~V}_{1}+\cdots+\alpha_{n} \mathrm{~V}_{n}+0 \mathrm{~V}_{\epsilon} \geq 0 & \text { represents } & \alpha_{1} \mathrm{~V}_{1}+\cdots+\alpha_{n} \mathrm{~V}_{n} \geq 0 \\
\alpha_{1} \mathrm{~V}_{1}+\cdots+\alpha_{n} \mathrm{~V}_{n}-c \mathrm{~V}_{\epsilon} \geq 0, c>0 & \text { represents } & \alpha_{1} \mathrm{~V}_{1}+\cdots+\alpha_{n} \mathrm{~V}_{n}>0
\end{array}
$$

P represents the non necessarily closed polyhedron:

$$
\gamma_{\epsilon}(P) \stackrel{\text { def }}{=}\left\{\left(\mathrm{V}_{1}, \ldots, \mathrm{~V}_{n}\right) \mid \exists \mathrm{v}_{\epsilon}>0,\left(\mathrm{~V}_{1}, \ldots, \mathrm{~V}_{n}, \mathrm{~V}_{\epsilon}\right) \in \gamma(P)\right\} .
$$

Notes:

- The minimal form needs some adaptation [Bagn02].
- Chernikova's algorithm, $\cap^{\sharp}, \cup^{\sharp}, C^{\sharp} \llbracket c \rrbracket$, and $C^{\sharp} \llbracket \overleftarrow{c} \rrbracket$ can be easily reused.

Constraint-only polyhedron domain

It is possible to use only the constraint representation:

- avoids the cost of Chernikova's algorithm,
- avoids exponential generator systems (hypercubes).

The core operations are: projection and redundancy removal.
Projection: using Fourier-Motzkin elimination
Fourier $\left(\mathcal{X}^{\sharp}, V_{k}\right)$ eliminates V_{k} from all the constraints in \mathcal{X}^{\sharp} :

$$
\begin{aligned}
& \text { Fourier }\left(\mathcal{X}^{\sharp}, \mathrm{V}_{k}\right) \stackrel{\text { def }}{=} \\
& \qquad \begin{array}{l}
\left\{\left(\sum_{i} \alpha_{i} \mathrm{~V}_{i} \geq \beta\right) \in \mathcal{X}^{\sharp} \mid \alpha_{k}=0\right\} \cup \\
\left\{\left(-\alpha_{k}^{-}\right) c^{+}+\alpha_{k}^{+} c^{-} \mid c^{+}=\left(\sum_{i} \alpha_{i}^{+} \mathrm{V}_{i} \geq \beta^{+}\right) \in \mathcal{X}^{\sharp}, \alpha_{k}^{+}>0,\right. \\
\left.c^{-}=\left(\sum_{i} \alpha_{i}^{-} \mathrm{V}_{i} \geq \beta^{-}\right) \in \mathcal{X}^{\sharp}, \alpha_{k}^{-}<0\right\}
\end{array}
\end{aligned}
$$

we then have:

$$
\gamma\left(\operatorname{Fourier}\left(\mathcal{X}^{\sharp}, \mathrm{V}_{k}\right)\right)=\left\{\vec{x}\left[\mathrm{v}_{k} \mapsto v\right] \mid v \in \mathbb{0}, \vec{x} \in \gamma\left(\mathcal{X}^{\sharp}\right)\right\} .
$$

Constraint-only polyhedron domain (cont.)

Fourier causes a quadratic growth in constraint number. Most such constraints are redundant.

Redundancy removal: using linear programming [Schr86]
Let $\operatorname{simplex}\left(\mathcal{Y}^{\sharp}, \vec{v}\right) \stackrel{\text { def }}{=} \min \left\{\vec{v} \cdot \vec{y} \mid \vec{y} \in \gamma\left(\mathcal{Y}^{\sharp}\right)\right\}$
If $c=(\vec{\alpha} \cdot \overrightarrow{\mathrm{V}} \geq \beta) \in \mathcal{X}^{\sharp}$ and $\beta \leq \operatorname{simplex}\left(\mathcal{X}^{\sharp} \backslash\{c\}, \vec{\alpha}\right)$, then c can be safely removed from \mathcal{X}^{\sharp}.
(iterate over all constraints)
Note: running simplex many times can be become costly

- use fast syntactic checks first,
- check against the bounding-box first.

Constraint-only polyhedron domain (cont.)

Constraint-only abstract operators:

$$
\begin{aligned}
& \mathcal{X}^{\sharp} \subseteq^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text { def }}{\Longrightarrow} \forall(\vec{\alpha} \cdot \overrightarrow{\mathrm{V}} \geq \beta) \in \mathcal{Y}^{\sharp}, \text { simplex }\left(\mathcal{X}^{\sharp}, \vec{\alpha}\right) \geq \beta \\
& \mathcal{X}^{\sharp}=\sharp \mathcal{Y}^{\sharp} \stackrel{\text { def }}{\Longrightarrow} \mathcal{X}^{\sharp} \subseteq^{\sharp} \mathcal{Y}^{\sharp} \text { and } \mathcal{Y}^{\sharp} \subseteq \mathcal{X}^{\sharp} \\
& \mathcal{X}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text { def }}{=} \mathcal{X}^{\sharp} \cup \mathcal{Y}^{\sharp} \quad \text { (join constraint sets) } \\
& \left.C^{\sharp} \llbracket v_{j}:=\right]-\infty,+\infty\left[\rrbracket \mathcal{X}^{\sharp} \stackrel{\text { def }}{=} \text { Fourier }\left(\mathcal{X}^{\sharp}, \mathrm{v}_{j}\right)\right.
\end{aligned}
$$

For \cup^{\sharp}, we introduce temporaries $\mathrm{V}_{j}^{\mathcal{X}}, \mathrm{V}_{j}^{\mathcal{Y}}, \sigma^{\mathcal{X}}, \sigma^{\mathcal{Y}}$:
$\mathcal{X}^{\sharp} \cup^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text { def }}{=}$
Fourier $\left(\left\{\left(\sum_{j} \alpha_{j} \mathrm{v}_{j}^{\mathcal{X}}-\beta \sigma^{\mathcal{X}} \geq 0\right) \mid\left(\sum_{j} \alpha_{j} \mathrm{v}_{j} \geq \beta\right) \in \mathcal{X}^{\sharp}\right\} \cup\right.$
$\left\{\left(\sum_{j} \alpha_{j} \mathrm{~V}_{j}^{\mathcal{Y}}-\beta \sigma^{\mathcal{Y}} \geq 0\right) \mid\left(\sum_{j} \alpha_{j} \mathrm{~V}_{j} \geq \beta\right) \in \mathcal{Y}^{\sharp}\right\} \quad \cup$
$\left\{\mathrm{V}_{j}=\mathrm{v}_{j}^{\mathcal{X}}+\mathrm{v}_{j}^{\mathcal{Y}} \mid \mathrm{v}_{j} \in \mathbb{V}\right\} \cup\left\{\sigma^{\mathcal{X}} \geq 0, \sigma^{\mathcal{Y}} \geq 0, \sigma^{\mathcal{X}}+\sigma^{\mathcal{Y}}=1\right\}$,
$\left.\left\{\mathrm{v}_{j}^{\mathcal{X}}, \mathrm{v}_{j}^{\mathcal{Y}} \mid \mathrm{V}_{j} \in \mathbb{V}\right\} \cup\left\{\sigma^{\mathcal{X}}, \sigma^{\mathcal{Y}}\right\}\right)$
(see [Beno96])

Integer polyhedra

How can we deal with $\mathbb{\square}=\mathbb{Z}$?
Issue: integer linear programming is difficult.
Example: satsfiability of conjunctions of linear constraints:

- polynomial cost in \mathbb{Q},
- NP-complete cost in \mathbb{Z}.

Possible solutions:

- Use some complete integer algorithms.
(e.g. Presburger arithmetics)

Costly, and we do not have any abstract domain structure.

- Keep \mathbb{Q}-polyhedra as representation, and change the concretization into: $\gamma_{\mathbb{Z}}\left(\mathcal{X}^{\sharp}\right) \stackrel{\text { def }}{=} \gamma\left(\mathcal{X}^{\sharp}\right) \cap \mathbb{Z}^{n}$. However, operators are no longer exact / optimal.

Weakly relational domains

Zone domain

The zone domain

Here, $\mathbb{D} \in\{\mathbb{Z}, \mathbb{Q}, \mathbb{R}\}$.
We look for invariants of the form:

$$
\bigwedge \mathrm{V}_{i}-\mathrm{V}_{j} \leq c \text { or } \pm \mathrm{V}_{i} \leq c, \quad c \in \mathbb{0}
$$

A subset of 0^{n} bounded by such constraints is called a zone.

[Mine01a]

Machine representation

A potential constraint has the form: $\mathrm{V}_{j}-\mathrm{V}_{i} \leq \mathrm{c}$.
Potential graph: directed, weighted graph \mathcal{G}

- nodes are labelled with variables in \mathbb{V},
- we add an arc with weight c from V_{i} to V_{j} for each constraint $\mathrm{V}_{j}-\mathrm{V}_{i} \leq \mathrm{c}$.

Difference Bound Matrix (DBM)

Adjacency matrix \mathbf{m} of \mathcal{G} :

- \mathbf{m} is square, with size $n \times n$, and elements in $\cup \cup\{+\infty\}$,
- $m_{i j}=c<+\infty$ denotes the constraint $\mathrm{V}_{j}-\mathrm{V}_{i} \leq c$,
- $m_{i j}=+\infty$ if there is no upper bound on $V_{j}-V_{i}$.

Concretization:

$$
\gamma(\mathbf{m}) \stackrel{\text { def }}{=}\left\{\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{0}^{n} \mid \forall i, j, v_{j}-v_{i} \leq m_{i j}\right\}
$$

Machine representation (cont.)

Unary constraints add a constant null variable V_{0}.

- m has size $(n+1) \times(n+1)$;
- $\mathrm{V}_{i} \leq \mathrm{c}$ is denoted as $\mathrm{V}_{i}-\mathrm{V}_{0} \leq c$, i.e., $m_{i 0}=c$;
- $\mathrm{V}_{i} \geq c$ is denoted as $\mathrm{V}_{0}-\mathrm{V}_{i} \leq-c$, i.e., $m_{0 i}=-c$;
- γ is now: $\gamma_{0}(\mathbf{m}) \stackrel{\text { def }}{=}\left\{\left(v_{1}, \ldots, v_{n}\right) \mid\left(0, v_{1}, \ldots, v_{n}\right) \in \gamma(\mathbf{m})\right\}$.

Example:

	V_{0}	$\mathrm{~V}_{1}$	$\mathrm{~V}_{2}$
$\mathrm{~V}_{0}$	$+\infty$	4	3
$\mathrm{~V}_{1}$	-1	$+\infty$	$+\infty$
V_{2}	-1	1	$+\infty$

The DBM lattice

\mathcal{D}^{\sharp} contains all DBMs, plus \perp^{\sharp}.
\leq on $\boxtimes \cup\{+\infty\}$ is extended point-wisely.
If $\mathbf{m}, \mathbf{n} \neq \perp^{\sharp}$:

$$
\begin{array}{ccl}
\mathbf{m} \subseteq^{\sharp} \mathbf{n} & \stackrel{\text { def }}{\rightleftharpoons} & \forall i, j, m_{i j} \leq n_{i j} \\
\mathbf{m}=\sharp & \stackrel{\text { def }}{\rightleftharpoons} & \forall i, j, m_{i j}=n_{i j} \\
{\left[\mathbf{m} \cap^{\sharp} \mathbf{n}\right]_{i j}} & \stackrel{\text { def }}{=} & \min \left(m_{i j}, n_{i j}\right) \\
{\left[\mathbf{m} \cup^{\sharp} \mathbf{n}\right]_{i j}} & \stackrel{\text { def }}{=} & \max \left(m_{i j}, n_{i j}\right) \\
{\left[T^{\sharp}\right]_{i j}} & \stackrel{\text { def }}{=} & +\infty
\end{array}
$$

$\left(\mathcal{D}^{\sharp}, \subseteq^{\sharp}, \cup^{\sharp}, \cap^{\sharp}, \perp^{\sharp}, T^{\sharp}\right)$ is a lattice.
Remarks:

- \mathcal{D}^{\sharp} is complete if \leq is $(\mathbb{a}=\mathbb{R}$ or \mathbb{Z}, but not $\mathbb{Q})$,
- $\mathbf{m} \subseteq{ }^{\sharp} \mathbf{n} \Longrightarrow \gamma_{0}(\mathbf{m}) \subseteq \gamma_{0}(\mathbf{n})$, but not the converse,
- $\mathbf{m}=\sharp \mathbf{n} \Longrightarrow \gamma_{0}(\mathbf{m})=\gamma_{0}(\mathbf{n})$, but not the converse.

Normal form, equality and inclusion testing

Issue: how can we compare $\gamma_{0}(\mathbf{m})$ and $\gamma_{0}(\mathbf{n})$?
Idea: find a normal form by propagating/tightening constraints.

$$
\left\{\begin{array} { l }
{ \mathrm { V } _ { 0 } - \mathrm { V } _ { 1 } \leq 3 } \\
{ \mathrm { V } _ { 1 } - \mathrm { V } _ { 2 } \leq - 1 } \\
{ \mathrm { V } _ { 0 } - \mathrm { V } _ { 2 } \leq 4 }
\end{array} \quad \left\{\begin{array}{l}
\mathrm{V}_{0}-\mathrm{V}_{1} \leq 3 \\
\mathrm{~V}_{1}-\mathrm{V}_{2} \leq-1 \\
\mathrm{~V}_{0}-\mathrm{V}_{2} \leq 2
\end{array}\right.\right.
$$

(B)

Definition: shortest-path closure \mathbf{m}^{*}

$$
m_{i j}^{*} \stackrel{\text { def }}{=} \min _{N} \sum_{\left\langle i=i_{1}, \ldots, i_{N}=j\right\rangle} m_{k=1}^{N-1} i_{i_{k} i_{k+1}}
$$

Exists only when \mathbf{m} has no cycle with strictly negative weight.

Floyd-Warshall algorithm

Properties:

- $\gamma_{0}(\mathbf{m})=\emptyset \Longleftrightarrow \mathcal{G}$ has a cycle with strictly negative weight.
- if $\gamma_{0}(\mathbf{m}) \neq \emptyset$, the shortest-path graph \mathbf{m}^{*} is a normal form:

$$
\mathbf{m}^{*}=\min _{\subseteq^{\sharp}}\left\{\mathbf{n} \mid \gamma_{0}(\mathbf{m})=\gamma_{0}(\mathbf{n})\right\}
$$

- If $\gamma_{0}(\mathbf{m}), \gamma_{0}(\mathbf{n}) \neq \emptyset$, then

$$
\begin{aligned}
& \text { - } \gamma_{0}(\mathbf{m})=\gamma_{0}(\mathbf{n}) \Longleftrightarrow \mathbf{m}^{*}=\sharp \mathbf{n}^{*}, \text {, } \\
& \text { - } \gamma_{0}(\mathbf{m}) \subseteq \gamma_{0}(\mathbf{n}) \Longleftrightarrow \mathbf{m}^{*} \subseteq^{\sharp} \mathbf{n} .
\end{aligned}
$$

Floyd-Warshall algorithm

$$
\left\{\begin{array}{lll}
m_{i j}^{0} & \stackrel{\text { def }}{=} & m_{i j} \\
m_{i j}^{k+1} & \stackrel{\text { def }}{=} & \min \left(m_{i j}^{k}, m_{i k}^{k}+m_{k j}^{k}\right)
\end{array}\right.
$$

- If $\gamma_{0}(\mathbf{m}) \neq \emptyset$, then $\mathbf{m}^{*}=\mathbf{m}^{n+1}$,
- $\gamma_{0}(\mathbf{m})=\emptyset \Longleftrightarrow \exists i, m_{i i}^{n+1}<0$,
(normal form)
- \mathbf{m}^{n+1} can be computed in $\mathcal{O}\left(n^{3}\right)$ time.

Abstract operators

Abstract union \cup^{\sharp}

- $\gamma_{0}\left(\mathbf{m} \cup^{\sharp} \mathbf{n}\right)$ may not be the smallest zone containing $\gamma_{0}(\mathbf{m})$ and $\gamma_{0}(\mathbf{n})$.
- however, $\left(\mathbf{m}^{*}\right) \cup^{\sharp}\left(\mathbf{n}^{*}\right)$ is optimal:

$$
\left(\mathbf{m}^{*}\right) \cup^{\sharp}\left(\mathbf{n}^{*}\right)=\min _{\subseteq} \coprod^{\sharp}\left\{\mathbf{o} \mid \gamma_{0}(\mathbf{o}) \supseteq \gamma_{0}(\mathbf{m}) \cup \gamma_{0}(\mathbf{n})\right\}
$$

which implies

$$
\gamma_{0}\left(\left(\mathbf{m}^{*}\right) \cup^{\sharp}\left(\mathbf{n}^{*}\right)\right)=\min _{\subseteq}\left\{\gamma_{0}(\mathbf{o}) \mid \gamma_{0}(\mathbf{o}) \supseteq \gamma_{0}(\mathbf{m}) \cup \gamma_{0}(\mathbf{n})\right\}
$$

- $\left(\mathbf{m}^{*}\right) \cup^{\sharp}\left(\mathbf{n}^{*}\right)$ is always closed.

Abstract intersection $\cap^{\#}$

- \cap^{\sharp} is always exact: $\gamma_{0}\left(\mathbf{m} \cap^{\sharp} \mathbf{n}\right)=\gamma_{0}(\mathbf{m}) \cap \gamma_{0}(\mathbf{n})$
- ($\left.\mathbf{m}^{*}\right) \cap^{\sharp}\left(\mathbf{n}^{*}\right)$ may not be closed.

Remark:

The set of closed matrices with \perp^{\sharp}, and the operations $\subseteq^{\sharp}, \cup^{\sharp}$, $\lambda \mathbf{m}, \mathbf{n} .\left(\mathbf{m} \cap^{\sharp} \mathbf{n}\right)^{*}$ define a sub-lattice.
γ_{0} is injective in this sub-lattice.

Abstract operators (cont.)

We can define:

$$
\left.\begin{array}{l}
{\left[C^{\sharp} \llbracket V_{j_{0}}-V_{i_{0}} \leq c \rrbracket \mathbf{m}\right]_{i j} \stackrel{\text { def }}{=} \begin{cases}\min \left(m_{i j}, c\right) & \text { if }(i, j)=\left(i_{0}, j_{0}\right), \\
m_{i j} & \text { otherwise. }\end{cases} } \\
C^{\sharp} \llbracket V_{j_{0}}-V_{i_{0}}=[a, b] \rrbracket \mathbf{m} \stackrel{\text { def }}{=}\left(C^{\sharp} \llbracket V_{j_{0}}-V_{i_{0}} \leq b \rrbracket \circ C^{\sharp} \llbracket V_{i_{0}}-V_{j_{0}} \leq-a \rrbracket\right) \mathbf{m} \\
{\left[C^{\sharp} \llbracket V_{j_{0}}:=\right]-\infty,+\infty[\rrbracket \mathbf{m}]_{i j} \stackrel{\text { def }}{=} \begin{cases}+\infty & \text { if } i=j_{0} \text { or } j=j_{0}, \\
m_{i j}^{*} & \text { otherwise. }\end{cases} } \\
\quad \text { (not optimal on non-closed arguments) }
\end{array} \quad \begin{array}{l}
C^{\sharp} \llbracket V_{j_{0}}:=V_{i_{0}}+[a, b] \rrbracket \mathbf{m} \stackrel{\text { def }}{=} \\
\quad\left(C^{\sharp} \llbracket V_{j_{0}}-V_{i_{0}}=\lceil a, b] \rrbracket \circ C^{\sharp} \llbracket V_{j_{0}}:=\right]-\infty,+\infty[\rrbracket) \mathbf{m} \quad \text { if } i_{0} \neq j_{0}
\end{array}\right] \begin{array}{lll}
{\left[C^{\sharp} \llbracket V_{j_{0}}:=V_{j_{0}}+[a, b] \rrbracket \mathbf{m}\right]_{i j} \stackrel{\text { def }}{=} \begin{cases}m_{i j}-a & \text { if } i=j_{0} \text { and } j \neq j_{0} \\
m_{i j}+b & \text { if } i \neq j_{0} \text { and } j=j_{0} \\
m_{i j} & \text { otherwise. }\end{cases} }
\end{array}
$$

($i_{0} \neq j_{0} ; V_{i_{0}}$ can be replaced with 0 by setting $i_{0}=0$)
These transfer functions are exact.

Abstract operators (cont.)

Backward assignment:

$$
\begin{aligned}
& C^{\sharp} \llbracket \overleftarrow{\left.V_{j_{0}}:=\right]-\infty,+\infty} \rrbracket \rrbracket(\mathbf{m}, \mathbf{r}) \stackrel{\text { def }}{=} \mathbf{m} \cap^{\sharp}\left(C^{\sharp} \llbracket V_{j_{0}}:=\right]-\infty,+\infty[\rrbracket \mathbf{r}) \\
& C^{\sharp} \llbracket \overleftarrow{V_{j_{0}}:=V_{j_{0}}+[a, b] \rrbracket(\mathbf{m}, \mathbf{r}) \stackrel{\text { def }}{=} \mathbf{m} \cap^{\sharp}\left(C^{\sharp} \llbracket V_{j_{0}}:=V_{j_{0}}+[-b,-a] \rrbracket \mathbf{r}\right)} \\
& {\left[C^{\sharp} \llbracket \overleftarrow{\left.V_{j_{0}}:=V_{i_{0}}+[a, b] \rrbracket(\mathbf{m}, \mathbf{r})\right]_{i j} \stackrel{\text { def }}{=}}\right.} \\
& \quad \mathbf{m} \cap^{\sharp} \begin{cases}\min \left(\mathbf{r}_{i j}^{*}, r_{j_{0 j}}^{*}+b\right) & \text { if } i=i_{0} \text { and } j \neq i_{0}, j_{0} \\
\min \left(\mathbf{r}_{i j}^{*}, \mathbf{r}_{i_{0}}^{*}-a\right) & \text { if } j=i_{0} \text { and } i \neq i_{0}, j_{0} \\
+\infty & \text { if } i=j_{0} \text { or } j=j_{0} \\
\mathbf{r}_{i j}^{*} & \text { otherwise. }\end{cases}
\end{aligned}
$$

Abstract operators (cont.)

Issue: given an arbitrary linear assignment $\mathrm{V}_{j_{0}}:=a_{0}+\sum_{k} a_{k} \times \mathrm{V}_{k}$

- there is no exact abstraction, in general;
- the best abstraction $\alpha \circ \mathrm{C} \llbracket c \rrbracket \circ \gamma$ is costly to compute. (e.g. convert to a polyhedron and back, with exponential cost)

Possible solution:

Given a (more general) assignment $e=\left[a_{0}, b_{0}\right]+\sum_{k}\left[a_{k}, b_{k}\right] \times V_{k}$ we define an approximate operator as follows:

$$
\left[\mathrm{C}^{\sharp} \llbracket \mathrm{V}_{j_{0}}:=e \rrbracket \mathbf{m}\right]_{i j} \stackrel{\text { def }}{=}\left\{\begin{array}{cl}
\max \left(\mathrm{E}^{\sharp} \llbracket e \rrbracket \mathbf{m}\right) & \text { if } i=0 \text { and } j=j_{0} \\
-\min \left(\mathrm{E}^{\sharp} \llbracket e \rrbracket \mathbf{m}\right) & \text { if } i=j_{0} \text { and } j=0 \\
\max \left(\mathrm{E}^{\sharp} \llbracket e-\mathrm{V}_{i} \rrbracket \mathbf{m}\right) & \text { if } i \neq 0, j_{0} \text { and } j=j_{0} \\
-\min \left(\mathrm{E}^{\sharp} \llbracket e+\mathrm{V}_{j} \rrbracket \mathbf{m}\right) & \text { if } i=j_{0} \text { and } j \neq 0, j_{0} \\
m_{i j} & \text { otherwise }
\end{array}\right.
$$

where $E^{\sharp} \llbracket e \rrbracket \mathbf{m}$ evaluates e using interval arithmetics with $\mathrm{V}_{k} \in\left[-m_{k 0}^{*}, m_{0 k}^{*}\right]$.
Quadratic total cost (plus the cost of closure).

Abstract operators (cont.)

Example:

$$
\left.\left.\begin{array}{c}
\text { Argument } \\
\left\{\begin{array}{l}
0 \leq \mathrm{Y} \leq 10 \\
0 \leq \mathrm{Z} \leq 10 \\
0 \leq \mathrm{Y}-\mathrm{Z} \leq 10
\end{array}\right. \\
\Downarrow \mathrm{X}:=\mathrm{Y}-\mathrm{Z}
\end{array}\right] \begin{array}{c}
-10 \leq \mathrm{X} \leq 10 \\
\left\{\begin{array}{c}
-20 \leq \mathrm{X}-\mathrm{Y} \leq 10 \\
-20 \leq \mathrm{X}-\mathrm{Z} \leq 10 \\
\text { Intervals }
\end{array}\right. \\
\begin{array}{c}
-10 \leq \mathrm{X} \leq 10 \\
-10 \leq \mathrm{X}-\mathrm{Y} \leq 0 \\
-10 \leq \mathrm{X}-\mathrm{Z} \leq 10 \\
\text { Approximate } \\
\text { solution }
\end{array}
\end{array} \begin{array}{c}
0 \leq \mathrm{X} \leq 10 \\
-10 \leq \mathrm{X}-\mathrm{Y} \leq 0 \\
-10 \leq \mathrm{X}-\mathrm{Z} \leq 10
\end{array}\right\} \text { Best } \begin{aligned}
& \text { (polyhedra) }
\end{aligned}
$$

We have a good trade-off between cost and precision.
The same idea can be used for tests and backward assignments.

Widening and narrowing

The zone domain has both strictly increasing and decreasing infinite chains.
$\underline{\text { Widening } \nabla}$

$$
[\mathbf{m} \nabla \mathbf{n}]_{i j} \stackrel{\text { def }}{=} \begin{cases}m_{i j} & \text { if } n_{i j} \leq m_{i j} \\ +\infty & \text { otherwise }\end{cases}
$$

Unstable constraints are deleted.
Narrowing \triangle

$$
[\mathbf{m} \triangle \mathbf{n}]_{i j} \stackrel{\text { def }}{=} \begin{cases}n_{i j} & \text { if } m_{i j}=+\infty \\ m_{i j} & \text { otherwise }\end{cases}
$$

Only $+\infty$ bounds are refined.

Remarks:

- We can construct widenings with thresholds.
- $\nabla($ resp. $\Delta)$ can be seen as a point-wise extension of an interval widening (resp. narrowing).

Interaction between closure and widening

Widening ∇ and closure $*$ cannot always be mixed safely:

- $\mathbf{m}_{i+1} \stackrel{\text { def }}{=} \mathbf{m}_{i} \nabla\left(\mathbf{n}_{i}^{*}\right) \quad \mathrm{OK}$
- $\mathbf{m}_{i+1} \stackrel{\text { def }}{=}\left(\mathbf{m}_{i}^{*}\right) \nabla \mathbf{n}_{i} \quad$ wrong!
- $\mathbf{m}_{i+1} \stackrel{\text { def }}{=}\left(\mathbf{m}_{i} \nabla \mathbf{n}_{i}\right)^{*} \quad$ wrong
otherwise the sequence (\mathbf{m}_{i}) may be infinite!

Example:

$$
\begin{aligned}
& \mathrm{X}:=0 ; \mathrm{Y}:=[-1,1] ; \\
& \text { while } 1=1 \text { do } \\
& \mathrm{R}:=[-1,1] ; \\
& \text { if } \mathrm{X}=\mathrm{Y} \text { then } \mathrm{Y}:=\mathrm{X}+\mathrm{R} \\
& \text { else } \mathrm{X}:=\mathrm{Y}+\mathrm{R} \text { fi } \\
& \text { done }
\end{aligned}
$$

Applying the closure after the widening at - prevents convergence.
Without the closure, we would find in finite time $\mathrm{X}-\mathrm{Y} \in[-1,1]$.
Note: this situation also occurs in reduced products
(here, $\mathcal{D}^{\sharp} \simeq$ reduced product of $n \times n$ intervals, $* \simeq$ reduction)

Octagon domain

The octagon domain

Now, $\mathbb{D} \in\{\mathbb{Q}, \mathbb{R}\}$.
We look for invariants of the form: $\bigwedge \quad \pm \mathrm{V}_{i} \pm \mathrm{V}_{j} \leq c, \quad c \in \mathbb{\square}$
A subset of 0^{n} defined by such constraints is called an octagon. It is a generalisation of zones (more symmetric).

[Mine01b]

Machine representation

Idea: use a variable change to get back to potential constraints.
Let $\mathbb{V}^{\prime} \stackrel{\text { def }}{=}\left\{\mathrm{V}^{\prime}{ }_{1}, \ldots, \mathrm{~V}^{\prime}{ }_{2 n}\right\}$.

We use a matrix \mathbf{m} of size $(2 n) \times(2 n)$ with elements in $\cup \cup\{+\infty\}$ and $\gamma_{ \pm}(\mathbf{m}) \stackrel{\text { def }}{=}\left\{\left(v_{1}, \ldots, v_{n}\right) \mid\left(v_{1},-v_{1}, \ldots, v_{n},-v_{n}\right) \in \gamma(\mathbf{m})\right\}$.

Note:
Two distinct \mathbf{m} elements can represent the same constraint on \mathbb{V}.
To avoid this, we impose that $\forall i, j, m_{i j}=m_{\bar{\jmath} \imath}$ where $\bar{\imath}=i \oplus 1$.

Machine representation (cont.)

Example:

$$
\left\{\begin{array}{l}
\mathrm{V}_{1}+\mathrm{V}_{2} \leq 3 \\
\mathrm{~V}_{2}-\mathrm{V}_{1} \leq 3 \\
\mathrm{~V}_{1}-\mathrm{V}_{2} \leq 3 \\
-\mathrm{V}_{1}-\mathrm{V}_{2} \leq-3 \\
2 \mathrm{~V}_{2} \leq 2 \\
-2 \mathrm{~V}_{2} \leq 8
\end{array}\right.
$$

Lattice

Constructed by point-wise extension of \leq on $\cup \cup\{+\infty\}$.

Algorithms

\mathbf{m}^{*} is not a normal form for $\gamma_{ \pm}$.
Idea use two local transformations instead of one:

$$
\left\{\begin{array}{c}
\mathrm{V}^{\prime}{ }_{i}-\mathrm{V}^{\prime}{ }_{k} \leq c \\
\mathrm{~V}^{\prime}{ }_{k}-\mathrm{V}^{\prime}{ }_{j} \leq d
\end{array} \Longrightarrow \mathrm{~V}^{\prime}{ }_{i}-\mathrm{V}^{\prime}{ }_{j} \leq c+d\right.
$$

and

$$
\left\{\begin{array}{l}
\mathrm{V}_{i}^{\prime}-\mathrm{V}^{\prime}{ }_{i} \leq c \\
\mathrm{~V}^{\prime}{ }_{j}-\mathrm{V}_{j}^{\prime} \leq d
\end{array} \Longrightarrow \mathrm{~V}^{\prime}{ }_{i}-\mathrm{V}_{j}^{\prime} \leq(c+d) / 2\right.
$$

Modified Floyd-Warshall algorithm

$\mathbf{m}^{\bullet} \stackrel{\text { def }}{=} S\left(\mathbf{m}^{2 n+1}\right)$
where:
(A) $\left\{\begin{array}{l}\mathbf{m}^{1} \stackrel{\text { def }}{=} \mathbf{m} \\ {\left[\mathbf{m}^{k+1}\right]_{i j} \stackrel{\text { def }}{=} \min \left(n_{i j}, n_{i k}+n_{k j}\right), 1 \leq k \leq 2 n}\end{array}\right.$
(B) $[S(\mathbf{n})]_{i j} \stackrel{\text { def }}{=} \min \left(n_{i j},\left(n_{i \bar{\imath}}+n_{\bar{j} j}\right) / 2\right)$

Algorithms (cont.)

Applications

- $\gamma_{ \pm}(\mathbf{m})=\emptyset \Longleftrightarrow \exists i, \mathbf{m}_{i i}^{\bullet}<0$,
- if $\gamma_{ \pm}(\mathbf{m}) \neq \emptyset, \mathbf{m}^{\bullet}$ is a normal form:

$$
\mathbf{m}^{\bullet}=\min _{\subseteq}\left\{\mathbf{n} \mid \gamma_{ \pm}(\mathbf{n})=\gamma_{ \pm}(\mathbf{m})\right\},
$$

- $\left(\mathbf{m}^{\bullet}\right) \cup^{\sharp}\left(\mathbf{n}^{\bullet}\right)$ is the best abstraction for the set-union $\gamma_{ \pm}(\mathbf{m}) \cup \gamma_{ \pm}(\mathbf{n})$.

Widening and narrowing

- The zone widening and narrowing can be used on octagons.
- The widened iterates should not be closed. (prevents convergence)

Abstract transfer functions are similar to the case of the zone domain.

Analysis example

Rate limiter

```
Y:=0; while • \(1=1\) do
    \(\mathrm{X}:=[-128,128] ; \mathrm{D}:=[0,16]\);
    S:=Y; Y:=X; R:=X-S;
    if \(R<=-D\) then \(Y:=S-D\) fi;
    if \(R>=D\) then \(Y:=S+D\) fi
done
```

X: input signal
Y: output signal
S : last output
R: delta Y-S
D: max. allowed for $|R|$

Analysis using:

- the octagon domain,
- an abstract operator for $\mathrm{V}_{j_{0}}:=\left[a_{0}, b_{0}\right]+\sum_{k}\left[a_{k}, b_{k}\right] \times \mathrm{V}_{k}$ similar to the one we defined on zones,
- a widening with thresholds T.

Result: we prove that $|\mathrm{Y}|$ is bounded by: $\min \{t \in T \mid t \geq 144\}$. Note: the polyhedron domain would find $|\mathrm{Y}| \leq 128$ and does not require thresholds, but it is more costly.

Integer octagons

Recall that zones work equally well on \mathbb{Q}, \mathbb{R} and \mathbb{Z}.

Issue:

The octagon domain we have presented is not complete on \mathbb{Z} :

- the algorithm for \boldsymbol{m}^{\bullet} uses divisions by 2 ,
- when replacing $x \mapsto x / 2$ with $\mapsto\lfloor x / 2\rfloor$, we get:

$$
\mathbf{m}^{\bullet} \neq \min _{\subseteq}{ }^{\sharp}\left\{\mathbf{o} \mid \gamma_{ \pm}(\mathbf{o})=\gamma_{ \pm}(\mathbf{m})\right\} .
$$

Possible solutions:

- Use \mathbf{m}^{\bullet} with $\lfloor x / 2\rfloor$ instead of $/ 2$.

All computations remain sound on integers.
The best-precision results are no longer valid.

- See [Bagn08] for a $\mathcal{O}\left(n^{3}\right)$ time "tight closure" for integer octagons.

Summary

Summary of numerical domains

domain	non-relational	linear equalities	polyhedra	octagons
invariants	$\mathrm{V} \in D_{b}^{\sharp}$	$\sum_{i} \alpha_{i} \mathrm{~V}_{\mathrm{i}}=\beta$	$\sum_{i} \alpha_{i} \mathrm{~V}_{\mathrm{i}} \leq \beta$	$\pm \mathrm{V}_{\mathrm{i}} \pm \mathrm{V}_{\mathrm{j}} \leq c$
memory cost	$\mathcal{O}(n)$	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}\left(2^{n}\right)$	$\mathcal{O}\left(n^{2}\right)$
time cost	$\mathcal{O}(n)$	$\mathcal{O}\left(n^{3}\right)$	$\mathcal{O}\left(2^{n}\right)$	$\mathcal{O}\left(n^{3}\right)$

Bibliography

Bibliography

[Anco10] C. Ancourt, F. Coelho \& F. Irigoin. A modular static analysis approach to affine loop invariants detection. In Proc. NSAD'10, ENTCS, Elsevier, 2010.
[Bagn02] R. Bagnara, E. Ricci, E. Zaffanella \& P. M. Hill. Possibly not closed convex polyhedra and the Parma Polyhedra Library. In Proc. SAS'02, LNCS 2477, 213-229, Springer, 2002.
[Bagn03] R. Bagnara, P. Hill, E. Ricci, E. Zaffanella. Precise widening operators for convex polyhedra. In Proc. SAS'03, LNCS 2694, 337-354, Springer, 2003.
[Bagn08] R. Bagnara, P. M. Hill \& E. Zaffanella. An improved tight closure algorithm for integer octagonal constraints. In Proc. VMCAI'08, LNCS 4905, 8-21, Springer, 2008.
[Beno96] F. Benoy \& A. King. Inferring argument size relationships with CLP(R). In In Proc. of LOPSTR'96, LNCS 1207, 204-223. Springer, 1996.

Bibliography (cont.)

[Cher68] N. V. Chernikova. Algorithm for discovering the set of all the solutions of a linear programming problem. In U.S.S.R. Comput. Math. and Math. Phys., 8(6):282-293, 1968.
[Cous78] P. Cousot \& N. Halbwachs. Automatic discovery of linear restraints among variables of a program. In Proc. POPL'78, 84-96, ACM, 1978.
[Gran91] P. Granger. Static analysis of linear congruence equalities among variables of a program. In Proc. TAPSOFT'91, LNCS 49, 169-192. Springer, 1991.
[Jean09] B. Jeannet \& A. Miné. Apron: A library of numerical abstract domains for static analysis. In Proc. CAV'09, LNCS 5643, 661-667, Springer, 2009, http://apron.cri.ensmp.fr/library.

Bibliography (cont.)

[Karr76] M. Karr. Affine relationships among variables of a program. In Acta Informatica, 6:133-151, 1976.
[LeVe92] H. Le Verge. A note on Chernikova's algorithm. In Research Report 1662, INRIA Rocquencourt, 1992.
[Mine01a] A. Miné. A new numerical abstract domain based on difference-bound matrices. In Proc. PADO II, LNCS 2053, 155-172, Springer, 2001.
[Mine01b] A. Miné. The octagon abstract domain. In Proc. AST'01, 310-319, IEEE, 2001.
[Schr86] A. Schrijver. Theory of linear and integer programming. In John Wiley \& Sons, Inc., 1986.

