course 05-B

Abstracting Non-Linear Programs

MPRI 2-6: Abstract Interpretation,
application to verification and static analysis

Antoine Miné

year 2013-2014

course 05-B
18 October 2013

Abstracting Non-Linear Programs Antoine Miné

p.1/7



Abstraction framework

Issue:

Most relational domains can only deal with linear expressions.
How can we abstract non-linear assignments such as X :=Y x Z7

Idea: replace Y x Z with a sound linear approximation.

Framework:
We define an approximation preorder < on expressions:
REe<e <= VpeR, E[ei]pCE[e]p.

Soundness properties if v(X*) = e < € then:
o C[V:=e]y(X*) Cy(CHV:=¢] X%
o Clexa0]y(X%) C y(CiH e 0] XF)
o 1(X%) N (CIV = e](RH) C 1(CIV = ¢ (X%, RY)

— we can now use €’ in the abstract instead of e.

course 05-B Abstracting Non-Linear Programs Antoine Miné p-2/7



Linearization

In practice, we put expressions into affine interval form:
expy : [ao, bo] + Zk[ak, bk] X Vi
Advantages:

o affine expressions are easy to manipulate,

@ interval coefficients allow non-determinism in expressions,
hence, the opportunity for abstraction,

@ we can easily construct abstract transfer functions for affine
interval expressions.

course 05-B Abstracting Non-Linear Programs Antoine Miné

p.3/7



Linearization (cont.)

Operations on affine interval forms

@ adding H and subtracting & two forms,
e multiplying X and dividing 1 a form by an interval.

Noting ik the interval [ak, bx] and using interval operations

+ﬁ' _iv X?y /?, (e.g., [a, b] +f, [c,d]=[a+c,b+d]):

© (io+ Y cik x Vi) B (ig + e ik x Vie) = (ior+}ip) + 32 (i) x Vi
0 i B (i + g ik x Vi) = (ixGio) + o, (1x5ik) x Vi
o ...

Projection 7, : D! — exp,

We suppose we are given an abstract interval projection operator

7k such that:
7k (X*) = [a, b] such that [a, b] D { p(Vx) | p € v(XF) }.

course 05-B Abstracting Non-Linear Programs Antoine Miné p.4/7



Linearization (cont.)

Intervalization «: (exp, x D¥) — exp,

Flattens the expression into a single interval:
def

Wio + Skl x Vi), X%) = io 45 0 4 (i x§ me(A%)).

Linearization ¢ : (exp x D) — exp,

Defined by induction on the syntax of expressions:

o ((V,X%) £ [1,1] x V,
[a, b], X%) < [a, b],

a
a
o ((er+en, X)L f(e, X%) B U(ep, XY),
q
a

o ((e1—en, XF) L U(e, X%) B l(ey, XP),

o l(er/er, X1) E f(er, X1 1 u(l(eg, XF), XY),
gy def either  1({(er, X¥), X*) X £(ep, X%,
0 l(e1xey, XH) can be { or (e, X9), XF) 5 ¢y, XF).

course 05-B Abstracting Non-Linear Programs Antoine Miné p.5/7



Linearization application

Property soundness of the linearization:
For any abstract domain D# any X% € D¥ and e € exp, we have:
Y XF) e < l(e, XF)
Remarks:
@ { results in a loss of precision,

@ / is not monotonic for <.
(e.g., £(V/V,V > [1,+00]) = [0,1] X V £ 1)

Application to the octagon domain

Y:=[0,+o0];
T:=[-1,1];
X:=TxY

e T X Y is linearized as [—1,1] x Y,
@ we can prove that [X| < V.

course 05-B Abstracting Non-Linear Programs Antoine Miné p.6/7



Linearization application (cont.)

Application to the interval domain

CHV := /(e, X*)] X* is always more precise than CH[V := e] &*
£ simplifies symbolically variables occurring several times.
Example: X :=2XxV—V, where V € [a, b]:

@ using vanilla intervals:
E{[2 x V — V] (X%) =2 x! [a, b] % [a, b] = [2a — b,2b — 4],

e after linearization /(2 x V —V, X*) =V, so
EFfL(2 x V-V, AN ] X* = [a, b]

strictly more precise than [2a — b,2b — a] when a # b.

course 05-B Abstracting Non-Linear Programs Antoine Miné p.7/7



