
Abstracting Non-Linear Programs
MPRI 2–6: Abstract Interpretation,

application to verification and static analysis

Antoine Miné

year 2013–2014

course 05-B
18 October 2013

course 05-B Abstracting Non-Linear Programs Antoine Miné p. 1 / 7

Abstraction framework

Issue:

Most relational domains can only deal with linear expressions.
How can we abstract non-linear assignments such as X := Y× Z?

Idea: replace Y× Z with a sound linear approximation.

Framework:

We define an approximation preorder � on expressions:

R |= e1� e2
def⇐⇒ ∀ ρ ∈ R, EJ e1 K ρ⊆ EJ e2 K ρ.

Soundness properties if γ(X]) |= e � e ′ then:

CJ V := e K γ(X]) ⊆ γ(C]J V := e ′ KX])

CJ e ./ 0 K γ(X]) ⊆ γ(C]J e ′ ./ 0 KX])

γ(X]) ∩ (
←−
C J V := e K γ(R])) ⊆ γ(C]J

←−−−−
V := e ′ K](X],R]))

=⇒ we can now use e ′ in the abstract instead of e.

course 05-B Abstracting Non-Linear Programs Antoine Miné p. 2 / 7

Linearization

In practice, we put expressions into affine interval form:

exp` : [a0, b0] +
∑

k [ak , bk]× Vk

Advantages:

affine expressions are easy to manipulate,

interval coefficients allow non-determinism in expressions,
hence, the opportunity for abstraction,

we can easily construct abstract transfer functions for affine
interval expressions.

course 05-B Abstracting Non-Linear Programs Antoine Miné p. 3 / 7

Linearization (cont.)

Operations on affine interval forms

adding � and subtracting � two forms,

multiplying � and dividing � a form by an interval.

Noting ik the interval [ak , bk] and using interval operations

+]
b, −]

b, ×]
b, /]b (e.g., [a, b] +]

b [c , d] = [a + c , b + d]):

(i0 +
∑

k ik ×Vk) � (i ′0 +
∑

k i
′
k ×Vk)

def
= (i0+]

b i
′
0) +

∑
k(ik+]

b i
′
k)×Vk

i � (i0 +
∑

k ik × Vk)
def
= (i×]

b i0) +
∑

k (i×]
b ik)× Vk

. . .

Projection πk : D] → exp`

We suppose we are given an abstract interval projection operator
πk such that:

πk(X]) = [a, b] such that [a, b] ⊇ { ρ(Vk) | ρ ∈ γ(X]) }.
course 05-B Abstracting Non-Linear Programs Antoine Miné p. 4 / 7

Linearization (cont.)

Intervalization ι : (exp` ×D])→ exp`

Flattens the expression into a single interval:
ι(i0 +

∑
k(ik × Vk), X])

def
= i0 +]

b

∑]
b, k (ik ×]

b πk(X])).

Linearization ` : (exp×D])→ exp`

Defined by induction on the syntax of expressions:

`(V,X])
def
= [1, 1]× V,

`([a, b],X])
def
= [a, b],

`(e1+e2,X])
def
= `(e1,X]) � `(e2,X]),

`(e1−e2,X])
def
= `(e1,X]) � `(e2,X]),

`(e1/e2,X])
def
= `(e1,X]) � ι(`(e2,X]),X]),

`(e1×e2,X])
def
= can be

{
either ι(`(e1,X]),X]) � `(e2,X]),
or ι(`(e2,X]),X]) � `(e1,X

]).

course 05-B Abstracting Non-Linear Programs Antoine Miné p. 5 / 7

Linearization application

Property soundness of the linearization:

For any abstract domain D], any X] ∈ D] and e ∈ exp, we have:
γ(X]) |= e � `(e,X])

Remarks:

` results in a loss of precision,

` is not monotonic for �.
(e.g., `(V/V, V 7→ [1,+∞]) = [0, 1]× V 6� 1)

Application to the octagon domain

Y:=[0,+∞];

T:=[-1,1];

X:=T×Y

T× Y is linearized as [−1, 1]× Y,

we can prove that |X| ≤ Y.

course 05-B Abstracting Non-Linear Programs Antoine Miné p. 6 / 7

Linearization application (cont.)

Application to the interval domain

C]J V := `(e,X]) KX] is always more precise than C]J V := e KX]

` simplifies symbolically variables occurring several times.

Example: X := 2× V− V, where V ∈ [a, b]:

using vanilla intervals:

E]J 2× V− V K (X]) = 2×]
b [a, b]−]

b [a, b] = [2a− b, 2b − a],

after linearization `(2× V− V,X]) = V, so
E]J `(2× V− V,X]) KX] = [a, b]

strictly more precise than [2a− b, 2b − a] when a 6= b.

course 05-B Abstracting Non-Linear Programs Antoine Miné p. 7 / 7

