Abstracting Non-Linear Programs

MPRI 2–6: Abstract Interpretation, application to verification and static analysis

Antoine Miné

year 2013-2014

course 05-B 18 October 2013

Issue:

Most relational domains can only deal with linear expressions. How can we abstract non-linear assignments such as $X := Y \times Z$?

<u>Idea:</u> replace $Y \times Z$ with a sound linear approximation.

Framework:

We define an approximation preorder \leq on expressions:

$$\boldsymbol{R} \models \boldsymbol{e}_1 \preceq \boldsymbol{e}_2 \iff \forall \rho \in \boldsymbol{R}, \ \mathsf{E}[\![\boldsymbol{e}_1]\!] \rho \subseteq \mathsf{E}[\![\boldsymbol{e}_2]\!] \rho.$$

Soundness properties if $\gamma(\mathcal{X}^{\sharp}) \models e \preceq e'$ then:

•
$$C[[V := e]] \gamma(\mathcal{X}^{\sharp}) \subseteq \gamma(C^{\sharp}[[V := e']] \mathcal{X}^{\sharp})$$

•
$$C[[e \bowtie 0]] \gamma(\mathcal{X}^{\sharp}) \subseteq \gamma(C^{\sharp}[[e' \bowtie 0]] \mathcal{X}^{\sharp})$$

• $\gamma(\mathcal{X}^{\sharp}) \cap (\overleftarrow{C} \llbracket \mathbb{V} := e \rrbracket \gamma(\mathcal{R}^{\sharp})) \subseteq \gamma(\mathbb{C}^{\sharp} \llbracket \overleftarrow{\mathbb{V}} := e' \rrbracket^{\sharp}(\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp}))$

 \implies we can now use e' in the abstract instead of e.

In practice, we put expressions into affine interval form:

 $\exp_{\ell}: [a_0, b_0] + \sum_k [a_k, b_k] \times V_k$

Advantages:

- affine expressions are easy to manipulate,
- interval coefficients allow non-determinism in expressions, hence, the opportunity for abstraction,
- we can easily construct abstract transfer functions for affine interval expressions.

Linearization (cont.)

Operations on affine interval forms

- adding \boxplus and subtracting \boxminus two forms,

Noting i_k the interval $[a_k, b_k]$ and using interval operations $+_b^{\sharp}, -_b^{\sharp}, \times_b^{\sharp}, /_b^{\sharp}$ $(\underline{e.g.}, [a, b] +_b^{\sharp} [c, d] = [a + c, b + d])$:

• $(i_0 + \sum_k i_k \times \mathbf{V}_k) \boxplus (i'_0 + \sum_k i'_k \times \mathbf{V}_k) \stackrel{\text{def}}{=} (i_0 + \overset{\sharp}{}_b i'_0) + \sum_k (i_k + \overset{\sharp}{}_b i'_k) \times \mathbf{V}_k$

•
$$i \boxtimes (i_0 + \sum_k i_k \times \mathbb{V}_k) \stackrel{\text{def}}{=} (i \times \frac{\sharp}{b} i_0) + \sum_k (i \times \frac{\sharp}{b} i_k) \times \mathbb{V}_k$$

• ...

Projection $\pi_k : \mathcal{D}^{\sharp} \to \exp_{\ell}$

We suppose we are given an abstract interval projection operator π_k such that:

$$\pi_k(\mathcal{X}^{\sharp}) = [a, b] \text{ such that } [a, b] \supseteq \{ \rho(\mathbb{V}_k) \mid \rho \in \gamma(\mathcal{X}^{\sharp}) \}.$$

Linearization (cont.)

 $\begin{array}{ll} \underline{\text{Intervalization}} & \iota: (\exp_{\ell} \times \mathcal{D}^{\sharp}) \to \exp_{\ell} \\ \\ \text{Flattens the expression into a single interval:} \\ & \iota(i_{0} + \sum_{k} (i_{k} \times \mathbb{V}_{k}), \, \mathcal{X}^{\sharp}) \stackrel{\text{def}}{=} i_{0} \, +_{b}^{\sharp} \, \sum_{b, \, k}^{\sharp} \, (i_{k} \times_{b}^{\sharp} \, \pi_{k}(\mathcal{X}^{\sharp})). \end{array}$

 $\underline{\textbf{Linearization}} \quad \ell: (\texttt{exp} \times \mathcal{D}^{\sharp}) \to \texttt{exp}_{\ell}$

Defined by induction on the syntax of expressions:

•
$$\ell(\mathbf{V}, \mathcal{X}^{\sharp}) \stackrel{\text{def}}{=} [1, 1] \times \mathbf{V},$$

• $\ell([a, b], \mathcal{X}^{\sharp}) \stackrel{\text{def}}{=} [a, b],$
• $\ell(e_1 + e_2, \mathcal{X}^{\sharp}) \stackrel{\text{def}}{=} \ell(e_1, \mathcal{X}^{\sharp}) \boxplus \ell(e_2, \mathcal{X}^{\sharp}),$
• $\ell(e_1 - e_2, \mathcal{X}^{\sharp}) \stackrel{\text{def}}{=} \ell(e_1, \mathcal{X}^{\sharp}) \boxminus \ell(e_2, \mathcal{X}^{\sharp}),$
• $\ell(e_1/e_2, \mathcal{X}^{\sharp}) \stackrel{\text{def}}{=} \ell(e_1, \mathcal{X}^{\sharp}) \boxtimes \ell(\ell(e_2, \mathcal{X}^{\sharp}), \mathcal{X}^{\sharp}),$
• $\ell(e_1 \times e_2, \mathcal{X}^{\sharp}) \stackrel{\text{def}}{=} \operatorname{can} \operatorname{be} \begin{cases} \operatorname{either} & \iota(\ell(e_1, \mathcal{X}^{\sharp}), \mathcal{X}^{\sharp}) \boxtimes \ell(e_2, \mathcal{X}^{\sharp}), \\ \operatorname{or} & \iota(\ell(e_2, \mathcal{X}^{\sharp}), \mathcal{X}^{\sharp}) \boxtimes \ell(e_1, \mathcal{X}^{\sharp}). \end{cases}$

Linearization application

 $\begin{array}{ll} \hline \textbf{Property} & \text{soundness of the linearization:} \\ \hline \textbf{For any abstract domain } \mathcal{D}^{\sharp} \text{, any } \mathcal{X}^{\sharp} \in \mathcal{D}^{\sharp} \text{ and } e \in \text{exp, we have:} \\ \gamma(\mathcal{X}^{\sharp}) \models e \preceq \ell(e, \mathcal{X}^{\sharp}) \end{array}$

<u>Remarks:</u>

- ℓ results in a loss of precision,
- ℓ is not monotonic for \leq . (e.g., $\ell(\mathbb{V}/\mathbb{V}, \mathbb{V} \mapsto [1, +\infty]) = [0, 1] \times \mathbb{V} \not\leq 1$)

Application to the octagon domain

- $\bullet~\text{T}\times\text{Y}$ is linearized as $[-1,1]\times\text{Y}\text{,}$
- we can prove that $|X| \leq Y$.

Linearization application (cont.)

Application to the interval domain

 $C^{\sharp} \llbracket V := \ell(e, \mathcal{X}^{\sharp}) \rrbracket \mathcal{X}^{\sharp}$ is always more precise than $C^{\sharp} \llbracket V := e \rrbracket \mathcal{X}^{\sharp}$ ℓ simplifies symbolically variables occurring several times.

Example: $X := 2 \times V - V$, where $V \in [a, b]$:

• using vanilla intervals:

$$E^{\sharp} \llbracket 2 \times \mathbb{V} - \mathbb{V} \rrbracket (\mathcal{X}^{\sharp}) = 2 \times_{b}^{\sharp} [a, b] -_{b}^{\sharp} [a, b] = [2a - b, 2b - a],$$

 after linearization ℓ(2 × V - V, X[‡]) = V, so E[#] [[ℓ(2 × V - V, X[‡])]] X[#] = [a, b] strictly more precise than [2a - b, 2b - a] when a ≠ b.