

Symbolic Abstract Domains

Laurent Mauborgne

Interprétation abstraite, MPRI 2–6, année 2013-2014

Laurent Mauborgne Symbolic Abstract Domains 1 / 91

Abstract Domains
(Reminder)

Goal:
Represent and manipulate sets of values

In practice:
the representation should be compact
operations should be fast

In abstract interpretation
we can approximate
. . . but not too much (false alarms!)

Laurent Mauborgne Symbolic Abstract Domains 2 / 91

Efficient abstract domains
Reminder again

What operations should be efficient?

Sets of value computed by fixpoint iteration
⇒ needs efficient inclusion testing

Each iteration adds an increment
⇒ incremental structures

Each individual instruction that is evaluated only modifies a small
part of the environment

⇒ needs a mechanism to perform local modifications and avoid
copying the whole environment.

Laurent Mauborgne Symbolic Abstract Domains 3 / 91

Symbolic or Numeric?

Representation of (big) sets of values ⇒ symbolic
representations
Programs manipulate symbolic values or numeric values

everything is a number in fine, but
sets of enum not well approximated by intervals
or V→B not well approximated by polyhedra
idem for memory structure

Symbolic values of Programs
Sets of value without arithmetic structure

Symbolic properties (about programs)
so-called necessary variables
reasoning about traces
temporal properties

Laurent Mauborgne Symbolic Abstract Domains 4 / 91

Lesson Plan

1 Boolean Relations

2 Cartesian Approximation

3 More Interpretations to Logical Formulæ

4 Graphs and Trees

Laurent Mauborgne Symbolic Abstract Domains 5 / 91

Boolean Relations Boolean Formulæ

1 Boolean Relations
Boolean Formulæ
Decision Trees
BDD approximation

2 Cartesian Approximation
Classic Logic
Kleene’s Logic

3 More Interpretations to Logical Formulæ
Satisfiability Modulo Theory
First Order Logic as Abstract Domains

4 Graphs and Trees
Classic Representations
Example of Representation Designed for AI

Laurent Mauborgne Symbolic Abstract Domains 6 / 91

Boolean Relations Boolean Formulæ

Sets, Relations and Boolean Functions

Consider a finite set of symbols (= enum, properties . . .)

Example
Values of a variable x

enum {Blue Green
Red}x;

Example
Properties of a variable x such as

p1 = x is reachable from variable y

p2 = x is necessary for function f

Abstract property = set of symbols
⇒ bit vector

Exact representation
Set of bit vectors
(Coded as sequences of bits)

Logical formula
Relation
Boolean function

Laurent Mauborgne Symbolic Abstract Domains 7 / 91

Boolean Relations Boolean Formulæ

Logical Formulæ
First Order Logic

Definition
Logical formula ::= x boolean variable

| f ∧ f | f ∨ f | ¬f logical connectors
| ∀ x.f | ∃x.f quantifiers

Interpretation
f (x , y , z) represents the set of boolean vectors <b0,b1,b2> such
that f (b0,b1,b2) is true
Formula = algorithm of a function Bn→B

Laurent Mauborgne Symbolic Abstract Domains 8 / 91

Boolean Relations Boolean Formulæ

Set Membership Algorithm

Going through the formula tree

Example
Let f (x , y , z) = (y ∧ z) ∨ (¬x ∧ ¬y ∧ ¬z)

The tree is

∨
|| &&∧

�� ��

∧
�� �� ��

y z ¬x ¬y ¬z

Bottom up traversal

Laurent Mauborgne Symbolic Abstract Domains 9 / 91

Boolean Relations Boolean Formulæ

Inclusion Testing
Set of f ⊂ set of g iff f ⇒ g
It’s often the construction ordering in static analysis

SAT solvers
Computes if a formula is satisfiable, and when it is, gives an
element
State of the art software very efficient (but needs fine tuning)
Very much used in hardware verification

For static analysis
SAT(f ∧ ¬g) for inclusion
Problems :

negation expensive (because of normal forms)
formulæ can grow unboundedly

Laurent Mauborgne Symbolic Abstract Domains 10 / 91

Boolean Relations Boolean Formulæ

Relations

Definition
Let (Ei)i∈I be a family of sets. A relation of support (Ei)i∈I is a sub-set
of
⊗

i∈I Ei .

On booleans, amounts to sets of bit vectors
We denote the projection R(J)

and partial evaluation R:i=b

Laurent Mauborgne Symbolic Abstract Domains 11 / 91

Boolean Relations Boolean Formulæ

Example

{000,011,111}

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

A formula
f (x , y , z) = (y ∧ z)∨ (¬x ∧¬y ∧¬z)

Another formula
f (x , y , z) = (∃t .t∧y∧z)∨¬(x∨y∨z)

Many other formulæ
as big as you like. . .

Laurent Mauborgne Symbolic Abstract Domains 12 / 91

Boolean Relations Decision Trees

1 Boolean Relations
Boolean Formulæ
Decision Trees
BDD approximation

2 Cartesian Approximation
Classic Logic
Kleene’s Logic

3 More Interpretations to Logical Formulæ
Satisfiability Modulo Theory
First Order Logic as Abstract Domains

4 Graphs and Trees
Classic Representations
Example of Representation Designed for AI

Laurent Mauborgne Symbolic Abstract Domains 13 / 91

Boolean Relations Decision Trees

Boolean Relations as Abstract Domain

How can we be efficient?
For which operations?

abstract transfer functions
fixpoint testing (implications)
testing emptiness
union, but with a lot of recomputations

A Possible Solution
Sharing and incremental (whenever possible) representation.

Sharing ⇒ constant emptiness testing
Sharing ⇒ memoization

Laurent Mauborgne Symbolic Abstract Domains 14 / 91

Boolean Relations Decision Trees

Decision Trees
or Shannon trees

Definition
Shannon’s identity: f = x ∧ f:x=true ∨ ¬x ∧ f:x=false

Let f be the set {000,011,111}.

f (x , y , z) = (y ∧ z) ∨ (¬x ∧ ¬y ∧ ¬z)

The decision tree of f pour the (ordered) variables x , y , z:

x
0

uu
1

))y
0
{{

1
##

y
0
{{

1
##

z
0
��

1
��

z
0
��

1
��

z
0
��

1
��

z
0
��

1
��

true false false true false false false true

Laurent Mauborgne Symbolic Abstract Domains 15 / 91

Boolean Relations Decision Trees

BDDs
Binary Decision Diagrams

Definition
The BDD of f for the variables V is the decision tree of f for those
variables, with sub-tree sharing and redundant nodes elimination.

x
0
��

1
��

y
0
��

1
��

y
1
��

0
��

z
0
��

1
99

z
1
��

0
��

z0

		 1zztrue false

x
0
��

1
��

y
0
��

1
��

y
1
��

0

		

z
0
��

1

::

z
1
��

0
��

true false

Laurent Mauborgne Symbolic Abstract Domains 16 / 91

Boolean Relations Decision Trees

Hashconsing

Unique representation: t1 = t2 ⇔ t1 == t2
Nodes numbering
Dictionary (hash table):

(variable, left id, right id) -> id
Incremental construction.
Basic operation: if x then f1 else f0.
Memoization. Worst case cost of binary operations is quadratic.

Laurent Mauborgne Symbolic Abstract Domains 17 / 91

Boolean Relations Decision Trees

BDD Complexity

Worst case size: exponential in the number of variables
Average size: exponential
Average gain compared to an array: linear factor (which comes
from the sharing)
The elimination of redundant nodes allows the manipulation of
different functions in the same dictionary.
But in practice, most of the time, very big gain
BDD exploits the structure the problem
In abstract interpretation, approximations are possible. . .

Laurent Mauborgne Symbolic Abstract Domains 18 / 91

Boolean Relations BDD approximation

1 Boolean Relations
Boolean Formulæ
Decision Trees
BDD approximation

2 Cartesian Approximation
Classic Logic
Kleene’s Logic

3 More Interpretations to Logical Formulæ
Satisfiability Modulo Theory
First Order Logic as Abstract Domains

4 Graphs and Trees
Classic Representations
Example of Representation Designed for AI

Laurent Mauborgne Symbolic Abstract Domains 19 / 91

Boolean Relations BDD approximation

Approximating BDDs for space
BDDs size can change with variable ordering, but

The problem of finding an optimal variable ordering is NP-hard
For some classes of functions, all variable orderings yield an
exponential size BDD

⇒ needs to change the function to obtain tractability

Problem
Given a function f find a function f ′ such that f ⇒ f ′ and the BDD
representing f ′ is smaller than the BDD representing f .

Solution: f ′ = true

Add a new constraint:
the model (number of vectors evaluating to true) of f ′ should be as
small as possible.
but balance that with the gain in size. . .

Laurent Mauborgne Symbolic Abstract Domains 20 / 91

Boolean Relations BDD approximation

Density of a BDD

Definition
A minterm of a boolean function f is an assignment to the
variables of f that evaluates to true.
The density of a BDD is the number of nodes in the BDD, divided
by the number of minterms of the boolean function it represents.

A density driven algorithm will try heuristics at each node of the
BDD and estimate the gain in density
When the density reaches a predefined threshold, the algorithm
terminates
Two such algorithms are available in a standard BDD package
(CUDD)

Laurent Mauborgne Symbolic Abstract Domains 21 / 91

Boolean Relations BDD approximation

Two Simple Heuristics

Heavy Branch
Compute the number of
minterms at each node
Starting from the root, at each
node, replace the direct child
with the most minterms by true
Until the size of the BDD is
below a given threshold

⇒ Biased towards BDD with first
variables having a child true

⇒ Depends on the variable
ordering (not semantic)

Shortest Path
idea: shortest paths give
better density
Compute the length of the
shortest path starting at
each node
Replace each node with too
big a shortest path by true

⇒ Not much control over the
desired size of the BDD

⇒ Not very predictable
algorithm

Both techniques can be modified to allow sharing of direct children
(replacing N.l and N.r by their union).

Laurent Mauborgne Symbolic Abstract Domains 22 / 91

Boolean Relations BDD approximation

Dual Prime Implicants

Definition
A clause is a disjunction of variables or negation of variables
(called literals)
A clause c is a dual prime implicant of a boolean function f
if

f ⇒ c
There is no clause c′ (other than c) such that f ⇒ c′ ⇒ c

We denote primes (f) the set of dual prime implicants of f .

Property
For all boolean function,

f =
∧

primes (f)

Laurent Mauborgne Symbolic Abstract Domains 23 / 91

Boolean Relations BDD approximation

Approximation based on dual prime implicants1

A set of dual prime implicants is a sound approximation
The smaller the clauses, the denser
Deterministic approximation

compute the dual prime implicants of length at most k
take their conjunction
in practice much better than other heuristics, because semantic
based

Randomized approximation
randomly select a path to false in the BDD
extract a dual prime implicant c
collect the conjunction of such clauses
before selecting next path, can transform f into f ∧ ¬c
probability to select a given clause = 2n−|c|

1Based on Neil KETTLE’s thesis
Laurent Mauborgne Symbolic Abstract Domains 24 / 91

Cartesian Approximation Classic Logic

1 Boolean Relations
Boolean Formulæ
Decision Trees
BDD approximation

2 Cartesian Approximation
Classic Logic
Kleene’s Logic

3 More Interpretations to Logical Formulæ
Satisfiability Modulo Theory
First Order Logic as Abstract Domains

4 Graphs and Trees
Classic Representations
Example of Representation Designed for AI

Laurent Mauborgne Symbolic Abstract Domains 25 / 91

Cartesian Approximation Classic Logic

Cartesian Approximation

Exact representation of
boolean relations

= exponential size

Definition

℘
(⊗

i∈I Ei
)

α
//
⊗

i∈I ℘ (Ei)
γoo

α(V)
def
=
⊗
i∈I

V(i)

The cost becomes linear!

Example

α ({000,011}) = {0}.{0,1}.{0,1}

Laurent Mauborgne Symbolic Abstract Domains 26 / 91

Cartesian Approximation Classic Logic

Smash Product

Let
⊗

i∈I V(i) be a cartesian approximation
If one Vi is ∅, then the product is empty too

Smash
More efficient if just one possible representation for ∅

In a bit vector, we needed 2 bits per boolean variable
but the sequence 00 ⇒ ∅

Approximation using classic logic
Only 1 bit per boolean variable
⇒ either 0 = {0} and 1 = {0,1}, either 0 = {0,1} and 1 = {1}

Laurent Mauborgne Symbolic Abstract Domains 27 / 91

Cartesian Approximation Classic Logic

First Example: Predicate Abstraction

Given a set of predicates, P
Approximate a set of states by the set of predicates in P which are
true for all states in the set

αP(Q)
def
= {p ∈ P | Q ⊆ I [|p|]}

γP(P)
def
=
⋂
{I [|p|] | p ∈ P}

⇒
〈℘ (M) ,⊆〉

αP
// 〈℘ (P) ,⊇〉

γPoo

⇒ just keep the set of predicates which are true, represented by bit
vector
So, in this representation, 1 represents {1} and 0 represents
{0,1}

Laurent Mauborgne Symbolic Abstract Domains 28 / 91

Cartesian Approximation Classic Logic

Second Example: Strictness Analysis

Property about the program: parameter x evaluates or not (either
because of error or non-termination)
To know if x is strict:

Deduction rule
if (x does not terminate or produces an error ⇒ f(x) too), then x is
strict in f.

Approximation:

Only errors are for sure

α(x)
def
= 0 if x does not terminate

α(x)
def
= 1 represents all cases

Laurent Mauborgne Symbolic Abstract Domains 29 / 91

Cartesian Approximation Kleene’s Logic

1 Boolean Relations
Boolean Formulæ
Decision Trees
BDD approximation

2 Cartesian Approximation
Classic Logic
Kleene’s Logic

3 More Interpretations to Logical Formulæ
Satisfiability Modulo Theory
First Order Logic as Abstract Domains

4 Graphs and Trees
Classic Representations
Example of Representation Designed for AI

Laurent Mauborgne Symbolic Abstract Domains 30 / 91

Cartesian Approximation Kleene’s Logic

Kleene’s Logic

∅ is superfluous, but we keep {0}, {1} and {0,1}.

Kleene notation

0 def
= {0}

1 def
= {1}

1
2

def
= {0,1}

Approximation Ordering

1
2

0

AA

1

]]

Logical Ordering

1

1
2

OO

0

OO

With that ordering, logical
connectors and quantifiers on
Kleene’s logic are a sound
approximation of the operators on
sets of booleans.

Laurent Mauborgne Symbolic Abstract Domains 31 / 91

Cartesian Approximation Kleene’s Logic

TVLA
Three Values Logic Analyzer

Static analysis tool by abstract interpretation
Developed at Tel Aviv University, by Mooly SAGIV et al.
Parameterized by a finite set of predicates (but predicates with
arguments ⇒ not finite...
Mainly used to determine the shape of the heap during program
execution
Can represent unbounded heaps, thanks to "summary nodes"

Laurent Mauborgne Symbolic Abstract Domains 32 / 91

More Interpretations to Logical Formulæ Satisfiability Modulo Theory

1 Boolean Relations
Boolean Formulæ
Decision Trees
BDD approximation

2 Cartesian Approximation
Classic Logic
Kleene’s Logic

3 More Interpretations to Logical Formulæ
Satisfiability Modulo Theory
First Order Logic as Abstract Domains

4 Graphs and Trees
Classic Representations
Example of Representation Designed for AI

Laurent Mauborgne Symbolic Abstract Domains 33 / 91

More Interpretations to Logical Formulæ Satisfiability Modulo Theory

Adding Predicates and Functions to Formulæ

x,y,z, . . . ∈ x

a,b,c, . . . ∈ f0

f,g,h, . . . ∈ fn

t ∈ T(x, f) t ::= x | c | f(t1, . . . , tn)

p,q,r, . . . ∈ pn, p ,
⋃

n>0 p
n

a ∈ A(x, f,p) a ::= false | p(t1, . . . , tn) | ¬a
e ∈ E(x, f,p) , T(x, f) ∪A(x, f,p)

ϕ ∈ C(x, f,p) ϕ ::= a | ϕ ∧ ϕ

Ψ ∈ F(x, f,p) Ψ ::= a | ¬Ψ | Ψ ∧Ψ | ∃x : Ψ

Plus special predicate for equality

Laurent Mauborgne Symbolic Abstract Domains 34 / 91

More Interpretations to Logical Formulæ Satisfiability Modulo Theory

Interpretations

Definition
Interpretation set of values + meanings of predicates and functions

I = 〈IV , Iγ〉 ∈ I

Environment η ∈ RI
def
= x→ IV

I |=η a , [|a|]
I
η I |=η Ψ ∧Ψ′ , (I |=η Ψ) ∧ (I |=η Ψ′)

I |=η ¬Ψ , ¬(I |=η Ψ) I |=η ∃x : Ψ , ∃v ∈ IV : I |=η[x←v] Ψ

Natural meaning

γa(Ψ) , {〈I, η〉 | I |=η Ψ}

Laurent Mauborgne Symbolic Abstract Domains 35 / 91

More Interpretations to Logical Formulæ Satisfiability Modulo Theory

Theories and Models

Definition
Sentence = formula without free variables
Theory = set of sentences + signature
Model = interpretation on which a sentence is true

Idea: Restrict the possible meanings to those that make the sentences
true.

A theory can be
deductive,
defined by a set of axioms,
complete,
the theory of an interpretation

M(T) = set of
interpretations of T

Laurent Mauborgne Symbolic Abstract Domains 36 / 91

More Interpretations to Logical Formulæ Satisfiability Modulo Theory

Satisfiability, Validity and Decidability

Ψ satisfiable iff ∃ I ∈ I : ∃η : I |=η Ψ

satisfiable in T : replace I by models of T
T decidable iff there is an algorithm deciding if a sentence is in T .

decide T (∃~xΨ : Ψ) =⇒ satisfiable T (Ψ)

Equivalence when theory is complete only.

Comparison of theories
T1 more general than T2 iff M(T2) ⊆M(T1)

⇒ satisfiableT2(Ψ) =⇒ satisfiableT1(Ψ)

⇒ We can use decisions in T2 to approximate satisfiability in T1

T1 ∪ T2 is the combination of T1 and T2

Laurent Mauborgne Symbolic Abstract Domains 37 / 91

More Interpretations to Logical Formulæ First Order Logic as Abstract Domains

1 Boolean Relations
Boolean Formulæ
Decision Trees
BDD approximation

2 Cartesian Approximation
Classic Logic
Kleene’s Logic

3 More Interpretations to Logical Formulæ
Satisfiability Modulo Theory
First Order Logic as Abstract Domains

4 Graphs and Trees
Classic Representations
Example of Representation Designed for AI

Laurent Mauborgne Symbolic Abstract Domains 38 / 91

More Interpretations to Logical Formulæ First Order Logic as Abstract Domains

Axiomatic Semantics

Gives a semantics to program in terms of logical formulæ
Ordered by =⇒
Approximation of the concrete semantics (but often exact)

Example

fa ∈ (x×T(x, f))→F(x, f,p)→F(x, f,p)

fa [|x := t |] Ψ , ∃x ′ : Ψ[x← x ′] ∧ x = t [x← x ′]

ba ∈ (x×T(x, f))→F(x, f,p)→F(x, f,p)

ba [|x := t |] Ψ , Ψ[x← t]

pa ∈ C(x, f,p)→F(x, f,p)→B
pa [|ϕ|] Ψ , Ψ ∧ ϕ

Laurent Mauborgne Symbolic Abstract Domains 39 / 91

More Interpretations to Logical Formulæ First Order Logic as Abstract Domains

Example of program

x=0;
while(true)
x = incr(x)

Fa [|P|] (Ψ) , (x = 0) ∨ (∃x ′ : Ψ[x← x ′] ∧ x =
incr(x)[x← x ′]) ⇐⇒ (x = 0) ∨ (∃x ′ :
Ψ[x← x ′] ∧ x = incr(x ′))

Fa [|P|]0 , false

Fa [|P|]1 , Fa [|P|] (Fa [|P|]0) =
(x = 0) ∨ (∃x ′ : false[x← x ′] ∧ x = incr(x ′))

Fa [|P|]2 = (x = 0) ∨ (∃x2 : (x2 = 0) ∧ x = incr(x2))

...

No least fixpoint, even though theory is decidable.

Laurent Mauborgne Symbolic Abstract Domains 40 / 91

More Interpretations to Logical Formulæ First Order Logic as Abstract Domains

Multi-interpreted Semantics
Give semantics in a set of interpretations
Could correspond e.g. to different platforms of execution, loose
specification of language, . . .

RI program observables
PI , I ∈ I 67→ ℘(RI) interpreted properties

' ℘({〈I, η〉 | I ∈ I ∧ η ∈ RI})

Example
For imperative programs, RI = x→ IV and

fI [|x := e|] P , {〈I, η[x← [|e|]
I
η]〉 | I ∈ I ∧ 〈I, η〉 ∈ P)} post-condition

bI [|x := e|] P , {〈I, η〉 | I ∈ I ∧ 〈I, η[x← [|e|]
I
η]〉 ∈ P} pre-condition

pI [|ϕ|] P , {〈I, η〉 ∈ P | I ∈ I ∧ [|ϕ|]
I
η = true} test

Laurent Mauborgne Symbolic Abstract Domains 41 / 91

More Interpretations to Logical Formulæ First Order Logic as Abstract Domains

Abstractions between Multi-interpretations

We must consider
I the set of interpretations for which the program is defined
and I] the set of interpretations used in the analysis

Then we have the Galois connections (for the ⊆ ordering):

〈PI ,⊆〉
αI→I]

// 〈PI] ,⊆〉
γI]→Ioo

where

αI→I](P) , P ∩ PI]

γI]→I(Q) ,
{
〈I, η〉 | I ∈ I ∧

(
I ∈ I] =⇒ 〈I, η〉 ∈ Q

)}

Laurent Mauborgne Symbolic Abstract Domains 42 / 91

More Interpretations to Logical Formulæ First Order Logic as Abstract Domains

Example of abstractions
Uniform abstraction: forget about the interpretations

〈PI ,⊆〉
αI
// 〈∪I∈IRI ,⊆〉

γIoo

γI(E) , {〈I, η〉 | η ∈ E}
αI(P) , {η | ∃ I : 〈I, η〉 ∈ P}

ASTRÉE does that for rounding errors of floating points
computations

Abstraction by a theory: only keep interpretations in the theory
theories used to represent an infinite number of interpretations
Necessarily an approximation when we have just one interpretation
But no best interpretation (Gödel’s first incompleteness theorem)

Laurent Mauborgne Symbolic Abstract Domains 43 / 91

More Interpretations to Logical Formulæ First Order Logic as Abstract Domains

Logical Abstract Domains

Difficult points
Computing (or
approximating) the least
fixpoint
Checking that the invariant
is strong enough to prove
desired property

Solutions
Restrict the set of formulæ
to enforce ascending chain
condition
Use a decidable theory

Definition
Logical Abstract Domain = set of formulæ + a theory

Ordering is (Ψ v Ψ′) , ((∀~xΨ ∪ ~xΨ′ : Ψ =⇒ Ψ′) ∈ T)

Laurent Mauborgne Symbolic Abstract Domains 44 / 91

More Interpretations to Logical Formulæ First Order Logic as Abstract Domains

Abstraction to Logical Abstract Domain

Can use context-independent alphaIA ∈ F(x, f,p)→A
Soundness: ∀Ψ ∈ F(x, f,p), ∀I ∈ I : I |= Ψ =⇒ alphaIA(Ψ)

Assignment then becomes f] [|x := t |]ϕ , alphaIA(f [|x := t |]ϕ)

Example: Literal
Elimination

A = F(x, fA,pA), fA ⊆ f
and pA ⊆ pA
Ψ[t , . . . , t], where
t ∈ f \ fA is
approximated by
∃x : Ψ[x , . . . , x]

Example: Quantifier Elimination
A is quantifier-free
Quantifiers can be eliminated
without loss of precision in
some theories (but size
blow-up)
But approximations, using
heuristics are possible
(Simplify, ...)

Laurent Mauborgne Symbolic Abstract Domains 45 / 91

More Interpretations to Logical Formulæ First Order Logic as Abstract Domains

Other Abstract Operations

Examples of Widenings
Widen to finite sub-domain
Limit the size of formulæ,
eliminating new literals (in
conjunctive form)
Reduce only the evolving
parts, comparing syntactic
evolution
Make generalizations
(l(1) ∨ l(2) ∨ . . . implies
∃k > 0 : l(k))

Can be composed with
other abstract domains
Nelson-Oppen procedure
is an instance of domain
reduction

⇒ Reuse of existing, well
tested and efficient SMT
solvers
Satisfiability can be
approximated

Laurent Mauborgne Symbolic Abstract Domains 46 / 91

Graphs and Trees

Structures

To describe an infinite set, need a structure or algebra
The most general:

uninterpreted symbols
combined

⇒ trees (Herbrand model), or if possible graphs

⇒ Representing sets of trees
For what usage?. . .

Laurent Mauborgne Symbolic Abstract Domains 47 / 91

Graphs and Trees

What Usage?

Static analysis :
sets of traces
memory shapes
protocol analysis
any non-linear property (term algebra);

Computation of a set of terms:
abstract transfer functions
fixpoint testing (inclusion)
testing emptiness
union, but with a lot of recomputations

Laurent Mauborgne Symbolic Abstract Domains 48 / 91

Graphs and Trees

What trees?

Labeled trees;
Finite number of children (finite arity of children, but not
compulsory);
Ordered children;
Possibly infinite trees?

f
0
��

1
��

f
0
��

1
��

g
0��

a a a

f
0 �� 1

��
f

0
��

1
��

a

f
0
��

1
��

g
0��

f
0

��
1
��

g
0��

a

. . . g
0
��

g
0��

. . . a

f
0
��

1
��

a g 0

mm

Laurent Mauborgne Symbolic Abstract Domains 49 / 91

Graphs and Trees

What graphs?

Definition
An oriented graph is a set of nodes V and a set of edges
E ⊆ V × V
An oriented labeled multigraph is a set of nodes V , a node labeling
function (V→F), and a set of labeled edges E ⊆ V × V × L.

Example: program heap structure
Node = memory location
Node label = data
Labeled edge = named field pointing to another memory location

From now on: graph = oriented labeled multigraph

Laurent Mauborgne Symbolic Abstract Domains 50 / 91

Graphs and Trees

What Tree language?

Representing everything is impossible.
⇒ Each representation defines a class of tree languages.

Relevance of the class
What trees (infinite, regular...)?
True branching or linearity?
If branching, what level of relationship between subtrees?

Operations closure
In general, yes for boolean operations
In general, no for limits of sequences of languages

⇒ Approximating tree languages (smartly?)

Laurent Mauborgne Symbolic Abstract Domains 51 / 91

Graphs and Trees Classic Representations

1 Boolean Relations
Boolean Formulæ
Decision Trees
BDD approximation

2 Cartesian Approximation
Classic Logic
Kleene’s Logic

3 More Interpretations to Logical Formulæ
Satisfiability Modulo Theory
First Order Logic as Abstract Domains

4 Graphs and Trees
Classic Representations
Example of Representation Designed for AI

Laurent Mauborgne Symbolic Abstract Domains 52 / 91

Graphs and Trees Classic Representations

A few examples using variables:

Tree Grammars:
simple and easy to understand (good descriptive tools),
unsuccessful attempts to use them in static analysis (bad tools for
automatic manipulation);

Set constraints:
with ∪ and ∩, emptiness testing is EXPTIME,
possibility to add infinite trees using coinductive definitions;

µ-calculus:
powerful tool to describe languages over possibly infinite trees,
too powerful for a practical usage.

Laurent Mauborgne Symbolic Abstract Domains 53 / 91

Graphs and Trees Classic Representations

Usage as a Representation for Automatic Manipulation

Inherent default of representations using expressions:
renaming and increasing number of variables;
looking for normal (or just simplified) forms.

Lesson: the more operations we use in expressions (∪, ∩), the
more equality testing is difficult;
in practice :

if representation not too powerful, translated into an automaton,
if too powerful, restrain to a proper subset, then translate into an
automaton.

Laurent Mauborgne Symbolic Abstract Domains 54 / 91

Graphs and Trees Classic Representations

Definition of Tree Automata

Invented to show the decidability of a logic;
Natural extension to word automata;
Word automata are a good representation

⇒ using tree automata for practical representation

But there are differences between the two classes of automata

Definition
A: alphabet (or labels),
Q: set of states,
δ ⊂ Q × A×Qn: transition relations (n = 1 for words),
I,F ⊂ Q: sets of starting states and ending states.

Laurent Mauborgne Symbolic Abstract Domains 55 / 91

Graphs and Trees Classic Representations

Comparing words/trees

Word automata
Defines rational
languages, quite
expressive in
practice.
Same class if δ is
deterministic
(Q,A)→Q.

Tree automata
Trees can be read bottom-up or
top-down
Not the same class for top-down
deterministic ((Q,A)→Qn not
isomorphic to (Qn,A)→Q)
Complexity: A1 ≡ A2 is EXPTIME

Expressivity: cannot express
f
		 ��

x x
and infinite trees.

Laurent Mauborgne Symbolic Abstract Domains 56 / 91

Graphs and Trees Classic Representations

Tree Automata in Practice

Efficient Representation of δ
Representation of the decision process using compressed tables
[Börstler, Moncke and Wilhelm 1991] or BDDs: each A→Q is
represented by BDD [MONA, par Klarlund].

Guided Automata (MONA)
Idea: Top-down deterministic automata are less complicated

⇒ Divide the tree space using a deterministic top-down automaton,
then in each space, use bottom-up automata.
Automaton is run in 2 steps: first marking top-down, then finer
automata.
Minimisation complex.

Laurent Mauborgne Symbolic Abstract Domains 57 / 91

Graphs and Trees Classic Representations

Extensions of Tree Automata

Infinite Trees
Diversity of automata (Rabin, Büchi, Streett)
For each of them, heavy complexity: ∅ is PSPACE,
determinisation doubly exponential .

⇒ Not used in practice.

Automata with constraints between subtrees
Add constraints (= and 6=) to production rules;
∅ undecidable
∅ decidable if constraint between brothers only
practical application?

Laurent Mauborgne Symbolic Abstract Domains 58 / 91

Graphs and Trees Example of Representation Designed for AI

1 Boolean Relations
Boolean Formulæ
Decision Trees
BDD approximation

2 Cartesian Approximation
Classic Logic
Kleene’s Logic

3 More Interpretations to Logical Formulæ
Satisfiability Modulo Theory
First Order Logic as Abstract Domains

4 Graphs and Trees
Classic Representations
Example of Representation Designed for AI

Laurent Mauborgne Symbolic Abstract Domains 59 / 91

Graphs and Trees Example of Representation Designed for AI

Finding a Good Data Structure for Symbolic Properties
In the unbounded case

Most general structures for symbolic properties:
Trees, graphs
Sets of trees or even sets of graphs?

Classical representations
Expressions, using variables, seem a bad idea
Automata are not well tailored to static analysis

New Representation for Sets of Trees
Expressive enough
Efficient for incremental computations
Can take advantage of approximations

Laurent Mauborgne Symbolic Abstract Domains 60 / 91

Graphs and Trees Example of Representation Designed for AI

Sharing and Incrementality

Sharing
Objects are represented by a data structure
This data structure is stored at a given memory address
Representation shared iff no two memory address contain data
structures representing semantically equal objects

Gain in memory
Constant time equality ⇒ easy memoization
But hidden cost: when computing a new object

must be compared with all other represented objects
can be made efficient with hash-like techniques
but what is the interest compared with on-demand equality testing?

Only interesting if highly incremental

Laurent Mauborgne Symbolic Abstract Domains 61 / 91

Graphs and Trees Example of Representation Designed for AI

The Easy Case

The most classical representation with sharing is hash-consing of
trees:

f
0
��

1��
g

0 ��

f
0
��

1
��

a a g
0 ��
a

−→

f
0
��

1
��

g
0 ��

f
0
�� 1��

a g
0
oo

−→

f
0
��

1��
g

0 ��

f0

�� 1
bb

a

Bottom-up process
Incremental: not need to compute everything again at each tree
modification

Laurent Mauborgne Symbolic Abstract Domains 62 / 91

Graphs and Trees Example of Representation Designed for AI

Uniqueness

Y ,Z
��

X
��

h
1

��
0

��

f
0

��
1
��

g
0 ��

f0

}} 1
bb

a

Laurent Mauborgne Symbolic Abstract Domains 63 / 91

Graphs and Trees Example of Representation Designed for AI

Mechanism

Dictionary + key

Key = label + sub-trees id

a : 1
g(1) : 2

f (1,2) : 3
h(1,2) : 4
f (2,3) : 5

h4 1

��
0

��

f50

��
1
��

g2
0 ��

f30

|| 1
cc

a1

Laurent Mauborgne Symbolic Abstract Domains 64 / 91

Graphs and Trees Example of Representation Designed for AI

Regular Trees
Regular = finite number of distinct sub-trees

Example

f
0

��
1
��

2

��
f0
$$

1
��

2

��

g

0

HH

1
yy

a

g

0

HH

1
		

a

g

0

BB

1

JJ

or f0
$$

1
		

2

��
g

0

HH

1
yy

a

Same complexity as oriented labeled multigraphs
Question: how to extend hash-consing to graphs?
Laurent Mauborgne Symbolic Abstract Domains 65 / 91

Graphs and Trees Example of Representation Designed for AI

Equivalent Graphs

First determine the semantic equality
Idea: all what we can observe of a graph is

Node labels
Follow edges by specifying labels (=paths)

Equivalent graphs
Two nodes can be distinguished iff there is a path starting from
one of the nodes, such that there is no path starting from the other
with same edge labels and leading to nodes with same labels
Two edges can be distinguished iff different label or link
distinguishable nodes.
Two graphs are equivalent iff each node of each graph is
undistinguishable from a node of the other graph.

Laurent Mauborgne Symbolic Abstract Domains 66 / 91

Graphs and Trees Example of Representation Designed for AI

Example of equivalent graphs

Example

A
a

**

a ��

B
b

jj

A

a

EE

a

??
B

b

��

B

b��
A

a

EE
a

UU

Laurent Mauborgne Symbolic Abstract Domains 67 / 91

Graphs and Trees Example of Representation Designed for AI

Minimal graph

Definition
A graph is minimal iff all its nodes are distinguishable.

If we store all the graphs encountered in an analysis
Then it forms a big graph
If it is minimal, then no redundancy

⇒ We can easily reuse previous computations
To recognize if a graph argument has already been encountered,
just compare the nodes (= memory locations).
Notion of maximal sharing.

But systematic sharing might not be profitable

Laurent Mauborgne Symbolic Abstract Domains 68 / 91

Graphs and Trees Example of Representation Designed for AI

How to compute a minimal graph?

Finding the minimal graph amounts to a graph partitioning problem
⇒ Can be done in O(n log n).

Algorithm similar to Hopcroft for automata (refine a partition)
But not incremental at all.

The Incremental Minimality Problem
Suppose a minimal graph U (i.e. uniquely represented graphs)
Let G be a graph containing U .
Extend U in a minimal graph U ′ such that all nodes of G is
equivalent to a node of U ′.

Classical hash-consing algorithm?
cannot be used: there is no bottom in a graph

Laurent Mauborgne Symbolic Abstract Domains 69 / 91

Graphs and Trees Example of Representation Designed for AI

Extending a minimal graph

What we can observe of a graph is what is reachable
⇒ we have a notion of bottom-up

Definition
A graph G = (V , l ,E) contains a graph G′ = (V ′, l ′,E ′) iff

V ′ ⊆ V

and ∀v ∈ V ′, l ′(v) = l(v)

and E ′ ⊆ E

and no edge in E starts in V ′ and ends in V\V ′
(∀(v1, v2,a) ∈ E , v1 ∈ V ′ ⇒ v2 ∈ V ′)

A graph U ′ extends a graph U means that U ′ contains U , so that
no outgoing edge is added

Laurent Mauborgne Symbolic Abstract Domains 70 / 91

Graphs and Trees Example of Representation Designed for AI

Strongly Connected Components
à la Hopcroft Minimisation Algorithm

A new strongly connected component is either entirely in U or
outside it.
There does not seem to be any better algorithm than partition
refinement for such graphs...

A Partition Refinement Algorithm

Start with a set of blocks (corresponding to a coarse partition)

Le W be the set of (B, l), with B a block and l an edge label

while W is not empty, take (B, l) out of W

Compute for each node the number of l-labeled edges leading to B
Split each block according to that number
if a block was not in W , only add the smallest split blocks in W

Complexity: O(n ln(n))

Laurent Mauborgne Symbolic Abstract Domains 71 / 91

Graphs and Trees Example of Representation Designed for AI

Recognizing Strongly Connected Components

Problem
Minimizing a new strongly connected component does not share it
Too costly to minimize U !
Better way to recognize a strongly connected component?

Want to compare with as few as possible sub-graphs
(limited-depth hashing?)
Want to avoid costly equality testing

⇒ find a characteristic key?

Characteristic property
Isomorphic cycles have the same set of labeled paths

Laurent Mauborgne Symbolic Abstract Domains 72 / 91

Graphs and Trees Example of Representation Designed for AI

Characteristic Set of Trees for a Strongly Connected
Graph

The set of all paths can be described by a finite set of trees

Aa
&& b

**

c ��

B
a

jj b
xx

C
a

??

A
a
�� b��

c
��

ε B
a
�� b��

C
a��

ε b b

B
a
��

b
��

A
a
�� b��

c
��

ε

a ε C
a��
ε

C
a ��
B

a
��

b
��

A
a
�� b��

c
��

a

aa a ε

Laurent Mauborgne Symbolic Abstract Domains 73 / 91

Graphs and Trees Example of Representation Designed for AI

Comparison with Finite Height Hash-Consing
Experimental results on random graph incremental manipulations and
equality testing show that

1 Sharing is always faster than no sharing
2 Finite height hash-consing is far less efficient than cycle

hash-consing
3 Sharing on demand is slightly more efficient than systematic

sharing

Laurent Mauborgne Symbolic Abstract Domains 74 / 91

Graphs and Trees Example of Representation Designed for AI

Application to Word Automata

As a graph, word automata have the same equivalence notion as
defined earlier, if

deterministic
and complete (no forbidden transition) or useful (all states can lead
to a final state)

Static Analysis Application
Approximate the messages on channels between parallel processes

Approximation
Using Q-automata: encodes a sequence of languages by a regular
language

Laurent Mauborgne Symbolic Abstract Domains 75 / 91

Graphs and Trees Example of Representation Designed for AI

Experimental Results for Message Analysis

Fixpoint computation
Without minimisation, automata grow very quickly ⇒ inclusion
algorithms become very costly
Full minimisation at each step too costly

⇒ substantial speed-up with shared automata

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5 10 15 20 25 30 35

T
em

ps
 (

se
co

nd
es

)

Itérés

Partage
Classique

LASH

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90 100

T
em

ps
 (

se
co

nd
es

)

Itérés

Partage
Classique

Laurent Mauborgne Symbolic Abstract Domains 76 / 91

Graphs and Trees Example of Representation Designed for AI

Widenings for Graph based Representations
Widening
Widening is an approximation of unions used to speed-up
convergence of iterations

Essential to yield precise analysis (which demand infinite
domains)
Tries to extrapolate on successive iterates

Graph folding
Try to replace a new node by an old one with the same label
Only if this old one represents more values

Path extrapolation
Repeat infinitely a newly added edge (or path).
Approximates {anbn | n ∈ N} by ak a∗bk b∗

Size limiting
After a pre-defined size of the graph reached, replace new nodes
by >.
Enforces termination.

Laurent Mauborgne Symbolic Abstract Domains 77 / 91

Graphs and Trees Example of Representation Designed for AI

Examples of Graph Folding

A1 : // a // b //

A2 : // a // b // a // b //

A3 : // a //
b))

a
ii

G1 = A
))
Bhh

G2 = A // B //©
}}

// Bcc

G3 = A // B
))©`` hh

Laurent Mauborgne Symbolic Abstract Domains 78 / 91

Graphs and Trees Example of Representation Designed for AI

Examples of Path Extrapolation

A1 : // a // b //

A2 : // a // b //
a �� b //

b
OO

A3 : // a // b //
a �� b //

a

22
b
OO

G1 = A
b))

B
a
hh

G2 =

A b //© //

��

B
a ((

A
b
ii

B
a

__

b ((
B

a
hh

G3 =

A b //© //

��

B
a ((A
b
hh

B
a

__

b //©

��

// B

a
xx

B

a
``

b

ll

Laurent Mauborgne Symbolic Abstract Domains 79 / 91

Graphs and Trees Example of Representation Designed for AI

Examples of Size Limiting

A1 : // a // b //

A2 : // a // b //
a �� b //

b
OO

A3 : // a // b //
a ��

b

ll

a

22

G1 = A
b))

B
a
hh

G2 =

A b //© //

��

B
a ((

A
b
ii

B
a

__

b ((
B

a
hh

G3 =

A b //© //

��

B
a ((A
b
hh

B

a
""b //©hh

((

		

A
b
ii

B
a
II

Laurent Mauborgne Symbolic Abstract Domains 80 / 91

Graphs and Trees Example of Representation Designed for AI

Sets of Trees

Sharing Tree Automata?
A tree automaton is not a
graph
Hypergraph = set of nodes
+ set of tuples of nodes

Using a Graph + Interpreted
(union) Label?

Equivalence is not the
equality of paths
Unless normal form?
Potential problem of
cartesian approximation

Laurent Mauborgne Symbolic Abstract Domains 81 / 91

Graphs and Trees Example of Representation Designed for AI

Introduction of a choice node

Set of trees = tree
Just add a root with special label, and children the elements of the set.

Example

 f

�� ��
a b

,
g
��

b
,a

 would be represented by

©

~~ �� ��
f

�� ��

g
��

a

a b b

Efficient representation of trees ⇒ Efficient representation of sets of
trees (?)

Laurent Mauborgne Symbolic Abstract Domains 82 / 91

Graphs and Trees Example of Representation Designed for AI

Uniqueness of the Skeleton

To have a maximal sharing representation:
we must obtain uniqueness of the skeleton;
Valid skeleton = regular tree and restrictions;

⇒ not all sets of trees can be represented by a skeleton.

Laurent Mauborgne Symbolic Abstract Domains 83 / 91

Graphs and Trees Example of Representation Designed for AI

Obvious Restrictions

©
��
t

is equivalent to t

©
�� �� ��

t0 ©
�� ��

tn

u0 um

is equivalent to
©

{{ �� �� $$
t0 u0 um tn

f
�� �� ��

t0 © tn
is equivalent to © (empty set)

Laurent Mauborgne Symbolic Abstract Domains 84 / 91

Graphs and Trees Example of Representation Designed for AI

Conventional Restriction

Last problem: ordering the children of a choice node

Solution: total ordering on trees
Too expensive ⇒ partial ordering = ordering over labels

So ordering of the children of a choice node = ordering on the labels of
their roots.

Laurent Mauborgne Symbolic Abstract Domains 85 / 91

Graphs and Trees Example of Representation Designed for AI

Simplifications

Skeleton = first approximation;
We want efficient;
Simplification: share common prefixes

⇒ All subtrees of a choice node have a different root label.
⇒ the uniqueness problem is solved!

Laurent Mauborgne Symbolic Abstract Domains 86 / 91

Graphs and Trees Example of Representation Designed for AI

Simplification Examples

©
�� ��

g
��

g
��

a b

will be represented by

g
��
©
�� ��

a b

.

©
�� ��

f
		 ��

f
		 ��

a b c d

will be approximated by

f
�� ��

©
�� ��

©
�� ��

a c b d

.

Laurent Mauborgne Symbolic Abstract Domains 87 / 91

Graphs and Trees Example of Representation Designed for AI

Expressive Power of Tree Skeletons

Represent infinite trees too ⇒ greatest fixpoint semantics;
i.e. a tree skeleton represents the set of all finite and infinite trees
we can form by going through the skeleton.
If we limited to finite trees, same expressive power as
deterministic top down tree automata;
Advantage: incremental sharing.

Laurent Mauborgne Symbolic Abstract Domains 88 / 91

Graphs and Trees Example of Representation Designed for AI

Examples of Skeletons

f

�� ��
a
%%

b
yy represents the tree f (aω,bω).

©
�� ��

a

11

b represents the set a∗b ∪ aω.

f
�� 		
©
�� ��

a

11

b

represents the set of trees f (a∗b,a∗b) ∪ f (aω,a∗b) ∪
f (a∗b,aω) ∪ f (aω,aω). The sets of left and right chil-
dren are shared.

Laurent Mauborgne Symbolic Abstract Domains 89 / 91

Graphs and Trees Example of Representation Designed for AI

Usage of Tree Skeletons

Tree skeletons are simple and efficient;
Can be used as an abstract domain to over-approximate sets of
trees;
Intersection of 2 skeletons is representable by a skeleton, but not
union;
There exists a best approximation for finite union, and a widening
for infinite union;
First approximation for more expressive tree schemata.

Laurent Mauborgne Symbolic Abstract Domains 90 / 91

Graphs and Trees Example of Representation Designed for AI

Bibliography

R. E. Bryant. Graph Based Algorithms for Boolean Function
Manipulation. IEEE Transactions on Computers C-35, 1986.

L. Mauborgne. An Incremental Unique Representation for Regular
Trees. Nordic Journal of Computing 7(4), 2000.

N. Kettle, A. King and T. Strzemecki. Widening ROBDDs with Prime
Implicants. TACAS, 2006.

A. R. Bradley and Z. Manna. The Calculus of Computation, Decision
procedures with Applications to Verification. Springer, 2007.

H. Comon et al. Tree Automata Techniques and Applications. 2007.

P. Cousot, R. Cousot and L. Mauborgne. Logical Abstract Domains and
Interpretations. The Future of Software Engineering, 2010.

P. Cousot, R. Cousot and L. Mauborgne. The Reduced Product of
Abstract Domains and the Combination of Decision Procedures.
FoSSaCS, 2011.

Laurent Mauborgne Symbolic Abstract Domains 91 / 91

	Boolean Relations
	Boolean Formulæ
	Decision Trees
	BDD approximation

	Cartesian Approximation
	Classic Logic
	Kleene's Logic

	More Interpretations to Logical Formulæ
	Satisfiability Modulo Theory
	First Order Logic as Abstract Domains

	Graphs and Trees
	Classic Representations
	Example of Representation Designed for AI

